-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path01-Introduction.html
528 lines (528 loc) · 22.6 KB
/
01-Introduction.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Separation Processes 1</title>
<meta content="Separation processes 1 notes" name="description" />
<meta content="Marcus Bannerman <[email protected]" name="author" />
<meta content="yes" name="apple-mobile-web-app-capable" />
<meta
content="black-translucent"
name="apple-mobile-web-app-status-bar-style"
/>
<meta
content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui"
name="viewport"
/>
<script src="header.js"></script>
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<section>
<h2>Lecture 01: Introduction</h2>
<div class="center"></div>
</section>
</section>
<section>
<section data-menu-title="Course Information">
<h3>Teaching schedule:</h3>
<ul>
<li>
<b
>Three sessions (attendence recorded at one) with lecture
recordings.</b
>
</li>
<li class="fragment">
<b>Laboratory exercise:</b> (30% of the course mark) <br />
One three hour exercise in the laboratory on one of three pieces
of process-scale equipment:
<ul>
<li>Continuous distillation column.</li>
<li>Gas absorber.</li>
</ul>
<b
>Lab sessions are booked via MyTimetable; however, this is
never straightforward and they may need to be
reallocated/cancelled/etc so watch for announcements!</b
>
</li>
<li class="fragment">
Distillation lab and Gas absorber have videos to watch before.
Follow the instructions for both pieces of equipment carefully.
</li>
<li class="fragment">
<b>Revision session/office hours in revision week</b>.
</li>
<li class="fragment">
<b>Exam:</b>
(70% of the course mark)
<br />
3 hours, candidates attempt ALL questions.
</li>
</ul>
</section>
<section data-menu-title="Support">
<h3>Support</h3>
<ul>
<li>
<a
href="https://www.abdn.ac.uk/engineering/people/profiles/m.campbellbannerman"
>Dr Marcus Campbell Bannerman</a
>: <br />
Room 266, Fraser Nobel Building <br />
Email: [email protected] <br />
Tel: 01224 274480
</li>
<li class="fragment">
Your primary support for the course content are the contact
hours (lectures/tutorials).
</li>
<li class="fragment">
All other support and communication is provided through
MyAberdeen, i.e., course announcements, lecture slides, room
changes, and coursework submission.
</li>
</ul>
</section>
<section data-menu-title="Course Books">
<h3>Course Books</h3>
<ul>
<li>
All of my material is on this site (like Momentum, Heat, and
Mass Transfer). I'll show the menu to see it all.
</li>
<li>
The texts for the course are:
<ul>
<li class="fragment" data-fragment-index="1">
Coulson and Richardson's Chemical Engineering:
<ul>
<li>
<b
>Volume 2, “Particle Technology & Separation
Processes.”</b
>
<br />
The course will not concern itself with the particle
technology or solid-fluid systems content of this book.
<div style="font-size: 0.7em">(Available Online)</div>
</li>
<li class="fragment" data-fragment-index="2">
<b>Volume 6, “Chemical Engineering Design.”</b> <br />
The design sections for the separation process equipment
(in particular Chap. 11,
<i>“Separation Columns”</i>).
<div style="font-size: 0.7em">(Available Online)</div>
</li>
<li class="fragment" data-fragment-index="3">
<b>“Transport Processes and Unit Operations”</b>
by C. J. Geankoplis <br />
This book is invaluable in linking my last course HMMT
and separation processes. It is used for many of the
worked examples in the course, and the course is laid
out in the same pattern as the book.
<div style="font-size: 0.7em">
(Available in the Library)
</div>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</section>
</section>
<section>
<section data-menu-title="Separation Processes">
<ul>
<li>
Separation processes are a fundamental
<i>unit-operation</i>
used throughout the process industry.
</li>
<li class="fragment" data-fragment-index="1">
All raw materials (e.g., ores, crude oil, foodstuffs) are found
in an impure state and must be separated before being fed into
other plant processes.
</li>
<li class="fragment" data-fragment-index="2">
Products from reactors and other unit operations (e.g., alcohol
from fermentation, synthesis of drugs) usually exit the process
in low concentrations and must separated from the feedstock
elements (which can be recycled) before the final product is
obtained.
</li>
<li class="fragment">
Thus we can identify three general areas of separation: (1)
input purification, (2) reactant recovery to increase
yield/conversion, and (3) product purification.
<figure>
<div class="center">
<object
data="img/recycle.svg"
type="image/svg+xml"
width="60%"
></object>
</div>
<figcaption>
A representative sketch of many processes, illustrating the
importance of separation at every stage.
</figcaption>
</figure>
</li>
</ul>
</section>
<section>
<ul>
<li>
All separation processes exploit either a mechanical/physical
difference or a thermodynamic difference between two or more
components to effect a separation. I.e.,
<a href="https://en.wikipedia.org/wiki/Mass_spectrometry"
>mass spectroscopy</a
>
(mechanical) or distillation (thermodynamic).
</li>
<li class="fragment">
The separation of multiple components is generally called
<b>fractionation</b> and it can be carried out by repeated
binary splits. In this course we focus mainly on binary systems
for simplicity, even lumping many real components into a single
"pseudo" component to make the system binary! E.g., consider the
binary air-water system, which is actually H<sub>2</sub>O,
O<sub>2</sub>, N<sub>2</sub> etc.
</li>
<li class="fragment">
There are many terms for separation but many only communicate
the perspective of the engineer designing the separation. For
example, <b>purification</b>
usually indicates the designing engineer wants high
concentrations and may not care about recovering the impurities,
but it does not describe the underlying method.
</li>
<li class="fragment">
There are of course more exact terms which describe the actual
operating principles of the separation process.
</li>
</ul>
</section>
<section data-menu-title="Classifications">
<div style="font-size: 80%">
<p>
Each separation technique below that isn't mechanical uses a
different underlying thermodynamic driving force to power it.
The topics of this course are highlighted in bold.
</p>
<ul>
<li class="fragment">
<b>Evaporation</b>: Removal of components which boil
(volatile) from components which do not (involatile).
</li>
<li class="fragment">
<b>Distillation</b>: Separation using the uneven distribution
of volatile components between liquid and gas phases.
</li>
<li class="fragment">
<b>Absorption</b>: Similar to evaporation but for gas-liquid
systems, i.e., dissolution of small amounts of a highly
volatile gas in a relatively involatile liquid.
</li>
<li class="fragment">
<b>Liquid-liquid extraction</b>: As above, but using two
liquid phases (i.e., oil and water).
</li>
<li class="fragment">
Crystallisation (see Separation Processes 2): Precipitation of
solids which typically have a different concentration from the
"mother" liquor (i.e., see freeze distillation of alcohol).
Often driven by heating/evaporation rather than cooling as its
cheaper!
</li>
<li class="fragment">
Drying (see Separation Processes 2): Evaporation where solids
are separated from liquids, typically after crystallisation
has completed and often driven by evaporation.
</li>
<li class="fragment">
Mechanical-physical separations (see Separation Processes 2):
These are filtration, settling, centrifuging and size
reduction which use mass or size difference to separate
components.
</li>
<li class="fragment">
Membrane separation (level 5): Pressure-driven selection via
differing rates of permeability.
</li>
<li class="fragment">
Adsorption (level 5): Selective adsorbtion of gas components
onto a solid surface.
</li>
<li class="fragment">
Liquid-solid leaching (level 5): Dissolution of part of a
solid in liquid.
</li>
<li class="fragment">
Ion exchange: E.g., exchange of "hard" ions Ca<sup>2+</sup>
and Mg<sup>2+</sup> for 2Na<sup>+</sup> and 2K<sup>+</sup> to
"soften" the water. Typically uses solid-liquid systems.
</li>
<li class="fragment">
Electrolysis: Using an electric potential to drive an exchange
(see aluiminium production).
</li>
</ul>
</div>
</section>
<section style="font-size: 90%">
<ul>
<li>
The thermodynamic (non-mechanical) approaches can be classified
into two major categories of separation processes:
<ul>
<li>
<b>Equilibrium (limited) processes:</b> <br />
In equilibrium processes, two phases (vapour, liquid or
solid) are brought to contact with each other,
<b>mixed thoroughly</b>, then separated with a
redistribution of the components between phases. Multiple
contacts are often made in a series of cascading steps in
which the two-phases flow counter-current to each other. At
each contact, the phases approach thermodynamic equilibrium.
One example of an equilibrium limited process is
<b>distillation</b>. Such processes are often designed
through algebraic balance equations.
</li>
<li class="fragment" data-fragment-index="1">
<b>Mass-Transfer limited processes (rate-limited):</b>
<br />
In mass-transfer limited processes, one component of a feed
stream is transferred from the feed phase into a second
phase due to a chemical potential/pressure gradient.
Although thermodynamics are again driving the separation,
the limiting step upon which design is based is the rate of
transfer of the particular component from the feed material
to the second phase. One example of a rate-limited process
is <b>membrane separation</b>. Such processes are often
designed through differential balances.
</li>
</ul>
</li>
<li class="fragment">
Its important to note that “equilibrium” processes
also have mass-transfer limitations which must be modelled to
determine the size of the process equipment (and we will come
back to this in plate/packed column design) but these are small
enough that we can construct equipment which approaches the
thermodynamic limitations of the system.
</li>
</ul>
</section>
<section>
<ul>
<li>
The fundamental concepts behind these two classifications were
covered in the prerequisites for the course:
<ul>
<li class="fragment" data-fragment-index="1">
<b>EX3029</b>
- Chemical Thermodynamics
<br />
This course provided you with the understanding of the
driving forces behind equilibrium separation processes. For
example,
<i
>relative volatility, equations of state, Raoult's law,
activity coefficients</i
>.
</li>
<li class="fragment" data-fragment-index="2">
<b>EX3030</b>
- Heat, Mass, and Momentum Transfer
<br />
This course prepared you to understand and perform the
calculations behind rate-limited separation processes.
</li>
</ul>
</li>
</ul>
</section>
</section>
<section style="height: 100%">
<section
data-menu-title="Example of Separation: Evaporation/Distillation"
data-background="img/flash_seawater_distillation.jpg"
style="height: 100%; padding: 0"
>
<h3 style="background: rgba(0, 0, 0, 0.5); color: white">
Example: Seawater purification
</h3>
<h3
style="
position: absolute;
bottom: 0;
background: rgba(0, 0, 0, 0.5);
color: white;
"
>
The “Al Khobar 2” flash distillation plant in Saudi Arabia for the
desalination of sea water producing 26,700 m<sup>3</sup> of fresh
water a day.
</h3>
</section>
<section>
<iframe
width="1800"
height="750"
src="https://www.youtube.com/embed/Uhf-38-Hphk?si=1MiHFq5LJWhGw5ab"
title="YouTube video player"
frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
referrerpolicy="strict-origin-when-cross-origin"
allowfullscreen
></iframe>
</section>
<section>
<figure>
<div class="center">
<object
data="img/flash_drum.svg"
type="image/svg+xml"
width="70%"
></object>
</div>
</figure>
<p>
A simplified diagram of a flash distillation unit. These are
<b>equilibrium</b> based processes where instantaneous boiling due
to a sudden pressure drop causes a stream to split into two.
"Flash" calculations is now slang for any calculation to determine
if a mixture is a gas, liquid, or both under specified conditions.
</p>
</section>
<section>
<figure>
<div class="center">
<img src="img/backward_feed.svg" style="width: 80%" />
</div>
<figcaption>
A diagram of the three pass flash-distillation plant for the
desalination of sea water. This diagram highlights the
<b>heat-integration</b>
required to make the process efficient.
</figcaption>
</figure>
</section>
</section>
<section>
<section data-menu-title="Example of Separation: Reverse Osmosis">
<figure>
<div class="center">
<img
src="img/Reverse_osmosis_desalination_plant.jpg"
style="display: inline-block"
/>
<object
data="img/reverse_osmosis.svg"
type="image/svg+xml"
width="50%"
style="display: inline-block"
></object>
</div>
<figcaption>
A reverse osmosis plant and a diagram of the pressure driven
“filtration” of pure water from sea water across a
semi-permeable membrane. This is a rate-limited process.
</figcaption>
</figure>
</section>
</section>
<section>
<section data-menu-title="Course Overview">
<h3>Course Outline</h3>
<p>The outline for the course is:</p>
<ul>
<li>
Introduction to separation processes fundamentals. Single stage
evaporation.
</li>
<li class="fragment" data-fragment-index="1">
Multi stage evaporation and non-ideal properties (boiling point
rise).
</li>
<li class="fragment" data-fragment-index="2">
Single stage absorbtion processes.
</li>
<li class="fragment" data-fragment-index="3">
Multi-stage absorbtion.
</li>
<li class="fragment" data-fragment-index="4">
Flash/single-stage distillation.
</li>
<li class="fragment" data-fragment-index="5">
Multi-stage distillation.
</li>
<li class="fragment" data-fragment-index="6">
Advanced Multi-stage distillation, efficiencies, tray
efficiencies, vapour velocities.
</li>
<li class="fragment" data-fragment-index="7">
Revisiting absorber design and breaking azeotropes.
</li>
</ul>
</section>
<section>
<div class="center">
<img src="img/distillation_column.jpg" style="width: 60%" />
</div>
<h3>Sneak peek at the distillation equipment</h3>
</section>
<section>
<div class="center">
<img src="img/absorber_column.jpg" style="width: 37%" />
</div>
<h3>Sneak peek at the absorption equipment</h3>
</section>
</section>
<section>
<section data-menu-title="Learning Objectives">
<h3>Learning objectives</h3>
<ul>
<li>To understand the structure of the course.</li>
<li class="fragment" data-fragment-index="1">
To be able to name many different separation processes (e.g.,
distillation, membrane, evaporation, crystallisation)
</li>
<li class="fragment" data-fragment-index="2">
To know the two classes of separation processes,
<b>equilibrium</b>
and
<b>mass-transfer limited</b>
processes. You should be able to name several.
</li>
<li class="fragment" data-fragment-index="3">
To understand the basic operating concept of a flash-drum and a
membrane reverse-osmosis plant.
</li>
</ul>
</section>
</section>
</div>
<div class="slide-menu-button" style="left: 170px; cursor: pointer">
<a
class="hide-on-pdf"
id="PrintButton"
onclick="document.location = '?print-pdf';"
>
<i class="fa fa-print"></i>
</a>
</div>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ TeX: { extensions: ["cancel.js"] }});
</script>
<script src="footer.js"></script>
</div>
</body>
</html>