-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11-Multi-Stage-Absorption-01.html
450 lines (450 loc) · 18.3 KB
/
11-Multi-Stage-Absorption-01.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8" />
<title>Separation Processes 1</title>
<meta content="Separation processes 1 notes" name="description" />
<meta content="Marcus Bannerman <[email protected]" name="author" />
<meta content="yes" name="apple-mobile-web-app-capable" />
<meta
content="black-translucent"
name="apple-mobile-web-app-status-bar-style"
/>
<meta
content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui"
name="viewport"
/>
<script src="header.js"></script>
</head>
<body>
<div class="reveal">
<div class="slides">
<section>
<section>
<h2>Multi-Stage Absorption: Part 1</h2>
<div class="center"></div>
</section>
</section>
<section>
<section data-menu-title="Multi-Stage Absorbers">
<div style="display: flex; align-items: center">
<div style="flex: 1 1 calc(100% * 0.651)">
<ul>
<li>
So far we've considered a single
<b>theoretical</b>
/
<b>ideal</b>
absorber stage…
</li>
<li class="fragment" data-fragment-index="1">
Two streams enter the system, $V_2$ and $L_0$, and
<b>equilibrate before leaving the stage</b>
(this is the definition of an ideal stage).
</li>
<li class="fragment" data-fragment-index="2">
In real life, we would not use a single stage of absorption,
but many stages.
</li>
<li class="fragment" data-fragment-index="3">
Another consideration is that no real stage is
<b>ideal</b>.
</li>
<li class="fragment" data-fragment-index="4">
The main limitation of real stages is the residence time of
the liquid and vapour is not long enough for the two to come
into full equilibrium (poor mixing).
</li>
</ul>
</div>
<div style="flex: 1 1 calc(100% * 0.31)">
<figure>
<div class="center">
<img
src="img/absorber_theoretical_stage.svg"
style="width: 100%"
/>
</div>
</figure>
</div>
</div>
</section>
<section>
<div class="center">
<img src="img/absorber_multi_stage.svg" style="width: 100%" />
</div>
<ul>
<li>
In a multi-stage absorber, the liquid and vapour from one stage
is passed to another stage.
</li>
<li class="fragment" data-fragment-index="1">
The diagram above of a counter current absorber reveals the
logic behind the unusual numbering of the streams in the
previous examples.
</li>
<li class="fragment" data-fragment-index="2">
Vapour flows from the next stage to the current stage, and
liquid flows in the opposite direction.
</li>
<li class="fragment" data-fragment-index="3">
We will now discuss why
<b
>counter-current flow is the natural choice for
absorption/distillation</b
>
…
</li>
</ul>
</section>
<section data-menu-title="Co/Counter-Current Flow">
<div class="center">
<img src="img/Cocurrent.svg" style="width: 100%" />
</div>
<ul>
<li>
Assuming each stage does not quite reach equilibrium, we could
use as many real stages as needed until the fluids do reach
equilibrium.
</li>
<li class="fragment" data-fragment-index="1">
This is
<b>co-current</b>
flow, and is illustrated above with
<span style="color: red"> vapour</span>
and
<span style="color: blue"> liquid</span>
streams.
</li>
<li class="fragment" data-fragment-index="2">
The separation achieved by this configuration is limited by the
equilibrium state of the fluids (little/no mass transfer as
equilibrium is reached).
</li>
</ul>
</section>
<section>
<div class="center">
<img src="img/Countercurrent.svg" style="width: 90%" />
</div>
<ul>
<li>
Just like in heat transfer systems, a far more efficient
operation would be to operate many absorber stages in
<b>counter-current</b>
flow.
</li>
<li class="fragment" data-fragment-index="1">
Counter-current absorbers can achieve higher loadings of the
liquid stream, as the equilibrium point varies along the
absorber.
</li>
<li class="fragment" data-fragment-index="2">
We can maintain a significant equilibrium (and dynamic) driving
force for mass transfer along the whole length of the absorber.
</li>
</ul>
</section>
<section data-menu-title="Packed Columns">
<div style="display: flex; align-items: center">
<div style="flex: 1 1 calc(100% * 0.451)">
<ul>
<li>
All real absorbers are counter current, but not only for the
better mass transfer characteristics.
</li>
<li class="fragment" data-fragment-index="1">
Counter-current flow within a vertical gas absorber column
is a natural consequence of the bouyancy forces.
</li>
<li class="fragment" data-fragment-index="2">
The gas stream will naturally bubble up through the liquid
stream.
</li>
<li class="fragment" data-fragment-index="3">
On the right is a diagram of a
<b>packed-bed column</b>, where liquid flows down over the
<b>packing</b>
and gas rises, and the counter current flow is obvious.
</li>
</ul>
</div>
<div style="flex: 1 1 calc(100% * 0.551)">
<figure>
<div class="center">
<img src="img/absorber.svg" style="width: 100%" />
</div>
</figure>
</div>
</div>
</section>
<section>
<div class="center">
<img src="img/packing.svg" style="width: 90%" />
</div>
<ul>
<li>
Packing consists of a large number of small objects with high
surface-to-volume ratios.
</li>
<li class="fragment" data-fragment-index="1">
They range from the simple Raschig ring “tubes”, to the more
complex Berl saddle.
</li>
<li class="fragment" data-fragment-index="2">
They are designed to form a self-supporting, lightweight porous
structure which maximises the contact between the liquid and the
gas passing over the bed.
</li>
<li class="fragment" data-fragment-index="3">
For an initial design, we could assume that a certain height of
packing achieves the same effect as a single ideal stage (
<b>height of an equivalent theoretical plate (HETP)</b>).
</li>
</ul>
</section>
<section data-menu-title="Plate/Tray Columns">
<div style="display: flex; align-items: center">
<div style="flex: 1 1 calc(100% * 0.51)">
<ul>
<li>
The other common form of absorber/distillation tower is that
of a plate or tray column.
</li>
<li class="fragment" data-fragment-index="1">
In these columns, the liquid is held up on trays which have
perforations to allow the gas/vapour phase to bubble
through.
</li>
<li class="fragment" data-fragment-index="2">
Although this appears to have an easily identifiable
“stage”, typically the
<b>plate efficiency</b>
is less than one.
</li>
<li class="fragment" data-fragment-index="3">
A single plate might only achieve 70-85% of the separation
of an ideal stage (plate efficiency=70-85%).
</li>
</ul>
</div>
<div style="flex: 1 1 calc(100% * 0.451)">
<figure>
<div class="center">
<img src="img/Tray_column.svg" style="width: 100%" />
</div>
</figure>
</div>
</div>
</section>
<section>
<div style="display: flex; align-items: center">
<div style="flex: 1 1 calc(100% * 0.51)">
<ul>
<li>
Both packing and trays have their advantages and
disadvantages, and their selection depends on the viscosity,
flow-rates and fouling of the two phases.
</li>
<li class="fragment" data-fragment-index="1">
A major consideration is that we have more accurate design
methods for plate columns.
</li>
<li class="fragment" data-fragment-index="2">
However, packing can be significantly cheaper to construct.
</li>
<li class="fragment" data-fragment-index="3">
But we will ignore the internal structure of the column for
now, and just look at the concept of ideal stages.
</li>
<li class="fragment" data-fragment-index="4">
To translate these ideal designs into real designs, we will
need to consider tray efficiencies and the packing height of
an equivalent theoretical plate.
</li>
</ul>
</div>
<div style="flex: 1 1 calc(100% * 0.451)">
<figure>
<div class="center">
<img src="img/Tray_column.svg" style="width: 100%" />
</div>
</figure>
</div>
</div>
</section>
</section>
<section>
<section data-menu-title="Multi-Stage Balance Equations">
<div class="center">
<img
src="img/absorber_multi_stage_balance_00.svg"
style="width: 80%"
/>
</div>
<ul>
<li>
When designing an absorber column, we often know the conditions
of the available absorbing liquid $L_0$, and the target vapour
outlet conditions $V_1$.
</li>
<li class="fragment" data-fragment-index="1">
We then need to solve from the left to the right, stage by
stage, to determine the outlet liquid and inlet vapour
conditions.
</li>
<li class="fragment" data-fragment-index="2">
Sometimes the problem is specified in reverse, we have a target
loading of the outlet liquid $L_N$, and an inlet specification
of the gas/vapour $V_{N+1}$.
</li>
<li class="fragment" data-fragment-index="3">
Here we would need to solve from right to left, but in both
cases we need the governing equations of the system.
</li>
</ul>
</section>
<section data-menu-title="Single-Stage Balance">
<div class="center">
<img
src="img/absorber_multi_stage_balance_01.svg"
style="width: 80%"
/>
</div>
<ul>
<li>
Just as before, around a single stage we can create a total
mass/molar balance… \begin{align*} L_0+V_2 = L_1+V_1
\end{align*} … and a component mass/molar balance.
\begin{align*} L_0 x_{A,0}+V_2 y_{A,2}&=L_1 x_{A,1} +
V_1 y_{A,1} \end{align*}
</li>
<li class="fragment" data-fragment-index="1">
We can create $N$ of these balances, where $N$ is the total
number of stages.
</li>
</ul>
</section>
<section>
<div class="center">
<img
src="img/absorber_multi_stage_balance_01.svg"
style="width: 80%"
/>
</div>
<ul>
<li>
These $N$ balances will then need to be combined with the
equilibrium data to close the system of equations.
</li>
<li class="fragment" data-fragment-index="1">
However, there are several other balances that we can create.
</li>
</ul>
</section>
<section data-menu-title="Multiple-Stage Balances">
<div class="center">
<img
src="img/absorber_multi_stage_balance_02.svg"
style="width: 80%"
/>
</div>
<ul>
<li>
A similar mass balances could be created around all $N$ stages…
\begin{align*} L_0+V_{N+1} &= L_N+V_{1}\\
L_0 x_{A,0}+V_{N+1} y_{A,N+1}&=L_N x_{A,N} + V_1 y_{A,1}
\end{align*}
</li>
<li class="fragment" data-fragment-index="1">
But this balance alone cannot specify the outlet stream
conditions, as we need to examine the equilibrium state of each
individual stage.
</li>
</ul>
</section>
<section>
<div class="center">
<img
src="img/absorber_multi_stage_balance_03.svg"
style="width: 80%"
/>
</div>
<ul>
<li>
We can of course create a balance around some smaller number,
$n$, of the stages. \begin{align*} L_0+V_{n+1} &=
L_n+V_{1}\\ L_0 x_{A,0}+V_{n+1} y_{A,n+1}&=L_n x_{A,n} +
V_1 y_{A,1} \end{align*}
</li>
<li class="fragment" data-fragment-index="1">
The key thing to note is that common to the balances we just
created is that the input liquid $L_0$, and output vapour $V_1$
are always included.
</li>
</ul>
</section>
<section data-menu-title="General Balance">
<div class="center">
<img
src="img/absorber_multi_stage_balance_03.svg"
style="width: 80%"
/>
</div>
<ul>
<li>
If we take the last balance equation, and assume the vapour and
liquid streams are binary and contain inert components (as for
the single stage absorber example), we can transform the balance
equation to \begin{align*}
L'\frac{x_{A,0}}{1-x_{A,0}}+V'\frac{y_{A,n+1}}{1-y_{A,n+1}}&=L'\frac{x_{A,n}}{1-x_{A,n}}
+ V'\frac{y_{A,1}}{1-y_{A,1}} \end{align*}
</li>
<li class="fragment" data-fragment-index="1">
This equation is powerful, as it relates the gas composition
entering any stage $n$ ( $y_{A,n+1}$), to the liquid composition
in that stage ( $x_{A,n}$) (assuming $x_{A,0}$ and $y_{A,1}$ are
known).
</li>
</ul>
</section>
<section>
<div class="center">
<img
src="img/absorber_multi_stage_balance_03.svg"
style="width: 80%"
/>
</div>
\begin{align*}
V'\frac{y_{A,n+1}}{1-y_{A,n+1}}&=L'\frac{x_{A,n}}{1-x_{A,n}} +
V'\frac{y_{A,1}}{1-y_{A,1}} - L'\frac{x_{A,0}}{1-x_{A,0}}
\end{align*}
<ul>
<li>
We only need to add the VLE data ($y_{A,n} = f(x_{A,n})$), and
we can solve our problem stage by stage.
</li>
<li class="fragment" data-fragment-index="1">
This can be done by calculator or, as will be shown in the next
lecture, it can be done graphically!
</li>
</ul>
</section>
</section>
</div>
<div class="slide-menu-button" style="left: 170px; cursor: pointer">
<a
class="hide-on-pdf"
id="PrintButton"
onclick="document.location = '?print-pdf';"
>
<i class="fa fa-print"></i>
</a>
</div>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({ TeX: { extensions: ["cancel.js"] }});
</script>
<script src="footer.js"></script>
</div>
</body>
</html>