-
Notifications
You must be signed in to change notification settings - Fork 91
/
Copy pathops.py
executable file
·156 lines (121 loc) · 5.13 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2017 Max Planck Society
# Distributed under the BSD-3 Software license,
# (See accompanying file ./LICENSE.txt or copy at
# https://opensource.org/licenses/BSD-3-Clause)
"""Tensorflow ops used by GAN.
"""
import tensorflow as tf
import numpy as np
import logging
def lrelu(x, leak=0.3):
return tf.maximum(x, leak * x)
def batch_norm(opts, _input, is_train, reuse, scope, scale=True):
"""Batch normalization based on tf.contrib.layers.
"""
return tf.contrib.layers.batch_norm(
_input, center=True, scale=scale,
epsilon=opts['batch_norm_eps'], decay=opts['batch_norm_decay'],
is_training=is_train, reuse=reuse, updates_collections=None,
scope=scope, fused=False)
def upsample_nn(input_, new_size, scope=None, reuse=None):
"""NN up-sampling
"""
with tf.variable_scope(scope or "upsample_nn", reuse=reuse):
result = tf.image.resize_nearest_neighbor(input_, new_size)
return result
def downsample(input_, d_h=2, d_w=2, conv_filters_dim=None, scope=None, reuse=None):
"""NN up-sampling
"""
with tf.variable_scope(scope or "downsample", reuse=reuse):
result = tf.nn.max_pool(input_, ksize=[1, d_h, d_w, 1], strides=[1, d_h, d_w, 1], padding='SAME')
return result
def linear(opts, input_, output_dim, scope=None, init='normal', reuse=None):
"""Fully connected linear layer.
Args:
input_: [num_points, ...] tensor, where every point can have an
arbitrary shape. In case points are more than 1 dimensional,
we will stretch them out in [numpoints, prod(dims)].
output_dim: number of features for the output. I.e., the second
dimensionality of the matrix W.
"""
stddev = opts['init_std']
bias_start = opts['init_bias']
shape = input_.get_shape().as_list()
assert len(shape) > 0
in_shape = shape[1]
if len(shape) > 2:
# This means points contained in input_ have more than one
# dimensions. In this case we first stretch them in one
# dimensional vectors
input_ = tf.reshape(input_, [-1, np.prod(shape[1:])])
in_shape = np.prod(shape[1:])
with tf.variable_scope(scope or "lin", reuse=reuse):
if init == 'normal':
matrix = tf.get_variable(
"W", [in_shape, output_dim], tf.float32,
tf.random_normal_initializer(stddev=stddev))
else:
matrix = tf.get_variable(
"W", [in_shape, output_dim], tf.float32,
tf.constant_initializer(np.identity(in_shape)))
bias = tf.get_variable(
"b", [output_dim],
initializer=tf.constant_initializer(bias_start))
return tf.matmul(input_, matrix) + bias
def conv2d(opts, input_, output_dim, d_h=2, d_w=2, scope=None,
conv_filters_dim=None, padding='SAME', l2_norm=False):
"""Convolutional layer.
Args:
input_: should be a 4d tensor with [num_points, dim1, dim2, dim3].
"""
stddev = opts['init_std']
bias_start = opts['init_bias']
shape = input_.get_shape().as_list()
if conv_filters_dim is None:
conv_filters_dim = opts['conv_filters_dim']
k_h = conv_filters_dim
k_w = k_h
assert len(shape) == 4, 'Conv2d works only with 4d tensors.'
with tf.variable_scope(scope or 'conv2d'):
w = tf.get_variable(
'filter', [k_h, k_w, shape[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
if l2_norm:
w = tf.nn.l2_normalize(w, 2)
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding=padding)
biases = tf.get_variable(
'b', [output_dim],
initializer=tf.constant_initializer(bias_start))
conv = tf.nn.bias_add(conv, biases)
return conv
def deconv2d(opts, input_, output_shape, d_h=2, d_w=2, scope=None, conv_filters_dim=None, padding='SAME'):
"""Transposed convolution (fractional stride convolution) layer.
"""
stddev = opts['init_std']
shape = input_.get_shape().as_list()
if conv_filters_dim is None:
conv_filters_dim = opts['conv_filters_dim']
k_h = conv_filters_dim
k_w = k_h
assert len(shape) == 4, 'Conv2d_transpose works only with 4d tensors.'
assert len(output_shape) == 4, 'outut_shape should be 4dimensional'
with tf.variable_scope(scope or "deconv2d"):
w = tf.get_variable(
'filter', [k_h, k_w, output_shape[-1], shape[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
deconv = tf.nn.conv2d_transpose(
input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1], padding=padding)
biases = tf.get_variable(
'b', [output_shape[-1]],
initializer=tf.constant_initializer(0.0))
deconv = tf.nn.bias_add(deconv, biases)
return deconv
def log_sum_exp(logits):
l_max = tf.reduce_max(logits, axis=1, keep_dims=True)
return tf.add(l_max,
tf.reduce_sum(
tf.exp(tf.subtract(
logits,
tf.tile(l_max, tf.stack([1, logits.get_shape()[1]])))),
axis=1))