"
],
- "source": [
- "high_correlation_query = \"\"\"\n",
- "\n",
- "// Only look at properties of nodes labeled \"Country\"\n",
- "CALL apoc.meta.nodeTypeProperties({labels:['Country']})\n",
- "YIELD propertyName, propertyObservations, totalObservations\n",
- "WITH propertyName,\n",
- " (totalObservations - propertyObservations) as missing_value\n",
- "// filter our features with more than 5 missing values\n",
- "WHERE missing_value < 5 AND propertyName <> 'name'\n",
- "WITH collect(propertyName) as features\n",
- "MATCH (c:Country)\n",
- "UNWIND features as feature\n",
- "UNWIND features as compare_feature\n",
- "WITH feature,\n",
- " compare_feature,\n",
- " collect(coalesce(c[feature],0)) as vector_1,\n",
- " collect(coalesce(c[compare_feature],0)) as vector_2\n",
- "// avoid comparing with a feature with itself\n",
- "WHERE feature < compare_feature\n",
- "RETURN feature,\n",
- " compare_feature,\n",
- " gds.similarity.pearson(vector_1, vector_2) AS correlation\n",
- "ORDER BY correlation DESC LIMIT 10\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "read_query(high_correlation_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "KqcIxTJP25jI"
- },
- "source": [
- "Interesting to see that birth rate and infant mortality are very correlated. The death rate is also quite correlated with infant mortality, so we will drop the birth and death rate but keep the infant mortality. The number of phones and net migration seems to be correlated with the GDP. We will drop them both as well and keep the GDP. We will also cut the population and retain both the area and population density, which carry similar information.\n",
- "### Feature statistics\n",
- "At this point, we are left with eight features. We will examine their distributions with the apoc.agg.statistics function. It calculates numeric statistics such as minimum, maximum, and percentile ranks for a collection of values."
+ "text/plain": [
+ " feature compare_feature \\\n",
+ "0 Birthrate Infant mortality (per 1000 births) \n",
+ "1 GDP ($ per capita) Phones (per 1000) \n",
+ "2 Deathrate Infant mortality (per 1000 births) \n",
+ "3 Area (sq. mi.) Population \n",
+ "4 Birthrate Deathrate \n",
+ "5 GDP ($ per capita) Net migration \n",
+ "6 Coastline (coast/area ratio) Crops (%) \n",
+ "7 Phones (per 1000) Pop. Density (per sq. mi.) \n",
+ "8 Coastline (coast/area ratio) Pop. Density (per sq. mi.) \n",
+ "9 Net migration Phones (per 1000) \n",
+ "\n",
+ " correlation \n",
+ "0 0.841210 \n",
+ "1 0.828151 \n",
+ "2 0.661350 \n",
+ "3 0.469985 \n",
+ "4 0.420948 \n",
+ "5 0.381256 \n",
+ "6 0.338594 \n",
+ "7 0.280954 \n",
+ "8 0.241690 \n",
+ "9 0.236930 "
]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "high_correlation_query = \"\"\"\n",
+ "\n",
+ "// Only look at properties of nodes labeled \"Country\"\n",
+ "CALL apoc.meta.nodeTypeProperties({labels:['Country']})\n",
+ "YIELD propertyName, propertyObservations, totalObservations\n",
+ "WITH propertyName,\n",
+ " (totalObservations - propertyObservations) as missing_value\n",
+ "// filter our features with more than 5 missing values\n",
+ "WHERE missing_value < 5 AND propertyName <> 'name'\n",
+ "WITH collect(propertyName) as features\n",
+ "MATCH (c:Country)\n",
+ "UNWIND features as feature\n",
+ "UNWIND features as compare_feature\n",
+ "WITH feature,\n",
+ " compare_feature,\n",
+ " collect(coalesce(c[feature],0)) as vector_1,\n",
+ " collect(coalesce(c[compare_feature],0)) as vector_2\n",
+ "// avoid comparing with a feature with itself\n",
+ "WHERE feature < compare_feature\n",
+ "RETURN feature,\n",
+ " compare_feature,\n",
+ " gds.similarity.pearson(vector_1, vector_2) AS correlation\n",
+ "ORDER BY correlation DESC LIMIT 10\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(high_correlation_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KqcIxTJP25jI"
+ },
+ "source": [
+ "Interesting to see that birth rate and infant mortality are very correlated. The death rate is also quite correlated with infant mortality, so we will drop the birth and death rate but keep the infant mortality. The number of phones and net migration seems to be correlated with the GDP. We will drop them both as well and keep the GDP. We will also cut the population and retain both the area and population density, which carry similar information.\n",
+ "### Feature statistics\n",
+ "At this point, we are left with eight features. We will examine their distributions with the apoc.agg.statistics function. It calculates numeric statistics such as minimum, maximum, and percentile ranks for a collection of values."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 300
},
+ "id": "SfothkMb25jI",
+ "outputId": "62b7fd71-ae25-4aab-95a6-ef9336139876"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "id": "SfothkMb25jI",
- "outputId": "62b7fd71-ae25-4aab-95a6-ef9336139876",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 300
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " potential_feature min max mean \\\n",
- "0 Other (%) 33.33 100.00 81.64 \n",
- "1 Arable (%) 0.00 62.11 13.80 \n",
- "2 Crops (%) 0.00 50.68 4.56 \n",
- "3 Coastline (coast/area ratio) 0.00 870.66 21.17 \n",
- "4 Infant mortality (per 1000 births) 2.29 191.19 35.51 \n",
- "5 Pop. Density (per sq. mi.) 0.00 16271.50 379.05 \n",
- "6 GDP ($ per capita) 500.00 55100.00 9689.85 \n",
- "7 Area (sq. mi.) 2.00 17075200.00 598227.59 \n",
- "\n",
- " stdev p50 p75 p95 p99 \n",
- "0 16.10 85.70 95.44 99.81 100.00 \n",
- "1 13.01 10.42 20.00 40.54 55.30 \n",
- "2 8.34 1.03 4.44 20.00 45.71 \n",
- "3 72.13 0.73 10.32 92.31 310.69 \n",
- "4 35.31 20.97 55.51 103.32 143.64 \n",
- "5 1656.53 78.80 188.50 838.60 6482.22 \n",
- "6 10026.91 5500.03 15700.06 29600.12 37800.25 \n",
- "7 1786336.93 86600.50 437074.00 2345424.00 9631424.00 "
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "feature_stats_query = \"\"\"\n",
- "\n",
- "// define excluded features\n",
- "WITH ['name', \n",
- " 'Deathrate', \n",
- " 'Birthrate',\n",
- " 'Phones (per 1000)',\n",
- " 'Net migration', \n",
- " 'Population'] as excluded_features\n",
- "CALL apoc.meta.nodeTypeProperties({labels:['Country']})\n",
- "YIELD propertyName, propertyObservations, totalObservations\n",
- "WITH propertyName,\n",
- " (totalObservations - propertyObservations) as missing_value\n",
- "WHERE missing_value < 5 AND \n",
- " NOT propertyName in excluded_features\n",
- "// Reduce to a single row\n",
- "WITH collect(propertyName) as potential_features\n",
- "MATCH (c:Country)\n",
- "UNWIND potential_features as potential_feature\n",
- "WITH potential_feature, \n",
- " apoc.agg.statistics(c[potential_feature],\n",
- " [0.5,0.75,0.9,0.95,0.99]) as stats\n",
- "RETURN potential_feature, \n",
- " apoc.math.round(stats.min,2) as min, \n",
- " apoc.math.round(stats.max,2) as max, \n",
- " apoc.math.round(stats.mean,2) as mean, \n",
- " apoc.math.round(stats.stdev,2) as stdev,\n",
- " apoc.math.round(stats.`0.5`,2) as p50,\n",
- " apoc.math.round(stats.`0.75`,2) as p75,\n",
- " apoc.math.round(stats.`0.95`,2) as p95,\n",
- " apoc.math.round(stats.`0.99`,2) as p99\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "read_query(feature_stats_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "IPbg0N1f25jJ"
- },
- "source": [
- "The Federated state of Micronesia has the ratio of coast to area at 870, which is pretty impressive. On the other hand, there are a total of 44 countries in the world with zero coastlines. Another fun fact is that Greenland has a population density rounded to 0 per square mile with its 56361 inhabitants and 2166086 square miles. It might be a cool place to perform social distancing.\n",
- "We can observe that most of the features appear to be descriptive, except for the Other (%), which is mostly between 80 and 100. Due to the low variance, we will ignore it in our further analysis.\n",
- "### Populate the missing values\n",
- "We are left with seven features that we are going to use to infer a similarity network between countries. One thing we need to do before that is to populate the missing values. We will use a simple method and fill in the missing values of the features with the average value of the region the country is part of."
+ "text/plain": [
+ " potential_feature min max mean \\\n",
+ "0 Other (%) 33.33 100.00 81.64 \n",
+ "1 Crops (%) 0.00 50.68 4.56 \n",
+ "2 Arable (%) 0.00 62.11 13.80 \n",
+ "3 Coastline (coast/area ratio) 0.00 870.66 21.17 \n",
+ "4 Infant mortality (per 1000 births) 2.29 191.19 35.51 \n",
+ "5 Pop. Density (per sq. mi.) 0.00 16271.50 379.05 \n",
+ "6 GDP ($ per capita) 500.00 55100.00 9689.85 \n",
+ "7 Area (sq. mi.) 2.00 17075200.00 598227.59 \n",
+ "\n",
+ " stdev p50 p75 p95 p99 \n",
+ "0 16.10 85.70 95.44 99.81 100.00 \n",
+ "1 8.34 1.03 4.44 20.00 45.71 \n",
+ "2 13.01 10.42 20.00 40.54 55.30 \n",
+ "3 72.13 0.73 10.32 92.31 310.69 \n",
+ "4 35.31 20.97 55.51 103.32 143.64 \n",
+ "5 1656.53 78.80 188.50 838.60 6482.22 \n",
+ "6 10026.91 5500.03 15700.06 29600.12 37800.25 \n",
+ "7 1786336.93 86600.50 437074.00 2345424.00 9631424.00 "
]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "feature_stats_query = \"\"\"\n",
+ "\n",
+ "// define excluded features\n",
+ "WITH ['name', \n",
+ " 'Deathrate', \n",
+ " 'Birthrate',\n",
+ " 'Phones (per 1000)',\n",
+ " 'Net migration', \n",
+ " 'Population'] as excluded_features\n",
+ "CALL apoc.meta.nodeTypeProperties({labels:['Country']})\n",
+ "YIELD propertyName, propertyObservations, totalObservations\n",
+ "WITH propertyName,\n",
+ " (totalObservations - propertyObservations) as missing_value\n",
+ "WHERE missing_value < 5 AND \n",
+ " NOT propertyName in excluded_features\n",
+ "// Reduce to a single row\n",
+ "WITH collect(propertyName) as potential_features\n",
+ "MATCH (c:Country)\n",
+ "UNWIND potential_features as potential_feature\n",
+ "WITH potential_feature, \n",
+ " apoc.agg.statistics(c[potential_feature],\n",
+ " [0.5,0.75,0.9,0.95,0.99]) as stats\n",
+ "RETURN potential_feature, \n",
+ " round(stats.min,2) as min, \n",
+ " round(stats.max,2) as max, \n",
+ " round(stats.mean,2) as mean, \n",
+ " round(stats.stdev,2) as stdev,\n",
+ " round(stats.`0.5`,2) as p50,\n",
+ " round(stats.`0.75`,2) as p75,\n",
+ " round(stats.`0.95`,2) as p95,\n",
+ " round(stats.`0.99`,2) as p99\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(feature_stats_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "IPbg0N1f25jJ"
+ },
+ "source": [
+ "The Federated state of Micronesia has the ratio of coast to area at 870, which is pretty impressive. On the other hand, there are a total of 44 countries in the world with zero coastlines. Another fun fact is that Greenland has a population density rounded to 0 per square mile with its 56361 inhabitants and 2166086 square miles. It might be a cool place to perform social distancing.\n",
+ "We can observe that most of the features appear to be descriptive, except for the Other (%), which is mostly between 80 and 100. Due to the low variance, we will ignore it in our further analysis.\n",
+ "### Populate the missing values\n",
+ "We are left with seven features that we are going to use to infer a similarity network between countries. One thing we need to do before that is to populate the missing values. We will use a simple method and fill in the missing values of the features with the average value of the region the country is part of."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "b3r7_G9925jJ",
+ "outputId": "22ba09d6-ff26-40a0-c4c2-5d4b99aade6e"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "id": "b3r7_G9925jJ",
- "outputId": "22ba09d6-ff26-40a0-c4c2-5d4b99aade6e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " 'missing values populated'\n",
- "0 missing values populated"
- ],
- "text/html": [
- "\n",
- "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 16
- }
+ "text/plain": [
+ " nodePropertiesWritten\n",
+ "0 227"
]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "minmax_normalization_query = \"\"\"\n",
+ "CALL gds.alpha.scaleProperties.mutate('countries', {\n",
+ " nodeProperties:['Arable (%)', 'Crops (%)', 'Infant mortality (per 1000 births)', 'GDP ($ per capita)',\n",
+ " 'Coastline (coast/area ratio)', 'Pop. Density (per sq. mi.)', 'Area (sq. mi.)'],\n",
+ " scaler: 'MINMAX',\n",
+ " mutateProperty: 'countryFeatures'\n",
+ "}) YIELD nodePropertiesWritten\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(minmax_normalization_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "vqHtYsb06k7d"
+ },
+ "source": [
+ "We have finished the data preprocessing and can focus on the data analysis part. The first step of the analysis is to infer a similarity network with the help of the cosine similarity algorithm. We build a vector for each country based on the selected features and compare the cosine similarity between each pair of countries. If the similarity is above the predefined threshold, we store back the results in the form of a relationship between the pair of similar nodes. Defining an optimal threshold is a mix of art and science, and you'll get better with practice. Ideally, you want to infer a sparse graph as community detection algorithms do not perform well on complete or dense graphs. In this example, we will use the similarityCutoff value of 0.8 (range between -1 and 1). Alongside the similarity threshold, we will also use the topK parameter to store only the top 10 similar neighbors. We do this to ensure a sparser graph."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 159
},
+ "id": "fcLCEt5R25jK",
+ "outputId": "fcf2c331-a673-4370-9d56-00c953113be3"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "source": [
- "We have finished the data preprocessing and can focus on the data analysis part. The first step of the analysis is to infer a similarity network with the help of the cosine similarity algorithm. We build a vector for each country based on the selected features and compare the cosine similarity between each pair of countries. If the similarity is above the predefined threshold, we store back the results in the form of a relationship between the pair of similar nodes. Defining an optimal threshold is a mix of art and science, and you'll get better with practice. Ideally, you want to infer a sparse graph as community detection algorithms do not perform well on complete or dense graphs. In this example, we will use the similarityCutoff value of 0.8 (range between -1 and 1). Alongside the similarity threshold, we will also use the topK parameter to store only the top 10 similar neighbors. We do this to ensure a sparser graph."
- ],
- "metadata": {
- "id": "vqHtYsb06k7d"
- }
- },
- {
- "cell_type": "code",
- "execution_count": 19,
- "metadata": {
- "id": "fcLCEt5R25jK",
- "outputId": "fcf2c331-a673-4370-9d56-00c953113be3",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 159
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " ranIterations nodePairsConsidered didConverge preProcessingMillis \\\n",
- "0 7 105956 True 0 \n",
- "\n",
- " computeMillis mutateMillis postProcessingMillis nodesCompared \\\n",
- "0 1084 203 -1 227 \n",
- "\n",
- " relationshipsWritten similarityDistribution \\\n",
- "0 2257 {'p1': 0.8574447631835938, 'max': 0.9999618530... \n",
- "\n",
- " configuration \n",
- "0 {'topK': 10, 'maxIterations': 100, 'randomJoin... "
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "wcc_query = \"\"\"\n",
- "\n",
- "CALL gds.wcc.stats('countries', {relationshipTypes:['SIMILAR']})\n",
- "YIELD componentCount, componentDistribution\n",
- "RETURN componentCount, \n",
- " componentDistribution.min as min,\n",
- " componentDistribution.max as max,\n",
- " componentDistribution.mean as mean,\n",
- " componentDistribution.p50 as p50,\n",
- " componentDistribution.p75 as p75,\n",
- " componentDistribution.p90 as p90\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "read_query(wcc_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "DVAmOn4D25jM"
- },
- "source": [
- "The algorithm found only a single component within our graph. This is a favorable outcome as disconnected islands can skew the results of various other graph algorithms.\n",
- "### Louvain algorithm\n",
- "Another community detection algorithm is the Louvain algorithm. In basic terms, densely connected nodes are more likely to form a community. It relies on the modularity optimization to extract communities. The modularity optimization is performed in two steps. The first step involves optimizing the modularity locally. In the second step, it aggregates nodes belonging to the same community into a single node and builds a new network from those aggregated nodes. These two steps are repeated iteratively until a maximum of modularity is attained. A subtle side effect of these iterations is that we can take a look at the community structure at the end of each iteration, hence the Louvain algorithm is regarded as a hierarchical community detection algorithm. To include hierarchical community results, we must set the includeIntermediateCommunities parameter value to true."
+ "text/plain": [
+ " componentCount min max mean p50 p75 p90\n",
+ "0 1 227 227 227.0 227 227 227"
]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wcc_query = \"\"\"\n",
+ "\n",
+ "CALL gds.wcc.stats('countries', {relationshipTypes:['SIMILAR']})\n",
+ "YIELD componentCount, componentDistribution\n",
+ "RETURN componentCount, \n",
+ " componentDistribution.min as min,\n",
+ " componentDistribution.max as max,\n",
+ " componentDistribution.mean as mean,\n",
+ " componentDistribution.p50 as p50,\n",
+ " componentDistribution.p75 as p75,\n",
+ " componentDistribution.p90 as p90\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(wcc_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "DVAmOn4D25jM"
+ },
+ "source": [
+ "The algorithm found only a single component within our graph. This is a favorable outcome as disconnected islands can skew the results of various other graph algorithms.\n",
+ "### Louvain algorithm\n",
+ "Another community detection algorithm is the Louvain algorithm. In basic terms, densely connected nodes are more likely to form a community. It relies on the modularity optimization to extract communities. The modularity optimization is performed in two steps. The first step involves optimizing the modularity locally. In the second step, it aggregates nodes belonging to the same community into a single node and builds a new network from those aggregated nodes. These two steps are repeated iteratively until a maximum of modularity is attained. A subtle side effect of these iterations is that we can take a look at the community structure at the end of each iteration, hence the Louvain algorithm is regarded as a hierarchical community detection algorithm. To include hierarchical community results, we must set the includeIntermediateCommunities parameter value to true."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "8tRYco1v25jN",
+ "outputId": "c7c471a4-aea0-4634-bef9-6a09f16d9d59"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 22,
- "metadata": {
- "id": "8tRYco1v25jN",
- "outputId": "c7c471a4-aea0-4634-bef9-6a09f16d9d59",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " ranLevels communityCount modularity \\\n",
- "0 2 8 0.734819 \n",
- "\n",
- " modularities \n",
- "0 [0.696204139379107, 0.7348188052372484] "
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "final_level_communities =\"\"\"\n",
- "\n",
- "MATCH (c:Country)\n",
- "RETURN c.louvain[-1] as community,\n",
- " count(*) as community_size,\n",
- " avg(c['Arable (%)']) as pct_arable,\n",
- " avg(c['Crops (%)']) as pct_crops, \n",
- " avg(c['Infant mortality (per 1000 births)']) as infant_mortality,\n",
- " avg(c['GDP ($ per capita)']) as gdp,\n",
- " avg(c['Coastline (coast/area ratio)']) as coastline,\n",
- " avg(c['Pop. Density (per sq. mi.)']) as population_density,\n",
- " avg(c['Area (sq. mi.)']) as area_size,\n",
- " collect(c['name'])[..3] as example_members\n",
- "ORDER BY gdp DESC\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "read_query(final_level_communities)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ioqDNQ2r25jN"
- },
- "source": [
- "Louvain algorithm found eight distinct communities within the similarity network. The biggest group has 51 countries as members and has the largest average GDP at almost 22 thousand dollars. They are second in infant mortality and the coastline ratio but lead in population density by a large margin. There are two communities with an average GDP of around 20 thousand dollars, and then we can observe a steep drop to 7000 dollars in third place. With the decline in GDP, we can also find the rise of infant mortality almost linearly. Another fascinating insight is that most of the more impoverished communities have little to no coastline.\n",
- "### Find representatives of communities with PageRank\n",
- "We can assess the top representatives of the final level communities with the PageRank algorithm. If we assume that each SIMILAR relationship is a vote of similarity between countries, the PageRank algorithm will assign the highest score to the most similar countries within the community. We will execute the PageRank algorithm for each community separately and consider only nodes and relationships within the given community. This can be easily achieved with cypher projection without any additional transformations."
+ "text/plain": [
+ " community community_size pct_arable pct_crops infant_mortality \\\n",
+ "0 12 46 5.520652 1.417609 8.672609 \n",
+ "1 54 23 19.527101 3.297601 8.276522 \n",
+ "2 43 23 4.273043 0.563913 29.380261 \n",
+ "3 50 41 31.129268 3.028049 20.186341 \n",
+ "4 57 26 13.234231 22.198077 23.057591 \n",
+ "5 30 10 22.116000 10.184000 55.267000 \n",
+ "6 21 24 14.853575 1.090783 69.105833 \n",
+ "7 23 34 3.931765 1.443529 91.808529 \n",
+ "\n",
+ " gdp coastline population_density area_size \\\n",
+ "0 22271.739130 41.446304 1235.871739 3.337008e+05 \n",
+ "1 19091.304348 11.173478 239.895652 3.163263e+05 \n",
+ "2 8393.913043 0.330000 23.886957 3.101448e+06 \n",
+ "3 7509.756098 15.717561 194.495122 2.044609e+05 \n",
+ "4 4465.384615 66.923462 370.726923 3.770538e+04 \n",
+ "5 2100.000000 2.702000 180.400000 2.983568e+05 \n",
+ "6 1870.833333 3.340000 100.829167 3.194362e+05 \n",
+ "7 1435.294118 4.170882 37.926471 6.419174e+05 \n",
+ "\n",
+ " example_members \n",
+ "0 [Andorra, Anguilla, Aruba] \n",
+ "1 [Argentina, Belgium, British Virgin Is.] \n",
+ "2 [Algeria, Australia, Belize] \n",
+ "3 [Albania, Antigua & Barbuda, Armenia] \n",
+ "4 [American Samoa, Cook Islands, Dominica] \n",
+ "5 [Burundi, Comoros, Ecuador] \n",
+ "6 [Azerbaijan, Benin, Burkina Faso] \n",
+ "7 [Afghanistan, Angola, Bhutan] "
]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "final_level_communities =\"\"\"\n",
+ "\n",
+ "MATCH (c:Country)\n",
+ "RETURN c.louvain[-1] as community,\n",
+ " count(*) as community_size,\n",
+ " avg(c['Arable (%)']) as pct_arable,\n",
+ " avg(c['Crops (%)']) as pct_crops, \n",
+ " avg(c['Infant mortality (per 1000 births)']) as infant_mortality,\n",
+ " avg(c['GDP ($ per capita)']) as gdp,\n",
+ " avg(c['Coastline (coast/area ratio)']) as coastline,\n",
+ " avg(c['Pop. Density (per sq. mi.)']) as population_density,\n",
+ " avg(c['Area (sq. mi.)']) as area_size,\n",
+ " collect(c['name'])[..3] as example_members\n",
+ "ORDER BY gdp DESC\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(final_level_communities)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ioqDNQ2r25jN"
+ },
+ "source": [
+ "Louvain algorithm found eight distinct communities within the similarity network. The biggest group has 51 countries as members and has the largest average GDP at almost 22 thousand dollars. They are second in infant mortality and the coastline ratio but lead in population density by a large margin. There are two communities with an average GDP of around 20 thousand dollars, and then we can observe a steep drop to 7000 dollars in third place. With the decline in GDP, we can also find the rise of infant mortality almost linearly. Another fascinating insight is that most of the more impoverished communities have little to no coastline.\n",
+ "### Find representatives of communities with PageRank\n",
+ "We can assess the top representatives of the final level communities with the PageRank algorithm. If we assume that each SIMILAR relationship is a vote of similarity between countries, the PageRank algorithm will assign the highest score to the most similar countries within the community. We will execute the PageRank algorithm for each community separately and consider only nodes and relationships within the given community. This can be easily achieved with cypher projection without any additional transformations."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 300
},
+ "id": "s3jx3aLJ25jN",
+ "outputId": "157be139-2c30-4952-f92d-c018cb42617f"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 36,
- "metadata": {
- "id": "s3jx3aLJ25jN",
- "outputId": "157be139-2c30-4952-f92d-c018cb42617f",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 300
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " community top_5_representatives\n",
- "0 23 [Afghanistan, Angola, Bhutan, Bolivia, Central...\n",
- "1 50 [Albania, Antigua & Barbuda, Armenia, Banglade...\n",
- "2 43 [Algeria, Australia, Belize, Botswana, Brazil]\n",
- "3 57 [American Samoa, Cook Islands, Dominica, Domin...\n",
- "4 12 [Andorra, Anguilla, Aruba, Austria, Bahamas, The]\n",
- "5 54 [Argentina, Belgium, British Virgin Is., Costa...\n",
- "6 21 [Azerbaijan, Benin, Burkina Faso, Burma, Cambo...\n",
- "7 30 [Burundi, Comoros, Ecuador, Ghana, Guatemala]"
- ],
- "text/html": [
- "\n",
- "
\n",
+ " "
],
- "source": [
- "# Import the graph\n",
- "\n",
- "import_query = \"\"\"\n",
- "CREATE (t:Entity{name:'Tomaz'}),\n",
- " (n:Entity{name:'Neo4j'})\n",
- "CREATE (t)-[:LIKES{weight:1}]->(n),\n",
- " (t)-[:LOVES{weight:2}]->(n),\n",
- " (t)-[:PRESENTED_FOR{weight:0.5}]->(n),\n",
- " (t)-[:PRESENTED_FOR{weight:1.5}]->(n);\n",
- "\"\"\"\n",
- "read_query(import_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "M9KtdcIh_9sV"
- },
- "source": [
- "## Relationships without own identity\n",
- "\n",
- "In the context of the GDS library, relationships without own identity imply that we ignore the type of relationships in the process of projecting the graph.\n",
- "\n",
- "### Native projection\n",
- "\n",
- "We will start with native projection examples. If we use the wildcard operator * to define the relationships we want to project, we ignore their type and bundle them all together. This can be understood as losing their own identity (type in the context of Neo4j).\n",
- "\n",
- "#### Default aggregation strategy\n",
- "\n",
- "In the first example, we will observe the default behavior of the graph projection process."
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: []\n",
+ "Index: []"
]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# Import the graph\n",
+ "\n",
+ "import_query = \"\"\"\n",
+ "CREATE (t:Entity{name:'Tomaz'}),\n",
+ " (n:Entity{name:'Neo4j'})\n",
+ "CREATE (t)-[:LIKES{weight:1}]->(n),\n",
+ " (t)-[:LOVES{weight:2}]->(n),\n",
+ " (t)-[:PRESENTED_FOR{weight:0.5}]->(n),\n",
+ " (t)-[:PRESENTED_FOR{weight:1.5}]->(n);\n",
+ "\"\"\"\n",
+ "read_query(import_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "M9KtdcIh_9sV"
+ },
+ "source": [
+ "## Relationships without own identity\n",
+ "\n",
+ "In the context of the GDS library, relationships without own identity imply that we ignore the type of relationships in the process of projecting the graph.\n",
+ "\n",
+ "### Native projection\n",
+ "\n",
+ "We will start with native projection examples. If we use the wildcard operator * to define the relationships we want to project, we ignore their type and bundle them all together. This can be understood as losing their own identity (type in the context of Neo4j).\n",
+ "\n",
+ "#### Default aggregation strategy\n",
+ "\n",
+ "In the first example, we will observe the default behavior of the graph projection process."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "lj3scEOR_9sX",
+ "outputId": "8f3978fe-380c-4181-a475-7fd2d0d4f0ff"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "id": "lj3scEOR_9sX",
- "outputId": "8f3978fe-380c-4181-a475-7fd2d0d4f0ff",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " nodeProjection \\\n",
- "0 {'__ALL__': {'label': '*', 'properties': {}}} \n",
- "\n",
- " relationshipProjection graphName nodeCount \\\n",
- "0 {'__ALL__': {'orientation': 'NATURAL', 'aggreg... default_agg 2 \n",
- "\n",
- " relationshipCount projectMillis \n",
- "0 4 80 "
- ],
- "text/html": [
- "\n",
- "
\n",
+ " "
],
- "source": [
- "single_rel_graph_check = \"\"\"\n",
- "\n",
- "CALL gds.degree.stream('single_rel_strategy')\n",
- "YIELD nodeId, score\n",
- "RETURN gds.util.asNode(nodeId).name AS name,\n",
- " score AS degree\n",
- "ORDER BY degree DESC\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "read_query(single_rel_graph_check)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 11,
- "metadata": {
- "id": "vhwpHLbC_9sd"
- },
- "outputs": [],
- "source": [
- "drop_graph('single_rel_strategy')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "akCjEafL_9sd"
- },
- "source": [
- "#### Property aggregation strategies\n",
- "\n",
- "We have looked at the unweighted multigraph so far. Now it is time to look at what happens when we are dealing with a weighted multigraph and we want to reduce it to a single graph. There are three different strategies we can pick for property aggregations:\n",
- "\n",
- "* MIN: minimum value of all weights is projected\n",
- "* MAX: maximum value of all weights is projected\n",
- "* SUM: the sum of all weights is projected\n",
- "\n",
- "In our next example, we will use the MIN property aggregation strategy to reduce a weighted multigraph to a single graph. By providing the property aggregation parameter, we indicate we want to reduce the stored graph to a single graph in the projection process."
+ "text/plain": [
+ " name degree\n",
+ "0 Tomaz 1.0\n",
+ "1 Neo4j 0.0"
]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "single_rel_graph_check = \"\"\"\n",
+ "\n",
+ "CALL gds.degree.stream('single_rel_strategy')\n",
+ "YIELD nodeId, score\n",
+ "RETURN gds.util.asNode(nodeId).name AS name,\n",
+ " score AS degree\n",
+ "ORDER BY degree DESC\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(single_rel_graph_check)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "id": "vhwpHLbC_9sd"
+ },
+ "outputs": [],
+ "source": [
+ "drop_graph('single_rel_strategy')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "akCjEafL_9sd"
+ },
+ "source": [
+ "#### Property aggregation strategies\n",
+ "\n",
+ "We have looked at the unweighted multigraph so far. Now it is time to look at what happens when we are dealing with a weighted multigraph and we want to reduce it to a single graph. There are three different strategies we can pick for property aggregations:\n",
+ "\n",
+ "* MIN: minimum value of all weights is projected\n",
+ "* MAX: maximum value of all weights is projected\n",
+ "* SUM: the sum of all weights is projected\n",
+ "\n",
+ "In our next example, we will use the MIN property aggregation strategy to reduce a weighted multigraph to a single graph. By providing the property aggregation parameter, we indicate we want to reduce the stored graph to a single graph in the projection process."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "I_u1X2ar_9sd",
+ "outputId": "962da3f6-68d8-41b5-91f9-52d7d6c2895c"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 12,
- "metadata": {
- "id": "I_u1X2ar_9sd",
- "outputId": "962da3f6-68d8-41b5-91f9-52d7d6c2895c",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " nodeProjection \\\n",
- "0 {'__ALL__': {'label': '*', 'properties': {}}} \n",
- "\n",
- " relationshipProjection graphName \\\n",
- "0 {'__ALL__': {'orientation': 'NATURAL', 'aggreg... min_aggregation \n",
- "\n",
- " nodeCount relationshipCount projectMillis \n",
- "0 2 1 16 "
- ],
- "text/html": [
- "\n",
- "
\n",
+ " "
],
- "source": [
- "cypher_min_agg_check = \"\"\"\n",
- "\n",
- "CALL gds.degree.stream('cypher_min_strategy',\n",
- " {relationshipWeightProperty:'weight'})\n",
- "YIELD nodeId, score \n",
- "RETURN gds.util.asNode(nodeId).name AS name,\n",
- " score AS weighted_degree\n",
- "ORDER BY weighted_degree DESC\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "read_query(cypher_min_agg_check)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "yjuGG1yE_9si"
- },
- "source": [
- "With everything in order, we can release both projected graphs from memory."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {
- "id": "QYpV1JVN_9si"
- },
- "outputs": [],
- "source": [
- "drop_graph('cypher_min_strategy')"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "quzNqWxS_9si"
- },
- "source": [
- "## Relationships with own identity\n",
- "\n",
- "We also have the option to retain the type of relationships during the projection process. Among other things, this allows us to perform additional filtering when executing graph algorithms. However, we have to be careful, as projecting relationships with a preserved type is a bit different in the context of multigraphs.\n",
- "\n",
- "### Native projection\n",
- "\n",
- "It is simple to declare that we want to preserve the type of relationships with the native projection. All we have to do is specify which relationship types we want to consider and the GDS engine will automatically bundle relationships under the specific relationship type. Let's take a look at some examples to gain a better understanding.\n",
- "\n",
- "#### Default aggregation strategy\n",
- "\n",
- "From previous examples we already know that the default aggregation strategy does not perform any transformations. By defining the relationship types we indicate to the GDS library we want to retain their type after the projection process."
+ "text/plain": [
+ " name weighted_degree\n",
+ "0 Tomaz 0.5\n",
+ "1 Neo4j 0.0"
]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "cypher_min_agg_check = \"\"\"\n",
+ "\n",
+ "CALL gds.degree.stream('cypher_min_strategy',\n",
+ " {relationshipWeightProperty:'weight'})\n",
+ "YIELD nodeId, score \n",
+ "RETURN gds.util.asNode(nodeId).name AS name,\n",
+ " score AS weighted_degree\n",
+ "ORDER BY weighted_degree DESC\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(cypher_min_agg_check)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yjuGG1yE_9si"
+ },
+ "source": [
+ "With everything in order, we can release both projected graphs from memory."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "id": "QYpV1JVN_9si"
+ },
+ "outputs": [],
+ "source": [
+ "drop_graph('cypher_min_strategy')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "quzNqWxS_9si"
+ },
+ "source": [
+ "## Relationships with own identity\n",
+ "\n",
+ "We also have the option to retain the type of relationships during the projection process. Among other things, this allows us to perform additional filtering when executing graph algorithms. However, we have to be careful, as projecting relationships with a preserved type is a bit different in the context of multigraphs.\n",
+ "\n",
+ "### Native projection\n",
+ "\n",
+ "It is simple to declare that we want to preserve the type of relationships with the native projection. All we have to do is specify which relationship types we want to consider and the GDS engine will automatically bundle relationships under the specific relationship type. Let's take a look at some examples to gain a better understanding.\n",
+ "\n",
+ "#### Default aggregation strategy\n",
+ "\n",
+ "From previous examples we already know that the default aggregation strategy does not perform any transformations. By defining the relationship types we indicate to the GDS library we want to retain their type after the projection process."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "NR5j1_8b_9sj",
+ "outputId": "928299fd-fa9b-4a82-e1ad-39a81bfe17d8"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 25,
- "metadata": {
- "id": "NR5j1_8b_9sj",
- "outputId": "928299fd-fa9b-4a82-e1ad-39a81bfe17d8",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " nodeProjection \\\n",
- "0 {'__ALL__': {'label': '*', 'properties': {}}} \n",
- "\n",
- " relationshipProjection graphName nodeCount \\\n",
- "0 {'LOVES': {'orientation': 'NATURAL', 'aggregat... type_default 2 \n",
- "\n",
- " relationshipCount projectMillis \n",
- "0 4 69 "
- ],
- "text/html": [
- "\n",
- "
\n",
+ " "
],
- "source": [
- "type_single_agg_check = \"\"\"\n",
- "\n",
- "CALL gds.degree.stream('type_single')\n",
- "YIELD nodeId, score\n",
- "RETURN gds.util.asNode(nodeId).name AS name,\n",
- " score AS degree\n",
- "ORDER BY degree DESC\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "read_query(type_single_agg_check)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "Ue0b1p22_9sk"
- },
- "source": [
- "As we explained, even though we have reduced each relationship type separately, we are still dealing with a multigraph on the whole. When running graph algorithms, you have to pay close attention to whether you are dealing with multigraph or not, have you projected multiple relationship types or just a single one and have you performed any transformations, as all of this will affect the algorithm results. We can now drop this graph."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 29,
- "metadata": {
- "id": "35u12SFQ_9sk"
- },
- "outputs": [],
- "source": [
- "drop_graph('type_single')\n"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "2fiQSNz2_9sk"
- },
- "source": [
- "#### Property aggregation strategies\n",
- "\n",
- "Property aggregation strategies are very similar to before when we were dealing with relationships without identity. The only change is that now the aggregations are grouped by the relationship type."
+ "text/plain": [
+ " name degree\n",
+ "0 Tomaz 3.0\n",
+ "1 Neo4j 0.0"
]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "type_single_agg_check = \"\"\"\n",
+ "\n",
+ "CALL gds.degree.stream('type_single')\n",
+ "YIELD nodeId, score\n",
+ "RETURN gds.util.asNode(nodeId).name AS name,\n",
+ " score AS degree\n",
+ "ORDER BY degree DESC\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "read_query(type_single_agg_check)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Ue0b1p22_9sk"
+ },
+ "source": [
+ "As we explained, even though we have reduced each relationship type separately, we are still dealing with a multigraph on the whole. When running graph algorithms, you have to pay close attention to whether you are dealing with multigraph or not, have you projected multiple relationship types or just a single one and have you performed any transformations, as all of this will affect the algorithm results. We can now drop this graph."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "id": "35u12SFQ_9sk"
+ },
+ "outputs": [],
+ "source": [
+ "drop_graph('type_single')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2fiQSNz2_9sk"
+ },
+ "source": [
+ "#### Property aggregation strategies\n",
+ "\n",
+ "Property aggregation strategies are very similar to before when we were dealing with relationships without identity. The only change is that now the aggregations are grouped by the relationship type."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "FeFVkJZU_9sl",
+ "outputId": "02951c4e-7992-4808-a5fd-90330c9b50eb"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 31,
- "metadata": {
- "id": "FeFVkJZU_9sl",
- "outputId": "02951c4e-7992-4808-a5fd-90330c9b50eb",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " nodeProjection \\\n",
- "0 {'__ALL__': {'label': '*', 'properties': {}}} \n",
- "\n",
- " relationshipProjection graphName nodeCount \\\n",
- "0 {'LOVES': {'orientation': 'NATURAL', 'aggregat... type_min 2 \n",
- "\n",
- " relationshipCount projectMillis \n",
- "0 3 113 "
- ],
- "text/html": [
- "\n",
- "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 25
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "g_gvwAYQHa4H"
- },
- "source": [
- "## Agenda\n",
- "\n",
- "* Import Wikipedia data to Neo4j\n",
- "* Basic graph exploration\n",
- "* Populate missing value\n",
- "* Some more graph exploration\n",
- "* Weakly connected component\n",
- "* Betweenness centrality\n",
- "\n",
- "We have been using simple graph schemas for quite some time now. I am delighted to say that this time we have a bit more complicated schema. The graph schema revolves around the characters in the LOTR world. A character can be either a relative, father, mother, enemy, spouse, or sibling with another character. This represents a social network of characters with multiple types of relationships. We also have additional information about characters such as their race, country, and language. On top of that, we also know if they are part of any group or have participated in any event.\n",
- "\n",
- "## WikiData import\n",
- "\n",
- "As mentioned, we will fetch the data from the WikiData API with the help of the apoc.load.json procedure. If you don't know yet, APOC provides great support for importing data into Neo4j. Besides the ability to fetch data from any REST API, it also features integrations with other databases such as MongoDB or relational databases via the JDBC driver.\n",
- "\n",
- "P.s. You should check out Neosematics library if you work a lot with RDF data, I only noticed it after I have written the post\n",
- "\n",
- "We will start by importing all the races in the LOTR world. I have to admit I am a total noob when it comes to SPARQL, so I won't be explaining the syntax in depth. If you need a basic introduction on how to query WikiData, I suggest this tutorial on Youtube. Basically, all the races in the LOTR world are an instance of the Middle-earth races entity with id Q989255. To get the instances of a specific entity, we use the following SPARQL clause:\n",
- "\n",
- "?item wdt:P31 wd:Q989255\n",
- "\n",
- "This can be translated as \"We would like to fetch an item, which is an instance of (wdt:P31) an entity with an id Q989255\". After we have downloaded the data with APOC, we store the results to Neo4j."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 21,
- "metadata": {
- "id": "6t_-UwQ4Ha4J"
- },
- "outputs": [],
- "source": [
- "import_races_query = \"\"\"\n",
- "\n",
- "// Prepare a SPARQL query \n",
- "WITH 'SELECT ?item ?itemLabel WHERE{ ?item wdt:P31 wd:Q989255 . SERVICE wikibase:label { bd:serviceParam wikibase:language \"[AUTO_LANGUAGE],en\" }}' AS sparql \n",
- "// make a request to Wikidata\n",
- "CALL apoc.load.jsonParams('https://query.wikidata.org/sparql?query=' + \n",
- " sparql, \n",
- " { Accept: \"application/sparql-results+json\"}, null) \n",
- "YIELD value \n",
- "// Unwind results to row \n",
- "UNWIND value['results']['bindings'] as row \n",
- "// Prepare data \n",
- "WITH row['itemLabel']['value'] as race, \n",
- " row['item']['value'] as url, \n",
- " split(row['item']['value'],'/')[-1] as id \n",
- "// Store to Neo4j \n",
- "CREATE (r:Race) SET r.race = race, \n",
- " r.url = url, \n",
- " r.id = id\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "r = run_query(import_races_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "SJSd4ON_Ha4L"
- },
- "source": [
- "That was easy. The next step is to fetch the characters that are an instance of a given Middle-earth race. The SPARQL syntax is almost identical to the previous query, except this time we iterate over each race and find the characters that are an instance of a given race."
- ]
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "view-in-github"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Hwk0pHemHeWt"
+ },
+ "source": [
+ "* Updated to GDS 2.0 version\n",
+ "* Link to original blog post: https://towardsdatascience.com/lord-of-the-wiki-ring-importing-wikidata-into-neo4j-and-analyzing-family-trees-da27f64d675e"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "8aH7cn62Hn3g",
+ "outputId": "8625415d-c9c4-4e3c-85d9-9c3ae3055c43"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 22,
- "metadata": {
- "id": "Q6d0zuc7Ha4L"
- },
- "outputs": [],
- "source": [
- "import_characters_query = \"\"\"\n",
- "\n",
- "// Iterate over each race in graph\n",
- "MATCH (r:Race)\n",
- "// Prepare a SparQL query\n",
- "WITH 'SELECT ?item ?itemLabel WHERE { ?item wdt:P31 wd:' + r.id + ' . SERVICE wikibase:label { bd:serviceParam wikibase:language \"[AUTO_LANGUAGE],en\" } }' AS sparql, r \n",
- "// make a request to Wikidata \n",
- "CALL apoc.load.jsonParams( \"https://query.wikidata.org/sparql?query=\" + \n",
- " sparql, \n",
- " { Accept: \"application/sparql-results+json\"}, null)\n",
- "YIELD value \n",
- "UNWIND value['results']['bindings'] as row \n",
- "WITH row['itemLabel']['value'] as name, \n",
- " row['item']['value'] as url, \n",
- " split(row['item']['value'],'/')[-1] as id, r \n",
- "// Store to Neo4j \n",
- "CREATE (c:Character) \n",
- "SET c.name = name, \n",
- " c.url = url, \n",
- " c.id = id \n",
- "CREATE (c)-[:BELONG_TO]->(r)\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "r = run_query(import_characters_query)"
- ]
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Collecting neo4j\n",
+ " Downloading neo4j-4.4.2.tar.gz (89 kB)\n",
+ "\u001b[?25l\r",
+ "\u001b[K |███▋ | 10 kB 24.3 MB/s eta 0:00:01\r",
+ "\u001b[K |███████▎ | 20 kB 14.7 MB/s eta 0:00:01\r",
+ "\u001b[K |███████████ | 30 kB 10.6 MB/s eta 0:00:01\r",
+ "\u001b[K |██████████████▋ | 40 kB 9.2 MB/s eta 0:00:01\r",
+ "\u001b[K |██████████████████▎ | 51 kB 4.6 MB/s eta 0:00:01\r",
+ "\u001b[K |██████████████████████ | 61 kB 5.4 MB/s eta 0:00:01\r",
+ "\u001b[K |█████████████████████████▋ | 71 kB 5.8 MB/s eta 0:00:01\r",
+ "\u001b[K |█████████████████████████████▎ | 81 kB 5.7 MB/s eta 0:00:01\r",
+ "\u001b[K |████████████████████████████████| 89 kB 3.3 MB/s \n",
+ "\u001b[?25hRequirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from neo4j) (2018.9)\n",
+ "Building wheels for collected packages: neo4j\n",
+ " Building wheel for neo4j (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+ " Created wheel for neo4j: filename=neo4j-4.4.2-py3-none-any.whl size=115365 sha256=1263c50dc3a5bf370b9d96525936014a00881f6b44f5d41da992312297966fac\n",
+ " Stored in directory: /root/.cache/pip/wheels/10/d6/28/95029d7f69690dbc3b93e4933197357987de34fbd44b50a0e4\n",
+ "Successfully built neo4j\n",
+ "Installing collected packages: neo4j\n",
+ "Successfully installed neo4j-4.4.2\n"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install neo4j"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "l9PMy6mJHpvZ"
+ },
+ "source": [
+ "I recommend you setup a [blank project on Neo4j Sandbox environment](https://sandbox.neo4j.com/?usecase=blank-sandbox), but you can also use other environment versions"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "id": "IDQFrF1OHa4C"
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "# Define Neo4j connections\n",
+ "from neo4j import GraphDatabase\n",
+ "host = 'bolt://44.193.28.203:7687'\n",
+ "user = 'neo4j'\n",
+ "password = 'combatants-coordinates-tugs'\n",
+ "driver = GraphDatabase.driver(host,auth=(user, password))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "id": "OyQ7nwshHa4G"
+ },
+ "outputs": [],
+ "source": [
+ "# Import libraries\n",
+ "import pandas as pd\n",
+ "\n",
+ "def run_query(query, params={}):\n",
+ " with driver.session() as session:\n",
+ " result = session.run(query, params)\n",
+ " return pd.DataFrame([r.values() for r in result], columns=result.keys())"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49
},
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "m3vghrJ-Ha4M"
- },
- "source": [
- "Did you know that there are at least 700 characters in the Middle-earth world? I would never guess there would be so many documented characters on WikiData. Our first exploratory cypher query will be to count the characters by race."
- ]
+ "id": "Yox2IsDmNuD3",
+ "outputId": "88ff6dba-15f2-4293-a5a3-91eef0c8ef06"
+ },
+ "outputs": [],
+ "source": [
+ "# Fix default timeout query setting in Sandbox\n",
+ "\n",
+ "run_query(\"\"\"\n",
+ "CALL dbms.setConfigValue('dbms.transaction.timeout','0')\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "g_gvwAYQHa4H"
+ },
+ "source": [
+ "## Agenda\n",
+ "\n",
+ "* Import Wikipedia data to Neo4j\n",
+ "* Basic graph exploration\n",
+ "* Populate missing value\n",
+ "* Some more graph exploration\n",
+ "* Weakly connected component\n",
+ "* Betweenness centrality\n",
+ "\n",
+ "We have been using simple graph schemas for quite some time now. I am delighted to say that this time we have a bit more complicated schema. The graph schema revolves around the characters in the LOTR world. A character can be either a relative, father, mother, enemy, spouse, or sibling with another character. This represents a social network of characters with multiple types of relationships. We also have additional information about characters such as their race, country, and language. On top of that, we also know if they are part of any group or have participated in any event.\n",
+ "\n",
+ "## WikiData import\n",
+ "\n",
+ "As mentioned, we will fetch the data from the WikiData API with the help of the apoc.load.json procedure. If you don't know yet, APOC provides great support for importing data into Neo4j. Besides the ability to fetch data from any REST API, it also features integrations with other databases such as MongoDB or relational databases via the JDBC driver.\n",
+ "\n",
+ "P.s. You should check out Neosematics library if you work a lot with RDF data, I only noticed it after I have written the post\n",
+ "\n",
+ "We will start by importing all the races in the LOTR world. I have to admit I am a total noob when it comes to SPARQL, so I won't be explaining the syntax in depth. If you need a basic introduction on how to query WikiData, I suggest this tutorial on Youtube. Basically, all the races in the LOTR world are an instance of the Middle-earth races entity with id Q989255. To get the instances of a specific entity, we use the following SPARQL clause:\n",
+ "\n",
+ "?item wdt:P31 wd:Q989255\n",
+ "\n",
+ "This can be translated as \"We would like to fetch an item, which is an instance of (wdt:P31) an entity with an id Q989255\". After we have downloaded the data with APOC, we store the results to Neo4j."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "id": "6t_-UwQ4Ha4J"
+ },
+ "outputs": [],
+ "source": [
+ "import_races_query = \"\"\"\n",
+ "\n",
+ "// Prepare a SPARQL query \n",
+ "WITH 'SELECT ?item ?itemLabel WHERE{ ?item wdt:P31 wd:Q989255 . SERVICE wikibase:label { bd:serviceParam wikibase:language \"[AUTO_LANGUAGE],en\" }}' AS sparql \n",
+ "// make a request to Wikidata\n",
+ "CALL apoc.load.jsonParams('https://query.wikidata.org/sparql?query=' + \n",
+ " apoc.text.urlencode(sparql), \n",
+ " { Accept: \"application/sparql-results+json\"}, null) \n",
+ "YIELD value \n",
+ "// Unwind results to row \n",
+ "UNWIND value['results']['bindings'] as row \n",
+ "// Prepare data \n",
+ "WITH row['itemLabel']['value'] as race, \n",
+ " row['item']['value'] as url, \n",
+ " split(row['item']['value'],'/')[-1] as id \n",
+ "// Store to Neo4j \n",
+ "CREATE (r:Race) SET r.race = race, \n",
+ " r.url = url, \n",
+ " r.id = id\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "r = run_query(import_races_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "SJSd4ON_Ha4L"
+ },
+ "source": [
+ "That was easy. The next step is to fetch the characters that are an instance of a given Middle-earth race. The SPARQL syntax is almost identical to the previous query, except this time we iterate over each race and find the characters that are an instance of a given race."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "id": "Q6d0zuc7Ha4L"
+ },
+ "outputs": [],
+ "source": [
+ "import_characters_query = \"\"\"\n",
+ "\n",
+ "// Iterate over each race in graph\n",
+ "MATCH (r:Race)\n",
+ "// Prepare a SparQL query\n",
+ "WITH 'SELECT ?item ?itemLabel WHERE { ?item wdt:P31 wd:' + r.id + ' . SERVICE wikibase:label { bd:serviceParam wikibase:language \"[AUTO_LANGUAGE],en\" } }' AS sparql, r \n",
+ "// make a request to Wikidata \n",
+ "CALL apoc.load.jsonParams( \"https://query.wikidata.org/sparql?query=\" + \n",
+ " apoc.text.urlencode(sparql), \n",
+ " { Accept: \"application/sparql-results+json\"}, null)\n",
+ "YIELD value \n",
+ "UNWIND value['results']['bindings'] as row \n",
+ "WITH row['itemLabel']['value'] as name, \n",
+ " row['item']['value'] as url, \n",
+ " split(row['item']['value'],'/')[-1] as id, r \n",
+ "// Store to Neo4j \n",
+ "CREATE (c:Character) \n",
+ "SET c.name = name, \n",
+ " c.url = url, \n",
+ " c.id = id \n",
+ "CREATE (c)-[:BELONG_TO]->(r)\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "r = run_query(import_characters_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "m3vghrJ-Ha4M"
+ },
+ "source": [
+ "Did you know that there are at least 700 characters in the Middle-earth world? I would never guess there would be so many documented characters on WikiData. Our first exploratory cypher query will be to count the characters by race."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 363
},
+ "id": "QZYwABSvHa4N",
+ "outputId": "c0598e39-6598-4d63-9fd6-b57902e9b876"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 23,
- "metadata": {
- "id": "QZYwABSvHa4N",
- "outputId": "c0598e39-6598-4d63-9fd6-b57902e9b876",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 363
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " race members\n",
- "0 men in Tolkien's legendarium 345\n",
- "1 Hobbit 150\n",
- "2 Middle-earth elf 83\n",
- "3 dwarves in Tolkien's legendarium 52\n",
- "4 valar 16\n",
- "5 half-elven 12\n",
- "6 Maiar 10\n",
- "7 Orcs in Tolkien's legendarium 9\n",
- "8 Ent 5\n",
- "9 dragons of Middle-earth 4"
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "race_size_query = \"\"\"\n",
- "\n",
- "MATCH (r:Race) \n",
- "RETURN r.race as race, \n",
- " size((r)<-[:BELONG_TO]-()) as members \n",
- "ORDER BY members DESC \n",
- "LIMIT 10\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "run_query(race_size_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "UazugeKjHa4N"
- },
- "source": [
- "The Fellowship of the Ring group is a somewhat representative sample of races in the Middle-earth. Most of the characters are either human or hobbits, with a couple of elves and dwarves strolling by. This is the first time I have heard of Valar and Maiar races though.\n",
- "\n",
- "Now it is time to enrich the graph with information about characters' gender, country, and manner of death. The SPARQL query will be a bit different than before. This time we will select a WikiData entity directly by its unique id and optionally fetch some of its properties. We can filter a specific entity by its id using the following SPARQL clause:\n",
- "\n",
- "filter (?item = wd:' + r.id + ')\n",
- "\n",
- "Similar to the cypher query language, SPARQL also differentiates between a MATCH and an OPTIONAL MATCH. When we want to return multiple properties of an entity, it is best to wrap each property into an OPTIONAL MATCH. This way we will get results if any of the properties exist. Without the OPTIONAL MATCH, we would only get results for entities where all three properties exist. This is an identical behavior to cypher.\n",
- "\n",
- "OPTIONAL{ ?item wdt:P21 [rdfs:label ?gender] . \n",
- " filter (lang(?gender)=\"en\") }\n",
- "\n",
- "The wdt:P21 indicates we are interested in the gender property. We also specify that we want to get the English label of an entity instead of its WikiData id. The easiest way to search for the desired property id is to inspect the entity on the WikiData web page and hover over a property name.\n",
- "\n",
- "Another way is to use the WikiData query editor, which has a great autocomplete function by using the CTRL+T command.\n",
- "\n",
- "To store the results back to Neo4j we will use the FOREACH trick. Because some of our results will contain null values, we have to wrap the MERGE statement into the FOREACH statement which supports conditional execution. Check the Tips and tricks blog post by Michael Hunger for more information."
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 26,
- "metadata": {
- "id": "l3lj59OdHa4O"
- },
- "outputs": [],
- "source": [
- "import_gender_query = \"\"\"\n",
- "\n",
- "// Iterate over characters \n",
- "MATCH (r:Character) \n",
- "// Prepare a SparQL query \n",
- "WITH 'SELECT * WHERE{ ?item rdfs:label ?name . filter (?item = wd:' + r.id + ') filter (lang(?name) = \"en\" ) . ' +\n",
- " 'OPTIONAL{ ?item wdt:P21 [rdfs:label ?gender] . filter (lang(?gender)=\"en\") } ' + \n",
- " 'OPTIONAL{ ?item wdt:P27 [rdfs:label ?country] . filter (lang(?country)=\"en\") } ' +\n",
- " 'OPTIONAL{ ?item wdt:P1196 [rdfs:label ?death] . filter (lang(?death)=\"en\") }}' AS sparql, r \n",
- "// make a request to Wikidata \n",
- "CALL apoc.load.jsonParams( \"https://query.wikidata.org/sparql?query=\" \n",
- " + sparql, \n",
- " { Accept: \"application/sparql-results+json\"}, null)\n",
- "YIELD value \n",
- "UNWIND value['results']['bindings'] as row \n",
- "SET r.gender = row['gender']['value'], \n",
- " r.manner_of_death = row['death']['value'] \n",
- "// Execute FOREACH statement \n",
- "FOREACH(ignoreme in case when row['country'] is not null then [1] else [] end | \n",
- " MERGE (c:Country{name:row['country']['value']}) \n",
- " MERGE (r)-[:IN_COUNTRY]->(c))\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "r = run_query(import_gender_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "GIpG7UxcHa4P"
- },
- "source": [
- "We are connecting additional information to our graph bit by bit and slowly transforming it into a knowledge graph. Let's first look at the manner of death property."
+ "text/plain": [
+ " race members\n",
+ "0 Middle-earth man 354\n",
+ "1 Hobbit 150\n",
+ "2 Middle-earth elf 86\n",
+ "3 Middle-earth dwarf 52\n",
+ "4 Valar 16\n",
+ "5 half-elven 11\n",
+ "6 Maiar 10\n",
+ "7 Orcs in Tolkien's legendarium 9\n",
+ "8 Ent 5\n",
+ "9 dragons of Middle-earth 3"
]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "race_size_query = \"\"\"\n",
+ "\n",
+ "MATCH (r:Race) \n",
+ "RETURN r.race as race, \n",
+ " count{ (r)<-[:BELONG_TO]-() } as members \n",
+ "ORDER BY members DESC \n",
+ "LIMIT 10\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "run_query(race_size_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "UazugeKjHa4N"
+ },
+ "source": [
+ "The Fellowship of the Ring group is a somewhat representative sample of races in the Middle-earth. Most of the characters are either human or hobbits, with a couple of elves and dwarves strolling by. This is the first time I have heard of Valar and Maiar races though.\n",
+ "\n",
+ "Now it is time to enrich the graph with information about characters' gender, country, and manner of death. The SPARQL query will be a bit different than before. This time we will select a WikiData entity directly by its unique id and optionally fetch some of its properties. We can filter a specific entity by its id using the following SPARQL clause:\n",
+ "\n",
+ "filter (?item = wd:' + r.id + ')\n",
+ "\n",
+ "Similar to the cypher query language, SPARQL also differentiates between a MATCH and an OPTIONAL MATCH. When we want to return multiple properties of an entity, it is best to wrap each property into an OPTIONAL MATCH. This way we will get results if any of the properties exist. Without the OPTIONAL MATCH, we would only get results for entities where all three properties exist. This is an identical behavior to cypher.\n",
+ "\n",
+ "OPTIONAL{ ?item wdt:P21 [rdfs:label ?gender] . \n",
+ " filter (lang(?gender)=\"en\") }\n",
+ "\n",
+ "The wdt:P21 indicates we are interested in the gender property. We also specify that we want to get the English label of an entity instead of its WikiData id. The easiest way to search for the desired property id is to inspect the entity on the WikiData web page and hover over a property name.\n",
+ "\n",
+ "Another way is to use the WikiData query editor, which has a great autocomplete function by using the CTRL+T command.\n",
+ "\n",
+ "To store the results back to Neo4j we will use the FOREACH trick. Because some of our results will contain null values, we have to wrap the MERGE statement into the FOREACH statement which supports conditional execution. Check the Tips and tricks blog post by Michael Hunger for more information."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "id": "l3lj59OdHa4O"
+ },
+ "outputs": [],
+ "source": [
+ "import_gender_query = \"\"\"\n",
+ "\n",
+ "// Iterate over characters \n",
+ "MATCH (r:Character) \n",
+ "// Prepare a SparQL query \n",
+ "WITH 'SELECT * WHERE{ ?item rdfs:label ?name . filter (?item = wd:' + r.id + ') filter (lang(?name) = \"en\" ) . ' +\n",
+ " 'OPTIONAL{ ?item wdt:P21 [rdfs:label ?gender] . filter (lang(?gender)=\"en\") } ' + \n",
+ " 'OPTIONAL{ ?item wdt:P27 [rdfs:label ?country] . filter (lang(?country)=\"en\") } ' +\n",
+ " 'OPTIONAL{ ?item wdt:P1196 [rdfs:label ?death] . filter (lang(?death)=\"en\") }}' AS sparql, r \n",
+ "// make a request to Wikidata \n",
+ "CALL apoc.load.jsonParams( \"https://query.wikidata.org/sparql?query=\" \n",
+ " + apoc.text.urlencode(sparql), \n",
+ " { Accept: \"application/sparql-results+json\"}, null)\n",
+ "YIELD value \n",
+ "UNWIND value['results']['bindings'] as row \n",
+ "SET r.gender = row['gender']['value'], \n",
+ " r.manner_of_death = row['death']['value'] \n",
+ "// Execute FOREACH statement \n",
+ "FOREACH(ignoreme in case when row['country'] is not null then [1] else [] end | \n",
+ " MERGE (c:Country{name:row['country']['value']}) \n",
+ " MERGE (r)-[:IN_COUNTRY]->(c))\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "r = run_query(import_gender_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "GIpG7UxcHa4P"
+ },
+ "source": [
+ "We are connecting additional information to our graph bit by bit and slowly transforming it into a knowledge graph. Let's first look at the manner of death property."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 143
},
+ "id": "f5s0jWxQHa4P",
+ "outputId": "4a7b9491-6932-4644-ba34-b0413c21bcf4"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 27,
- "metadata": {
- "id": "f5s0jWxQHa4P",
- "outputId": "4a7b9491-6932-4644-ba34-b0413c21bcf4",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 143
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " manner_of_death count\n",
- "0 homicide 3\n",
- "1 death in battle 1\n",
- "2 accident 1"
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "multiple_kids_query = \"\"\"\n",
- "\n",
- "MATCH (c:Character)<-[:HAS_FATHER|HAS_MOTHER]-()-[:HAS_FATHER|HAS_MOTHER]->(other) \n",
- "WITH c, collect(distinct other) as others \n",
- "WHERE size(others) > 1 \n",
- "MATCH p=(c)<-[:HAS_FATHER|HAS_MOTHER]-()-[:HAS_FATHER|HAS_MOTHER]->() \n",
- "RETURN [n IN nodes(p) | n.name] AS result LIMIT 10\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "run_query(multiple_kids_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "YcfTme1qHa4S"
- },
- "source": [
- "So it seems that Finwë has four children with Indis and a single child with Míriel. On the other hand, it is quite weird that Beren has two fathers. I guess Adanel has some explaining to do. We would probably find more death and promiscuity in the GoT world.\n",
- "\n",
- "## Populate missing values\n",
- "\n",
- "Now that we know that the Middle-earth characters abstain from promiscuity, let's populate the missing country values. Remember our hypothesis was:\n",
- "\n",
- ">If two characters are siblings, they belong to the same country.\n",
- "\n",
- "Before we populate the missing values for countries, let's populate the missing values for siblings. We will assume that if two characters have the same mother or father, they are siblings. Let's look at some sibling candidates."
+ "text/plain": [
+ " result\n",
+ "0 [Finwë, Fingolfin, Indis]\n",
+ "1 [Finwë, Findis, Indis]\n",
+ "2 [Finwë, Irimë, Indis]\n",
+ "3 [Finwë, Finarfin, Indis]\n",
+ "4 [Finwë, Fëanor, Míriel]"
]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "multiple_kids_query = \"\"\"\n",
+ "\n",
+ "MATCH (c:Character)<-[:HAS_FATHER|HAS_MOTHER]-()-[:HAS_FATHER|HAS_MOTHER]->(other) \n",
+ "WITH c, collect(distinct other) as others \n",
+ "WHERE size(others) > 1 \n",
+ "MATCH p=(c)<-[:HAS_FATHER|HAS_MOTHER]-()-[:HAS_FATHER|HAS_MOTHER]->() \n",
+ "RETURN [n IN nodes(p) | n.name] AS result LIMIT 10\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "run_query(multiple_kids_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "YcfTme1qHa4S"
+ },
+ "source": [
+ "So it seems that Finwë has four children with Indis and a single child with Míriel. On the other hand, it is quite weird that Beren has two fathers. I guess Adanel has some explaining to do. We would probably find more death and promiscuity in the GoT world.\n",
+ "\n",
+ "## Populate missing values\n",
+ "\n",
+ "Now that we know that the Middle-earth characters abstain from promiscuity, let's populate the missing country values. Remember our hypothesis was:\n",
+ "\n",
+ ">If two characters are siblings, they belong to the same country.\n",
+ "\n",
+ "Before we populate the missing values for countries, let's populate the missing values for siblings. We will assume that if two characters have the same mother or father, they are siblings. Let's look at some sibling candidates."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 363
},
+ "id": "XWdkChq-Ha4T",
+ "outputId": "7e511e96-9487-4c73-b69e-9e85dca43890"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 35,
- "metadata": {
- "id": "XWdkChq-Ha4T",
- "outputId": "7e511e96-9487-4c73-b69e-9e85dca43890",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 363
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " result\n",
- "0 [Ferumbras Took II, Isumbras Took III, Bandobr...\n",
- "1 [Bingo Baggins, Laura Grubb, Bungo Baggins]\n",
- "2 [Belba Baggins, Laura Grubb, Bungo Baggins]\n",
- "3 [Linda Proudfoot, Laura Grubb, Bungo Baggins]\n",
- "4 [Bingo Baggins, Mungo Baggins, Bungo Baggins]\n",
- "5 [Linda Proudfoot, Mungo Baggins, Bungo Baggins]\n",
- "6 [Belba Baggins, Mungo Baggins, Bungo Baggins]\n",
- "7 [Hildigard Took, Gerontius Took, Isembard Took]\n",
- "8 [Isengar Took, Gerontius Took, Isembard Took]\n",
- "9 [Isengrim Took III, Gerontius Took, Isembard T..."
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "sibling_populate_query = \"\"\"\n",
- "\n",
- "MATCH p=(a:Character)-[:HAS_FATHER|:HAS_MOTHER]->()<-[:HAS_FATHER|:HAS_MOTHER]-(b:Character) \n",
- "WHERE NOT (a)-[:SIBLING]-(b) \n",
- "MERGE (a)-[:SIBLING]-(b)\n",
- "\n",
- "\"\"\"\n",
- "run_query(sibling_populate_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "LsxV7gZJHa4T"
- },
- "source": [
- "The query added 118 missing relationships. I need to learn how to update the WikiData knowledge graph and add the missing relationships in bulk. Now we can fill in the missing country values for siblings. We will match all characters with the filled in country information and search for their siblings that don't have the country information. I love how easy it is to express this pattern with cypher query language."
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: []\n",
+ "Index: []"
]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "sibling_populate_query = \"\"\"\n",
+ "\n",
+ "MATCH p=(a:Character)-[:HAS_FATHER|:HAS_MOTHER]->()<-[:HAS_FATHER|:HAS_MOTHER]-(b:Character) \n",
+ "WHERE NOT exists { (a)-[:SIBLING]-(b) } \n",
+ "MERGE (a)-[:SIBLING]-(b)\n",
+ "\n",
+ "\"\"\"\n",
+ "run_query(sibling_populate_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "LsxV7gZJHa4T"
+ },
+ "source": [
+ "The query added 118 missing relationships. I need to learn how to update the WikiData knowledge graph and add the missing relationships in bulk. Now we can fill in the missing country values for siblings. We will match all characters with the filled in country information and search for their siblings that don't have the country information. I love how easy it is to express this pattern with cypher query language."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49
},
+ "id": "Ipj0d95THa4T",
+ "outputId": "2d95cf28-d60a-487d-d51e-a8ce2a327ef6"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 37,
- "metadata": {
- "id": "Ipj0d95THa4T",
- "outputId": "2d95cf28-d60a-487d-d51e-a8ce2a327ef6",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 49
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "Empty DataFrame\n",
- "Columns: []\n",
- "Index: []"
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "country_populate_query = \"\"\"\n",
- "\n",
- "MATCH (country)<-[:IN_COUNTRY]-(s:Character)-[:SIBLING]-(t:Character) \n",
- "WHERE NOT (t)-[:IN_COUNTRY]->() \n",
- "MERGE (t)-[:IN_COUNTRY]->(country)\n",
- "\n",
- "\"\"\"\n",
- "run_query(country_populate_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "KDh1CjK3Ha4U"
- },
- "source": [
- "There were 49 missing countries added. We could easily come up with more hypotheses to fill in the missing values. You can try and maybe add some other missing values yourself.\n",
- "\n",
- "We still have to add some information to our graph. In this query, we will add the information about the occupation, language, groups, and events of characters. The SPARQL query is identical to before where we iterate over each character and fetch additional properties."
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: []\n",
+ "Index: []"
]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "country_populate_query = \"\"\"\n",
+ "\n",
+ "MATCH (country)<-[:IN_COUNTRY]-(s:Character)-[:SIBLING]-(t:Character) \n",
+ "WHERE NOT exists { (t)-[:IN_COUNTRY]->() }\n",
+ "MERGE (t)-[:IN_COUNTRY]->(country)\n",
+ "\n",
+ "\"\"\"\n",
+ "run_query(country_populate_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KDh1CjK3Ha4U"
+ },
+ "source": [
+ "There were 49 missing countries added. We could easily come up with more hypotheses to fill in the missing values. You can try and maybe add some other missing values yourself.\n",
+ "\n",
+ "We still have to add some information to our graph. In this query, we will add the information about the occupation, language, groups, and events of characters. The SPARQL query is identical to before where we iterate over each character and fetch additional properties."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49
},
+ "id": "3AVPww1fHa4U",
+ "outputId": "faae2f85-abe9-4d2e-a795-9921abe21ce2"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 38,
- "metadata": {
- "id": "3AVPww1fHa4U",
- "outputId": "faae2f85-abe9-4d2e-a795-9921abe21ce2",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 49
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "Empty DataFrame\n",
- "Columns: []\n",
- "Index: []"
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "family_enemy_2hops_query = \"\"\"\n",
- "\n",
- "MATCH p=(a)-[:SPOUSE|SIBLING|HAS_FATHER|HAS_MOTHER*..2]-(b) \n",
- "WHERE (a)-[:ENEMY]-(b) \n",
- "RETURN [n IN nodes(p) | n.name] AS result LIMIT 10\n",
- "\n",
- "\"\"\"\n",
- "run_query(family_enemy_2hops_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "vNIv7qiMHa4X"
- },
- "source": [
- "Not a lot of enemies within the second-degree relatives. We can observe that Varda has taken her husband's stance and is also an enemy with Morgoth. This is an example of a stable triangle or triad. The triangle consists of one positive relationship (SPOUSE) and two negatives (ENEMY). In social network analysis, triangles are used to measure the cohesiveness and structural stability of a network.\n",
- "\n",
- "## Graph data science\n",
- "\n",
- "If you have read any of my previous blog posts, you know that I just have to include some example use cases of graph algorithms from the Graph Data Science library. If you need a quick refresher on how the GDS library works and what is happening behind the scenes, I suggest you read my previous blog post.\n",
- "\n",
- "We will start by projecting the family network. We load all the characters and the familial relationships like SPOUSE, SIBLING, HAS_FATHER, and HAS_MOTHER between them."
+ "text/plain": [
+ " result\n",
+ "0 [Manwë, Morgoth]\n",
+ "1 [Morgoth, Manwë]\n",
+ "2 [Morgoth, Manwë, Varda]\n",
+ "3 [Varda, Manwë, Morgoth]"
]
+ },
+ "execution_count": 26,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "family_enemy_2hops_query = \"\"\"\n",
+ "\n",
+ "MATCH p=(a)-[:SPOUSE|SIBLING|HAS_FATHER|HAS_MOTHER*..2]-(b) \n",
+ "WHERE exists { (a)-[:ENEMY]-(b) } \n",
+ "RETURN [n IN nodes(p) | n.name] AS result LIMIT 10\n",
+ "\n",
+ "\"\"\"\n",
+ "run_query(family_enemy_2hops_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "vNIv7qiMHa4X"
+ },
+ "source": [
+ "Not a lot of enemies within the second-degree relatives. We can observe that Varda has taken her husband's stance and is also an enemy with Morgoth. This is an example of a stable triangle or triad. The triangle consists of one positive relationship (SPOUSE) and two negatives (ENEMY). In social network analysis, triangles are used to measure the cohesiveness and structural stability of a network.\n",
+ "\n",
+ "## Graph data science\n",
+ "\n",
+ "If you have read any of my previous blog posts, you know that I just have to include some example use cases of graph algorithms from the Graph Data Science library. If you need a quick refresher on how the GDS library works and what is happening behind the scenes, I suggest you read my previous blog post.\n",
+ "\n",
+ "We will start by projecting the family network. We load all the characters and the familial relationships like SPOUSE, SIBLING, HAS_FATHER, and HAS_MOTHER between them."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "ND_zVoYOHa4X",
+ "outputId": "88bccf60-ff12-43a1-b663-570dfedfa92e"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 44,
- "metadata": {
- "id": "ND_zVoYOHa4X",
- "outputId": "88bccf60-ff12-43a1-b663-570dfedfa92e",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " nodeProjection \\\n",
- "0 {'Character': {'label': 'Character', 'properti... \n",
- "\n",
- " relationshipProjection graphName nodeCount \\\n",
- "0 {'HAS_MOTHER': {'orientation': 'NATURAL', 'agg... family 699 \n",
- "\n",
- " relationshipCount projectMillis \n",
- "0 1054 102 "
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "project_graph = \"\"\"\n",
- "CALL gds.graph.project('family','Character', \n",
- " ['SPOUSE','SIBLING','HAS_FATHER','HAS_MOTHER'])\n",
- "\"\"\"\n",
- "run_query(project_graph)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "HUBD0xphHa4X"
- },
- "source": [
- "### Weakly connected component\n",
- "\n",
- "The weakly connected component algorithm is used to find islands or disconnected components within our network. The following visualizations contain two connected components. The first component is composed of Michael, Mark, and Doug while the second one consists of Alice, Charles, and Bridget.\n",
- "\n",
- "In our case, we will use the weakly connected component algorithm to find islands within the family network. All members within the same family component are related to each other somehow. Could be a cousin of the sister-in-law's grandmother or something more direct like a sibling. To get a rough feeling of the results, we will run the stats mode of the algorithm."
+ "text/plain": [
+ " nodeProjection \\\n",
+ "0 {'Character': {'label': 'Character', 'properti... \n",
+ "\n",
+ " relationshipProjection graphName nodeCount \\\n",
+ "0 {'HAS_MOTHER': {'orientation': 'NATURAL', 'ind... family 710 \n",
+ "\n",
+ " relationshipCount projectMillis \n",
+ "0 1060 26 "
]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "project_graph = \"\"\"\n",
+ "CALL gds.graph.project('family','Character', \n",
+ " ['SPOUSE','SIBLING','HAS_FATHER','HAS_MOTHER'])\n",
+ "\"\"\"\n",
+ "run_query(project_graph)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "HUBD0xphHa4X"
+ },
+ "source": [
+ "### Weakly connected component\n",
+ "\n",
+ "The weakly connected component algorithm is used to find islands or disconnected components within our network. The following visualizations contain two connected components. The first component is composed of Michael, Mark, and Doug while the second one consists of Alice, Charles, and Bridget.\n",
+ "\n",
+ "In our case, we will use the weakly connected component algorithm to find islands within the family network. All members within the same family component are related to each other somehow. Could be a cousin of the sister-in-law's grandmother or something more direct like a sibling. To get a rough feeling of the results, we will run the stats mode of the algorithm."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "3g8ufqCcHa4X",
+ "outputId": "f70b07d5-ad38-49ff-8014-72a4461b3932"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 46,
- "metadata": {
- "id": "3g8ufqCcHa4X",
- "outputId": "f70b07d5-ad38-49ff-8014-72a4461b3932",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " components p75 p90 mean max\n",
- "0 147 1 3 4.76 324"
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "wcc_stats_query = \"\"\"\n",
- "\n",
- "CALL gds.wcc.stats('family') \n",
- "YIELD componentCount, \n",
- " componentDistribution \n",
- "RETURN componentCount as components, \n",
- " componentDistribution.p75 as p75, \n",
- " componentDistribution.p90 as p90, \n",
- " apoc.math.round(componentDistribution.mean,2) as mean, \n",
- " componentDistribution.max as max\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "run_query(wcc_stats_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "nCgfAjCmHa4X"
- },
- "source": [
- "There are 145 connected components in our graph. More than 75% of the components contain only a single character. This means that around 110 (75% * 145) characters don't have a single familial link to any other character. If they had a single link, the size of the component would be at least two. The biggest component has 328 members, so that must be one happy family. Let's write back the results and further analyze the family components."
+ "text/plain": [
+ " components p75 p90 mean max\n",
+ "0 156 1 3 4.55 321"
]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "wcc_stats_query = \"\"\"\n",
+ "\n",
+ "CALL gds.wcc.stats('family') \n",
+ "YIELD componentCount, \n",
+ " componentDistribution \n",
+ "RETURN componentCount as components, \n",
+ " componentDistribution.p75 as p75, \n",
+ " componentDistribution.p90 as p90, \n",
+ " round(componentDistribution.mean,2) as mean, \n",
+ " componentDistribution.max as max\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "run_query(wcc_stats_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "nCgfAjCmHa4X"
+ },
+ "source": [
+ "There are 145 connected components in our graph. More than 75% of the components contain only a single character. This means that around 110 (75% * 145) characters don't have a single familial link to any other character. If they had a single link, the size of the component would be at least two. The biggest component has 328 members, so that must be one happy family. Let's write back the results and further analyze the family components."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "YDdRNi4EHa4Y",
+ "outputId": "264f1bb5-1078-45ef-b89b-56d660269a50"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 47,
- "metadata": {
- "id": "YDdRNi4EHa4Y",
- "outputId": "264f1bb5-1078-45ef-b89b-56d660269a50",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " writeMillis nodePropertiesWritten componentCount \\\n",
- "0 181 699 147 \n",
- "\n",
- " componentDistribution postProcessingMillis \\\n",
- "0 {'p99': 139, 'min': 1, 'max': 324, 'mean': 4.7... 5 \n",
- "\n",
- " preProcessingMillis computeMillis \\\n",
- "0 0 19 \n",
- "\n",
- " configuration \n",
- "0 {'writeConcurrency': 4, 'seedProperty': None, ... "
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "ir_query = \"\"\"\n",
- "\n",
- "MATCH (c:Character) \n",
- "WHERE c.familyComponent = 115 // fix the family component \n",
- "MATCH p=(race)<-[:BELONG_TO]-(c)-[:SPOUSE]-(other)-[:BELONG_TO]->(other_race) \n",
- "WHERE race <> other_race AND id(c) > id(other) \n",
- "RETURN c.name as spouse_1, \n",
- " race.race as race_1, \n",
- " other.name as spouse_2, \n",
- " other_race.race as race_2\n",
- "\"\"\"\n",
- "\n",
- "run_query(ir_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "ax5hKMTLHa4Z"
- },
- "source": [
- "First of all, I didn't know that Elrond was a half-elf. It seems like the human and elven \"alliance\" is as old as time itself. I was mainly expecting to see Arwen and Aragorn as I remember that from the movies. It would be interesting to learn how far back do half-elves go. Let's look who are the half-elves with the most descendants."
+ "text/plain": [
+ " spouse_1 race_1 spouse_2 race_2\n",
+ "0 Melian Maiar Thingol Middle-earth elf\n",
+ "1 Dior Eluchíl half-elven Nimloth Middle-earth elf\n",
+ "2 Beren Middle-earth man Lúthien Middle-earth elf\n",
+ "3 Elrond half-elven Celebrían Middle-earth elf\n",
+ "4 Tuor Middle-earth man Idril Middle-earth elf\n",
+ "5 Arwen half-elven Aragorn Middle-earth man"
]
+ },
+ "execution_count": 33,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "ir_query = \"\"\"\n",
+ "\n",
+ "MATCH (c:Character) \n",
+ "WHERE c.familyComponent = 0 // fix the family component \n",
+ "MATCH p=(race)<-[:BELONG_TO]-(c)-[:SPOUSE]-(other)-[:BELONG_TO]->(other_race) \n",
+ "WHERE race <> other_race AND id(c) > id(other) \n",
+ "RETURN c.name as spouse_1, \n",
+ " race.race as race_1, \n",
+ " other.name as spouse_2, \n",
+ " other_race.race as race_2\n",
+ "\"\"\"\n",
+ "\n",
+ "run_query(ir_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ax5hKMTLHa4Z"
+ },
+ "source": [
+ "First of all, I didn't know that Elrond was a half-elf. It seems like the human and elven \"alliance\" is as old as time itself. I was mainly expecting to see Arwen and Aragorn as I remember that from the movies. It would be interesting to learn how far back do half-elves go. Let's look who are the half-elves with the most descendants."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
},
+ "id": "bXhIScloHa4Z",
+ "outputId": "eddf3509-03a5-4907-b151-721e0040a67d"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 51,
- "metadata": {
- "id": "bXhIScloHa4Z",
- "outputId": "eddf3509-03a5-4907-b151-721e0040a67d",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " character descendants\n",
- "0 Dior Eluchíl 11\n",
- "1 Elwing 10\n",
- "2 Eärendil 10\n",
- "3 Elros 9\n",
- "4 Elrond 2"
- ],
- "text/html": [
- "\n",
- "
"
],
- "source": [
- "oldest_halfelf_query = \"\"\"\n",
- "\n",
- "MATCH (c:Character)\n",
- "WHERE (c)-[:BELONG_TO]->(:Race{race:'half-elven'})\n",
- "MATCH p=(c)<-[:HAS_FATHER|HAS_MOTHER*..20]-(end)\n",
- "WHERE NOT (end)<-[:HAS_FATHER|:HAS_MOTHER]-()\n",
- "WITH c, max(length(p)) as descendants\n",
- "ORDER BY descendants DESC\n",
- "LIMIT 5\n",
- "RETURN c.name as character,\n",
- " descendants\n",
- "\n",
- "\"\"\"\n",
- "\n",
- "run_query(oldest_halfelf_query)"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "wOIj6SAGHa4Z"
- },
- "source": [
- "It seems like Dior Eluchíl is the oldest recorded half-elf. I inspected results on LOTR fandom site, and it seems we are correct. Dior Eluchil was born in the First Age in the year 470. There are a couple of other half-elves who were born within 50 years of Dior.\n",
- "\n",
- "### Betweenness centrality\n",
- "\n",
- "We will also take a look at the betweenness centrality algorithm. It is used to find bridge nodes between different communities. If we take a look at the following visualization, we can observe that Captain America has the highest betweenness centrality score. That is because he is the main bridge in the network and connects the left-hand side of the network to the right-hand side. The second bridge in the network is the Beast. We can easily see that all the information exchanged between the main and right-hand side of the network has to go through him to reach the right-hand side.\n",
- "\n",
- "We will look for the bridge characters in the largest family network. My guess would be that spouses in an interracial marriage will come out on top. This is because all the communication between the races flows through them. We've seen that there are only six interracial marriages, so probably some of them will come out on top."
+ "text/plain": [
+ " character descendants\n",
+ "0 Dior Eluchíl 11\n",
+ "1 Eärendil 10\n",
+ "2 Elwing 10\n",
+ "3 Elros 9\n",
+ "4 Elrond 2"
]
+ },
+ "execution_count": 34,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "oldest_halfelf_query = \"\"\"\n",
+ "\n",
+ "MATCH (c:Character)\n",
+ "WHERE exists{ (c)-[:BELONG_TO]->(:Race{race:'half-elven'}) }\n",
+ "MATCH p=(c)<-[:HAS_FATHER|HAS_MOTHER*..20]-(end)\n",
+ "WHERE NOT (end)<-[:HAS_FATHER|:HAS_MOTHER]-()\n",
+ "WITH c, max(length(p)) as descendants\n",
+ "ORDER BY descendants DESC\n",
+ "LIMIT 5\n",
+ "RETURN c.name as character,\n",
+ " descendants\n",
+ "\n",
+ "\"\"\"\n",
+ "\n",
+ "run_query(oldest_halfelf_query)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "wOIj6SAGHa4Z"
+ },
+ "source": [
+ "It seems like Dior Eluchíl is the oldest recorded half-elf. I inspected results on LOTR fandom site, and it seems we are correct. Dior Eluchil was born in the First Age in the year 470. There are a couple of other half-elves who were born within 50 years of Dior.\n",
+ "\n",
+ "### Betweenness centrality\n",
+ "\n",
+ "We will also take a look at the betweenness centrality algorithm. It is used to find bridge nodes between different communities. If we take a look at the following visualization, we can observe that Captain America has the highest betweenness centrality score. That is because he is the main bridge in the network and connects the left-hand side of the network to the right-hand side. The second bridge in the network is the Beast. We can easily see that all the information exchanged between the main and right-hand side of the network has to go through him to reach the right-hand side.\n",
+ "\n",
+ "We will look for the bridge characters in the largest family network. My guess would be that spouses in an interracial marriage will come out on top. This is because all the communication between the races flows through them. We've seen that there are only six interracial marriages, so probably some of them will come out on top."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "VOKMREFFRFMg",
+ "outputId": "e5381a6d-ad4a-4b30-c1bb-2139eb4e1c48"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "source": [
- "create_largest_wcc_query = \"\"\"\n",
- "CALL gds.graph.project.cypher('largest-wcc', \n",
- " 'MATCH (n:Character) WHERE n.familyComponent = 115 \n",
- " RETURN id(n) as id',\n",
- " 'MATCH (s:Character)-[:HAS_FATHER|HAS_MOTHER|SPOUSE|SIBLING]-(t:Character) \n",
- " RETURN id(s) as source, id(t) as target',\n",
- " {validateRelationships: false})\n",
- "\"\"\"\n",
- "\n",
- "run_query(create_largest_wcc_query)"
+ "data": {
+ "text/html": [
+ "
\n",
" \n",
@@ -953,14 +968,14 @@
],
"text/plain": [
" nodeId componentId\n",
- "0 0 0\n",
- "1 1 1\n",
- "2 2 2\n",
- "3 3 3\n",
- "4 4 4"
+ "0 765184 0\n",
+ "1 765185 1\n",
+ "2 765186 2\n",
+ "3 765187 3\n",
+ "4 765188 4"
]
},
- "execution_count": 14,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -979,7 +994,7 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 16,
"id": "e97c1869",
"metadata": {},
"outputs": [],
@@ -1000,7 +1015,7 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 17,
"id": "340f4bf1",
"metadata": {},
"outputs": [],
@@ -1025,7 +1040,7 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 18,
"id": "9983c200",
"metadata": {},
"outputs": [],
@@ -1051,7 +1066,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 19,
"id": "9d41c3aa",
"metadata": {},
"outputs": [],
@@ -1073,7 +1088,7 @@
},
{
"cell_type": "code",
- "execution_count": 19,
+ "execution_count": 20,
"id": "3a86c2e3",
"metadata": {},
"outputs": [],
@@ -1096,7 +1111,7 @@
},
{
"cell_type": "code",
- "execution_count": 20,
+ "execution_count": 21,
"id": "0b914683",
"metadata": {},
"outputs": [
@@ -1167,28 +1182,29 @@
},
{
"cell_type": "code",
- "execution_count": 21,
+ "execution_count": 22,
"id": "ccd028fd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "graphName fraud\n",
- "database neo4j\n",
- "memoryUsage \n",
- "sizeInBytes -1\n",
- "nodeCount 152550\n",
- "relationshipCount 171201\n",
- "configuration {'relationshipProjection': {'HAS_CC': {'orient...\n",
- "density 0.000007\n",
- "creationTime 2022-06-29T11:32:01.574618000+02:00\n",
- "modificationTime 2022-06-29T11:32:01.917006000+02:00\n",
- "schema {'graphProperties': {}, 'relationships': {'HAS...\n",
+ "graphName fraud\n",
+ "database neo4j\n",
+ "memoryUsage \n",
+ "sizeInBytes -1\n",
+ "nodeCount 152550\n",
+ "relationshipCount 171201\n",
+ "configuration {'relationshipProjection': {'HAS_CC': {'orient...\n",
+ "density 0.000007\n",
+ "creationTime 2023-02-01T13:10:50.719251667+01:00\n",
+ "modificationTime 2023-02-01T13:10:51.453140320+01:00\n",
+ "schema {'graphProperties': {}, 'relationships': {'HAS...\n",
+ "schemaWithOrientation {'graphProperties': {}, 'relationships': {'HAS...\n",
"Name: 0, dtype: object"
]
},
- "execution_count": 21,
+ "execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
diff --git a/gds_python/gds_python_intro.ipynb b/gds_python/gds_python_intro.ipynb
index 1811a52..d7e9341 100644
--- a/gds_python/gds_python_intro.ipynb
+++ b/gds_python/gds_python_intro.ipynb
@@ -1,1707 +1,1307 @@
{
- "nbformat": 4,
- "nbformat_minor": 0,
- "metadata": {
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "colab_type": "text",
+ "id": "view-in-github"
+ },
+ "source": [
+ ""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "kHob0RF8YDrx"
+ },
+ "source": [
+ "# How to get started with the Neo4j Graph Data Science Python client\n",
+ "## Learn the basic syntax of the newly released Python client for Neo4j Graph Data Science library\n",
+ "\n",
+ "Data scientists like me love Python. It features a wide variety of machine learning and data science libraries that can help you get started on a data science project in minutes. It is not uncommon to use a variety of libraries in a data science workflow. With the release of version 2 of the Neo4j Graph Data Science (GDS) library, a supporting Python client has been introduced. The Python client for the GDS library is designed to help you seamlessly integrate the Neo4j Graph Data Science library into your data science workflow. Instead of having to write Cypher statements to execute graph algorithms, the Python client provides a simple surface that allows you to project and run graph algorithms using pure Python code.\n",
+ "\n",
+ "Since the Python client for GDS is relatively new, there are not many examples out there yet. Therefore, I've decided to write this blog post to help you get started with the GDS Python client syntax and show some common usage patterns through a simple network analysis.\n",
+ "\n",
+ "The Neo4j Graph Data Science Python client can be installed using the pip package installer."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
"colab": {
- "name": "gds-python.ipynb",
- "provenance": [],
- "authorship_tag": "ABX9TyMLODtjsTX2gWhXe5ADDUdP",
- "include_colab_link": true
- },
- "kernelspec": {
- "name": "python3",
- "display_name": "Python 3"
+ "base_uri": "https://localhost:8080/"
},
- "language_info": {
- "name": "python"
+ "id": "Q1KlTgmR8PAL",
+ "outputId": "db6489bd-cf34-4f97-8b44-77f08b3e9b73"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
+ "Requirement already satisfied: graphdatascience in /usr/local/lib/python3.7/dist-packages (1.0.0)\n",
+ "Requirement already satisfied: pandas<2.0,>=1.0 in /usr/local/lib/python3.7/dist-packages (from graphdatascience) (1.3.5)\n",
+ "Requirement already satisfied: neo4j<5.0,>=4.4.2 in /usr/local/lib/python3.7/dist-packages (from graphdatascience) (4.4.3)\n",
+ "Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from neo4j<5.0,>=4.4.2->graphdatascience) (2022.1)\n",
+ "Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas<2.0,>=1.0->graphdatascience) (1.21.6)\n",
+ "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas<2.0,>=1.0->graphdatascience) (2.8.2)\n",
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas<2.0,>=1.0->graphdatascience) (1.15.0)\n"
+ ]
}
+ ],
+ "source": [
+ "!pip install graphdatascience"
+ ]
},
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "view-in-github",
- "colab_type": "text"
- },
- "source": [
- ""
- ]
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "tv2vtJOQYLQW"
+ },
+ "source": [
+ "An important thing to note is that the Python client is only guaranteed to work with GDS versions 2.0 and later. Therefore, if you have a previous version, I suggest you first upgrade the GDS library to the latest version.\n",
+ "# Neo4j environment setup\n",
+ "If you want to follow along with the code examples, you need to set up a Neo4j database. I suggest you use a [blank project on Neo4j Sandbox](https://sandbox.neo4j.com/?usecase=blank-sandbox) for this simple demonstration, but you can also download a [Neo4j Desktop application](https://neo4j.com/download/) and set up a local database.\n",
+ "\n",
+ "Neo4j Sandbox has the GDS library already installed. However, if you use Neo4j Desktop, you have to install the GDS library manually.\n",
+ "\n",
+ "# Setting up the GDS Python client connection\n",
+ "We start by defining the client connection to the Neo4j database. If you have seen any of my previous blog posts that use the official Neo4j Python driver, you can see that the syntax is almost identical."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "id": "GKTUobMl8S31"
+ },
+ "outputs": [],
+ "source": [
+ "from graphdatascience import GraphDataScience\n",
+ "\n",
+ "host = \"bolt://44.193.28.203:7687\"\n",
+ "user = \"neo4j\"\n",
+ "password= \"combatants-coordinates-tugs\"\n",
+ "\n",
+ "gds = GraphDataScience(host, auth=(user, password))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "FWOhP1TdYehq"
+ },
+ "source": [
+ "We have instantiated the connection to the Neo4j instance. If you are using Neo4j Enterprise, you might have multiple databases available in Neo4j. If we want to use any database other than the default one, we can select the required database using the set_database method."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "id": "lk93jlvJ-u6L"
+ },
+ "outputs": [],
+ "source": [
+ "# Optionally set different database\n",
+ "#gds.set_database(\"databaseName\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "rZbDBeZnYhEJ"
+ },
+ "source": [
+ "Lastly, we can verify that the connection is valid and the target Neo4j instance has the GDS library installed by using the `gds.version()` method."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "-Ah7nqZD6Zcd",
+ "outputId": "42ae6efd-561d-45e5-d601-27d5e562c580"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "source": [
- "# How to get started with the Neo4j Graph Data Science Python client\n",
- "## Learn the basic syntax of the newly released Python client for Neo4j Graph Data Science library\n",
- "\n",
- "Data scientists like me love Python. It features a wide variety of machine learning and data science libraries that can help you get started on a data science project in minutes. It is not uncommon to use a variety of libraries in a data science workflow. With the release of version 2 of the Neo4j Graph Data Science (GDS) library, a supporting Python client has been introduced. The Python client for the GDS library is designed to help you seamlessly integrate the Neo4j Graph Data Science library into your data science workflow. Instead of having to write Cypher statements to execute graph algorithms, the Python client provides a simple surface that allows you to project and run graph algorithms using pure Python code.\n",
- "\n",
- "Since the Python client for GDS is relatively new, there are not many examples out there yet. Therefore, I've decided to write this blog post to help you get started with the GDS Python client syntax and show some common usage patterns through a simple network analysis.\n",
- "\n",
- "The Neo4j Graph Data Science Python client can be installed using the pip package installer."
- ],
- "metadata": {
- "id": "kHob0RF8YDrx"
- }
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "2.3.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Check if connection is valid and the target database has GDS installed\n",
+ "print(gds.version())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "Ad85KnNeYlwa"
+ },
+ "source": [
+ "The version() method should return the version of the installed GDS library. If it returns anything else, make sure that you entered the correct credentials and the GDS library is installed.\n",
+ "# Executing Cypher statements\n",
+ "The Python client allows you to execute arbitrary Cypher statements using the `run_cypher` method. The method takes two parameters are input. The first and mandatory parameter is the Cypher query you want to execute. The second method parameter is optional and can be used to provide any query parameters.\n",
+ "\n",
+ "The `run_cypher` method can be used to import, transform, or fetch any data from the database. We will begin by populating the database with the [Harry Potter network](https://medium.com/neo4j/turn-a-harry-potter-book-into-a-knowledge-graph-ffc1c45afcc8) I created in one of my previous blog posts.\n",
+ "\n",
+ "The network contains characters in the first book, and their interactions, which are represented as relationships. The CSV with the relationship is available on my GitHub, so we can use the `LOAD CSV` clause to retrieve the data from GitHub and store it into Neo4j."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 49
},
+ "id": "GaXfepPu_YZk",
+ "outputId": "390e4c6d-d5b3-4191-e1ba-0437f8752363"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "Q1KlTgmR8PAL",
- "outputId": "db6489bd-cf34-4f97-8b44-77f08b3e9b73"
- },
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
- "Requirement already satisfied: graphdatascience in /usr/local/lib/python3.7/dist-packages (1.0.0)\n",
- "Requirement already satisfied: pandas<2.0,>=1.0 in /usr/local/lib/python3.7/dist-packages (from graphdatascience) (1.3.5)\n",
- "Requirement already satisfied: neo4j<5.0,>=4.4.2 in /usr/local/lib/python3.7/dist-packages (from graphdatascience) (4.4.3)\n",
- "Requirement already satisfied: pytz in /usr/local/lib/python3.7/dist-packages (from neo4j<5.0,>=4.4.2->graphdatascience) (2022.1)\n",
- "Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas<2.0,>=1.0->graphdatascience) (1.21.6)\n",
- "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas<2.0,>=1.0->graphdatascience) (2.8.2)\n",
- "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas<2.0,>=1.0->graphdatascience) (1.15.0)\n"
- ]
- }
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
],
- "source": [
- "!pip install graphdatascience"
+ "text/plain": [
+ "Empty DataFrame\n",
+ "Columns: []\n",
+ "Index: []"
]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "query = \"\"\"\n",
+ "LOAD CSV WITH HEADERS FROM $url AS row\n",
+ "MERGE (s:Character {name:row.source})\n",
+ "MERGE (t:Character {name:row.target})\n",
+ "MERGE (s)-[i:INTERACTS]->(t)\n",
+ "SET i.weight = toInteger(row.weight)\n",
+ "\"\"\"\n",
+ "params = {'url': 'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/HP/hp_1.csv'}\n",
+ "gds.run_cypher(query, params)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "egAEqSvfY6lz"
+ },
+ "source": [
+ "The import script uses the `run_cypher` method to execute the Cypher statement used to import the Harry Potter network. To demonstrate how Cypher parameters work with the `run_cypher` method, I've attached the URL of the file as a Cypher parameter. While the Cypher query is represented as a string, the Cypher parameters are defined as a dictionary.\n",
+ "If you have done any data analysis in Python, you have probably used the Pandas library in your workflow. Therefore, when fetching data from a database using the run_cyphermethod, the method conveniently returns a populated Pandas DataFrame. Having the data available as a Pandas DataFrame makes it much easier to integrate the data from Neo4j into your analytical workflow and use it in combination with other libraries.\n",
+ "\n",
+ "In this example, we will retrieve the degree (count of relationships) for each character in the network using the `run_cypher` method."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
},
+ "id": "a50_Aq0GAiHR",
+ "outputId": "fb6dabb6-edda-4ae4-d924-65618ae9c5f3"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "source": [
- "An important thing to note is that the Python client is only guaranteed to work with GDS versions 2.0 and later. Therefore, if you have a previous version, I suggest you first upgrade the GDS library to the latest version.\n",
- "# Neo4j environment setup\n",
- "If you want to follow along with the code examples, you need to set up a Neo4j database. I suggest you use a [blank project on Neo4j Sandbox](https://sandbox.neo4j.com/?usecase=blank-sandbox) for this simple demonstration, but you can also download a [Neo4j Desktop application](https://neo4j.com/download/) and set up a local database.\n",
- "\n",
- "Neo4j Sandbox has the GDS library already installed. However, if you use Neo4j Desktop, you have to install the GDS library manually.\n",
- "\n",
- "# Setting up the GDS Python client connection\n",
- "We start by defining the client connection to the Neo4j database. If you have seen any of my previous blog posts that use the official Neo4j Python driver, you can see that the syntax is almost identical."
- ],
- "metadata": {
- "id": "tv2vtJOQYLQW"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "from graphdatascience import GraphDataScience\n",
- "\n",
- "host = \"bolt://54.172.168.40:7687\"\n",
- "user = \"neo4j\"\n",
- "password= \"shares-masses-turnarounds\"\n",
- "\n",
- "gds = GraphDataScience(host, auth=(user, password))"
- ],
- "metadata": {
- "id": "GKTUobMl8S31"
- },
- "execution_count": 2,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "source": [
- "We have instantiated the connection to the Neo4j instance. If you are using Neo4j Enterprise, you might have multiple databases available in Neo4j. If we want to use any database other than the default one, we can select the required database using the set_database method."
- ],
- "metadata": {
- "id": "FWOhP1TdYehq"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "# Optionally set different database\n",
- "#gds.set_database(\"databaseName\")"
- ],
- "metadata": {
- "id": "lk93jlvJ-u6L"
- },
- "execution_count": 3,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "source": [
- "Lastly, we can verify that the connection is valid and the target Neo4j instance has the GDS library installed by using the `gds.version()` method."
- ],
- "metadata": {
- "id": "rZbDBeZnYhEJ"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "# Check if connection is valid and the target database has GDS installed\n",
- "print(gds.version())"
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
character
\n",
+ "
degree
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
Petunia Dursley
\n",
+ "
8
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
Dudley Dursley
\n",
+ "
14
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
Lily J. Potter
\n",
+ "
5
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
James Potter I
\n",
+ "
5
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
Harry Potter
\n",
+ "
83
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "-Ah7nqZD6Zcd",
- "outputId": "42ae6efd-561d-45e5-d601-27d5e562c580"
- },
- "execution_count": 4,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "2.0.1\n"
- ]
- }
+ "text/plain": [
+ " character degree\n",
+ "0 Petunia Dursley 8\n",
+ "1 Dudley Dursley 14\n",
+ "2 Lily J. Potter 5\n",
+ "3 James Potter I 5\n",
+ "4 Harry Potter 83"
]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "degree_df = gds.run_cypher(\"\"\"\n",
+ "MATCH (c:Character)\n",
+ "RETURN c.name AS character,\n",
+ " count{ (c)--() } AS degree\n",
+ "\"\"\")\n",
+ "\n",
+ "degree_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "mEsbwfP3ZGdj"
+ },
+ "source": [
+ "Since the data is available as a Pandas DataFrame, we can easily integrate it into our analytical workflow. For example, we can use the Seaborn library to visualize the node degree distribution."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 530
},
+ "id": "DhCt2ueTA4SA",
+ "outputId": "27ba275a-76c5-4a07-b798-46e0f0e261c5"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "source": [
- "The version() method should return the version of the installed GDS library. If it returns anything else, make sure that you entered the correct credentials and the GDS library is installed.\n",
- "# Executing Cypher statements\n",
- "The Python client allows you to execute arbitrary Cypher statements using the `run_cypher` method. The method takes two parameters are input. The first and mandatory parameter is the Cypher query you want to execute. The second method parameter is optional and can be used to provide any query parameters.\n",
- "\n",
- "The `run_cypher` method can be used to import, transform, or fetch any data from the database. We will begin by populating the database with the [Harry Potter network](https://medium.com/neo4j/turn-a-harry-potter-book-into-a-knowledge-graph-ffc1c45afcc8) I created in one of my previous blog posts.\n",
- "\n",
- "The network contains characters in the first book, and their interactions, which are represented as relationships. The CSV with the relationship is available on my GitHub, so we can use the `LOAD CSV` clause to retrieve the data from GitHub and store it into Neo4j."
- ],
- "metadata": {
- "id": "Ad85KnNeYlwa"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "query = \"\"\"\n",
- "LOAD CSV WITH HEADERS FROM $url AS row\n",
- "MERGE (s:Character {name:row.source})\n",
- "MERGE (t:Character {name:row.target})\n",
- "MERGE (s)-[i:INTERACTS]->(t)\n",
- "SET i.weight = toInteger(row.weight)\n",
- "\"\"\"\n",
- "params = {'url': 'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/HP/hp_1.csv'}\n",
- "gds.run_cypher(query, params)"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 49
- },
- "id": "GaXfepPu_YZk",
- "outputId": "390e4c6d-d5b3-4191-e1ba-0437f8752363"
- },
- "execution_count": 5,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "Empty DataFrame\n",
- "Columns: []\n",
- "Index: []"
- ],
- "text/html": [
- "\n",
- "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 5
- }
+ "data": {
+ "text/plain": [
+ ""
]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
},
{
- "cell_type": "markdown",
- "source": [
- "The import script uses the `run_cypher` method to execute the Cypher statement used to import the Harry Potter network. To demonstrate how Cypher parameters work with the `run_cypher` method, I've attached the URL of the file as a Cypher parameter. While the Cypher query is represented as a string, the Cypher parameters are defined as a dictionary.\n",
- "If you have done any data analysis in Python, you have probably used the Pandas library in your workflow. Therefore, when fetching data from a database using the run_cyphermethod, the method conveniently returns a populated Pandas DataFrame. Having the data available as a Pandas DataFrame makes it much easier to integrate the data from Neo4j into your analytical workflow and use it in combination with other libraries.\n",
- "\n",
- "In this example, we will retrieve the degree (count of relationships) for each character in the network using the `run_cypher` method."
- ],
- "metadata": {
- "id": "egAEqSvfY6lz"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "degree_df = gds.run_cypher(\"\"\"\n",
- "MATCH (c:Character)\n",
- "RETURN c.name AS character,\n",
- " size((c)--()) AS degree\n",
- "\"\"\")\n",
- "\n",
- "degree_df.head()"
- ],
- "metadata": {
- "id": "a50_Aq0GAiHR",
- "outputId": "fb6dabb6-edda-4ae4-d924-65618ae9c5f3",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": 6,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " character degree\n",
- "0 Petunia Dursley 8\n",
- "1 Dudley Dursley 14\n",
- "2 Lily J. Potter 5\n",
- "3 James Potter I 5\n",
- "4 Harry Potter 83"
- ],
- "text/html": [
- "\n",
- "
"
]
- },
- {
- "cell_type": "markdown",
- "source": [
- "Since the data is available as a Pandas DataFrame, we can easily integrate it into our analytical workflow. For example, we can use the Seaborn library to visualize the node degree distribution."
- ],
- "metadata": {
- "id": "mEsbwfP3ZGdj"
- }
- },
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import seaborn as sns\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "sns.displot(data=degree_df, x=\"degree\", height=7, aspect=1.5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fkER78KrZOxT"
+ },
+ "source": [
+ "We can easily observe that most nodes have less than 15 relationships. However, there is one outlier in the dataset with 83 connections, and that is, of course, Harry Potter himself.\n",
+ "# Projected graph object\n",
+ "The central concept of the GDS Python client is to allow projecting and executing graph algorithms in Neo4j with pure Python code. Furthermore, the Python client is designed to mimic the GDS Cypher procedures so that we don't have to learn a new syntax to use the Python client.\n",
+ "\n",
+ "As you might know, before we can execute any graph algorithms, we first have to project an in-memory graph. For example, let's say we want to project a simple directed network of characters and their interactions with the Python client.\n",
+ "\n",
+ "![mapping.png]()\n",
+ "\n",
+ "If you are familiar with Cypher procedures of the Graph Data Science library, you will be able to pick up the Python client syntax easily. For the most part, we remove the CALLclause before the GDS procedures, and we get the Python client syntax to project graphs or execute algorithms.\n",
+ "\n",
+ "In our case, we want to project a network of characters where the interaction relationships are treated as undirected. Therefore, we must use the extended map syntax to define undirected relationships.\n",
+ "\n",
+ "![Copy of mapping_graph.drawio (1).png]()\n",
+ "\n",
+ "When dealing with map objects, or dictionaries as they are called in Python, we have to add quotes around map keys. Otherwise, the keys would be treated as variables in Python, and you would get a NameError as the key variables are not defined. So, apart from adding quotes and removing the CALLclause, the syntax to project an in-memory graph is identical. \n",
+ "\n",
+ "When projecting a graph with the Python client, a client-side reference to the projected graph is returned. We call these references Graph objects. Along with the Graph object, the metadata from the procedure call is returned as Pandas Series.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "id": "c78q70AkB1ZQ"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "source": [
- "import seaborn as sns\n",
- "import matplotlib.pyplot as plt\n",
- "\n",
- "sns.displot(data=degree_df, x=\"degree\", height=7, aspect=1.5)"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 530
- },
- "id": "DhCt2ueTA4SA",
- "outputId": "27ba275a-76c5-4a07-b798-46e0f0e261c5"
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "36cbe152ce7d42dea0d178c4d05d76ad",
+ "version_major": 2,
+ "version_minor": 0
},
- "execution_count": 7,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "execution_count": 7
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "
"
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAuwAAAHwCAYAAAD93DqBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaI0lEQVR4nO3df7DldX3f8dcbLvgLGqTZMmTZHY1SLWMrmJUoWsdgtGiTgi0RGWuZRgu2mmpjbNT8UZ1JpsnUaJw2tWzESGaMrkEciTWoRaqxGHRB5KdW6y9AhKWKv9LRLrz7x/2id7a77N3LPfd87r2Px8yZPed7zvd835c5893nfvne76nuDgAAMKbD5j0AAABwYIIdAAAGJtgBAGBggh0AAAYm2AEAYGAL8x5gOc4444y+/PLL5z0GAADMUu1v4bo4wn733XfPewQAAJiLdRHsAACwWQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGBfhq3btqeqVnTbum37vMcHAGAdW5j3AOvBN267NedceNWK1t11wWmrPA0AAJuJI+wAADAwwQ4AAAMT7AAAMDDBDgAAAxPsAAAwMMEOAAADE+wAADAwwQ4AAAMT7AAAMDDBDgAAAxPsAAAwMMEOAAADE+wAADAwwQ4AAAMT7AAAMDDBDgAAAxPsAAAwMMEOAAADm1mwV9VDq+rTVfW5qrqpqt44LX9nVX2lqq6bbifPagYAAFjvFmb43j9Mcnp3f7+qjkjyyar6i+m513T3JTPcNgAAbAgzC/bu7iTfnx4eMd16VtsDAICNaKbnsFfV4VV1XZK7kny0u6+envqdqrq+qt5SVQ85wLrnV9Xuqtq9Z8+eWY4JAADDmmmwd/e93X1ykhOSnFpVT0jyuiSPT/LkJMcm+c0DrLuzu3d0944tW7bMckwAABjWmlwlprvvSXJlkjO6+45e9MMkf5zk1LWYAQAA1qNZXiVmS1UdM91/WJJnJ/l8VR0/LaskZyW5cVYzAADAejfLq8Qcn+Tiqjo8i/8weG93f7CqPlZVW5JUkuuSvGyGMwAAwLo2y6vEXJ/klP0sP31W2wQAgI3GN50CAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDAZhbsVfXQqvp0VX2uqm6qqjdOyx9dVVdX1ZeqaldVHTmrGQAAYL2b5RH2HyY5vbufmOTkJGdU1VOS/F6St3T3Y5N8O8lLZjgDAACsazML9l70/enhEdOtk5ye5JJp+cVJzprVDAAAsN7N9Bz2qjq8qq5LcleSjyb5X0nu6e6900tuS7L1AOueX1W7q2r3nj17ZjkmAAAMa6bB3t33dvfJSU5IcmqSxx/Cuju7e0d379iyZcvMZgQAgJGtyVViuvueJFcmeWqSY6pqYXrqhCS3r8UMAACwHs3yKjFbquqY6f7Dkjw7yS1ZDPezp5edl+QDs5oBAADWu4WDv2TFjk9ycVUdnsV/GLy3uz9YVTcneU9V/XaSzya5aIYzAADAujazYO/u65Ocsp/lX87i+ewAAMBB+KZTAAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgn7XDFlJVK75t3bZ93j8BAABztDDvATa8+/bmnAuvWvHquy44bRWHAQBgvXGEHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGAzC/aq2lZVV1bVzVV1U1W9clr+hqq6vaqum27Pm9UMAACw3i3M8L33Jnl1d19bVUcnuaaqPjo995buftMMtw0AABvCzIK9u+9Icsd0/3tVdUuSrbPaHgAAbERrcg57VT0qySlJrp4WvaKqrq+qd1TVIw+wzvlVtbuqdu/Zs2ctxgQAgOHMPNir6qgk70vyqu7+bpK3JXlMkpOzeAT+9/e3Xnfv7O4d3b1jy5Ytsx4TAACGNNNgr6ojshjr7+ruS5Oku+/s7nu7+74kf5Tk1FnOAAAA69ksrxJTSS5Kckt3v3nJ8uOXvOz5SW6c1QwAALDezfIqMU9L8uIkN1TVddOy1yc5t6pOTtJJvprkghnOAAAA69osrxLzySS1n6c+NKttAgDARuObTgEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBgywr2qnracpYBAACra7lH2P/jMpcBAACraOGBnqyqpyY5LcmWqvr1JU/9jSSHH2TdbUn+JMlxSTrJzu5+a1Udm2RXkkcl+WqSF3T3t1f6AwAAwEZ2sCPsRyY5Kothf/SS23eTnH2QdfcmeXV3n5TkKUleXlUnJXltkiu6+8QkV0yPAQCA/XjAI+zd/fEkH6+qd3b31w7ljbv7jiR3TPe/V1W3JNma5Mwkz5xednGS/57kNw9tbAAA2BweMNiXeEhV7cziaSw/Xqe7T1/OylX1qCSnJLk6yXFTzCfJN7N4ysz+1jk/yflJsn379mWOuQEdtpCqWtGqP3PCttx+69dXeSAAANbScoP9z5L8lyRvT3LvoWygqo5K8r4kr+ru7y6Nz+7uqur9rdfdO5PsTJIdO3bs9zWbwn17c86FV61o1V0XnLbKwwAAsNaWG+x7u/tth/rmVXVEFmP9Xd196bT4zqo6vrvvqKrjk9x1qO8LAACbxXIv6/jnVfWvqur4qjr2/tsDrVCLh9IvSnJLd795yVOXJTlvun9ekg8c8tQAALBJLPcI+/2B/ZolyzrJzz7AOk9L8uIkN1TVddOy1yf53STvraqXJPlakhcsf1wAANhclhXs3f3oQ33j7v5kkgP9tuSzDvX9AABgM1pWsFfVP9vf8u7+k9UdBwAAWGq5p8Q8ecn9h2bxCPm1WfwmUwAAYEaWe0rMry19XFXHJHnPTCYCAAB+bLlXidnXD5Ic8nntAADAoVnuOex/nsWrwiTJ4Un+TpL3zmooAABg0XLPYX/Tkvt7k3ytu2+bwTwAAMASyzolprs/nuTzSY5O8sgkP5rlUAAAwKJlBXtVvSDJp5P8Sha/6Ojqqjp7loMBAADLPyXmt5I8ubvvSpKq2pLkvyW5ZFaDAQAAy79KzGH3x/rkfx/CugAAwAot9wj75VX14STvnh6fk+RDsxkJAAC43wMGe1U9Nslx3f2aqvrHSZ4+PfWpJO+a9XAAALDZHewI+x8keV2SdPelSS5Nkqr6u9NzvzzT6QAAYJM72Hnox3X3DfsunJY9aiYTAQAAP3awYD/mAZ572GoOAgAA/P8OFuy7q+pf7Luwql6a5JrZjAQAANzvYOewvyrJ+6vqRflJoO9IcmSS589yMAAA4CDB3t13Jjmtqn4hyROmxf+1uz8288kAAIDlXYe9u69McuWMZwEAAPbh20oBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGNrNgr6p3VNVdVXXjkmVvqKrbq+q66fa8WW0fAAA2glkeYX9nkjP2s/wt3X3ydPvQDLcPAADr3syCvbs/keRbs3p/AADYDOZxDvsrqur66ZSZR85h+wAAsG6sdbC/Lcljkpyc5I4kv3+gF1bV+VW1u6p279mzZ63mAwCAoaxpsHf3nd19b3ffl+SPkpz6AK/d2d07unvHli1b1m5IAAAYyJoGe1Udv+Th85PceKDXAgAAycKs3riq3p3kmUl+uqpuS/Lvkjyzqk5O0km+muSCWW0fAAA2gpkFe3efu5/FF81qewAAsBH5plMAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGDfyA5bSFWt+LZ12/Z5/wQAAJvewrwHYIbu25tzLrxqxavvuuC0VRwGAICVcIQdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYDML9qp6R1XdVVU3Lll2bFV9tKq+OP35yFltHwAANoJZHmF/Z5Iz9ln22iRXdPeJSa6YHgMAAAcws2Dv7k8k+dY+i89McvF0/+IkZ81q+wAAsBGs9Tnsx3X3HdP9byY5bo23DwAA68rcfum0uztJH+j5qjq/qnZX1e49e/as4WQAADCOtQ72O6vq+CSZ/rzrQC/s7p3dvaO7d2zZsmXNBgQAgJGsdbBfluS86f55ST6wxtsHAIB1ZZaXdXx3kk8leVxV3VZVL0nyu0meXVVfTPKL02MAAOAAFmb1xt197gGeetastgkAABuNbzoFAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2DuywhVTVim5bt22f9/QAABvCwrwHYGD37c05F161olV3XXDaKg8DALA5OcIOAAADE+wAADAwwQ4AAAMT7AAAMDDBDgAAAxPsAAAwMMEOAAADm8t12Kvqq0m+l+TeJHu7e8c85gAAgNHN84uTfqG7757j9gEAYHhOiQEAgIHNK9g7yUeq6pqqOn9/L6iq86tqd1Xt3rNnzxqPBwAAY5hXsD+9u5+U5LlJXl5Vz9j3Bd29s7t3dPeOLVu2rP2EAAAwgLkEe3ffPv15V5L3Jzl1HnMAAMDo1jzYq+oRVXX0/feTPCfJjWs9BwAArAfzuErMcUneX1X3b/9Pu/vyOcwBAADDW/Ng7+4vJ3niWm8XAADWI5d1BACAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdjakrdu2p6pWdNu6bfu8xwcA+LF5XIcdZu4bt92acy68akXr7rrgtFWeBgBg5RxhBwCAgQl2AAAYmGAHAICBCXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABiYYGdIW7dtT1Wt+AYAsFEszHsA2J9v3HZrzrnwqhWvv+uC01ZxGgCA+XGEHQAABibYAQBgYIIdAAAGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYAQBgYIIdAAAGJtgBAGBggp3ZOGwhVbXiGyuzddv2Ff8337pt+7zHBwD2Y2HeA7BB3bc351x41YpX33XBaas4zObxjdtuXfF/d//NAWBMjrADAMDABDsAAAxMsAMAwMAEOwAADEywAwDAwAQ7AAAMTLADAMDABDsAAAxMsAMAwMAEOwxk67btqaoV39br7Fu3bbftOVjPswPsz4P9e3TUfdvCvAcAfuIbt92acy68asXr77rgtFWc5tA8mNkf7NybddsP1nqeHWB/1vPfow/EEXYAABiYYAcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICBCXYAABjYXIK9qs6oqi9U1Zeq6rXzmAEAANaDNQ/2qjo8yR8meW6Sk5KcW1UnrfUcAACwHszjCPupSb7U3V/u7h8leU+SM+cwBwAADK+6e203WHV2kjO6+6XT4xcn+fnufsU+rzs/yfnTw8cl+cIMx/rpJHfP8P3hfj5rrCWfN9aKzxprZaN/1u7u7jP2Xbgwj0mWo7t3Jtm5Ftuqqt3dvWMttsXm5rPGWvJ5Y634rLFWNutnbR6nxNyeZNuSxydMywAAgH3MI9g/k+TEqnp0VR2Z5IVJLpvDHAAAMLw1PyWmu/dW1SuSfDjJ4Une0d03rfUc+1iTU28gPmusLZ831orPGmtlU37W1vyXTgEAgOXzTacAADAwwQ4AAAPb9MFeVWdU1Req6ktV9dp5z8PGUVXbqurKqrq5qm6qqldOy4+tqo9W1RenPx8571nZGKrq8Kr6bFV9cHr86Kq6etq/7Zp+0R8etKo6pqouqarPV9UtVfVU+zZmoar+zfR36I1V9e6qeuhm3Ldt6mCvqsOT/GGS5yY5Kcm5VXXSfKdiA9mb5NXdfVKSpyR5+fT5em2SK7r7xCRXTI9hNbwyyS1LHv9ekrd092OTfDvJS+YyFRvRW5Nc3t2PT/LELH7u7NtYVVW1Ncm/TrKju5+QxYuVvDCbcN+2qYM9yalJvtTdX+7uHyV5T5Iz5zwTG0R339Hd1073v5fFv9C2ZvEzdvH0souTnDWfCdlIquqEJP8wydunx5Xk9CSXTC/xWWNVVNVPJXlGkouSpLt/1N33xL6N2VhI8rCqWkjy8CR3ZBPu2zZ7sG9NcuuSx7dNy2BVVdWjkpyS5Ookx3X3HdNT30xy3JzGYmP5gyT/Nsl90+O/meSe7t47PbZ/Y7U8OsmeJH88nYL19qp6ROzbWGXdfXuSNyX5ehZD/TtJrskm3Ldt9mCHmauqo5K8L8mruvu7S5/rxeuqurYqD0pV/VKSu7r7mnnPwqawkORJSd7W3ack+UH2Of3Fvo3VMP0exJlZ/EfizyR5RJIz5jrUnGz2YL89ybYlj0+YlsGqqKojshjr7+ruS6fFd1bV8dPzxye5a17zsWE8Lck/qqqvZvHUvtOzeI7xMdP/Rk7s31g9tyW5rbuvnh5fksWAt29jtf1ikq90957u/r9JLs3i/m7T7ds2e7B/JsmJ028bH5nFX2S4bM4zsUFM5xBflOSW7n7zkqcuS3LedP+8JB9Y69nYWLr7dd19Qnc/Kov7sY9194uSXJnk7OllPmusiu7+ZpJbq+px06JnJbk59m2svq8neUpVPXz6O/X+z9qm27dt+m86rarnZfHcz8OTvKO7f2fOI7FBVNXTk/xlkhvyk/OKX5/F89jfm2R7kq8leUF3f2suQ7LhVNUzk/xGd/9SVf1sFo+4H5vks0n+aXf/cJ7zsTFU1clZ/AXnI5N8Ock/z+JBQPs2VlVVvTHJOVm88tpnk7w0i+esb6p926YPdgAAGNlmPyUGAACGJtgBAGBggh0AAAYm2AEAYGCCHQAABibYATa4qnpDVf3GvOcAYGUEOwAHteRbBQFYY4IdYAOqqt+qqv9ZVZ9M8rhp2WOq6vKquqaq/rKqHr9k+V9V1Q1V9dtV9f1p+TOn112W5OaqOryq/kNVfaaqrq+qC5Zs7zVLlr9xHj8zwEbliAnABlNVP5fkhUlOzuJ+/tok1yTZmeRl3f3Fqvr5JP85yelJ3prkrd397qp62T5v96QkT+jur1TV+Um+091PrqqHJPkfVfWRJCdOt1OTVJLLquoZ3f2J2f+0ABufYAfYeP5+kvd3918nyXSE/KFJTkvyZ1V1/+seMv351CRnTff/NMmblrzXp7v7K9P95yT5e1V19vT4p7IY6s+Zbp+dlh81LRfsAKtAsANsDocluae7Tz7E9X6w5H4l+bXu/vDSF1TVP0jy77v7wgc5IwD74Rx2gI3nE0nOqqqHVdXRSX45yV8n+UpV/UqS1KInTq//qyT/ZLr/wgd43w8n+ZdVdcT0Hn+7qh4xLf/VqjpqWr61qv7Wqv9UAJuUYAfYYLr72iS7knwuyV8k+cz01IuSvKSqPpfkpiRnTstfleTXq+r6JI9N8p0DvPXbk9yc5NqqujHJhUkWuvsjWTyV5lNVdUOSS5Icveo/GMAmVd097xkAmKOqeniS/9PdXVUvTHJud595sPUAWBvOYQfg55L8p1r8bdR7kvzqnOcBYAlH2AEAYGDOYQcAgIEJdgAAGJhgBwCAgQl2AAAYmGAHAICB/T96yM/AU2EhbwAAAABJRU5ErkJggg==\n"
- },
- "metadata": {
- "needs_background": "light"
- }
- }
+ "text/plain": [
+ "Loading: 0%| | 0/100 [00:00, ?%/s]"
]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "G, metadata = gds.graph.project(\n",
+ " \"hp-graph\", \n",
+ " \"Character\",\n",
+ " {\"INTERACTS\": {\"orientation\": \"UNDIRECTED\", \"properties\": [\"weight\"]}}\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "t0M0fvVZZ3KO"
+ },
+ "source": [
+ "We have passed the projected graph reference to the `G` variable and stored the metadata information as the `metadata` variable. The metadata variable contains information that you normally get as the output of the procedure."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "vIfLiaKYDm6J",
+ "outputId": "70824dd4-0281-40d4-ae20-e46cbb1f8947"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "source": [
- "We can easily observe that most nodes have less than 15 relationships. However, there is one outlier in the dataset with 83 connections, and that is, of course, Harry Potter himself.\n",
- "# Projected graph object\n",
- "The central concept of the GDS Python client is to allow projecting and executing graph algorithms in Neo4j with pure Python code. Furthermore, the Python client is designed to mimic the GDS Cypher procedures so that we don't have to learn a new syntax to use the Python client.\n",
- "\n",
- "As you might know, before we can execute any graph algorithms, we first have to project an in-memory graph. For example, let's say we want to project a simple directed network of characters and their interactions with the Python client.\n",
- "\n",
- "![mapping.png]()\n",
- "\n",
- "If you are familiar with Cypher procedures of the Graph Data Science library, you will be able to pick up the Python client syntax easily. For the most part, we remove the CALLclause before the GDS procedures, and we get the Python client syntax to project graphs or execute algorithms.\n",
- "\n",
- "In our case, we want to project a network of characters where the interaction relationships are treated as undirected. Therefore, we must use the extended map syntax to define undirected relationships.\n",
- "\n",
- "![Copy of mapping_graph.drawio (1).png]()\n",
- "\n",
- "When dealing with map objects, or dictionaries as they are called in Python, we have to add quotes around map keys. Otherwise, the keys would be treated as variables in Python, and you would get a NameError as the key variables are not defined. So, apart from adding quotes and removing the CALLclause, the syntax to project an in-memory graph is identical. \n",
- "\n",
- "When projecting a graph with the Python client, a client-side reference to the projected graph is returned. We call these references Graph objects. Along with the Graph object, the metadata from the procedure call is returned as Pandas Series.\n"
- ],
- "metadata": {
- "id": "fkER78KrZOxT"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "G, metadata = gds.graph.project(\n",
- " \"hp-graph\", \n",
- " \"Character\",\n",
- " {\"INTERACTS\": {\"orientation\": \"UNDIRECTED\", \"properties\": [\"weight\"]}}\n",
- ")"
- ],
- "metadata": {
- "id": "c78q70AkB1ZQ"
- },
- "execution_count": 8,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "source": [
- "We have passed the projected graph reference to the `G` variable and stored the metadata information as the `metadata` variable. The metadata variable contains information that you normally get as the output of the procedure."
- ],
- "metadata": {
- "id": "t0M0fvVZZ3KO"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "metadata"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "vIfLiaKYDm6J",
- "outputId": "70824dd4-0281-40d4-ae20-e46cbb1f8947"
- },
- "execution_count": 9,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "nodeProjection {'Character': {'label': 'Character', 'properti...\n",
- "relationshipProjection {'INTERACTS': {'orientation': 'UNDIRECTED', 'a...\n",
- "graphName hp-graph\n",
- "nodeCount 119\n",
- "relationshipCount 812\n",
- "projectMillis 31\n",
- "Name: 0, dtype: object"
- ]
- },
- "metadata": {},
- "execution_count": 9
- }
+ "data": {
+ "text/plain": [
+ "nodeProjection {'Character': {'label': 'Character', 'properti...\n",
+ "relationshipProjection {'INTERACTS': {'orientation': 'UNDIRECTED', 'i...\n",
+ "graphName hp-graph\n",
+ "nodeCount 119\n",
+ "relationshipCount 812\n",
+ "projectMillis 1628\n",
+ "Name: 0, dtype: object"
]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "metadata"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "VbJEhSOXZ9ze"
+ },
+ "source": [
+ "There are 119 nodes and 812 relationships in our projected graph.\n",
+ "The Graph object, available as the variable G , has multiple method that can be used to inspect more information about the projected graph. For a complete list of the methods consult with the [official documentation](https://neo4j.com/docs/graph-data-science/current/python-client/graph-object/#_inspecting_a_graph_object).\n",
+ "\n",
+ "For example, we can return the projected graph name using the `name()` method, inspect the memory usage using the `memory_usage()` method, or even calculate the density of the graph using the `density()` method."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
},
+ "id": "xll1y1m9DsH5",
+ "outputId": "1351780f-5673-4195-f10c-fd79a2b5338e"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "source": [
- "There are 119 nodes and 812 relationships in our projected graph.\n",
- "The Graph object, available as the variable G , has multiple method that can be used to inspect more information about the projected graph. For a complete list of the methods consult with the [official documentation](https://neo4j.com/docs/graph-data-science/current/python-client/graph-object/#_inspecting_a_graph_object).\n",
- "\n",
- "For example, we can return the projected graph name using the `name()` method, inspect the memory usage using the `memory_usage()` method, or even calculate the density of the graph using the `density()` method."
- ],
- "metadata": {
- "id": "VbJEhSOXZ9ze"
- }
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hp-graph\n",
+ "2342 KiB\n",
+ "0.05782652043868395\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(G.name())\n",
+ "print(G.memory_usage())\n",
+ "print(G.density())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "so0n--2RaJzn"
+ },
+ "source": [
+ "# Running graph algorithms\n",
+ "Now that we have the projected graph ready and available as the reference variable `G` , we can go ahead and execute a couple of graph algorithms using the Python client.\n",
+ "\n",
+ "We will begin by executing the weighted variant of the PageRank algorithm. The `stream` mode of the algorithm returns the result of the algorithm as a stream of records.\n",
+ "\n",
+ "![gds_pagerank.drawio (1).png]()\n",
+ "\n",
+ "Similar to before, when we were projecting an in-memory graph, we need to remove the `CALL` clause in the Python client for all algorithm executions. We reference the projected graph by its name with the Cypher procedure statement. However, using the Python client, we pass the Graph object as the reference to the projected in-memory graph instead of its name. Lastly, any algorithm configuration parameters can be specified as keyword arguments in the Python client.\n",
+ "We can use the following Python script to execute the `stream` mode of the weighted PageRank algorithm."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 206
},
+ "id": "a0pLRI1XV5gi",
+ "outputId": "942c4d98-a44a-4875-f488-04877744d15a"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "source": [
- "print(G.name())\n",
- "print(G.memory_usage())\n",
- "print(G.density())"
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
nodeId
\n",
+ "
score
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
0
\n",
+ "
1.851142
\n",
+ "
\n",
+ "
\n",
+ "
1
\n",
+ "
1
\n",
+ "
3.241780
\n",
+ "
\n",
+ "
\n",
+ "
2
\n",
+ "
2
\n",
+ "
0.375610
\n",
+ "
\n",
+ "
\n",
+ "
3
\n",
+ "
3
\n",
+ "
0.375610
\n",
+ "
\n",
+ "
\n",
+ "
4
\n",
+ "
4
\n",
+ "
24.197442
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/"
- },
- "id": "xll1y1m9DsH5",
- "outputId": "1351780f-5673-4195-f10c-fd79a2b5338e"
- },
- "execution_count": 10,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stdout",
- "text": [
- "hp-graph\n",
- "2341 KiB\n",
- "0.05782652043868395\n"
- ]
- }
+ "text/plain": [
+ " nodeId score\n",
+ "0 0 1.851142\n",
+ "1 1 3.241780\n",
+ "2 2 0.375610\n",
+ "3 3 0.375610\n",
+ "4 4 24.197442"
]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# PageRank stream\n",
+ "pagerank_df = gds.pageRank.stream(G, relationshipWeightProperty=\"weight\")\n",
+ "pagerank_df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "EuKnJ7Yzacb-"
+ },
+ "source": [
+ "The `stream` mode of any algorithm in the GDS library returns a stream of records. Python client then automatically converts the output into a Pandas DataFrame.\n",
+ "\n",
+ "If you have ever executed the `stream` mode of the graph algorithms in Neo4j GDS library, you might be aware that the result contains internal node ids as a reference to nodes instead of actual node objects. The `pagerank_df` DataFrame contains two columns:\n",
+ "* nodeId: Internal node ids used to reference nodes\n",
+ "* score: PageRank score\n",
+ "\n",
+ "We can retrieve the referenced node objects using the `nodeId` column without constructing a Cypher statement by using the `gds.util.asNodes()` method. The `gds.util.asNodes()` method takes a list of internal node ids as input and outputs a list of node objects."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "id": "xTl4i5cPWbrh"
+ },
+ "outputs": [],
+ "source": [
+ "# If you need to fetch information about node objects based on their internal node ids, you can use gds.util.asNodes\n",
+ "pagerank_df['node_object'] = gds.util.asNodes(pagerank_df['nodeId'].to_list())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "fa-iw0etaubY"
+ },
+ "source": [
+ "The `node_object` column now contains the referenced node objects. Node objects are defined in the underlying Neo4j Python driver. You can reference the [official documentation if you want to examine all the possible methods of the node object](https://neo4j.com/docs/api/python-driver/current/api.html#node).\n",
+ "\n",
+ "In this example, we will extract the `name` property from node objects and then visualize a bar chart of the top ten characters with the highest PageRank score."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 652
},
+ "id": "6drUBiMBWqpJ",
+ "outputId": "9e3c906f-7d87-4404-d231-36f6fc0639cf"
+ },
+ "outputs": [
{
- "cell_type": "markdown",
- "source": [
- "# Running graph algorithms\n",
- "Now that we have the projected graph ready and available as the reference variable `G` , we can go ahead and execute a couple of graph algorithms using the Python client.\n",
- "\n",
- "We will begin by executing the weighted variant of the PageRank algorithm. The `stream` mode of the algorithm returns the result of the algorithm as a stream of records.\n",
- "\n",
- "![gds_pagerank.drawio (1).png]()\n",
- "\n",
- "Similar to before, when we were projecting an in-memory graph, we need to remove the `CALL` clause in the Python client for all algorithm executions. We reference the projected graph by its name with the Cypher procedure statement. However, using the Python client, we pass the Graph object as the reference to the projected in-memory graph instead of its name. Lastly, any algorithm configuration parameters can be specified as keyword arguments in the Python client.\n",
- "We can use the following Python script to execute the `stream` mode of the weighted PageRank algorithm."
- ],
- "metadata": {
- "id": "so0n--2RaJzn"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "# PageRank stream\n",
- "pagerank_df = gds.pageRank.stream(G, relationshipWeightProperty=\"weight\")\n",
- "pagerank_df.head()"
- ],
- "metadata": {
- "id": "a0pLRI1XV5gi",
- "outputId": "942c4d98-a44a-4875-f488-04877744d15a",
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 206
- }
- },
- "execution_count": 11,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- " nodeId score\n",
- "0 0 1.851142\n",
- "1 1 3.241780\n",
- "2 2 0.375610\n",
- "3 3 0.375610\n",
- "4 4 24.197442"
- ],
- "text/html": [
- "\n",
- "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 11
- }
+ "data": {
+ "text/plain": [
+ "(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\n",
+ " [Text(0, 0, 'Harry Potter'),\n",
+ " Text(1, 0, 'Ronald Weasley'),\n",
+ " Text(2, 0, 'Hermione Granger'),\n",
+ " Text(3, 0, 'Rubeus Hagrid'),\n",
+ " Text(4, 0, 'Severus Snape'),\n",
+ " Text(5, 0, 'Dudley Dursley'),\n",
+ " Text(6, 0, 'Draco Malfoy'),\n",
+ " Text(7, 0, 'Vernon Dursley'),\n",
+ " Text(8, 0, 'Albus Dumbledore'),\n",
+ " Text(9, 0, 'Neville Longbottom')])"
]
+ },
+ "execution_count": 12,
+ "metadata": {},
+ "output_type": "execute_result"
},
{
- "cell_type": "markdown",
- "source": [
- "The `stream` mode of any algorithm in the GDS library returns a stream of records. Python client then automatically converts the output into a Pandas DataFrame.\n",
- "\n",
- "If you have ever executed the `stream` mode of the graph algorithms in Neo4j GDS library, you might be aware that the result contains internal node ids as a reference to nodes instead of actual node objects. The `pagerank_df` DataFrame contains two columns:\n",
- "* nodeId: Internal node ids used to reference nodes\n",
- "* score: PageRank score\n",
- "\n",
- "We can retrieve the referenced node objects using the `nodeId` column without constructing a Cypher statement by using the `gds.util.asNodes()` method. The `gds.util.asNodes()` method takes a list of internal node ids as input and outputs a list of node objects."
- ],
- "metadata": {
- "id": "EuKnJ7Yzacb-"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "# If you need to fetch information about node objects based on their internal node ids, you can use gds.util.asNodes\n",
- "pagerank_df['node_object'] = gds.util.asNodes(pagerank_df['nodeId'].to_list())"
- ],
- "metadata": {
- "id": "xTl4i5cPWbrh"
- },
- "execution_count": 12,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "source": [
- "The `node_object` column now contains the referenced node objects. Node objects are defined in the underlying Neo4j Python driver. You can reference the [official documentation if you want to examine all the possible methods of the node object](https://neo4j.com/docs/api/python-driver/current/api.html#node).\n",
- "\n",
- "In this example, we will extract the `name` property from node objects and then visualize a bar chart of the top ten characters with the highest PageRank score."
- ],
- "metadata": {
- "id": "fa-iw0etaubY"
- }
- },
- {
- "cell_type": "code",
- "source": [
- "# Extract name properties from the node object\n",
- "pagerank_df['name'] = [n['name'] for n in pagerank_df['node_object']]\n",
- "# Draw a bar chart\n",
- "plt.figure(figsize=(16,9))\n",
- "sns.barplot(x='name', y='score', data=pagerank_df.sort_values(by='score', ascending=False).head(10))\n",
- "plt.xticks(rotation=45)\n"
- ],
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 652
- },
- "id": "6drUBiMBWqpJ",
- "outputId": "9e3c906f-7d87-4404-d231-36f6fc0639cf"
- },
- "execution_count": 13,
- "outputs": [
- {
- "output_type": "execute_result",
- "data": {
- "text/plain": [
- "(array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),\n",
- " )"
- ]
- },
- "metadata": {},
- "execution_count": 13
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 4
- }
- ]
- },
- {
- "cell_type": "markdown",
- "source": [
- "Then you can execute any algorithm on the projected graph"
- ],
- "metadata": {
- "id": "Cp6fcVZRu8rY"
- }
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "id": "pD8HtmZxidNG"
+ },
+ "outputs": [],
+ "source": [
+ "import networkx as nx\n",
+ "import pandas as pd\n",
+ "from neo4j import GraphDatabase\n",
+ "# Change the host and user/password combination to your neo4j\n",
+ "host = 'bolt://3.231.25.240:7687'\n",
+ "user = 'neo4j'\n",
+ "password = 'hatchets-visitor-axes'\n",
+ "driver = GraphDatabase.driver(host,auth=(user, password))\n",
+ "\n",
+ "def read_query(query, params=None):\n",
+ " with driver.session() as session:\n",
+ " result = session.run(query, params)\n",
+ " return pd.DataFrame([r.values() for r in result], columns=result.keys())"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "KZr8Abs_b1hl"
+ },
+ "source": [
+ "Lately, I have been on a quest to learn as much as possible about node embedding techniques. The goal of node embedding is to encode nodes so that the similarity in the embedding space approximates similarity in the original network. In layman’s terms, we encode each node to a fixed size vector that preserves the similarity of the original network.\n",
+ "\n",
+ "I have come across the [Karate Club](https://github.com/benedekrozemberczki/karateclub) package in my search for the implementation of various node embedding models. I will let the author Benedek Rozemberczki explain what its purpose is:\n",
+ ">Karate Club consists of state-of-the-art methods to do unsupervised learning on graph structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science (NetSci, Complenet), data mining (ICDM, CIKM, KDD), artificial intelligence (AAAI, IJCAI) and machine learning (NeurIPS, ICML, ICLR) conferences, workshops, and pieces from prominent journals.\n",
+ "\n",
+ "The Karate Club project features:\n",
+ "10+ community detection models\n",
+ "25+ node embedding models\n",
+ "10+ graph embedding models\n",
+ "As you might know, I like to store my network information in Neo4j. In this blog post, I will demonstrate how to extract network information from Neo4j and use it as an input to the Karate Club API. It is a straightforward transformation. We have to transform a Neo4j graph to a NetworkX graph model, as Karate Club uses NetworkX structure, and we are good to go. \n",
+ "\n",
+ "#Data model\n",
+ "We will use a simple toy graph of the Harry Potter universe that I have created in my previous blog post. I have prepared a CSV file with the network structure, so you don’t have to complete the NLP process yourself.\n",
+ "\n",
+ "The network is based on the Harry Potter and the Sorcerer’s Stone book. Nodes represent the character in the book, and the INTERACTS relationships represent co-occurrences in the text between characters. To import this network, execute the following Cypher query:\n",
+ "P.s. If you are following along with the Colab notebook, I suggest you open a blank [Neo4j Sandbox project](https://neo4j.com/sandbox/)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "EDYtEnBPikiu",
+ "outputId": "7d658614-b8ed-42a7-a709-585a497461d0"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 142
- },
- "id": "BWPibvfActjL",
- "outputId": "a3b165b1-6b2f-49ec-8f84-f88c251dd378"
- },
- "source": [
- "\n",
- "\n",
- "read_query(\"\"\"\n",
- "CALL gds.louvain.write('got',{\n",
- " writeProperty:'louvain'\n",
- "})\n",
- "\"\"\")"
+ "data": {
+ "text/html": [
+ "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 5
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "i0iCbJxSdC3I"
- },
- "source": [
- "A critical detail of the network analysis is that the interaction network between the characters is undirected. I won’t go into the algorithms’ theory or their pros and cons. The goal of this blog post is purely to help you get started with integrating Karate Club and Neo4j. The ideas and differentiation of the algorithms may come in another blog post. Now let’s run some algorithms in KC. KC only works when nodes in the graph have consecutive ids. I don’t know the reason behind this choice; that’s just how it is. We can easily create a mapping to consecutive ids and store it in Neo4j."
+ "text/plain": [
+ " result\n",
+ "0 import successful"
]
+ },
+ "execution_count": 2,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# import data\n",
+ "read_query(\"\"\"\n",
+ "LOAD CSV WITH HEADERS FROM \"https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/HP/hp_1.csv\" as row\n",
+ "MERGE (s:Character{name:row.source})\n",
+ "MERGE (t:Character{name:row.target})\n",
+ "MERGE (s)-[r:INTERACTS]-(t)\n",
+ "SET r.weight = row.weight\n",
+ "RETURN distinct 'import successful' as result\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "t71ygjxRcuOK"
+ },
+ "source": [
+ "Now that we have our network imported, we can examine the community structure and calculate the node embedding with the help of the Karate Club package.\n",
+ "# Community detection\n",
+ "For those of you that are completely new to Neo4j, I must let you know that Neo4j Graph Data Science plugin provides a couple of community detection algorithms out of the box. I will quickly demonstrate how to use the Louvain algorithm in the GDS library. First you have to project an in-memory graph"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "mex15wrau6zV",
+ "outputId": "22175cae-6ff5-4c5a-8a77-eac28ff2d838"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- },
- "id": "N4mijxU8i7zw",
- "outputId": "f7621460-00a1-48ff-ed1c-96db8c64a6da"
- },
- "source": [
- "# KarateClub only works on nodes with consecutive ids\n",
- "read_query(\"\"\"\n",
- "MATCH (c:Character)\n",
- "WITH count(*) as number, collect(c) as nodes\n",
- "UNWIND range(0, number - 1) as index\n",
- "WITH nodes[index] as node, index\n",
- "SET node.index = index\n",
- "RETURN distinct 'done' as result\n",
- "\"\"\")"
+ "data": {
+ "text/html": [
+ "
"
],
- "execution_count": 7,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "RExm6VXYdOa9"
- },
- "source": [
- "Now, we must export the relevant network data and construct a NetworkX graph model out of it. NetworkX graph can be constructed by only providing the edge list. The syntax of the edge list is:\n",
- "```\n",
- "[\"1 2 {'weight': 3}\", \"2 3 {'weight': 27}\", \"3 4 {'weight': 3.0}\"]\n",
- "```\n",
- "Now, we can go ahead and construct a NetworkX graph model of the Harry Potter universe."
+ "text/plain": [
+ " writeMillis nodePropertiesWritten modularity \\\n",
+ "0 31 119 0.348028 \n",
+ "\n",
+ " modularities ranLevels communityCount \\\n",
+ "0 [0.28802264068528716, 0.3480277366594676] 2 7 \n",
+ "\n",
+ " communityDistribution postProcessingMillis \\\n",
+ "0 {'p99': 29, 'min': 8, 'max': 29, 'mean': 17.0,... 3 \n",
+ "\n",
+ " preProcessingMillis computeMillis \\\n",
+ "0 0 3485 \n",
+ "\n",
+ " configuration \n",
+ "0 {'maxIterations': 10, 'writeConcurrency': 4, '... "
]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "read_query(\"\"\"\n",
+ "CALL gds.louvain.write('got',{\n",
+ " writeProperty:'louvain'\n",
+ "})\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "i0iCbJxSdC3I"
+ },
+ "source": [
+ "A critical detail of the network analysis is that the interaction network between the characters is undirected. I won’t go into the algorithms’ theory or their pros and cons. The goal of this blog post is purely to help you get started with integrating Karate Club and Neo4j. The ideas and differentiation of the algorithms may come in another blog post. Now let’s run some algorithms in KC. KC only works when nodes in the graph have consecutive ids. I don’t know the reason behind this choice; that’s just how it is. We can easily create a mapping to consecutive ids and store it in Neo4j."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "N4mijxU8i7zw",
+ "outputId": "f7621460-00a1-48ff-ed1c-96db8c64a6da"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 319
- },
- "id": "kDXnmI6cjNrh",
- "outputId": "6fd9e026-50ca-414b-b3d4-311c64df4484"
- },
- "source": [
- "# Construct a networkX graph\n",
- "edge_list = read_query(\"\"\"\n",
- "MATCH (s:Character)-[r:INTERACTS]->(t:Character)\n",
- "WITH toString(s.index) + \" \" + toString(t.index) + \" {'weight':\" + toString(r.weight) + \"}\" as edge\n",
- "WITH collect(edge) as result\n",
- "RETURN result\n",
- "\"\"\")\n",
- "\n",
- "edge_list = edge_list['result'].to_list()[0]\n",
- "G = nx.parse_edgelist(edge_list, create_using=nx.Graph(), nodetype=int)\n",
- "nx.draw(G)"
+ "data": {
+ "text/html": [
+ "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 11
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "MfyRm-_3dyCi"
- },
- "source": [
- "The embeddingDimension parameter is mandatory and defines the size of the embedding vector for each node. Other than that, we have again defined the interaction network to be treated as undirected.\n",
- "\n",
- "Now let’s try out some of the node embedding algorithms in the KC package. First, we will define a function that will draw a t-SNE scatter plot of embedding results."
+ "text/plain": [
+ " result\n",
+ "0 done"
]
+ },
+ "execution_count": 9,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "data = [{'index': int(el), 'value': int(results[el])} for el in results]\n",
+ "read_query(\"\"\"\n",
+ "UNWIND $data as row\n",
+ "MATCH (c:Character{index:row.index})\n",
+ "SET c.bigClam = row.value\n",
+ "RETURN distinct 'done' as result\n",
+ "\"\"\", {'data':data})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "2OyJcLrydoer"
+ },
+ "source": [
+ "KC API is very simple to use. You just define the desired graph algorithm and input the NetworkX graph model in the fit method and that’s it. Couldn’t be simpler than that.\n",
+ "\n",
+ "# Node embeddings\n",
+ "Again, the Neo4j GDS library provides node embedding algorithms like FastRP, node2vec, and GraphSAGE. I will show the syntax for FastRP algorithm, but again, won’t delve much into hyper-parameter optimization."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "G6WJX3-kduSv",
+ "outputId": "08e9873f-5d07-467e-e96d-3973d779c745"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "id": "mw9VEBndmVE8"
- },
- "source": [
- "from sklearn.manifold import TSNE\n",
- "from matplotlib import pyplot as plt\n",
- "import seaborn as sns\n",
- "\n",
- "\n",
- "def tsne(embeddings, hue=None):\n",
- " tsne = TSNE(n_components=2, n_iter=300)\n",
- " tsne_results = tsne.fit_transform(embeddings['embedding'].to_list())\n",
- "\n",
- " embeddings['tsne_x'] = [x[0] for x in list(tsne_results)]\n",
- " embeddings['tsne_y'] = [x[1] for x in list(tsne_results)]\n",
- "\n",
- " plt.figure(figsize=(18,10))\n",
- " sns.scatterplot(\n",
- " x=\"tsne_x\", y=\"tsne_y\",\n",
- " hue=hue,\n",
- " palette=sns.color_palette(\"hls\", 10),\n",
- " data=embeddings,\n",
- " legend=\"full\",\n",
- " alpha=0.9\n",
- " )\n",
- " \n",
- " for i in range(df.shape[0]):\n",
- " plt.text(x=df['tsne_x'][i]+0.3,y=df['tsne_y'][i]+0.3,s=df.character[i], \n",
- " fontdict=dict(color='black',size=10),)"
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
\n",
+ "
nodeCount
\n",
+ "
nodePropertiesWritten
\n",
+ "
preProcessingMillis
\n",
+ "
computeMillis
\n",
+ "
writeMillis
\n",
+ "
configuration
\n",
+ "
\n",
+ " \n",
+ " \n",
+ "
\n",
+ "
0
\n",
+ "
119
\n",
+ "
119
\n",
+ "
0
\n",
+ "
100
\n",
+ "
106
\n",
+ "
{'writeConcurrency': 4, 'nodeSelfInfluence': 0...
\n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
],
- "execution_count": 12,
- "outputs": []
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "CVj3tIdwd4cd"
- },
- "source": [
- "We will begin with the NetMF algorithm. NetMF algorithm fall into the community-based node embedding category. If you want to learn more about the technical details, read the original paper or examine the code."
+ "text/plain": [
+ " nodeCount nodePropertiesWritten preProcessingMillis computeMillis \\\n",
+ "0 119 119 0 100 \n",
+ "\n",
+ " writeMillis configuration \n",
+ "0 106 {'writeConcurrency': 4, 'nodeSelfInfluence': 0... "
]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "read_query(\"\"\"\n",
+ "CALL gds.fastRP.write('got',{\n",
+ " embeddingDimension: 64,\n",
+ " writeProperty: 'fastrp'})\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "MfyRm-_3dyCi"
+ },
+ "source": [
+ "The embeddingDimension parameter is mandatory and defines the size of the embedding vector for each node. Other than that, we have again defined the interaction network to be treated as undirected.\n",
+ "\n",
+ "Now let’s try out some of the node embedding algorithms in the KC package. First, we will define a function that will draw a t-SNE scatter plot of embedding results."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "id": "mw9VEBndmVE8"
+ },
+ "outputs": [],
+ "source": [
+ "from sklearn.manifold import TSNE\n",
+ "from matplotlib import pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "\n",
+ "def tsne(embeddings, hue=None):\n",
+ " tsne = TSNE(n_components=2, n_iter=300)\n",
+ " tsne_results = tsne.fit_transform(embeddings['embedding'].to_list())\n",
+ "\n",
+ " embeddings['tsne_x'] = [x[0] for x in list(tsne_results)]\n",
+ " embeddings['tsne_y'] = [x[1] for x in list(tsne_results)]\n",
+ "\n",
+ " plt.figure(figsize=(18,10))\n",
+ " sns.scatterplot(\n",
+ " x=\"tsne_x\", y=\"tsne_y\",\n",
+ " hue=hue,\n",
+ " palette=sns.color_palette(\"hls\", 10),\n",
+ " data=embeddings,\n",
+ " legend=\"full\",\n",
+ " alpha=0.9\n",
+ " )\n",
+ " \n",
+ " for i in range(df.shape[0]):\n",
+ " plt.text(x=df['tsne_x'][i]+0.3,y=df['tsne_y'][i]+0.3,s=df.character[i], \n",
+ " fontdict=dict(color='black',size=10),)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "CVj3tIdwd4cd"
+ },
+ "source": [
+ "We will begin with the NetMF algorithm. NetMF algorithm fall into the community-based node embedding category. If you want to learn more about the technical details, read the original paper or examine the code."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 675
},
+ "id": "-igmAtnql7OZ",
+ "outputId": "30c30679-c69a-4a25-bfd6-882aa9de1afa"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 675
- },
- "id": "-igmAtnql7OZ",
- "outputId": "30c30679-c69a-4a25-bfd6-882aa9de1afa"
- },
- "source": [
- "from karateclub.node_embedding.neighbourhood import NetMF\n",
- "\n",
- "\"\"\"\n",
- "dimensions (int): Number of embedding dimension. Default is 32.\n",
- "iteration (int): Number of SVD iterations. Default is 10.\n",
- "order (int): Number of PMI matrix powers. Default is 2.\n",
- "negative_samples (in): Number of negative samples. Default is 1.\n",
- "seed (int): SVD random seed. Default is 42.\n",
- "\"\"\"\n",
- "\n",
- "model = NetMF(dimensions=64)\n",
- "model.fit(G)\n",
- "embedding = model.get_embedding()\n",
- "\n",
- "results = []\n",
- "for name,embedding in zip(character_mapping['character'].to_list(), embedding):\n",
- " results.append({'character': name, 'embedding': embedding}) \n",
- "df = pd.DataFrame.from_dict(results)\n",
- "tsne(df)"
- ],
- "execution_count": 13,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.7/dist-packages/sklearn/manifold/_t_sne.py:783: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.\n",
- " FutureWarning,\n",
- "/usr/local/lib/python3.7/dist-packages/sklearn/manifold/_t_sne.py:793: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.\n",
- " FutureWarning,\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "
"
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABEQAAAJNCAYAAAA4WqDRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXxN19rA8d8+iaaRxDyWthEXmU7OySCiJIIaqpoaX1MRSqmpVy+3aK+pvS29bqmhlJprKi7VUlwlxFSSSJBIDXHUNYUYmoGQnPX+kWZXZDCFBM/388nnzd57rbXXPvHe0/OcZz1LU0ohhBBCCCGEEEII8SwxFPUEhBBCCCGEEEIIIR43CYgIIYQQQgghhBDimSMBESGEEEIIIYQQQjxzJCAihBBCCCGEEEKIZ44ERIQQQgghhBBCCPHMkYCIEEIIIYQQQgghnjm2RT2BwlKhQgXl7Oxc1NMQQgghhBBCCCHEbSIjIy8ppSoW9Tzu9NQERJydnYmIiCjqaQghhBBCCCGEEOI2mqadKuo55EWWzAghhBBCCCGEEOKZIwERIYQQQgghhBBCPHMkICKEEEIIIYQQQohnjgREhBBCCCGEEEII8cyRgIgQQgghhBBCCCGeORIQEUIIIYQQQgghxDNHAiJCCCGEEEIIIYR45khARAghhBBCCCGEEM8cCYgIIYQQQgghhBDimSMBESGEEEIIIYQQQjxzJCAihBBCCCGEEEKIZ06RBkQ0TXtR07RtmqbFaZoWq2nae3+cL6dp2n81TTv2x/8tW5TzFEIIIYQQQghRuC5cuEDXrl1xcXHB19eX+vXrs2bNmgceLzg4mIiIiEKcoXjaFXWGSAbwN6WUOxAADNQ0zR0YAfyslKoF/PzHsRBCCCGEEEKIp4BSijZt2hAUFERCQgKRkZEsX76c//3vf/fUPyMj4xHPUDwLijQgopQ6p5SK+uP3ZOAIUA14E1j4R7OFQJuimaEQQgghhBBCiMK2detWnnvuOfr376+fe/nllxk8eDA3btygV69eGI1GvL292bZtGwALFiwgJCSEJk2a0LRpU65fv07nzp1xc3Ojbdu2XL9+XR9r2bJlGI1GNE3Dw8NDP+/o6EjJkiUpVaoUAQEBXLhwIc/5hYWF0bp16wd6NmdnZy5duvRAfcXjZVvUE8imaZoz4A38AlRWSp3749J5oHIRTUsIIYQQQgghRCGLjY3Fx8cnz2szZsxA0zQOHTpEfHw8zZs35+jRowBERUVx8OBBypUrxxdffEHJkiU5cuQIBw8e1Mc7e/YsH3zwAZGRkTg7O/Pbb7+xYsUKOnXqRGpqKs7Oznh4eODu7s6cOXP46KOPHttzi+KlqJfMAKBpmiOwGvirUur3268ppRSg8un3jqZpEZqmRVy8ePExzFQIIYQQQgghRGEbOHAgJpOJunXrsnPnTt566y0AXF1defnll/WASLNmzShXrhwAO3bs0Nt5eXnh5eUFwP79+wkODqZixYpomkZQUBCLFy8GwGAw0K9fPwB8fX3Zv38/9evXx9vbm1deeYVff/0119xSUlL0jBUvLy9Wr14N/JmF4unpyQcffJCrn8ViwdXVldDQUGrXrk23bt3YsmULDRo0oFatWuzbt68wX0LxAIo8IKJpWgmygiFLlFL/+eP0BU3Tqv5xvSqQmFdfpdRspZSfUsqvYsWKj2fCQgghhBBCCCEeioeHB1FRUfrxjBkz+Pnnn7nbF90ODg73fa+6devy66+/cuPGDQACAgIAsLGxwdHRkfDwcA4cOMD48eMZNWpUrv4ff/wxpUuX5tChQxw8eJAmTZroWShbt24lOjqa/fv3s3bt2lx9jx8/zt/+9jfi4+OJj49n6dKl7Ny5k0mTJvHpp5/e97OIwlXUu8xowFzgiFLqi9surQN6/vF7T+D7xz03IYQQQgghhBCPRpMmTbhx4wYzZ87Uz6WlpQEQGBjIkiVLADh69Ci//fYbderUyTVGUFAQS5cuBeDw4cMcPHgQAH9/f7Zv386lS5dQSrFz506UUixbtgwbG5scY9y8eZOOHTvi6enJ0KFDiY2NzXWfLVu2MHDgQP24bNmyObJQbG1t6datGzt27MjVt0aNGhiNRgwGAx4eHjRt2hRN0zAajVgslvt81URhK+oMkQZAd6CJpmnRf/y0AiYAzTRNOwa8+sexEEIIIYQQQoingKZprF27lu3bt1OjRg38/f3p2bMnEydOZMCAAVitVoxGI506dWLBggXY2dnlGuPdd98lJSUFNzc3Ro8eja+vLwBVq1ZlwoQJNG7cmOvXr+Pr60uPHj0YNmwYtrY5y2geOHCAxo0bc/jwYX744Qc9i6Sw3D5vg8GgHxsMBtkppxgo0qKqSqmdgJbP5aaPcy5CCCGEEEIIIR6fqlWrsnz58jyvzZ8/P9e50NBQQkND9WN7e/t8+3fp0oUuXbrg6OjIxIkT+d///keZMmUYMmQIYWFhAHTo0IElS5ZQrVo1IGsXm7w0a9aMGTNmMGXKFACuXLmCv78/Q4YM4dKlS5QtW5Zly5YxePDge3xyUVwUdYaIEEIIIYQQQoinhNWqSLiYwt6EJBIupmC15rk/xmNXvXp1hgwZkuv83//+d0aOHIm3t3e+GRsfffQRV65cwdPTE5PJxLZt23JkoZhMJnx9fXnzzTcf9WOIQqZlbeLy5PPz81MRERFFPQ0hhBBCCCGEeCZZrYqNsef5bMMR0jOs2NkaGNnKjZYeVTAY8lsYIJ4FmqZFKqX8inoed5IMESGEEEIIIYQQD82SlKoHQwDSM6x8tuEIlqTUQr9Xcc1EEU+WIq0hIoQQQgghhBDi6ZCYnK4HQ7KlZ1hJTE7HpaJjod1HMlFEYZEMESGEEEIAYGNjg9lsxtPTkzfeeIOrV68W9ZSEEEI8QSo52WFnm/Mjpp2tgUpOuXeIeRiPMxNFPN0kICKEEEIIIKtaf3R0NIcPH6ZcuXLMmDGjqKckhBDiCeJc3oGRrdz0oEh25oZzeYdCvU9BmShC3A9ZMiOEEEKIXOrXr8/BgwcBiI6Opn///qSlpVGzZk3mzZtH2bJlCQ4Opl69emzbto2rV68yd+5cAgMDsVgsdO/endTUrG/qpk+fziuvvEJYWBhjx46lQoUKHD58GF9fX7799ls0TdKbhRDiaWAwaLT0qIJrFScSk9Op5GSHc3mHQl/Gkp2JcntQ5FFkooinn2SICCGEECKHzMxMfv75Z0JCQgDo0aMHEydO5ODBgxiNRsaNG6e3zcjIYN++fUyZMkU/X6lSJf773/8SFRXFihUrcmxzeODAAaZMmUJcXBwJCQns2rXr8T6cEEKIR8pg0HCp6EiAS3lcKjo+kpoejysTRTz9JENECCGEEABcv34ds9nMmTNncHNzo1mzZly7do2rV6/SqFEjAHr27EnHjh31Pu3atQPA19cXi8UCwK1btxg0aBDR0dHY2Nhw9OhRvb2/vz/Vq1cHwGw2Y7FYaNiw4WN6QiGEEE+Dx5WJIp5+kiEihBBCCODPGiKnTp1CKXVPNUTs7LLSk21sbMjIyABg8uTJVK5cmZiYGCIiIrh582au9nf2EUIIIe7H48hEEU8/CYgIIYQQIoeSJUsydepU/v3vf+Pg4EDZsmUJDw8HYPHixXq2SH6uXbtG1apVMRgMLF68mMzMzMcxbSGEEEKI+yJLZoQQQgiRi7e3N15eXixbtoyFCxfqRVVdXFyYP39+gX0HDBhA+/btWbRoES1btsTBQdZ0CyGEEKL40ZRSRT2HQuHn56ciIiKKehpCCCGEEEIIUSzZ2NhgNBq5desWtra29OjRg6FDh2IwFO7CgXXr1hEXF8eIESMKdVzx5NI0LVIp5VfU87iTBESEEEKIp5zVqrAkpUrhOSGEeMY5OjqSkpICQGJiIl27dqVBgwY5dg8T4lEorgERqSEihBBCPMWsVsXG2PP0nLePIcsO0HPePjbGnsdqfTq+EBFCCPFgKlWqxOzZs5k+fTpKKTIzMxk+fDh169bFy8uLr7/+GoCwsDCCg4Pp0KEDrq6udOvWjewv1Z2dnRkzZgw+Pj4YjUbi4+MBWLBgAYMGDQJg5cqVeHp6YjKZCAoKKpqHFSIfUkNECCGEeIpZklL5bMMR0jOsAKRnWPlswxFcqzjhUtGxiGcnhBCiKLm4uJCZmUliYiLff/89pUuXZv/+/aSnp9OgQQOaN28OwIEDB4iNjeWFF16gQYMG7Nq1S98yvUKFCkRFRfHVV18xadIkvvnmmxz3GD9+PJs2baJatWpcvXr1sT+jEAWRDBEhhBDiKZaYnK4HQ7KlZ1hJTE4vohkJIYQojjZv3syiRYswm83Uq1ePpKQkjh07BoC/vz/Vq1fHYDBgNpuxWCx6v3bt2gHg6+ub43y2Bg0aEBoaypw5c2TXMVHsSIaIEEII8RSr5GSHna0hR1DEztZAJSe7IpyVEEKI4iAhIQEbGxsqVaqEUopp06bRokWLHG3CwsKws/vzPcPGxoaMjAz9OPvaneezzZo1i19++YX169fj6+tLZGQk5cuXf0RPJMT9kQwRIYQQ4inmXN6Bka3csLPNesu3szUwspUbzuVlK1whhHiWXbx4kf79+zNo0CA0TaNFixbMnDmTW7duAXD06FFSU1Mf+j4nTpygXr16jB8/nooVK3L69OmHHlOIwiIZIkIIIcRTzGDQaOlRBdcqTrLLjBBCPOOuX7+O2WzWt93t3r0777//PgB9+vTBYrHg4+ODUoqKFSuydu3ah77n8OHDOXbsGEopmjZtislkeugxhSgssu2uEEIIIYQQQgghHpniuu2uZIgIIYQQQgghxBPMalVYklIlE1CI+yQBESGEEEIIIYR4Qlmtio2x5/Ut1rNrRbX0qCJBESHuQoqqCiGEEEIIIcQTypKUqgdDIGtr9c82HMGS9PAFUYV42klARAghhBBCCCGeUInJ6Tm2VoesoEhicnoRzUiIJ4cERIQQQgghhBDiCVXJyU7fWj2bna2BSk52RTQjIZ4cEhARQgghhBBCiCeUc3kHRrZy04Mi2TVEnMs7FPHMxP1o3LgxmzZtynFuypQpvPvuu6xbt44JEybc13ihoaGsWrUKyNpSOS4uLt+2YWFh7N69+/4nfYdx48YxcuTIHOeio6Nxc3MDKKFp2qq8+mma9kIB18I0TfP74/cNmqaVeeiJ3kYCIkIIIYQQQgjxhDIYNFp6VGFhb3+mdvFmYW9/Kaj6BOrSpQvLly/PcW758uV06dKFkJAQRowY8cBjf/PNN7i7u+d7vbACIl26dGHFihU5zmU/A3BLKdXhzj6aptkqpc7mde1OSqlWSqmrDz3R20hARAghhBBCCCGeYAaDhktFRwJcyuNS0VGCIU+gDh06sH79em7evAmAxWLh7NmzBAYGsmDBAgYNGgRkZX4MGTKEV155BRcXFz0LRCnFoEGDqFOnDq+++iqJiYn62MHBwURERACwceNGfHx8MJlMNG3aFIvFwqxZs5g8eTJms5nw8PAc2SUAjo6OAJw7d46goCDMZjOenp6Eh4fneIbatWtTtmxZfvnlF/3cd999lx0QeU7TtMMAmqaFapq2TtO0rcDPmqY533bNXtO05ZqmHdE0bQ1gnz2WpmkWTdMq/PH7Wk3TIjVNi9U07Z3b2qRomvZPTdNiNE3bq2la5YJedwmICCGEEEIIIYQQRahcuXL4+/vz008/AVmZFf/3f/+HpuUObp07d46dO3fy448/6pkja9as4ddffyUuLo5FixblmfFx8eJF+vbty+rVq4mJiWHlypU4OzvTv39/hg4dSnR0NIGBgfnOcenSpbRo0YLo6GhiYmIwm8252tye6bJ3717KlStHrVq18hrOB+iglGp0x/l3gTSllBswBvDNZzq9lVK+gB8wRNO08n+cdwD2KqVMwA6gb74PhAREhBBCCCGEEEKIInd7MOG2pSa5tGnTBoPBgLu7OxcuXABgx44ddOnSBRsbG1544QWaNGmSq9/evXsJCgqiRo0aQFYQ5n7UrVuX+fPnM3bsWA4dOoSTk1OuNp06dWLVqlVYrdYCnwH4r1Lqch7ng4BvAZRSB4GD+fQfomlaDLAXeBHIjrrcBH784/dIwLmgZ5KAiBBCCCGEEEIIUcTefPNNfv75Z6KiokhLS8PXN+/kCDu7P3cQUkoV+jxsbW2xWrO2crZarfoynqCgIHbs2EG1atUIDQ1l0aJFufq++OKL1KhRg+3bt7N69Wo6deqU321SH3R+mqYFA68C9f/IBDkAPP/H5VvqzxclE7AtaCwJiAghhBBCCCGEEEXM0dGRxo0b07t374IyK/IUFBTEihUryMzM5Ny5c2zbti1Xm4CAAHbs2MHJkycBuHw5K0HDycmJ5ORkvZ2zszORkZEArFu3jlu3bgFw6tQpKleuTN++fenTpw9RUVF5zqVLly4MHToUFxcXqlevfl/PQdYyl64AmqZ5Al55tCkNXFFKpWma5goE3O9NsklARAghhBBCCCGEKAa6dOlCTEzMfQdE2rZtS61atXB3d6dHjx7Ur18/V5uKFSsye/Zs2rVrh8lk0rM33njjDdasWaMXVe3bty/bt2/HZDKxZ88eHByytnAOCwvDZDLh7e3NihUreO+99/KcS8eOHYmNjb3vZ/jDTMBR07QjwHiylr3caSNg+0ebCWQtm3kg2qNIsSkKfn5+KrtyrhBCCCGEEEIIIYoHTdMilVJ+RT2POxW4nkYIIYQQQgghhBAPxmpVWJJSSUxOp5KTHc7lHWRb5GJEAiJCCCGEEEIIIUQhs1oVG2PP89mGI6RnWLGzNTCylRstPapIUKSYkBoiQgghhBBCCCFEIbMkperBEID0DCufbTiCJemBN1gRhUwCIkIIIYQQQgghRCFLTE7XgyHZ0jOsJCanF9GMxJ0kICKEEEIIIYQQQhSySk522Nnm/MhtZ2ugkpNdEc1I3EkCIkIIIYQQQgghRCFzLu/AyFZuelAku4aIc3mHIp6ZyCZFVYUQQgghhBBCiEJmMGi09KiCaxUn2WWmmJIMESGEEEIIUazY2NhgNpv1nwkTJjyS+7Rq1YqrV6/eU9sLFy7QunVrTCYT7u7utGrV6p7v88orrwBgsVhYunTpXds7Oztz6dKlex5fCFF8GQwaLhUdCXApj0tFRwmGFDOSISKEEEIIIYoVe3t7oqOjH9n4SimUUmzYsOGe+4wePZpmzZrx3nvvAXDw4MF77rt7927gz4BI165d72/CQgghHgnJEBFCCCGEEE8EZ2dnRo4cidlsxs/Pj6ioKFq0aEHNmjWZNWuW3u5f//oXdevWxcvLizFjxgBZwYg6derQo0cPPD09OX36dI5MjEWLFuHl5YXJZKJ79+657n3u3DmqV6+uH3t5eQEwcOBA1q1bB0Dbtm3p3bs3APPmzePDDz8EwNHREYARI0YQHh6O2Wxm8uTJZGZmMmzYMDw9PfHy8mLatGn6+NOmTcPHxwej0Uh8fHyhvYZCCCH+JBkiQgghhBCiWLl+/Tpms1k/HjlyJJ06dQLgpZdeIjo6mqFDhxIaGsquXbu4ceMGnp6e9O/fn82bN3Ps2DH27duHUoqQkBB27NjBSy+9xLFjx1i4cCEBAQE57hcbG8snn3zC7t27qVChApcvX841p4EDB9KpUyemT5/Oq6++Sq9evXjhhRcIDAwkPDyckJAQzpw5w7lz5wAIDw+nc+fOOcaYMGECkyZN4scffwRg5syZWCwWoqOjsbW1zXHfChUqEBUVxVdffcWkSZP45ptvCufFFUIIoZMMESGEEEIIUaxkL5nJ/skOhgCEhIQAYDQaqVevHk5OTlSsWBE7OzuuXr3K5s2b2bx5M97e3vj4+BAfH8+xY8cAePnll3MFQwC2bt1Kx44dqVChAgDlypXL1aZFixYkJCTQt29f4uPj8fb25uLFi3pAJC4uDnd3dypXrsy5c+fYs2ePXjskP1u2bKFfv37Y2trmum+7du0A8PX1xWKx3MerJ8Szx9HRkbNnz9KhQ4cHHmPs2LFomsbx48f1c1OmTEHTNCIiIgrsu3HjRvz9/XF1dcVsNtOpUyd+++23u96zS5cueHl5MXnyZOLj4zGbzXh7e3PixIm7/u+HKBySISKEEEIIIZ4YdnZ2ABgMBv337OOMjAyUUowcOZJ+/frl6GexWHBweLitLsuVK0fXrl3p2rUrrVu3ZseOHbRv356rV6+yceNGgoKCuHz5Mt999x2Ojo44OTk98L2yn83GxoaMjIyHmrcQz4IXXniBVatWPdQYRqOR5cuX89FHHwGwcuVKPDw8Cuxz+PBhBg8ezLp163BzcwNg3bp1WCwWXnrppXz7nT9/nv379+sBmAkTJtChQwf93tm1h8SjJRkiQgghhBDiqdGiRQvmzZtHSkoKAGfOnCExMbHAPk2aNGHlypUkJSUB5LlkZuvWraSlpQGQnJzMiRMn9A87AQEBTJkyhaCgIAIDA5k0aRKBgYG5xnByciI5OVk/btasGV9//bUe8MjrvkKIe2OxWPD09ARgwYIFtGnThmbNmuHs7Mz06dP54osv8Pb2JiAgIN//X2vTpg3ff/89ACdOnKB06dJ65hhkZYL4+PhgMplo2rQpABMnTmTUqFF6MASyMtmCgoIACA4O1jNMLl26hLOzMwDNmzfnzJkzmM1mxo0bx5QpU5g5cyaNGzcG/qw9FBYWRnBwMB06dMDV1ZVu3bqhlCqsl+2ZJwERIYQQQghRrGTXEMn+GTFixD33bd68OV27dqV+/foYjUY6dOiQIwiRFw8PDz788EMaNWqEyWTi/fffz9UmMjISPz8/vLy8qF+/Pn369KFu3boABAYGkpGRwV/+8hd8fHy4fPlyngERLy8vbGxsMJlMTJ48mT59+vDSSy/pxVzvZUveJ9X9bqW8bt26fNtkf1C80/Xr12nUqBGZmZm5roWGhurZA3369CEuLu4+n+De5Te/0aNHs2XLlkK/36effprj+GGWWnTu3FlfYvakO3z4MP/5z3/Yv38/H374ISVLluTAgQPUr1+fRYsW5dmnVKlSvPjiixw+fJjly5fnWK538eJF+vbty+rVq4mJiWHlypVAVg0iHx+f+57funXrqFmzJtHR0YwZM4b+/fszdOhQtm3blqvtgQMHmDJlCnFxcSQkJLBr1677vp/ImyyZEUIIIYQQxUpeH2iBHLU0QkNDCQ0NzfPae++9p2+Pe7vDhw/nO17Pnj3p2bNnvnMaPnw4w4cPz/Pa22+/zdtvvw1AiRIlSE1NzXE9O1ulRIkSbN26Nce1L774gi+++CLfefn5+REWFpbvvJ4U97uVckhIiF4v5l7NmzePdu3aYWNjU2C7oipQO378+Ecy7qeffsqoUaP044dZavHuu+/y+eefM2fOnMKYWpFq3LgxTk5OODk5Ubp0ad544w0ga1lMQdtmd+7cmeXLl7Np0yZ+/vln5s+fD8DevXsJCgqiRo0aQN61hpKSkmjatClpaWm88847DBs2rFCexd/fX9/lymw2Y7FYaNiwYaGM/ayTDBEhhBBCCPHIWa2KhIsp7E1IIuFiClarpHyLrK2Ux4wZk2uL4QULFjBo0CAATp48qWf8ZNdXyMuSJUt48803AVBKMWjQIOrUqcOrr76aY9lU9hKGzMxMQkND8fT0xGg0MnnyZADmzJlD3bp1MZlMtG/fXl8qFRoayrvvvktAQAAuLi6EhYXRu3dv3NzccgTnAIYOHYqHhwdNmzbl4sWLev/sLJUNGzbg6uqKr68vQ4YMoXXr1kBWYc9Jkybp43h6euoBsjZt2uDr64uHhwezZ88GsrZyzs6o6tatG/BnhopSiuHDh+vPt2LFCqDgJRiBgYFs2bLlqahbc2eNodvrDxX0fK1bt2bx4sW89NJLlCpV6q738fDwICoqCoDy5csTHR3NO++8owdCbW1tsVqtANy4ceOhn0XqChUuCYgIIYQQQohHympVbIw9T895+xiy7AA95+1jY+x5CYo8Q+5cBpX94Rz+3GL43XffzREMyPbee+/x7rvvcujQIapWrZrn+Ddv3iQhIUGvz7BmzRp+/fVX4uLiWLRoUZ5ZE9HR0Zw5c4bDhw9z6NAhevXqBWTt8LN//35iYmJwc3Nj7ty5ep8rV66wZ88eJk+eTEhICEOHDiU2NpZDhw7pGTCpqan4+fkRGxtLo0aNGDduXI773rhxg379+vHTTz8RGRmpB0zuZt68eURGRhIREcHUqVNJSkpiwoQJevbNkiVLcrT/z3/+Q3R0NDExMWzZsoXhw4fr20LntwTDYDDwl7/8hZiYmHua09OoZMmSTJw4kQ8//DDH+YCAAHbs2MHJkyeBP2v+/P3vf+ef//wnR44c0dtmB9EgK+gXGRkJ8NBFX0Xhk4CIEEIIIYR4pCxJqXy24QjpGVnfkqZnWPlswxEsSal36SmeFgVtpXy3LYZ37dpFly5dAOjevXue41+6dIkyZcroxzt27KBLly7Y2Njwwgsv0KRJk1x9XFxcSEhIYPDgwWzcuFHPBjh8+DCBgYEYjUaWLFlCbGys3ueNN95A0zSMRiOVK1fGaDRiMBjw8PDQ524wGPTne+utt9i5c2eO+8bHx+Pi4qIvvch+truZOnUqJpOJgIAATp8+fddaHzt37tRfg8qVK9OoUSP2798P/LkEw2Aw6EswslWqVImzZ8/e05yKg4yMjBwZFIWhc+fOueqCVKxYkdmzZ9OuXTtMJpP+NzYajXz55Zf06NGDOnXq0KBBA44cOULXrl0BGDZsGDNnzsTb25tLly4V6jzFw5MaIkIIIYQQ4pFKTE7XgyHZ0jOsJCan41Ix7wKU4tlxL1sMa5pW4Bj29vb3vRyhbNmyxMTEsGnTJmbNmsV3333HvHnzCA0NZe3atZhMJhYsWJCjhsvdtn1+kLnf7vblFfDnEouwsDC2bNnCnj17KFmyJMHBwQ+8/AIKXoJx48YN7O3tH3jsxy02NpaaNWvi7Oys1wkqqMbQndeyjR07Ns/xb//7v/baa7z22mu52rz++uu8/vrrefZ3dXXNUbPkk08+Acgx37zun73kJjg4mODgYP389OnT87yPeDCSISKEEEIIIR6pSk522LdX23cAACAASURBVNnm/M9OO1sDlZwK91td8XRq0KABy5cvB8i1LCRb2bJlyczM1IMEQUFBrFixgszMTM6dO5fnzh2XLl3CarXSvn17PvnkE70ORHJyMlWrVuXWrVv53q8gVqtVXxqxdOnSXMUv69SpQ0JCgv4h/fblQ87Ozvo8oqKi9OUZ165do2zZspQsWZL4+Hj27t2r9ylRogS3bt3KNY/AwED9Nbh48SI7duzA39//rvM/evSovn1tUbqXukOzZs2iS5cuepBBiPslAREhhBBCCPFIOZd3YGQrNz0oYmdrYGQrN5zLOxTxzMTj8jBbKX/55ZfMmDEDo9HImTNn8m3XvHlzfXlK27ZtqVWrFu7u7vTo0YP69evnan/mzBmCg4Mxm8289dZbfPbZZwB8/PHH1KtXjwYNGuDq6nqfTwoODg7s27cPT09Ptm7dyujRo3Nct7e356uvvqJly5b4+vrqu6AAtG/fnsuXL+Ph4cH06dOpXbs2AC1btiQjIwM3NzdGjBhBQECAPt4777yDl5eXXlQ1W9u2bfUtnZs0acLnn39OlSpVCpz7hQsXsLe3v2u7R+1e6w7179+fuLg4mjdvXkQzFU86Lbui8JPOz89PRUREFPU0hBBCCCFEHqxWhSUplcTkdCo52eFc3gGD4d6XEojiqTj9XaOiopg8eTKLFy8ukvvfj5SUFBwdHVFKMXDgQGrVqsXQoUOLelpMnjyZUqVK6dtIF5WEiyn0nLcvx1I7O1sDC3v7yzK7J5SmaZFKKb+insedpIaIEEIIIYR45AwGDZeKjvJh5imS/S1+dsHc7Myflh5ViiQo4uPjQ+PGjcnMzMTGxuax3/9+zJkzh4ULF3Lz5k28vb3p169fUU8JgDJlyuRbuPZxkrpD4nEp0gwRTdPmAa2BRKWU5x/nxgJ9gez9p0YppTbcbSzJEBFCCCGEEOLxkW/xxaMi/7aePsU1Q6Soa4gsAFrmcX6yUsr8x89dgyFCCCGEEEKIx6ugb/GFeBhSd0g8LkUaEFFK7QAuF+UchBBCCCGKgqZpvPXWW/pxRkYGFStWpHXr1gCsW7eOCRMmAFnbMU6aNOmh7mexWLC3t8dsNmMymXjllVf49ddfgaxtJbPvm5/o6Gg2bLj791SOjnl/e1sYzyCKF9k9SDwqBoNGS48qLOztz9Qu3izs7V9kS7HE062oM0TyM0jTtIOaps3TNK1sfo00TXtH07QITdMiLl68mF8zIYQQQohix8HBgcOHD3P9+nUA/vvf/1KtWjX9ekhIyH3txHEvatasSXR0NDExMfTs2ZNPP/30nvvea0BEPDvkW3zxKGXXHQpwKY9LRUcJhohHojgGRGYCNQEzcA74d34NlVKzlVJ+Sim/ihUrPq75CSGEEEIUilatWrF+/XoAli1bRpcuXfRrCxYsYNCgQbn6nDhxQt+uMzAwkPj4eABWrlyJp6cnJpOJoKCgu977999/p2zZ3N87paam0rt3b/z9/fH29ub777/n5s2bjB49mhUrVmA2m1mxYgUpKSn06tULo9GIl5cXq1ev1sf48MMPMZlMBAQEcOHChXt6huTkZGrUqMGtW7f0+d1+LIof+RZfCPGkK3YBEaXUBaVUplLKCswB/It6TkIIIYQQj0Lnzp1Zvnw5N27c4ODBg9SrV++ufd555x2mTZtGZGQkkyZNYsCAAQCMHz+eTZs2ERMTw7p16/Lse+LECcxmMzVr1uSLL77g/fffz9Xmn//8J02aNGHfvn1s27aN4cOHc+vWLcaPH0+nTp2Ijo6mU6dOfPzxx5QuXZpDhw5x8OBBmjRpAmQFVAICAoiJiSEoKIg5c+bc0zM4OTkRHBysB4iWL19Ou3btKFGixD2/nuLxk2/xhRBPsmIXENE0repth22Bw0U1FyGEEEKIR8nLywuLxcKyZcto1arVXdunpKSwe/duOnbsiNlspl+/fpw7dw6ABg0aEBoaypw5c8jMzMyzf/aSmRMnTjBlyhTeeeedXG02b97MhAkTMJvNBAcHc+PGDX777bdc7bZs2cLAgQP14+xsk+eee06vR+Lr64vFYrnnZ+jTpw/z588HYP78+fTq1euur0lxd+HCBbp27YqLiwu+vr7Ur1+fNWvWFNjHYrHg6ekJ3Ft9l7z6L126NN/rx44do3Xr1tSsWRNfX18aN27Mjh078mwbERHBkCFD7uv+91IvpjBqyuSXRQX517IRQojb2RblzTVNWwYEAxU0TfsfMAYI1jTNDCjAAhSPTbmFEEIIIR6BkJAQhg0bRlhYGElJSQW2tVqtlClThujo6FzXZs2axS+//ML69evx9fUlMjKS8uXLF3jfvAIOSilWr15NnTp1cpz/5Zdf7ul5SpQogaZlZQnY2NiQkZFxz8/QoEEDLBYLYWFhZGZm6kGBJ5VSijZt2tCzZ089QHHq1Kl8M3gKQ0ZGhh4Q6dq1a67rN27c4PXXX2fSpEmEhIQAcPjwYSIiInIttcrIyMDPzw8/v2K3U6YQQhSKot5lpotSqqpSqoRSqrpSaq5SqrtSyqiU8lJKhSilzhXlHIUQQgghHqXevXszZswYjEbjXduWKlWKGjVqsHLlSiDrA3dMTAyQtRymXr16jB8/nooVK3L69OkCx9q5cyc1a9bMdb5FixZMmzYNpRQABw4cAMDJyYnk5GS9XbNmzZgxY4Z+fOXKlbvO/27PANCjRw+6du36VGSHbN26leeee47+/fvr515++WUGDx4MQGZmJsOHD6du3bp4eXnx9ddfFzheXvVdICtTIiQkhCZNmtC0aVNGjBhBeHg4ZrOZyZMn5xhjyZIl1K9fXw+GAHh6ehIaGgpkZW50794dNzc3SpQowaJFi/QMlb/+9a+ULVuW4OBgXFxcmDp1qj7GP//5T2rXrk3Dhg2ZPXu2Xiw4v5o32RITE3FyciIiIoKYmBg0TdMzkmrWrElaWho//PAD9erVw9vbm1dffTXPujQnT56kfv36GI1GPvrooxzXgoODiYiIKPC1vV1YWBi7d+/Wj9euXUtcXNw99xdCPDmK3ZIZIYQQQohnSfXq1e9rScKSJUuYO3cuJpMJDw8P/UPx8OHDMRqNeHp68sorr2AymXL1za4hYjKZGDVqFN98802uNv/4xz+4desWXl5eeHh48I9//AOAxo0bExcXpxdV/eijj7hy5YpeyHXbtm0P/QwA3bp148qVKzkKzD6pYmNj8fHxyff63LlzKV26NPv372f//v3MmTOHkydP5ts+r/ouqampAERFRbFq1Sq2b9/OhAkTCAwMJDo6mqFDh97XnADi4uJwd3enYcOG/Pzzzzmupaens2nTJvbt28e4ceO4desWkZGRLF++XN+JqGTJktjb2wP517zJVqlSJaxWKykpKYSHh+Pn50d4eDinTp2iUqVKlCxZkoYNG7J3714OHDhA586d+fzzz3PN+b333uPdd9/l0KFDVK1aNdf1+yEBESGeHUW6ZEYIIYQQ4mljtSosSakkJqdTyckO5/IOeRaaTElJyXUuODiY4OBgAEJDQ3N8a5+tRo0abNy4MVff//znPwXOy9nZWf/WvqD72tvb55mpUK5cOfbv35/j3MKFC3O1u/25OnToQIcOHe75GSArc6VDhw6UKVOmwOd5Eg0cOJCdO3fy3HPPsX//fjZv3szBgwdZtWoVANeuXePYsWPUrl07z/6bN29m3bp1eu2N2+u7NGvWjHLlyt33nNq2bavfM/vfUMuWLVmwYAHbtm2jadOmOYJrTk5O2NnZkZmZya1bt3B3d+f555/n8uXLxMXF4efnR2JiIqmpqXqQw2QyoZTCwcGBvHaGLFWqFDExMezatYtRo0axceNGkpOTuXTpEl5eXkDWNtUpKSmcO3eO559/nsjISGJjY3FzcwNg165d+Pj4UKdOHcqWLUt6ejqTJk1i2LBhACxevJg+ffqQkZHBvHnz8Pf35/Lly/Tu3ZuEhARKlizJ7NmzKVWqFLNmzcLGxoZvv/2WL7/8knXr1rF9+3Y++eQTVq9eTXJyMv379yctLY2aNWsyb948PXPG29ub8PBwUlNTWbRoEZ999hmHDh2iU6dOfPLJJ/f99xFCPFoSEBFCCCGEKCRWq2Jj7Hk+23CE9AwrdrYGRrZyk61I79HgwYP56aef2LBhQ1FPpVB4eHjk2I54xowZXLp0Sa/JoZRi2rRptGjRIke/OwvRZiuovouDg8M9z+n2Aqpr1qwhIiJCDxxA1vKTli1bUrt2bUqVKsW1a9f0a9n1Yb766itsbW3573//y8yZM/nXv/6V615HjhzBYDBw7do1SpQowYABAwgICMjVLrumzKlTp3jzzTeZOHEiu3btom7duixduhSz2cz58+c5efIkoaGhrFmzhk2bNjF79mx9F6SMjAzWrFlDTEwMSUlJvPjiiznukZaWRnR0NDt27KB3794cPnyYMWPG4O3tzdq1a9m6dSs9evQgOjqa/v374+joqL8mISEhtG7dWg/ueXl5MW3aNBo1asTo0aMZN24cU6ZMAbKKCkdERPDll1/y5ptvEhkZSbly5ahZsyZDhw4tsK6PEOLxkyUzQgghhBCFxJKUqgdDANIzrHy24QiWpNQintmTYdq0aRw/fjzfDIknTZMmTbhx4wYzZ87Uz6Wlpem/t2jRgpkzZ3Lr1i0Ajh49qi+ByUt+9V3udGe9l9t17dqVXbt25Sjsevucssft3Lmz/gxnz57NNc7OnTspXbo0AJ06dcLOzo4bN26QnJysZyL98ssvWK1WatWqhdlsZsuWLTmWomQrXbo0P/30E7Vq1cJgMFCuXDmOHj3K8OHDgawgTFpaGr///jsxMTGUK1cOOzs7nJycsLe358KFC7z44ou4uLjw/PPPs27dOmxtc37vm70EKygoiN9//52rV6+yc+dOunfvrj9nUlISv//+e56vW7Zr165x9epVGjVqBEDPnj1zBJiya7MYjUY8PDyoWrUqdnZ2uLi43LWuz7MmKSkJs9mM2WymSpUqVKtWTT++efNmvv1u34VJiIclAREhhBBCPPHWrl2Lpmm5CjYWltu3Pl23bh0TJkzIs11icroeDMmWnmElMTk9z/bOzs5cunQp3/vKf/g/2TRNY+3atWzfvp0aNWrg7+9Pz549mThxIpC1zbC7uzs+Pj54enrSr1+/XLvy3C6/+i538vLywsbGBpPJlKuoqr29PT/++COzZs3CxcWF+vXr88knn+iFSK9fv87x48fp06cPzs7OLF++nLNnz+pBmLz4+PhQtmxZunXrxmuvvcZzzz0HZGW0vP3227i6uqKUwtbWlhdeeCFX/+effx6llL7LTcOGDbGxsdEDLmPHjiUpKYmgoCDs7e0xGP78CGMwGMjIyKBt27bs378fo9HImTNn8vxbFHRcWOzs7PR5Zf9++zzFn8qXL090dLSelTN06FD9OPvfkLh/SikaNmzITz/9pJ9buXIlLVu2LMJZFV+yZEYIIYQQT7xly5bRsGFDli1bxrhx4x7pvUJCQnLs0HG7Sk522NkacgRF7GwNVHKyy7O9KJ4cHR1z1EJZsGABERERTJ8+Pd8++bWpWrUqy5cvz7OPwWDg008/5dNPP81xvnTp0hw+fBjIWd/ltdde02toPP/883pNitvrzUDW1sdbt27Nd66urq75LkuqWbMmvXv3zlFHplGjRoSHh/PXv/6VLVu2AFlbJDs4ONC6dWu+++47Ll68yJ49e/Dz88PZ2ZmBAweSmJjI1KlT2bVrF5UqVeLy5ct65srtNWUA1q9fry8lGjVqFOfPn2fJkiX84x//oHTp0hiNRg4cOMDYsWNxdHTUnzu7nkpISAjr169n9+7dZGRk8N133+UYf8WKFTRu3FjPbCldujSBgYH6PcLCwqhQoQKlSpXCyckpR6bI7Rk3pUuXpmzZsoSHhxMYGMjixYv1bBHx8CIjI3n//fdJSUmhQoUKLFiwgKpVqxIZGUnv3r0BaN68eRHPsnjTNI1Zs2bRsWNHGjduTEZGhl6bR+QmGSJCCCGEeKKlpKSwc+dO5s6dm+ODZ1hYGMHBwXTo0AFXV1e6deumf8u9YcMGXF1d8fX1ZciQIXr2R37bmt5uwYIFDBo0CMj6QDZkyBBeeeUVXFxciNj2EyNbuWGbmU78vOHEffUup78ZSMzOLXd9ji+++AJPT088PT31egSQtTVr37598fDwoHnz5vpyhODgYD744AP8/f2pXbs24eHhQNYuIv7+/pjNZry8vDh27Fi+41ssFtzc3PIcXxTMalUkXExhb0ISCRdTsFrzz6AoTEuWLCEmJoYBAwboS0oK07Jly2jbtm2Oc+3bt2fZsmU5zg0YMIDLly9z/PhxPvroIzw8PPSMjmzu7u588sknNG/eHC8vL5o1a8a5c+fyvO/rr79O9erVqV69Oh07dmTs2LFERkbi5eXFiBEj8izge7u6desSEhKCl5cXr732GkajMcd8nn/+eby9venfvz9z584FyPceb7zxBmvWrMFsNhMeHk7nzp3517/+hbe3NydOnGDhwoUMHz4cLy8voqOjGT169L29uKJASikGDx7MqlWr9ADIhx9+CECvXr2YNm1aji26Rf48PT154403mDhxIuPHj6dHjx7MmTMnx1bpY8eOZdKkSSilGD58OJ6enhiNRlasWAEU/B7q7OzMmDFj8PHxwWg06tmZ9/IeWuwopZ6KH19fXyWEEEKIZ8+3336revfurZRSqn79+ioiIkIppdS2bdtUqVKl1OnTp1VmZqYKCAhQ4eHh6vr166p69eoqISFBKaVU586d1euvv66UUmrkyJFq8eLFSimlrly5omrVqqVSUlLUtm3b9Dbz589XAwcOVEop1bNnT9WhQweVmZmpYmNjVc2aNVVmplX9evaK2hJ9Up1ITFYXLiSqmjVrKqvVmmvuL7/8srp48aKKiIhQnp6eKiUlRSUnJyt3d3cVFRWlTp48qWxsbNSBAweUUkp17NhRn1+jRo3U+++/r5RSav369app06ZKKaUGDRqkvv32W6WUUunp6SotLe2Bxn+WOTg45Di+/W+emJio2rZtp2p5mJRj9TrKte9k1XDCz+qvH09WAwYM0Nu0a9dO+fn5KT8/P7Vz506llFJjxoxRvXr1Uo0aNVI1atRQX375pX6PN998U/n4+Ch3d3f19ddf5zmvRo0aqf379yullDpy5Ihyc3NTSimVnJysmjRpory9vZWnp6dau3atUkqpDz74QE2fPl3vP3r0aDVizCdqz4lL6oPRHys/Pz9lNBrV6NGjlVJKnTx5Urm6uqo+ffood3d31axZM5WWlqaUUurYsWOqadOmysvLS3l7e6tff/1VxcfHKw8PD3X8+HFVrVo11aBBA+Xt7a28vb3Vrl27lFJKDRgwQH3//fdKKaXatGmjevXqpZRSau7cuWrUqFEP9PfJT3JyslJKqdTUVOXr66siIyMLdXzx6IwZM0Z9/PHHysnJSZlMJmUymZSnp6dq1qyZunLlinrxxRf1tjExMcrDw6MIZ/tkSElJUbVr11aenp7qxo0bKioqSgUFBenX3dzc1G+//aZWrVqlXn31VZWRkaHOnz+vXnzxRXX27Nl830OVynrvmjp1qlJKqRkzZqi3335bKZX/e6hSSgERqhjEDe78kQwRIYQQQjzRli1bpheA7Ny5c45vsv39/alevToGgwGz2YzFYiE+Ph4XFxdq1KgB/FlsEbK2NZ0wYQJms5ng4OAc25rmp02bNhgMBtzd3blw4QIGg0aNCg6smTOJNk1foXnzZpw5c4YLFy7kO8bOnTtp27YtDg4OODo60q5dOz3jo0aNGpjNZgB8fX1z7EDSrl27XOfr16/Pp59+ysSJEzl16hT29vYPPP6z6vr163pxR7PZnCMD4L333qNzr35U7v4FLp1HY1n7BekZVtbHnCX5RobeZujQoezfv5/Vq1fTp08fvX98fDybNm1i3759jBs3Ti+oOm/ePCIjI4mIiGDq1KkkJSUVOMeNGzfSpk0bICv7Yc2aNURFRbFt2zb+9re/oZSiU6dO+tIRq1Ux/9tl/Jxek57j57Bg417Gzv2eqKgDREZG6oVBjx07xsCBA4mNjaVMmTL6LjndunVj4MCBxMTEsHv3bkqXLk2HDh04fvw4bdu2Zdq0aWzZsoWoqChWrFjBkCFDAAgMDNT/rZ05c4a4uDgAwsPD9ZohheWdd97BbDbj4+ND+/bt8fHxKdTxxaOllMLDw0OvI3Lo0CE2b95c1NN6Yjk4ONCpUye6d++OnZ0d3t7eJCYmcvbsWWJiYihbtiwvvvgiO3fupEuXLtjY2FC5cmUaNWqkb7Ge13totrzefx7kPbSoSQ0RIYQQQjyxLl++zNatWzl06BCappGZmYmmafoWoLcXNbSxsblrUUOVz7amBQUzbr+H+iOdeMmSJVy8eJHIyEhKlCiBs7MzN27cuO/nu3N8GxubHEtasq/d/mxdu3alXr16rF+/nlatWuWoBXG/4z+r7O3tiY6O1o+z64MAbNmyhYjoQ/zvStbOLJk30shMv06GVZF2K1Nvk/3BH+D333/Xa5K8/vrr2NnZYWdnR6VKlbhw4QLVq1dn6tSprFmzBoDTp09z7NixPLdo7datGzdv3iQlJUWfo1KKUaNGsWPHDgwGgx6Au/0D0IFfT3E18zmqOFbg2vHVXDkaQaeWQbxUriQ3b6Rx7NgxXnrppTwDZMnJyZw5c0ZfSpNdw+SHH36gdevWHDx4kGvXrtG3b1+io6OxsbHh6NGjQFZAZMqUKcTFxeHu7s6VK1c4d+4ce/bsYerUqYX3RwOWLl1aqOPlx8bGBqPRqB+vXbsWZ2fnXO2uXr3K0qVLGTBgwAOP06pVK5YuXUqZMmUKZe7FmZ2dnV6Lpn79+ty6dYujR4/i4eFBmTJl2LlzJw0bNmTJkiVFPdUnhsFgyFGEuGPHjqxatYrz58/TqVOnu/Yv6D00r/ef/N5DizPJEBFCCCHEE2vVqlV0796dU6dOYbFYOH36NDVq1NC/kc5LnTp1SEhI0L/Ryl4vDfe+rendXLt2jUqVKlGiRAm2bdvGqVOnCmwfGBjI2rVrSUtLIzU1lTVr1hAYGPhA905ISMDFxYUhQ4bw5ptvcvDgwUId/1lntVr5ftM2fP86B89BX2P+YDk2dvbYGjRKlrDR2+zdu1f/pvvMmTN6IdC8PmCEhYWxZcsW9uzZQ0xMDN7e3vkG0JYsWUJCQgI9e/Zk8ODB+rnsAFx0dDSVK1fW+2d/APpu5XeU9cwu/qmoGtQZ94GzmLduG8ePH+ftt9/Od373YvLkyVSuXJmYmBgiIiL0bVOrVavG1atX2bhxI0FBQQQGBvLdd9/h6OiIk5PTPb7qxUt2wCz7J69gCGQFRL766qsHGkcphdVqZcOGDfcVDMnMzLzntsWNwWBg1apVfPDBB5hMJsxms75N8/z58xk4cCBms7nAHY9EwTp16sTy5ctZtWoVHTt2BLLef1asWEFmZiYXL15kx44d+Pv7P9D4hfUe+jhJQEQIIYQQT6x7LQB5O3t7e7766itatmyJr68vTk5OevHFe93W9G66detGREQERqORRYsW4erqmme7jIwM7Ozs8PHxITQ0FH9/f+rVq0efPn3w9vZ+oHt/9913eHp6YjabOXz4MD169CjU8Z91zZs354dl8xjZyg07WwNp545jZ2vgddMLOD1vq7eZNm2a3uf2bJO8XLt2jbJly1KyZEni4+PZu3dvge01TePjjz9m7969xMfHFxiAy/4AtGPTD1QxBQNQ+i9+XIrahG1mOpWc7Dhz5gyJiYn53s/JyYnq1auzdu1aANLT00lLS8v1DFWrVsVgMLB48eIcH8wDAgKYMmWKHhCZNGnSUxWQS0lJoWnTpnqByexCkiNGjODEiROYzeZ7KoBrsVioU6cOPXr0wNPTk9OnT+fYmrtNmzb4+vri4eHB7Nmz9X6Ojo787W9/w2QysWfPnkfzkPfpfosOjx07lmHDhmE2m9mxYwcxMTHExsbSt29fICtbKSYmhujoaD7//HN9FyZxfzw8PEhOTqZatWpUrVoVgLZt2+Ll5YXJZKJJkyZ8/vnnVKlS5YHGL6z30MdJe1oibH5+fio7lVEIIYQQTz6rVWFJSiUxOetDm3N5BwwGrVDGTklJwdHREaUUAwcOpFatWgwdOrRQxr5XFy9exGw2c+bMmcd6X3F3BW27e+nSJQYOHMiRI0e4nn4TT98A/v3ldMJ+WElUVGSuNhkZGQQFBTFr1ix9y9hhw4YBWTtB/Pjjj1StWpU2bdroH4ivXr3K2LFj9e12swUHBzNp0iR9e9p///vfxMXFMXHiRN544w1SUlLw8/Nj7969/PTTT3rGgdFopEKFCgyfupTPNhwhPcPKpb1rsMZvxel5WxwdHfn222+xsbGhdevW+ofNSZMmkZKSwtixYzl27Bj9+vXj0qVLlChRgpUrV2IwGPT2x44do3379miaRsuWLZkxY4b+Gs6dO5d//OMfnD17llu3blGmTBkWL16s1yB40ty+1KVGjRqsXLmStLQ0SpUqxaVLlwgICODYsWOcOnUqx+t5t3EmT56Mi4sLu3fvJiAgAMjazSMiIoIKFSpw+fJlypUrx/Xr16lbty7bt2+nfPnyaJrGihUr+L//+7/H8wLchdWq2Bh7Xv+3ZmdrYGQrN1p6VCm0/w0XTx5N0yKVUn5FPY87SUBECCGEEMXOo/4P6smTJ7Nw4UJu3ryJt7c3c+bMoWTJkoUw83uzbt06/v73vzNq1Ch69Ojx2O77LHuUAbYnhbwGhePOgNmtW7cYOnSoXsPl119/5eTJk9y4caPAgMid41gsFho3bszJkyf1c7cHRMaOHavXmbFYLGzatImAgABsbW1JT0/HxsbmET3x/Um4mELPeftIz/h/9u49Lsf7f+D4665I1GLK4OZOdAAAIABJREFUZDOVL53r7uysHNJsy6EcQ4mZOe1rGDuYnDam72YOm8N3iq/kkIlhvmZEOawDd8fxTWSGOWSlUlT39fujX9e6dRBC+DwfDw9dp8/1ua+77sd9va/P5/1Wy+t0dbRYH+SGubH+U+zZs+1Z//utrwERkVRVEARBEIR6Jyu7QA6GANwpUfPF3t+wbGlQJ1+op06d+sRHhFTk4+ODj4/PUzv/i0Y8sS6jpaXA3Fhf3JTWsbpMotykSZMq11fMM9O4cWO5ggeUJbmtL8EQgGt5dzSCIVD2GX4t74743XtI4jPs8RE5RARBEARBqHdq+kItCA+qugBbVnbBU+6Z8DyoLoeLgYEBeXl5dXaOB8kz8zS1MNBFV0fzNlNXR4sWBrrVHCHcj/gMe3xEQEQQBEEQhHpHfKEW6pIIsAmPU3VJlJs3b07nzp2xtbWtVVLVmnh7e1NSUoKVlRWzZs2Sc4zUR6bNm8hJhwF5NINp86pHvwj3Jz7DHh8xZUYQBEEQhHqn/Av1vcODxRdq4WGUB9juzWkgAmzCw6iY9wPAyMio2uoumzZtAmDhwoXY2Nigra2NlpYWq1evrtSOqalppXwj5eXBAX766ada9ac6wcHBrF27FmNjY4qKivD09GTlypVoadXtM3ItLQXeNi2xbGnwzOa7qG/EZ9jjIwIigiAIgiDUO+ILtVCXRIBNuJ/HmbDy+PHj7N69m5MnT6Krq8uNGze4e/dunbT9oKZOncr06dNRq9V069aNw4cP4+npWefnEflq6pb4DHt8xJQZQRAEQRDqpfIv1B3Mm2NurP9MBkOioqJQKBScPn1aXpeVlYWtrS0ACQkJTJkypcY2+vbtS05OTq3PuXv3bhwdHXFwcMDa2prVq1fXuH9t+vAwoqKiSE9Pr/N2H0Z5gG19kBsfdW3O1bBJGskIg4ODCQkJqfb4x3WNhPqhPGFlwLo4pkScImBdHPvS/kStrptqnFeuXMHIyAhd3bKn+UZGRrRq1QooGxVy48YNoOz3rLzU8uHDh1EqlSiVShwdHcnLyyM/P5+ePXvi5OSEnZ0dO3fuBMo+U6ysrHjnnXewsbHBy8uLwsLCGvt09+5dioqKaNasGQAqlYoOHTpgb2/PgAED+Ouvv4CyUs8zZ87Ezc2N9u3bExMTA0BpaSkzZszA1dUVe3t7+XPmypUrdOvWDaVSia2trby/8GgqfoYtG+bI+iA3kVC1joiAiCAIgiAIwmMSERFBly5diIiIqHK7i4sLy5Ytq7GNvXv30rRp01qdr7i4mHHjxvHjjz+SlJTEqVOn5Bus6tSmDw+jPgVE4O8Am+PrzWiorfVANxJ1dY1KS0sfuQ2h7j3uhJVeXl5cvHiR9u3bM2HCBA4fPnzfY0JCQli5ciUqlYqYmBj09PRo1KgRO3bs4OTJkxw6dIhp06YhSWVBm4yMDCZOnEhaWhpNmzZl+/btVbb79ddfo1QqMTExoX379iiVSgBGjRrF4sWLSU5Oxs7Ojrlz58rHlJSUEBcXx9KlS+X133//PYaGhsTHxxMfH8/atWs5f/48mzZtok+fPqhUKpKSkuT2hUf3PDwkqI9EQEQQBEEQBOExyM/PJzY2lu+//57NmzdXuU90dDRvvfWWvP/o0aOxs7PD3t5evqGp+AS5f//+ODs7Y2Njw5o1ayq1l5eXR0lJCc2bNwdAV1cXCwsLAAIDAxk/fjwuLi60b9+e3bt3V+pDcHAwQUFBeHh4YG5uLgcBanoCnZmZibe3N87OznTt2pXTp09z7Ngxdu3axYwZM1AqlWRmZtbJNX3cqnsaXpv3KSIiAjs7O2xtbZk5c6bcpr6+PtOmTcPBwYHjx4+jr6/PJ598goODAx06dODq1atP/oUKGh53wkp9fX0SExNZs2YNxsbGDBkyhLCwsBqP6dy5Mx988AHLli0jJycHHR0dJEni448/xt7enl69enHp0iX598fMzEwOPjg7O2vkHqlo6tSpqFQqrl27RkFBAZs3byY3N5ecnBy6d+8OQEBAAEeOHJGPGThwYKV29+/fz4YNG1Aqlbi7u5OdnU1GRgaurq6EhoYSHBxMSkoKBgYGj3DlBOHxEwERQRAEQRCEx2Dnzp14e3vTvn17mjdvTmJiYo37z58/H0NDQ1JSUkhOTqZHjx6V9lm3bh2JiYkkJCSwbNkysrOzNba//PLL+Pj40KZNG4YNG0Z4eDhq9d83ellZWcTFxbFnzx7Gjx9PUVFRpXOcPn2a//73v8TFxTF37lyKi4uB6p9Ajxs3juXLl5OYmEhISAgTJkygU6dO+Pj4sGTJElQqFW3btn3g6/e0VPU0vKKq3qfLly8zc+ZMDh48iEqlIj4+nqioKAAKCgpwd3cnKSmJLl26UFBQQIcOHUhKSqJbt26sXbv2Sb9E4R5PoqqVtrY2Hh4ezJ07lxUrVsh/Pzo6OvLfaMW/x1mzZvHvf/+bwsJCOnfuzOnTpwkPD+f69eskJiaiUql45ZVX5GPKp+OUn6ukpKTG/jRo0ABvb2+NwEd1ytuu2K4kSSxfvhyVSoVKpeL8+fN4eXnRrVs3jhw5wquvvkpgYCAbNmx4gKskCE+eCIgIgiAIgiA8BhEREQwdOhSAoUOHVjttptyBAweYOHGivFw+t7+iZcuW4eDggL6+PhcvXiQjI4O9e/fSvn17Lly4AMC///1vfvnlF9zc3AgJCSEoKIioqChycnIYPHgwWlpa/Oc//6FZs2YauU3Kvfnmm+jq6mJkZESLFi24evUqS5cuBcpGmVhaWvL7779z7tw58vPzOXbsGIMGDUKpVPLuu+9y5coVoCwnwa5du+TjIiMjH+Iq1j2Fouph5uXrq3oaXlFV71N8fDweHh4YGxujo6ODv7+/fKOpra2Nr6+vvH/Dhg3l0SY1PckXnpyKZWIT572tkbAyLCyMSZMmPVL7Z86cISMjQ15WqVS0adOm7NympnKwdPv27Zw+fZrIyEgyMzOxs7Nj5syZuLq6cvr0aXJzc2nRogUNGjTg0KFDXLhwATMzM40RWNHR0Xz//fdV9uPzzz+Xf5YkiaNHj9K2bVsMDQ1p1qyZPCLqP//5D927dycsLEwj+euqVavkKTp9+vThu+++kwOm//vf/ygoKODChQu88sorvPPOO4wdO5aTJ08+0rUThMdNVJkRBEEQBEGoYzdv3uTgwYOkpKSgUCgoLS1FoVCwZMmSh24zOjqaAwcOcPz4cVq0aIGjoyNHjx7lu+++47///a98gwVgZ2eHnZ0dI0eOxMzMDICcnBz5pn/evHlER0dXGRyo7kmzkZERKpUKtVpN27ZtyczMRK1W07RpU1Qq1UO/rietefPmcsLIcjdv3pSvU1VPwx9Fo0aN0NbWlpcbNGggX/e6OofwaCpWtbKdp836ILc6rTKTn5/P5MmT5akv//jHP+Qpb3PmzGHMmDHMnj1bI9/P0qVLOXToEFpaWtjY2PDGG2+Ql5fH22+/jZ2dHS4uLhgYGGBhYSEHHmvj66+/ZuPGjRQXF2Nvb8+ECRMAWL9+PePHj+f27duYm5sTGhrKgAEDuHPn72lDq1evln93x44dS1ZWFk5OTkiShLGxMVFRUURHR7NkyRIaNGiAvr6+GCEi1HtihIggCIIgCEIdi4yMZOTIkVy4cIGsrCwuXryImZlZjRUXevfuzcqVK+Xle2/ac3NzadasGY0bN0aSJI4dO8a//vUvdu/eLU9JWb58OZaWljg4OODr68uJEycwNjZm165dJCYm8v7775ORkYGvry9paWlYWFhw5swZjh8/jrOzMxs3buTWrVs1vra7d+9SUlKCnp4eL730EiYmJiiVSjmHSPlUkYYNG2rcTNUX+vr6mJiYcPDgQaAsGLJv3z66dOlSq+Orep/c3Nw4fPgwN27coLS0lIiICDkfg/BsKE9YqaWg2oSVP/74I+7u7jg6OtKrVy85f8f9cu+sWrWK3NxcXnvtNX799Vd++OEHduzYgaurK5MmTcLOzo4jR44QEhIiT2NJTEzk9u3bfPbZZ0RERMijto4fP05KSgrLly/HwMCA8PBw9u3bR2pqqtxPY2Nj4uPjsbCwYPz48fKUnIYNGzJ48GCKi4tp2bIly5YtQ09PD5VKJQdD2rZtS2hoKL/88gsJCQnk5+czduxYvvnmG65evYqhoSGenp5oaWnx+eefk5KSQmpqKocOHcLQ0JCAgABSU1M5deoUMTExcqBREOorERARBEEQBEGoYxEREQwYMEBjna+vb43TZj799FP++usvbG1tcXBw4NChQxrbvb29KSkpwcrKisLCQiRJYv78+VhaWsr7vP3225ibm1NUVERsbCxTpkxh69at+Pj44OzszPDhwxk2bBg///wz48aNQ1tbm+XLl+Pk5ERiYiJKpZJ9+/ZV2b/s7Gy5OoWRkREtW7YEykZAGBgYUFJSwh9//MEHH3wAgK2tLdHR0XLJ0Ppkw4YNzJ8/H6VSSY8ePZgzZ06t85xU9T6ZmJiwaNEiPD09cXBwwNnZmX79+j3mVyE8DoWFhXK5W6VSyWeffSZv69KlCydOnODUqVMMHTqUL7/8ErVa4q+Cu8SrUvlu43ZOnPi1Vrl3Bg4cSHx8PElJSVhZWWlMc7ly5QqxsbHs3r2bWbNmVdnPmnIUxcXFsXz5ctLT08nMzOSHH34AyvLZuLi4kJaWRvfu3eUcOVVVmPHz88PFxYXw8HBUKhXvv/8+rVq14tChQ5U+mwThWSamzAiCIAiCIDwAtVoiK7uAa3l3aGGgW+XQ+qpuGKZMmSL/XP4018PDQx4mr6+vz/r16ysdVzHHxE8//QRA48aN6dGjB8nJyRr7Xrhwgby8PBo2bEjjxo3x8vLCxcVF3t6rVy9WrVpFYGAgzs7OnDlzht9//x0dHR2USiWlpaWYmJhU6mfTpk354osvmD59OsXFxfj5+WFpaUl+fj6nTp3CwsIChUKBoaGhPCrk9ddfZ8aMGUyfPp3AwMD7XdYnytrausr3KDo6Wv7ZyMhIvva1eZ+GDRvGsGHDKq3Pz8+vdtnPzw8/P7+HeAXC41I+YqJcWFgYCQkJAPzxxx8MGTKEK1eucPfuXUxNzdiX9ic7Tl1C3dyGceFJfNTXSs69A9VXf0lNTeXTTz8lJyeH/Px8+vTpI5+zf//+aGlpYW1tXW0VooiICN5//33g7xxFzs7OALi5uWFubg6U/V7Gxsbi5+eHlpYWQ4YMAWDEiBEMHDiwygozgwYNqpNrKQjPAhEQEQRBEARBqCW1WmJf2p98sfc37pSo5eSL3jYt6yzfQG1oaWmxdetWevbsyeeff87HH38MlCUvjYqKwsHBgbCwMI0b/KpIkoSNjQ3Hjx+v9bkrVqfo27dvvcghUpsglSA8qsmTJ/PBBx/g4+NDdHQ0sz6ZzRd7f6NULaGl25A7JeqyZRRybph7c/KUl6uu6W+14jHlSUwrul+OontzA90vkbAgvMjElBlBEARBEIRaysoukIMhgHwDlJVd8MT70rhxY/bs2UN4eLg83D4vLw8TExOKi4sJDw+X9zUwMCAgIKDSaAQLCwuuX78uB0SKi4tJS0ur8bwVq1O89NJLmJmZsW3bNnlbUlJSXb7M+yoPUgWsi2NKxCkC1sWxL+1P1OrKN5KC8Chyc3N59dVXgbIkpHdL1fJnQbk7JWpKS+//u1fd32pt3C9HUVxcHOfPn0etVrNlyxY5P45arZarPW3atIkuXbpUW2EGyj43Kk53u3dZEJ4HIiAiCIIgCMITcfXqVYYPH465uTnOzs507NiRHTt2PO1uVWnp0qXcvn1bXtbX1wfgWt6dKm+AruVVnzz09u3b+Pv7Y2dnh62tLV26dKk0jeJhvfzyy+zbt48FCxawa9cu5s+fj7u7O507d9bILTJ06FCWLFmCo6OjRonOhg0bEhkZycyZM3FwcECpVHLs2LEqz/X111+jVCqxtbWltLRUrk5RHpBxcHDAxsaGnTt31slrq636FKQSnm/BwcEMGjQIZ2dnjIyMaKitha6O5u2Uro4W2tr3H3lR3d9qbdwvR1F5slYrKyvMzMzkfZs0aUJcXBy2trYcPHhQzo+yfv16ZsyYgb29PSqVSl4fGBjI+PHjUSqVFBYWMm7cOLy9vfH09Hyg/gpCfaaoahjWs8jFxUUqn98nCIIgCEL9IkkSnTp1IiAggPHjxwNl+S527drF5MmTNfYtKSlBR+fxzOotLS3VKIFaHVNTUxISEjAyMgLKAiL5+fmcu55PwLo4jaCIro4W64PcMDfWr7KtL774guvXr/PVV18BcObMGUxNTTWGxZd72Kkfj/Oa1XcnzmUzJeJUpfXLhjnSwbz5U+iRUB89jmlV9WUK3ZOWnZ1Nz549Afjzzz/R1tbG2NgYKBud0rBhwzo9X3BwMGvXrsXY2JiioiI8PT1ZuXIlWloP/mw/LCwMLy8vWrVqVad9FO5PoVAkSpLkcv89nywxQkQQBEEQhMfu4MGDNGzYUA6GALRp00YOhoSFheHj40OPHj3o2bMnBQUFBAUF4ebmhqOjozzq4Pbt2wwePBhra2sGDBiAu7u7nPAwIiJCHoUxc+ZM+Tz6+vpMmzYNBwcHFi5cSP/+/eVtP//8c6UnrcuWLePy5ct4enpqPAn95JNPGNCrM9fDZ6AozAFAq+gW6p//xZC+nri6unL06NFKr/3KlSvyMHsom6aiq6tLVlYWlpaWBAYG0r59e4YP9+eL77eidO2Ah5s9A+duYF/an5w48SsdO3bE0dGRTp06cebMmSqvWVhYGP3796d3796YmpqyYsUKvvrqKxwdHenQoQM3b94kMzMTJycnuS8ZGRkay8+iFga6VT6lb2FQOeAkvJge17QqLS0F3jYtWR/kxrJhjqwPcnvugyEAzZs3R6VSyeV6p06dKi/XFAwpz6tS3XJNys+Rnp5OSkoKhw8ffqi+h4WFcfny5Yc6Vng+iYCIIAiCIAiPXVpa2n1vvE+ePElkZCSHDx9m4cKF9OjRg7i4OA4dOsSMGTMoKCjg22+/pVmzZqSnpzN//ny51OTly5eZOXMmBw8eRKVSER8fT1RUFFBWatLd3Z2kpCRmz57N6dOnuX79OgChoaEEBQVp9GPKlCmVyksWFBTQoUMHkpKSeLtPDzqXJrNsmCMt0jfzxWeziI+PZ/v27YwdO7bS6woKCmLx4sV07NiRTz/9lIyMDHnb2bNnmTZtGqdPnyY5LZ1lq8OwGPs1rb3f5cLBcL7Y+xt6LVoTExPDqVOnmDdvnpxA9d5rBmWVK3744Qfi4+P55JNPaNy4MadOnaJjx45s2LCBtm3bYmhoKCdBDQ0NZfTo0Q/0XtY3ps2b8FFfKzkoUv6U3rR5k6fcM6G+eJzTqrS0FJgb69PBvDnmxvrPfTCkOomJiXTv3h1nZ2f69OnDlStXgLIKTf/85z9xcXHhm2++0VheuHAhZmZmconiW7duaSxX5e7duxQVFdGsWTMAVCoVHTp0wN7engEDBvDXX39Vuz4yMpKEhAT8/f3laUCCIAIigiAIgiA8cRMnTsTBwQFXV1d5Xe/evXn55ZcB2L9/P4sWLUKpVOLh4UFRURG///47sbGxDB06FABbW1vs7e0BiI+Px8PDA2NjY3R0dPD39+fIkSNAWWUHX19foKyqwsiRI9m4cSM5OTkcP36cN9544779bdiwIW+99RYALi4u3Lp+mQ7mzTkRE82UKZNRKpX4+Phw69atSvlBlEol586dY8aMGdy8eRNXV1d+++03oKwkp52dHVpaWrQ2b4++mRKFQoHeK2bc+etP7pSoybp8g0GDBmFra8vUqVM1kp5WvGYAnp6eGBgYYGxsjKGhIW+//TYAdnZ2crnPsWPHEhoaSmlpKVu2bGH48OG1fNfqpxf1Kb1Qew+T+0eoPUmSmDx5MpGRkSQmJhIUFMQnn3wib7979y4JCQlMmzZNY3nOnDl4eHiwZ88eADZv3szAgQNp0KBBpXOU5zAyMTGhffv2cinjUaNGsXjxYpKTk7Gzs2Pu3LnVrvfz88PFxYXw8HBUKhV6enqP+9IIz4AXc7KpIAiCIAhPlI2NDdu3b5eXV65cyY0bN3Bx+Xs6cZMmfz/RlySJ7du3Y2Fh8cjnbtSokUbekNGjR/P222/TqFEjBg0aVKvcGw0aNJBLVGpra8tDvdVqNSdOnKBRo0Y1Hq+vr8/AgQMZOHAgWlpa7N27F19fX408Io11dWioUzbcXKFQgLosJ8GGFYvx9PRkx44dZGVl4eHhIR9T8ZqBZrlOLS0teVlLS0vus6+vL3PnzqVHjx44OzvTvPmzn2ej/Cl9dXlchBdb+bSqe3P/iGlVdePOnTukpqbSu3dvoCxXk4mJibx9yJAhGvtXXB47dixffvkl/fv3JzQ0lLVr11Z5jqlTpzJ9+nSKi4vx8/Nj8+bNvPHGG+Tk5MhVcQICAhg0aBC5ublVrheEqogRIoIgCIIgPHY9evSgqKiI7777Tl5XsYrLvfr06cPy5cspT/5+6lRZ0szOnTuzdetWAHkuOYCbmxuHDx/mxo0blJaWEhERIX8ZvlerVq1o1aoVCxYsqHa6SG3LS3p5ebF8+XJ5uXwqSkVHjx6Vh3HfvXuX9PR02rRpU2k/fd0GDHB8TZ76oVDAR32tKC26LecgCQsLu2+f7qdRo0b06dOH995775mfLiMItSGmVT1ekiRhY2Mj5xFJSUlh//798vZ7A7cVlzt37kxWVhbR0dGUlpZia2tb47kaNGiAt7e3PAJQEB6VCIgIgiAIgvDYKRQKoqKiOHz4MGZmZri5uREQEMDixYur3H/27NkUFxdjb2+PjY0Ns2fPBmDChAlcv34da2trPv30U2xsbDA0NMTExIRFixbh6emJg4MDzs7O9OvXr9r++Pv707p1a6ysrKrcXtvyksuWLSMhIQF7e3usra1ZtWpVpX0yMzPp3r07dnZ2ODo64uLiIk/h0bxGoGzdlPVBbgT72PBqMz28bVoyc+aHfPTRRzg6Oj5QEsKa+Pv7o6WlhZeXV520Jwj1mZhW9Xjp6upy/fp1jh8/DkBxcbHG1L77GTVqFMOHD2f06NEoFApGjBghbyspKeHLL7/k+++/B8qCL0ePHpXzITVr1oyYmBgA/vOf/9C9e/dq1wPk5OSwYMGCWvctODiYV199FaVSiaWlJe+99x5qtfr+B95HWFgYkyZNqvJ8ISEhNR4bGBhIZGTkI/fhXtHR0dWWXX+eibK7giAIgiA8M0pLSykuLqZRo0ZkZmbSq1cvzpw588BlHidNmoSjoyNjxox5TD2t30JCQsjNzWX+/PlPuyuCIDzDgoOD0dfXp1evXkyZMoXc3FxKSkr45z//yTvvvIOHhwchISHy9Mh7l6GsdK+ZmRlXrlzhtdde4x//+AfHjx9HT0+Pn376idGjR5OTk4OlpaUcKF+3bh16enpypZvbt29jbm5OaGgozZo1q3b9pEmTCA8Pp02bNvI5avP6pk+fjlqtplu3bsyfP79SsPxBS5+HhYWRkJDAihUrqj1fdQIDA3nrrbfw8/Or9fkqqq78fG3O/ShE2V1BEARBEJ5LarXEuev5nDiXzbnr+Y9cyrImt2/fpkuXLjg4ODBgwAC+/fbbBw6GODs7k5ycrPEU8kUyYMAANmzYwPvvv/+0uyIIQj3zoJ/nwcHBTJ8+HaVSyZEjR0hKSiItLY133nkHKBt1UDH4ce8yQGxsLH5+fjRt2hSAvn37yolWIyIimDp1Kr169UKlUhEaGkpWVhadOnWiU6dO6OnpceLECT744AO0tLQYNmwY7dq1Y9OmTZw4cYLk5GT69euHu7s7bm5u3LlzB39/f2JiYrC2tn6kCjf3VtD55ZdfcHR0xM7OjqCgIO7cKUvaGx8fT6dOnXBwcMDNza3SdMw9e/bQsWNHbty4obE+MzMTb29vnJ2d6dq1K6dPn5a3HTlyhE6dOmFubi6PFomOjpaTf0NZ4L98mqWpqSkzZ87EycmJbdu2sWzZMqytrbG3t2fo0KFkZWWxatUqOXlt+eiaF4FIqioIgiAIwkNTqyX2pf0pl7Qsn5v/uIajGxgY8KgjQstL9b6oduzY8bS7IAhCPfSkP88BJk+ezE8//cTevXvldUOHDmXevHm89dZbJCcnExQUJN+gW1paEhMTg46ODgcOHODjjz+WE3arVCpOnTqFrq4uFhYWTJ48GR0dHebMmUNiYiKGhoZ4enri6OiIgYGBXOGmf//+961ws3HjRi5cuMAbb7whV7iBvyvmFBUV0a5dO3755Rfat2/PqFGj+O6775gwYQJDhgxhy5YtuLq6cuvWLY1RKTt27OCrr75i7969cqCl3Lhx41i1ahXt2rXj119/ZcKECRw8eBCAK1euEBsby+nTp/Hx8anVaJHmzZtz8uRJoCyX1vnz59HV1SUnJ4emTZsyfvz4xzpCpL4SI0QEQRAEQXhoWdkF8pdnKCtl+cXe38jKLnjKPRME4UFVlb/B2NhY46lzdbKystDT00OpVGJtbc348ePrJNeC8OQ8jc/z5cuXc/bsWdq3by+vs7e3Jysri4iICPr27auxf25ubrVlyHv27ImhoSGNGjXC2tqaCxcu8Ouvv8ol2Rs2bFipwk1oaCgAoaGh1SaZnjp1KiqVimvXrlFQUMDmzZvlbeXtnTlzBjMzM/l1BAQEcOTIEc6cOYOJiYlcYv6ll16Sp9YcPHiQxYsXs2fPnkrBkPz8fI4dO8agQYNQKpW8++67XLlyRd7ev39/tLS0sLa25urVq7W61hVfu729Pf7+/mzcuPGBpvo8j0RARBAEQRCEh3Yt745GKUso+xJ9Le/OU+qRIAgPq0mTJqSmplJYWAjAzz//LFc4uldVCX7btm2LSqUiOTmZ9PR0oqKiHmt/hbpVnz7PfXx8mD59OsOGDdNYP3v2bDw9PUlNTeXHH3+kqKhdVU8IAAAgAElEQVRI3lax7HjF8ujVqYsKN/dW0HkQbdu2JS8vj//973+VtqnVapo2bSpX7lGpVPz222/y9oqvtTwnqI6OjkYQsuK1ubeve/bsYeLEiZw8eRJXV9c6S9j9LBIBEUEQBEEQHloLA125lGU5XR0tWhjoVnOEIAj12b35GyrekAYHBzNy5Eg6d+7MyJEjq21DR0eHTp06cfbsWdauXYurqysODg74+vpy+/ZtSktLMTMzQ5IkcnJy0NbWlm8yu3XrRkZGBocPH0apVKJUKnF0dKxVGWzh0dSnz/OgoCDmzJmDnZ2dxvrc3NwHKkPu7u7O4cOHyc7Opri4mG3btmlsr1jh5n4qVri5l4WFBVlZWZw9exb4u7KNhYUFV65cIT4+HoC8vDw5+NCmTRu2b9/OqFGjKlXleemllzAzM5P7K0kSSUlJNfavTZs2pKenc+fOHXJycvjll1+q3E+tVnPx4kU8PT1ZvHgxubm55Ofn17rc/PNGBEQEQRAEQXhops2b8FFfK/lLdPmcc9PmD//UTKh/oqKiUCgUGkn97uXh4VFtfpexY8eSnp7+yP2Ijo7G0NAQpVKJlZUVc+fOfeQ2BU1Dhw5l8+bNFBUVkZycjLu7u8b29PR0Dhw4QERERLVt3L59m19++QU7OzsGDhxIfHw8SUlJWFlZ8f3336OtrY2FhQXp6enExsbi5ORETEwMd+7c4eLFi7Rr146QkBBWrlyJSqUiJibmvtVAhEdXnz7PX3vtNaZMmVJp/YcfPlgZchMTE4KDg+nYsSOdO3euVGrd39+fv/76q9JIlIrKE43a2tpSWlrKhAkTKu3TqFEjQkNDGTRoEHZ2dmhpaTF+/HgaNmzIli1bmDx5Mg4ODvTu3Vtj5IalpSXh4eEMGjSIzMxMjTbDw8P5/vvvcXBwwMbGhp07d9b4Wlu3bs3gwYOxtbVl8ODBODo6VrlfaWkpI0aMkEvBT5kyhaZNm/L222+zY8eOFy6pqii7KwiCIAjCI1GrJbKyC7iWd4cWBrqYNm/y2BLwCU/HkCFDuHz5Mj169Kg2CFFVOU2ovsTjw4iOjiYkJITdu3dTUFCAUqlky5YtODk51Un7Lzp9fX3y8/NxcXFh4sSJZGRk4OXlJV/z4OBgFAoFc+bMqXRsVlYWVlZWWFhYoFAo6NevH8HBwRw+fJhPP/2UnJwc8vPz6dOnD6tWrWLhwoW8/PLLnD9/ng4dOrB27Vo++eQTli1bxtatW1m0aBE7duzA39+fgQMH8tprrz2FK/LiedE+zyMjI9m5cyf/+c9/nnZXnnui7K4gCIIgCM8lLS0F5sb6dDBvjrmx/nP95flFlJ+fT2xsLN9//71GMsHCwkKGDh2KlZUVAwYMkPNOQNmN9bRp03BwcOD48eMao0fee+89XFxcsLGx0bixNjU1Zc6cOTg5OWFnZ1fjaBQomw/v7OzM2bNnCQ4OJiQkRN5ma2tLVlYWABs2bMDe3h4HBwd5msf169fx9fXF1dUVV1dXjh49ilqtpl27dly/fh0oG1b+j3/8Q15+kVSXvwFqzplQnkPk1KlTBAcHAxAYGMiKFStISUlhzpw58tPxbt26ERMTQ1xcHH379iUnJ4fo6Gi6du0KwKxZs/j3v/9NYWEhnTt3vu/vg1A3Htfn+ZMsz15bkydPZtasWcyePftpd0V4ikRARBAEQRAEQajWzp078fb2pn379jRv3lwuW/zdd9/RuHFjfvvtN+bOnatRzrigoAB3d3eSkpLo0qWLRnsLFy4kISGB5ORkDh8+THJysrzNyMiIkydP8t5772kEOKqSnZ3NiRMnsLGxqXaftLQ0FixYwMGDB0lKSuKbb74B4P3332fq1KnEx8ezfft2xo4di5aWFiNGjCA8PByAAwcO4ODggLGx8YNdsDr2sJVfUlJS5BwcL7/8MmZmZiiVSnr16sWuXbtYtGgRUBawiIyM1Dg2KCgIb29vVq9eXWXb+vr6te5/Xl4eJiYmFBcXy9cWwM3NjWPHjqGlpUWjRo1QKpWsXr2abt26AZCZmYmdnR0zZ87E1dVVBESeYeXlfAPWxTEl4hQB6+LYl/bnUw+KVFXhRnjxiICIIAiCIAiCUK2IiAiGDh0KlOWXKM8dceTIEflG3d7eHnt7e/kYbW1tfH19q2xv69atODk54ejoSFpamkZukYEDBwLg7Owsj/C4V0xMDI6Ojnh5eTFr1qwaAyIHDx5k0KBBGBkZAfDyyy8DZcGOSZMmoVQq8fHx4datW+Tn5xMUFMSGDRsAWLduXa0SLT5uD1v5xc7OTq5O4ePjw5IlS1CpVBw4cAAfHx9mzZpV7Tlfe+01evfuXSf9nz9/Pu7u7nTu3BlLS0t5va6uLq1bt6ZDhw4AdO3alby8PDmJ5tKlS7G1tcXe3p4GDRrwxhtv1El/hCdPlGcX6rMXu+iwIAiCIAiCUK2bN29y8OBBUlJSUCgUlJaWolAoWLJkSY3HNWrUqMq8IefPnyckJIT4+HiaNWtGYGBglWUzayqZ2bVrV3bv3q2x7n7lJu+lVqs5ceIEjRo10livr6/PK6+8wsGDB4mLi9MY0fA0lVd+8fPzkyu/lCc9DA4OJjMzk3PnzvH666/XmOy0XFhYGAkJCaxYsQIoCxAtWrSIVq1asXv3bnn0ycWLFwkODubSpUvMnTtXngZT/j/AkiVL2Lp1K3fu3JGDYAUFBQwePJg//viD0tJSFi1axJAhQyr1o2LixuHDhzN8+HB5efny5Q92kYR6q6ZyvubGtR9tJAiPgxghIgiCIAiCIFQpMjKSkSNHcuHCBbKysrh48SJmZmbExMTQrVs3Nm3aBEBqaqrG1Jfq3Lp1iyZNmmBoaMjVq1f56aef6qSfpqamnDx5EoCTJ09y/vx5AHr06MG2bdvIzs4GygI8AF5eXho33CqVSv557NixjBgxgkGDBtVZMthH9aiVXyQJrt4qqjZ/Q1ZWFnFxcezZs4fx48fLAaW4uDi2b99OcnIy27Ztq1RFaP/+/WRkZBAXF4dKpSIxMZEjR46wb98+WrVqRVJSEqmpqXh7e9fh1RCeNfWpnK8g3EsERARBEARBEIQqRUREMGDAAI11vr6+RERE8N5775Gfn4+VlRWfffYZzs7O923PwcEBR0dHLC0tGT58OJ07d66Tfvr6+rJlyxYaNWpE7969adCgAd999x02NjZoaWnh5uaGg4MDAwcOxMrKit9//52EhATs7e2xtrZm1apVXL58GT8/P3x8fMjPz7/vdJmwsDAuX74sL5uamnLjxo2H6n9WVhZ6enpyzg+lUilP3YGyKUlZWVlERETQt2/fSsf7+PhUW5ZWrZa4lFPIioMZcv6GlMu5VKw0OXjwYLS0tGjXrh3m5uZyvo7evXvTvHlz9PT0GDhwILGxsRpt79+/n/379+Po6IiTkxOnT58mIyMDOzs7fv75Z2bOnElMTAyGhoYPdV2E50N9KucrCPcSU2YEQRAEQRCEKh06dKjSuilTpsg/V6w6U1F+fr7GcnR0tPxzWFhYlcdUzBni4uKicUw5Dw8PPDw8Kq3X09OjSZMmlc4L0LJlS7kcsLe3N2vXrq2U6LWkpAQdHR0iIyNJSEjAwcFBI99FVcLCwrC1taVVq1Y17ldb5RVaqlNe+SU6Oloe8VKupsovWdkFpPyRg0H7sgDInRI1u0/9Qcemf09JUig0K4mUL9+7/vbt2yiVSgoLC2nZsiX5+fk0a9YMKBtN0rBhQ3nfkydPMnLkSFasWIFSqeSdd97By8urzq6X8OzQ0lLgbdMSy5YGL0w5X+HZIUaICIIgCIIgvIDqYxnMx2nevHnExsYyZswYZsyYQVhYGD4+PvTo0YOePXuSlZVFy5Yt8fX1ZcGCBUyfPl1O6nlvPovywIm/v78cIICyvBf3lg0uKCggKCgINzc3HB0d2blz5wP1+86dO7i4uBAeHo6rq6ucdPTatWtYWlqyZs0aoqKi5Lwf954v8ocdlEoSt84lkbFxNqe/n8EfR7Zwu7hUPse2bdtQq9VyLhILCwugLIHrzZs3KSwsJCoqCi8vL1QqFXp6eowfP55hw4bRqlUrYmNjadiwIZcuXeLatWtcvnyZxo0bExsby6ZNmzA2Nq40okZ4sYjy7EJ9JQIigiAIgiAIL5j6WgbzURQWFmpMOdmyZYvG9s8++0wOLJQnhT158iSRkZEcPnwYKCv7e+HCBdLT08nKykKlUpGcnIy/v79GW35+fnJb5QGC8uPvLRu8cOFCevToQVxcHIcOHWLGjBkUFFSurpGZmanR//KEow0bNiQhIYH09HQ5h8jdu3dJSUnhp59+Yty4cRrt3Xu+776ci5a6LPhRcPks/xg2m9Yew2jc4O/8KK+//jpubm688cYbrFq1Sk426+bmhq+vL/b29vj6+uLi4qLRZwsLCyRJwtraGjs7O/z8/DAzMyMlJYUWLVpw69Ythg0bhpubm0YAac+ePfTv319u5+eff640NUsQBOFJEFNmBEEQBEEQXjDVlcG0bGnwzFZ90NPTq3HKSVV69+4tl+Kt6MCBA4wfPx4dnbKvylXtU5WKZYN/+OEHoCzPxq5du+QASVFREb///jtWVlYax1Y3ZeZf//oXTk5OlJSUcOXKFdLT07G0tMTNzQ0zMzOCg4NxcnJizZo1VZ6vtPgu8+bO4auNu5GKi2jyUlMWfDYVb5uWQPVTmAIDAwkMDKxyW35+vlxpxtramg8//BA/Pz+grFJPnz59uHXrFvr6+vI0pv3798tTlyRJYtq0aVy/fh1jY2NCQ0MJCgqqzSUWBEGoUyIgIgiCIAiC8IIRZTDL1JR742FUVTZYkiS2b98uT0Mpp1ZLZGUXcC3vDnf/qjxiBO5fprgqVZ1PrZa49Xs6cXo3+TLI7annb1AoFIwcOZKNGzcyevRojh8/rpFEVhAE4UkRU2YEQRAEQRBeMKIMZs169+7N6tWr5aBGebneigwMDMjLy7tvW3369GH58uVyVZdTp05VmrI0bWsS+UUllaYsVVem2MLCgnPnzsmJaCtOD6rqfFpaCloYNKLlS43qPH+Djo4OanVZcE2tVnP37t1aHTd69Gg2btxIREQEgwYNkkfjCIIgPElPNSCiUCjWKRSKawqFIrXCupcVCsXPCoUi4///b/Y0+ygIgiAIgvC8eR7LYN6bQ2TWrFkP3dbYsWN5/fXXsbe3x8HBgU2bNlXaJzAwkPHjx2skVa3K7NmzKS4uxt7eHhsbG2bPnl1pytLdUjUXL5zH1t5B7v+yZcuqLVOsp6fHt99+i7e3N87OzhgYGMilbas63+NkampKYmIiALt27aK4uLjK/e4NILVq1YpWrVqxYMGC+5Y4FgRBeFwUFWuQP/GTKxTdgHxggyRJtv+/7kvgpiRJixQKxSygmSRJM+/XlouLi5SQkPB4OywIgiAIglDHFAoF/v7+bNy4ESgrAWtiYoK7uzu7d+9m165dpKenP9INflXUaomQlauJi0/gy38trfU0iri4OD788EMuXbqEgYEBJiYmLFq0SK5+UlthYWEkJCSwYsWKh30JlXh4eMh5KuqzE+eymRJxqtL6ZcMc6WDevFZt5Ofno6+vjyRJTJw4kXbt2jF16tS67mq1goOD0dfXZ+TIkfTr14/CwkK8vb1ZuXKlnDekYg6R7du38/HHH6Onp8fx48fR09Nj8+bNLF26lBMnTjyxfguC8HQoFIpESZLq3YfzUx2bJknSEYVCYXrP6n6Ax///vB6IBu4bEBEEQRAEQXgWNWnShNTUVAoLC9HT0+Pnn3/m1Vdflbf7+Pjg4+NT6biSkpJHmmZw7zSK2rh69SqDBw9m06ZNdOrUCYDY2FgyMzMfOCBSWxVzbbQw0H3q+S/qQvmUpYp5XB50ytLatWtZv349d+/exdHRkXffffeR+vSg17k8qSqgEdBYvHix/HN5MATA19cXX19fjTZiY2N55513HqnfgiAIj6I+5hB5RZKkK///85/AK0+zM4IgCIIgCI9b37592bNnDwAREREMGzZM3hYWFsakSZOAv6dpuLu78+GHHxIXF0fHjh1xdHSkU6dOnDlzRj5m4MCBeHt7065dOz788EO5vdDQUNq3b4+bmxtHjx6V1//444+4u7vj6OhIr169uHr1aqV+rlixgoCAADkYAtClSxe5hGpWVhY9evTA3t6enj178vvvvwOwbds2bG1tcXBwoFu3bvKxly9frrKP7733Hi4uLtjY2DBiwjQC1sURtGQzbp5vsC/tT3bsiEJPT4+7d+9SVFSEubm5Rj/VajWBgYF8+umnD/hOPBl1MWVp6tSpqFQq0tPTCQ8Pp3Hjxg/dn6dRhtnZ2Znk5GRGjBjx2M4hCIJwP/U6e5EkSZJCoaj2k1ihUIwDxkFZ/XRBEARBEIRn0dChQ5k3bx5vvfUWycnJBAUFERMTU+W+f/zxB8eOHUNbW5tbt24RExODjo4OBw4c4OOPP2b79u0AqFQqTp06ha6uLhYWFkyePBkdHR3mzJlDYmIihoaGeHp64ujoCJQFNk6cOIFCoeDf//43X375Jf/61780zp2WlkZAQEC1r2Py5MkEBAQQEBDAunXrmDJlClFRUcybN4///ve/vPrqq+Tk5Mj7V9XH1q1bs3DhQl5++WUy/szFpVN3Wr9pSROTf5B/+Sxf7P0NiwsHsbW1JT4+npKSEtzd3eU2S0pK8Pf3x9bWlk8++eSh35PHSUtLgbdNSyxbGtSLkS9Powxzed4RQRCEp6k+BkSuKhQKE0mSrigUChPgWnU7SpK0BlgDZTlEnlQHBUEQBEEQ6pK9vT1ZWVlERETQt2/fGvcdNGgQ2traAOTm5hIQEEBGRgYKhUIjoWXPnj3lRJvW1tZcuHCBGzdu4OHhgbGxMQBDhgzhf//7H1AWaBkyZAhXrlzh7t27mJmZ3bff7u7u3Lp1Cy8vL7755huOHz/ODz/8AMDIkSPlUR+dO3cmMDCQwYMHM3DgwBr72Lp1a7Zu3cqaNWu4dfsOt69eovDaBRq3NEf35VbkXD5PYkI8H37wAUeOHKG0tJSuXbvKbb777rsMHjy43gZDymlpKTA31q8XZY5FGWZBEF5U9XHKzC6g/NFDALDzKfZFEARBEAThifDx8WH69Oka02Wq0qTJ39MqZs+ejaenJ6mpqfz4448UFRXJ23R1/85Hoa2tLZeQrc7kyZOZNGkSKSkprF69WqOtcjY2Npw8eVJe/vXXX5k/fz65ubk1tr1q1SoWLFjAxYsXcXZ2Jjs7u9o+nj9/npCQEH755Rf2x/zKy5buSCVlpVwNTO0oyExAr5EuvXr1IjY2ltjYWI2ASKdOnTh06FCV/ReqJsowC4LwonraZXcjgOOAhUKh+EOhUIwBFgG9FQpFBtDr/5cFQRAEQRCea0FBQcyZM+eBkpPm5ubKCVjDwsLuu7+7uzuHDx8mOzub4uJitm3bVmVb69evr/L4iRMnEhYWxrFjx+R1t2/fln/u1KkTmzdvBiA8PFwOVGRmZuLu7s68efMwNjbm4sWL1fbx1q1bNGnSBENDQ/RK8rmbdRKd/59K0szcnvzEXXh27YyxsTHZ2dmcOXMGW1tb+fgxY8bQt29fBg8efN8gkFDmeSzDLAiCUBtPu8pMdY9Aej7RjgiCIAiCIDxlr732GlOmTHmgYz788EMCAgJYsGABb7755n33NzExITg4mI4dO9K0aVOUSqW8LTg4mEGDBtGsWTN69OjB+fPnKx3fsmVLtmzZwsyZM7l06RItWrTAyMiIzz77DIDly5czevRolixZgrGxMaGhoQDMmDGDjIwMJEmiZ8+eODg4oFKpquyjg4MDjo6OWFpa0rp1azy6daVjN3O6venISzoOOK7/iO7duwNlU43+/PNPFArN3BsffPABubm5jBw5kvDwcLS06uOg6PqjvuU0EYT6TFtbGzs7OyRJQltbmxUrVmgkmq6Nzz//nI8//lhe7tSpk0ag+X5MTU0xMDBAW1ub0tJSFixYQL9+/ardPycnh02bNjFhwgSgLAH2sWPHGD58+AP1+3mkkKTnI/WGi4uLlJCQ8LS7IQiCIAiCIAiPzcKFC9m0aRPa2tpoaWmxevVqjaSygiA8Xvr6+nJJ6f/+9798/vnnHD58uFbHSpKEJEm89NJLGmWpH5SpqSkJCQkYGRlx5swZvLy8uHDhQrX7Z2Vl8dZbb5GamgpAdHQ0ISEh7N69+6H78KAUCkWiJEkuT+yEtSTC5YIgCIIgCHVMrZY4dz2fE+eyOXc9/7GWLxVeHMePH2f37t2cPHmS5ORkDhw4QOvWrZ92t4RnVFZWlsZ0MygbKRYSElLl/qtWrWLDhg21ajsnJ4dvv/1WXo6Ojuatt956+M4Ca9aswdLSEktLS9zc3IiNja1yv5rOZWpqyo0bN6p87fcTGBhIZGQkAB4eHiQkJHDr1i2aNWsm77NkyRJcXV2xt7dnzpw5QNl1trCwYNSoUdja2jJmzBgKCwtRKpX4+/sDZUGWmtqoyb19+Oqrr7C1tcXW1palS5cCMGvWLDIzM1EqlcyYMYNZs2YRExODUqnk66+/fqDr8Lypj1VmBEEQBEEQnllqtcS+tD/lMqbl+Ri8bVqKKQjCI7ly5QpGRkZyMlojIyOg7CYvICCAH3/8Uc4NY2lpyc2bNwkKCuLcuXM0btyYNWvWYG9vj52dHTExMRgaGmJkZMTXX3/NqFGjGDVqFCNHjmT+/PksW7ZMnlLVpUsXVq5ciYODw1N77cLTVVJSwvjx42u9f3lApHyKxqPavXs3q1evJjY2FiMjI06ePEn//v2Ji4ujZcuWdXKO2iosLCQhIQE/Pz/++usvDh48CMD+/fvJyMggLi4OSZLw8fHhyJEjvP7662RkZLB+/Xo6dOgAwLZt26qcNlhdG926dau0r6enJ5Ikce7cObZu3QqUlbMODQ3l119/RZIk3N3d6d69O4sWLSI1NVU+59MYIVJfiREigiAIgiAIdSgru0AOhkBZ+dIv9v5GVnbBU+6Z8Kzz8vLi4sWLtG/fngkTJmgM0y+/SXzvvffkJ/xz5szB0dGR5ORkPv/8c0aNGgWUlUE+evQoaWlpmJubExMTA5SNQOnUqRNjxoyRk/T+73//o6ioSARDXkAeHh7885//xMXFhW+++UZj9MjZs2fp1asXDg4OODk5kZmZqXHsvSMSAPLz8/Hz88PS0hJ/f3/KUzckJibSvXt3nJ2d6dOnD1euXKnUl8WLF7NkyRI5COjk5ERAQAArV64EYN++fVhaWuLk5CSX/gbIzs7Gy8sLGxsbxo4dS8V0ESUlJfj7+2NlZYWfn5+cIHrevHm4urpia2vLuHHjuDfFhJ6eHi4uLkRGRrJv3z5GjRqFJEns37+f/fv34+joiJOTE6dPnyYjIwOANm3ayMGQmtTUxr0OHTpEamoqKSkpTJo0ifz8fGJjYxkwYABNmjRBX1+fgQMHyn/fQtVEQEQQBEEQBKEOXcu7IwdDyt0pUXMt785T6pHwvNDX1ycxMZE1a9ZgbGzMkCFD5MDFwIEDAXB2diYrKwuA2NhYRo4cCUCPHj3Izs7m1q1bdO3alSNHjnDkyBHee+89UlJSuHTpEs2aNaNJkyYMGjSI3bt3U1xczLp16wgMDHwKr/bp09bWRqlUYmtry6BBgzQqKt1P+dSMupSVlYWenh5KpRJra2vGjx+PWq2udv+oqCjS09Pl5c8++4wDBw4AZcGO5OTk+57z7t27JCQkMG3aNI31/v7+TJw4kaSkJI4dO4aJiYnG9kWLFtG2bVtUKhVLliwB4NSpUyxdupT09HTOnTvH0aNHKS4uZvLkyURGRpKYmEhQUBCffPJJpX6kpaXh7Oyssc7FxYW0tDSKiop45513+PHHH0lMTOTPP/+U95k7dy5dunQhLS2NAQMG8Pvvv8vbzpw5w4QJE/jtt9946aWX5Ck+kyZNIj4+ntTUVAoLC2scRdGxY0du3LjB9evXkSSJjz76CJVKhUql4uzZs4wZMwbQLJdek5raqE7btm155ZVXNN5rofZEQEQQBEEQBKEOtTDQlcuXltPV0aKFge5T6pHwPNHW1sbDw4O5c+eyYsUKtm/fDiBPo9HW1r5vueFu3boRExNDTEwMHh4eGBsbExkZKZdJbty4Mb1792bnzp1s3bpVznPwotHT00OlUpGamkrDhg1ZtWrV0+6SHGRITk4mPT2dqKioave9NyAyb948evXqJS/fW52pqvVDhgyptD0vL49Lly4xYMAAABo1akTjxo3v23c3Nzdee+01tLS0UCqVZGVlcebMGVJTU+nduzdKpZIFCxbwxx9/3Letik6fPo2ZmRnt2rVDoVAwYsQIeduRI0fk5TfffFMj10br1q3p3LkzACNGjJBzkhw6dAh3d3fs7Ow4ePAgaWlpNZ67tLSU5s2b06dPH9atWycnS7106RLXrl2r8rgGDRpQXFxcaf2DtFHu2rVrnD9/njZt2tC1a1eioqK4ffs2BQUF7Nixg65du2JgYEBeXp58zL3LLzIREBEEQRAEQahDps2b8FFfKzkoUp5DxLR57Z4QCkJ1zpw5ozF8XqVS0aZNm2r379q1K+Hh4UBZzgAjIyNeeuklWrduzY0bN8jIyMDc3JwuXboQEhKikadg7NixTJkyBVdXV42byBdV165dOXv2LD/++CPu7u44OjrSq1cvrl69ClQ/NSMrKwtLS0sCAwNp3749/v7+HDhwgM6dO9OuXTvi4uIAiIuLo2PHjjg6OtKpUyfOnDlTY390dHTo1KkTZ8+eZe3atbi6uuLg4ICvry+3b9/m2LFj7Nq1ixkzZqBUKsnMzNRICgpgaGjIX3/9pdHuzZs35WkpUPuRDbVRHrSDvwN3kiRhY2Mjj4hISUlh//79lY61trYmMTFRY11iYiI2NjYP3Z97A0IKhYKioiImTJhAZGQkKdSwObcAACAASURBVCkpvPPOOxQVFWnsV55DZPjw4QwZMoT169ejra2Nl5cXw4cPp2PHjtjZ2eHn51dt0GHcuHHY29tXCjY+SBuenp4olUo8PT1ZtGgRr7zyCk5OTgQGBuLm5oa7uztjx47F0dGR5s2b07lzZ2xtbZkxYwb29vZoa2vj4ODwwidVlUv/POv/nJ2dJUEQBEEQhPqgtFQtZV7Lk45n3pAyr+VJpaXqp90l4TmQkJAgdezYUbKyspLs7OykAQMGSNevX5fatGkjXb9+XZIkSYqPj5e6d+8uSZIkZWdnS/369ZPs7Owkd3d3KSkpSW5rxIgR0rBhwyRJkqSjR49KCoVCunHjhsb5LCwspJ9++unJvLh6qEmTJpIkSVJxcbHk4+Mjffvtt9LNmzcltbrs73nt2rXSBx98IEmSJE2ePFmaO3euJEmStHv3bgmQrl+/Lp0/f17S1taWkpOTpdLSUsnJyUkaPXq0pFarpaioKKlfv36SJElSbm6uVFxcLEmSJP3888/SwIEDK/Xn/Pnzko2NjSRJklRQUCC5uLhIe/fu1XjfPvnkE2nZsmWSJElSQECAtG3bNnlbxeXu3btL8fHxkrOzs/TLL79IklT2+9KuXTvp7NmzGvuUmzNnjrRkyRJJkiTJ3d1d2rFjhyRJklRUVCQVFBRo9PXGjRvS66+/Li8fOnRIevPNN+XliRMnSqGhodKdO3ektm3bSseOHZMkSZLu3r0rpaamVnrtO3fulFxcXOTXeurUKal169bS5cuXpcLCQql169Zyv4cOHSqfa/LkydL8+fMlSZKkvXv3arwvgHzeMWPGSCEhIdJff/0ltfg/9u47LIprb+D4d5dmAVEBY4wFSGzALr0IoqhRsQQrllgglog1eiNG08D0KDdGSSxYsQRLLLkx0de6MVgioAuCDcveGEVFVARFFHbeP3h3XpAiVizn8zw+sjNzzpyZXXiYH+f8fvXqSbdu3ZJycnIkR0dHKSIiotz7J1QekCg9A3GDe/+JKjOCIAiCIAiPmVKpwN7GHHsb8/sfLLz09HoJXdZNLufkU8/CDFurmmVWJHJ3d2ffvn2lthtyhkBRXgWNRgNA3bp1y11SsWLFCvlrX1/fUrkoLly4gF6vp1OnTg9xRS8GQ2lUKJohMnz4cE6cOEH//v3JyMjgzp072NnZAUVLMwzJPO9dmmFnZ4dKpQLA0dGRDh06oFAoUKlU8nuXnZ1NSEgI6enpKBSKMpdTAHKiUoVCQY8ePejSpQt//PEHH3/8MdevXyc3N5fOnTtX+hqXL1/O2LFj+de//gUUJeJ9/fXX79tuxYoVjBo1ik8//RQTExPWrVuHvb29vL/4jIQuXbrQrVu3MvsxNTXl559/ZsKECWRnZ1NQUMDEiRNLzfwICgri/Pnz+Pr6olAosLCwYOXKlXLukpiYGLp160aNGjXw9/eXZ1VEREQwcOBAHB0d8fX1pXHjxnKfzZs358cff2TYsGG0bOlAYN8hHL9aSN9BITg5OVG/fn08PT0rfS+F55MIiAiCIAiCIAhCFXkWyzQvX76cjz76iO+++w6l8uVdYW/IIVLc+PHj+de//kVQUBAajYbIyMj79lN8qYhSqZRfK5VKOd/LJ598Qrt27di4cSM6nY6AgIAy+zLkECkuNDSUTZs24ezszLJly+SAWGU4ODiwe/fuMvfd20/xa23atKlcbrY8P/30U4nXxa/phx9+kL92cXFhz5499x3r6NGjGT16dJn7AgMDOX78eKntVlZWZS7Bsba2lo83fA+GrU4t+h58JZDoTZNKfQ8aEhhD6XsjPL9e3p9wgiAIgiAIglDFnsUyzUOHDuXcuXMEBwdX2RieVdnZ2bz22msAxMbGytvbtGkjBwC2bNlSKjfHg/Rb/MG7MnJycnj11Ve5e/eunDNGr5fQG1dDeyaDM5m56PVShX0YKuoY/n3zzTcPNIbK6tq1K9evX6/UsRqNpsSMqHtzoDwoW1tbVCqVfI0TJkzg4sWLBPUJpk+AO4fmhHFy+YdkX/yb4I6+DBwaytq1a5kwYcIDVQ16EhWGhCdHzBARBEEQBEEQhCpSUZlmseSqYkZGRqhUKgoKCmjZsiWxsbGVqnbyKCIjIwkODqZOnTpcvnyZrKwsnJ2dMTMzw8TEhLi4uFJLM8qi0+no1KkTpqamAEyZMoWQkBA+/PBDatWq9UBj+vzzz/H29sbGxgZvb29u3Mhha9pFkk0cWBcVxfffz2H2ouVIFcREypoN8zgZ8jX8/vvvlW6j0WgwNzfH19f3sY1j9+7dctJYSZLw9fXFv1sfLnuEAXAr4zR3c68hSTDps+/wsbeiX79+/Oc//3lsYxCeLQqpou+M54iHh4eUmJhY1cMQBEEQBEEQhEo7k5lLyJKDJYIiZsZKYod5iYDIfZibm8vlSQcNGoS7u7ucC6Milc3Zcj8BAQFERUXh4eFBTEwMmzdvrtSDc0FBAf/88w/du3cnNTX1gc97Pw/zmSp+L4uztbVl4MCBbNmyBWNjY2JiYpg2bRqnTp0iPDycsLCiQMLMmTNZu3Yt+fn59OrVi+nTp6PT6ejcuTPe3t4kJSXx+++/07ZtWxITE7G2tmb58uVERUWhUChQq9Ul8trodDp8fHwwMjLCxsaG6OhoFi9eTK1atUhMTOTixYvMmDGDvn37lnv+sq7FcG6AXbt2MWXKFO7qoVb/GeQX6Mm/dpGTsdNQGhmjer0h7wwdzK+//kpqairbt28nPDycM2fOUKNGDWJiYlCr1WRlZTFw4EDOnz9Pq1at2L59O0lJSeTm5tKlSxdat27Nvn37eO211/jll1+oXr06CxcuJCYmhjt37vDGG2+wYsWKJx7Mq2oKhSJJkiSPqh7HvcSSGUEQBEEQBEGoIqJM8+Nxv7K4kZGRDBs2jICAABo0tqXj8KlMiDvM4Pl/4B3QEWdnZ5ycnFizZg27du2iZ8+ect/bt2+nV69eFZ6/TZs2nDp1Cp1Oh7+/P25ubri5uclLPjQaDf7+/gQFBeHg4FCi7ZkzZ3B1dSUhIQGNRkP37t1Ljdne3p45c+YAcPPmTbp161ZizAA7d+7E1dWVjq29OL52BvqCOwAkRw3mzP8spUs7X1QqVZm5NgwJZA3/DH0CNG7cGK1Wi7+/v7xs5cCBA0RERACwbds20tPTOXjwIFqtlqSkJDknSHp6OmPGjCEtLa1Eiei0tDS++OILdu3aRXJyMrNnzy4xHltbW8LCwpg0aZJ8boCMjAzi4+PZvHkzU6dOve/572UoVevi4kJ0dDT+/v4o9AW8o66JmbGSq0c01G3hg425GdVMjEq0/fbbb3F1dSUlJYWvvvqKoUOHAjB9+nRat25NWloavXr14u+//5bbpKenM3bsWNLS0qhduzbr168HoHfv3iQkJJCcnEzLli1ZvHhxmeMVnjyxZEYQBEEQBEEQqohSqSDQsT4t6ls88oyFl1VBQQFbtmwhMDCQ1q1bc+DAARQKBYsWLWLGjBn8+9//BuD48eMsXvsr78TsITEqhDoe3bl8/CC5t83Yt2Mv9jbmZGdnU6tWLcaMGUNmZiY2NjYsXbqUYcOGVTiGX3/9FZVKRb169di+fTvVqlUjPT2dgQMHYpjFfujQIVJTU7Gzs5Ory5w4cYIBAwawbNkynJ2dSyXrPH78OLt37yYnJ4fmzZszevRotm7dSoMGDfjtt9+Aovwjt2/fJjQ0lJ07d2JcpwE+nXtz+eBm6vv2BqCaeW22rNnH1nVFszIWLVpU4jwVLZkJCgoCQKVSkZubi4WFBRYWFpiZmXH9+nW2bdvGtm3bcHV1BSA3N5f09HQaN25MkyZN8PHxKdXnrl27CA4Olmdr1K1bt8L7a9CzZ0+USiUODg5ysKu887dp06ZU++JLZubMmcPZs2fp168fl7S7iB0xni4rJhLx+Td89cmUUm3/+usvPvzwQwDat29PVlYWN27cuG+FIUOlInd3d/l9T01NfejKQMLjJWaICIIgCIIgCEIVMpRp9rG3wt7GXARDKskwq8HDw4PGjRszfPhw/vnnHzp37oxKpWLmzJmkpaXJx3fr1o3sO6A3s8DEvDYFudeo8Yod19KTiPj4Q/78808sLS1RKBQMGTKElStXcv36dfbv30+XLl3KHMOgQYNwcXFh7969REVFcffuXUaOHIlKpSI4OJijR4/Kx3p5ecllegEyMzPp0aMHq1atwtnZucz+u3XrhpmZGdbW1tSrV49Lly6hUqnYvn07H3zwgTzmEydOYGdnR7NmzbC1qsnE0SO49d8jACiAiAnvYGtVs8RDeWUVr4pzb8WcgoICJEli2rRpaLVatFotp06dYvjw4QDUrPl4ZzoVP78h9UNF56+Io6MjSUlJ9O/fn3Xr1lFw7QLmZib4ujrct+3DjNfIyEiuKhQaGsoPP/zAkSNHiIiI4Pbt24/tnMKDEQERQRAEQRAE4bmRlZUlT3mvX78+r732mvz6zp07VT084SkyzGrQarVER0djamrK+PHjGTduHEeOHGHBggUlHjTNzMyoZ2GGmbEShcIISV9INeuGuE6Yj6uzmo8//pjPPvsMgHfeeYeVK1cSFxdHcHAwxsZlT6xftWoVWq2WTZs20ahRI2bNmsUrr7xCcnIyiYmJJT6T9wYHLC0tady4MfHx8eVeY1kP1M2aNePQoUOoVKoSYzZQKhV42tbFvUkd5gx0xdrCjEB1I5RKRYmH8selc+fOLFmyRM5Bcv78eS5fvlxhm/bt27Nu3TqysrIAuHr1aqljLCwsyMnJeSLnN4whPz+fnTt3YmRkxOeff06bNm04d+5cmcf7+PjIVXw0Gg3W1tbUqlXroSoMlVUZSKgaYsmMIAiCIAiC8NywsrKSp/ZHRkZibm7O5MmTq3hUwrOivLK4BoacLcGz/m/DratM7eVJkJstzRrXl5eSNGjQgAYNGvDFF1+wY8eOBzp/w4YNUSqVxMbGUlhYWO6xpqambNy4kc6dO2Nubs7bb79dqXNcuHCBunXrMnjwYGrXrs2iRYuYMmUKOp2OU6dO8cYbb7Bq1Uq6duqAj70VxkrFfWcdGWbbGAQGBla69G6nTp04duwYrVq1AooStK5cuRIjI6Ny2zg6OvLRRx/Rtm1bjIyMcHV1LVVu+K233qJv37788ssvREdHP/D569WrV+rYdu3ayeNSq9Vs3LiRiRMncubMGRITEwkICGDMmDFlnmfKlCmEh4ejVqupUaOG/PmKiIhg4MCBODo6VqrCEJSuDFSZwI/wZIiAiCAIgiAIgvBc27lzJ5MnT6agoABPT0/mzZuHmZlZpStkCC+O4mVx27dvz9mzZ0vsN+Rsea1OdSKDHMnO+C+fDutBpFKJiYkJ8+bNk48dNGgQmZmZtGzZstLnHzNmDH369GH58uUEBgbed8lIzZo12bx5Mx07dsTc3LxSJXePHDlCeHg4ymJjrlatGkuXLiU4OFj+Pnj33VGcycwlv0CP7koudetaldtneYGb4strQkNDCQ0NLXPfe++9x3vvvVeq/b1VdIq3CQkJISQkpNwxNWvWjJSUFPm1IbGqQfGqOOWdv7xzF7d27dpS24qPe9SoUfLXmzZtKnWslZUV27ZtK7Xd2tq6RD/FA7ejR49m9OjRFY5XeDpE2V1BEARBEJ4rCoWCQYMGsXLlSqAooeKrr76Kt7c3mzdvfmrjCA0NZe3atVy6dAkLCwsAJk6cyOzZs8nMzJQT91XWsmXLCA8Pp2HDhuTm5mJvb09ERAS+vr5PYvhlKl5G9HkQGRmJsbExCxYsYOfOnTRr1oyhQ4fi5ubGxIkTsbW15YMPPmD06NFMmjSJnTt3snfvXm7fvo2Tk5OclFEQyjJu3DhcXV0rlY/iWaPXS2xNu8jXvx8jv0AvVy8KdKz/wueoeVxllYXHS5TdFQRBEARBeAxq1qxJamoqeXl5QFFJTMMU+cp6XGvo33jjDX755RcA9Ho9u3bteuCxFNe/f38OHz5Meno6U6dOpXfv3hw7duyxjPVFVVhYKCeThKK/OhcvuVm8Qoa3tzcWFhbY2NjIFTKEZ49eL3EmM5cDZ7I4k5mLXv/0/4Dr7u5OSkoKgwcPfurnfhx0WTflYAhAfoGer38/hi7rZhWP7MkyBIJClhxkQtxhQpYcZGvaxSr5DAnPBxEQEQRBEAThudO1a1e55GRcXBwDBw6U9129epWePXuiVqvx8fGRp1xHRkYyZMgQ/Pz8GDJkCDqdDn9/f9zc3HBzc2Pfvn1AUWBjzJgxtGjRgo4dO9K1a1d+/vnnMscxYMAA1qxZAxQl2fPz8yuRfLFnz564u7vj6OhITEyMvH3r1q24ubnh7OxMhw4dyuy7Xbt2vPvuu3I7rVaLj48ParWaXr16yYn7AgIC5LKeV65cwdbWFoBbt27Rr18/HBwc6NWrF97e3vJxo0ePxsPDA0dHRyIiIh7gzj9/7lchQ3i2PCsPtElJSezZs6fEZ+Z5cjknXw6GGOQX6Lmck19FI3o6XtZAkPDwREBEEARBEITnzoABA1i9ejW3b98mJSUFb29veV9ERASurq6kpKTw1VdfMXToUHnf0aNH2bFjB3FxcdSrV4/t27dz6NAh1qxZw4QJEwDYsGEDOp2Oo0ePsmLFCvbv31/uOJo1a0ZmZibXrl0jLi6OAQMGlNi/ZMkSkpKSSExMZM6cOWRlZZGZmcnIkSNZv349ycnJrFu3rtz+3dzcOH78OABDhw7l22+/JSUlBZVKxfTp0yu8R3PnzqVOnTocPXqUzz//nKSkJHnfl19+SWJiIikpKfzxxx8l1uk/b4yMjORkkgArVqygbdu2VTwq4WGJB9rHw1BNpzgzYyX1LJ7PAE9lvayBIOHhiYCIIAiCIAjPHbVajU6nIy4ujq5du5bYFx8fz5AhQ4CisopZWVncuHEDKFo+Ub16dQDu3r3LyJEjUalUBAcHc/ToUbl9cHAwSqWS+vXr065duwrH0rt3b1avXs1ff/1VKunfnDlzcHZ2xsfHh3PnzpGens6BAwdo06YNdnZ2ANStW7fcvg253rKzs7l+/br8oH/vspCyxMfHywEaJycn1Gq1vG/t2rW4ubnh6upKWlqafO3Po+LJJFUqFUqlUiRLfY49Kw+05ZV3rl27Ng4ODk/knObm5o+tL0M1HTNjJQkfd+T81gVM69oSW6uaREVFERkZWWH7TZs2lfi5sGzZMi5cuPDYxvekvKyBIOHhiSozgiAIgiA8l4KCgpg8eTIajYasrKxKtSle8WHWrFm88sorJCcno9frqVat2kONo3///ri7uxMSEoJS+f+/iGs0Gnbs2MH+/fupUaMGAQEB3L59+4H6Pnz48H0rXBgbG6PXFz1AVqb/s2fPEhUVRUJCAnXq1CE0NPSBx/WsKP5Qd/jw4VL7K1shQ3h2GB5oiwdFquKBtrzyzjqdju7duz/VsZSloKCgxPK8exmq6bSob0HLT81Q/p2AxyvGlU4uumnTJrp37y4Hf5YtW4aTkxMNGjR4LON/UgyBoHuTydpaVVztR3h5iRkigiAIgiA8l4YNG0ZERAQqlarEdn9/f1atWgUUBSWsra3LLGWZnZ3Nq6++ilKpZMWKFXLZST8/P9avX49er+fSpUtoNJoKx9GkSRO+/PJLxowZU6r/OnXqUKNGDY4fP86BAwcA8PHxYc+ePXI50KtXr5bZ7x9//EFMTAwjR47E0tKSOnXq8OeffwIll4XY2trKy2GK5zrx8/OTy0kePXqUI0eOAHDjxg1q1qyJpaUlly5dYsuWLRVe39P0LCTTFKpW8ZkNwDP5QFtYWMjIkSNxdHSkU6dOcoLn06dPExgYiLu7O/7+/vJyN51OR/v27VGr1XTo0IG///4bKApOtmrVCpVKxccffyz3L0kS4eHhODk5oVKpSuQp8vf3JygoCAcHBwoLCwkPD8fT0xO1Ws2CBQtKjFOpVGBvY46JiTFjwkYxe/b3pa6lrLHt27eP//znP4SHh+Pi4sK3335LYmIigwYNwsXFRb7eZ5EhEBQ7zIs5A12JHeb1UlTWER6emCEiCIIgCMJzqWHDhnLej+IiIyMZNmwYarWaGjVqEBsbW2b7MWPG0KdPH5YvX05gYKA8e6RPnz7s3LkTBwcHGjVqhJubG5aWlhWOZdSoUaW2BQYGMn/+fFq2bEnz5s3x8fEBwMbGhpiYGHr37o1er5dzmQCsWbOG+Ph4bt26hZ2dHevXr5dniMTGxhIWFsatW7ewt7dn6dKlAEyePJl+/foRExNDt27dSlxfSEgIDg4OtGjRAkdHRywtLWnatCmurq60aNGCRo0a4efnd79b/VS8zGVChf9XfGbDs1o2NT09nbi4OBYuXEi/fv1Yv349gwcP5t1332X+/Pk0bdqUv/76izFjxrBr1y7Gjx9PSEgIISEhLFmyhAkTJrBp0ybee+89Ro8ezdChQ/nxxx/l/jds2IBWqyU5OZkrV67g6elJmzZtADh06BCpqanY2dkRExODpaUlCQkJ5Ofn4+fnR6dOneTleMWNHTsWtVrNlClTSmwvb2xBQUF0796dvn37ArBly5bnpiS3IRBkb/P4liAJLy6FYW3q887Dw0MyZE4XBEEQBEF4FLm5uZibm5OVlYWXlxd79+6lfv36VT2sB1JYWMjdu3epVq0ap0+f5s033+TEiROYmppW9dDKdCYzl5AlB0stlYgd5iUebIQqde+SmY4dO5Keng7At99+y927d5k4cSI2NjY0b95cbpefn8+xY8ewtrYmIyMDExMT7t69y6uvvsqVK1ewsrLi4sWLmJiYcOPGDRo0aEBubi6TJk1CpVIxbNgwAIYMGUJwcDC1atVi+vTp7N69G4C+ffuSkpJCjRo1gKJZaQsWLKBTp04lxm9ubk5ubi6ffvopJiYmVK9endzcXCIjI8sdW2hoaImASEBAwHMTEBGeTQqFIkmSpGfuAyRmiAiCIAiC8EzQ6yV0WTefib8Kd+/enevXr3Pnzh0++eST5y4YAkVld9u1a8fdu3eRJIm5c+c+lWCIkZERKpWKgoICWrZsSWxsrPzAVpGKkmk+iYCIXq9n4sSJ7Nq1C4VCQbVq1Vi7dm2Zf11/XDQaDaampvj6+j6xcwhPXvFSvEZGRuTl5aHX66ldu7acd6SyFIoH+xlXPA+SJElER0fTuXPnSrWdOHEibm5uvPPOOw90TkF4kYkcIoIgCIIgVDnDcomQJQeZEHeYkCUH2Zp2scpySGg0GrRaLUePHi2RiPN5YmFhQWJiIsnJyaSkpNClS5enct7q1auj1WpJTU3F1NSU+fPnV6rd064OsWbNGi5cuEBKSgpHjhxh48aN1K5du9LtCwoKHvicGo2Gffv2PXA74dlXq1Yt7Ozs5DLakiSRnJwMgK+vL6tXrwZg1apVcjUqPz+/EtsN/P39WbNmDYWFhWRmZrJnzx68vLxKnbNz587MmzePu3fvAnDy5Elu3iy/PHHdunXp168fixcvlreVNzYLCwtycnLk4+59LQgvChEQEQRBEAShyumybsq5I6BoZsDXvx9Dl1X+L/fCs8/f359Tp05x9epVevbsiVqtxsfHh5SUFKBoKUJISAj+/v6083CkjelZLmxbSGr0SNKXf0h4xzewtarJzp07cXV1lZcR5OcXlWC1tbUlIiICNzc3VCqVnMTy4MGDtGrVCldXV3x9fTlx4kSpsWVkZMhJdaEoJ02dOnWAoiUGkyZNwtHRkQ4dOpCZmQkULRuYOHEiHh4ezJ49u8JxXblyBYDExEQCAgLQ6XTMnz+fWbNm4eLiIifIFR6fssrWzp8/n+XLlwNFlYaKJx6+n4CAABo3bkzxFAPvvvtuuWWqV61axeLFi3F2dsbR0ZFffvkFgOjoaJYuXYparWbFihXMnj0bgNmzZ/Pjjz+iUqk4f/683E+vXr1Qq9U4OzvTvn17ZsyYUeYstREjRuDg4ICbmxtOTk6MGjXqvoG6999/X/5sVjS2AQMGMHPmTFxdXTl9+jShoaGEhYU980lVBeGBSZL0Qvxzd3eXBEEQBEF4Pu0/fUXy/GJ7qX/7T1+p6qEJD6hmzZqSJEnS3bt3paCgIGnu3LnSuHHjpMjISEmSJGnnzp2Ss7OzJEmSFBERIfn5+Ul37tyRtFqtVL16dWlx3Hpp/+krUscu3aX16zdIeXl5UsOGDaUTJ05IkiRJQ4YMkWbNmiVJkiQ1adJEmjNnjiRJkvTjjz9Kw4cPlyRJkrKzs6W7d+9KkiRJ27dvl3r37l1qnOfOnZOaNGkiOTs7S//617+kQ4cOyfsAaeXKlZIkSdL06dOlsWPHSpIkSW3btpVGjx4tSZJ033FlZmZKkiRJCQkJUtu2beXrnTlz5qPd4P/zxRdfSA4ODpJKpZKcnZ2lAwcOVHh8SEiItG7dOvk6EhISHuh8mZmZkrGxsTRv3ryHHvODaNKkieTk5CSpVCqpY8eOUkZGxn3bGD57Z8+elRwdHUvtL34PKqNt27aSSqWS/vzzT0mSJOnatWuSl5eXfB5BECoPSJSegbjBvf/EDBFBEARBEKrc014uITw5eXl5uLi44OHhQePGjRk+fDjx8fEMGTIEgPbt25OVlcWNGzcA6NKlCyYmJqhUKgoLC3mnfy987K3w8XDl77//y4kTJ7Czs6NZs2YAhISEsGfPHvl8vXv3BsDd3R2dTgcUJZcMDg7GycmJSZMmkZaWVmqcDRs25MSJE3z99dcolUo6dOjAzp07AVAqlfTv3x+AwYMHEx8fL7czbL/fuJ6k/fv3s3nzZg4dOkRKSgo7duygUaNGT/Sc69atw8fHh7i4uCd6nuJ2795NSkoKHh4efPXVV5Vqc+8MicjISKKiokps27FjJx27dJfLO//P/2yjV69eZfY3YMAAeUnJhg0b5M8blF8et7ztGo2GgIAA+vbtS4sWLRg0aFCJ2SeCIDx9X1qoJAAAIABJREFUIiAiCIIgCEKVs7WqybSuLeWgiKHkqq1Vzfu0FJ41hhwiWq2W6Ojo+yZyNSSoVCqVmJiYyEkmlUplpfJ0GNobGRnJx3/yySe0a9eO1NRUfv31V27fvl1u2y5dujBz5kw+/PBDNm3aVOZxxRNfFk9qWR5jY2P0+qLlX+Wd+1FkZGRgbW0tX7u1tTUNGjQA4LPPPsPT0xMnJyfefffdCh+4lyxZwsSJE+XXCxcuZNKkSWUeGxcXx7///W/Onz/PP//8I283Nzfno48+wtnZGR8fHy5dugQULU+ZMGECvr6+2Nvbl1iqMnPmTDw9PVGr1URERNz3etu0acOpU6coLCwkPDxcbrtgwQKgKNDg7+/P7du3cXBwKNH22rVrzJo1i4SEBK5du8bUqVN5d9wEdm7fxrAZPxGy5CBfz55HaGjZiUY7dOjAnj17KCwsZPXq1XJADEqWx92xYwfh4eFkZGSUux3g8OHDfP/99xw9epQzZ86wd+/e+16/IAhPjgiICIIgCIJQ5ZRKBYGO9Ykd5sWcga7EDvMi0LF+lVWZER4vf39/OWmkRqPB2tqaWrVqVapt8+bN0el0nDp1CoAVK1bQtm3bCttkZ2fz2muvAbBs2bIyjzl06BAXLlwAiirOpKSk0KRJE/m14QH+p59+onXr1g80LltbW5KSkgBYv3693OZxJabs1KkT586do1mzZowZM4Y//vhD3jdu3DgSEhJITU0lLy+PzZs3l9tPv379+PXXX+WknEuXLpVLvRZ37tw5MjIy8PLyol+/fvKMB4CbN2/i4+NDcnIybdq0YeHChfK+jIwM4uPj2bx5M1OnTgVg27ZtpKenc/DgQbRaLUlJSfedWbN582ZUKhWLFy/G0tKShIQEEhISWLhwIWfPngWK3k9TU1NOnjwptztx4gRr166lf//+eHp6cvLkSVq378hr70TzatsB3Dibws2cGxw4cICWXm3KPLeRkRGtW7dm9erV5OXlYWtrK++Lj49n4MCBGBkZ8corr9C2bVsSEhLK3Q7g5eVFw4YNUSqVuLi4yLOaBEGoGiIgIgiCIAjCM0GpVGBvY46PvRX2NuYiGPICiYyMJCkpCbVazdSpU4mNja1022rVqrF06VKCg4NRqVQolUrCwsIqbDNlyhSmTZuGq6trubNMLl++zFtvvYWTkxNqtRpjY2PGjRsHFM0COXjwIE5OTuzatYtPP/30gcYVERHBe++9h4eHB0ZGRnKbt956i40bNz5yUlVzc3OSkpKIiYnBxsaG/v37y4Gf3bt34+3tjUqlYteuXWUuFyreT/v27dm8eTPHjx/n7t27qFSqUsetWbOGfv36AUVLSIovmzE1NaV79+5AyWVLAD179kSpVOLg4CDPHNm2bRvbtm3D1dUVNzc3jh8/Tnp6epnja9euHS4uLty4cYNp06axbds2li9fjouLC97e3mRlZcltvby85AS5AJmZmfTo0YPevXvLs2dsbGzY8ut/0O36iVr2rlxL/YOrKbup49iGq3mF5d6nAQMGMGHCBPkePIp7S/Y+TLUiQRAeH+OqHoAgCIIgCILw4sjNzS21rW7dumUuR4mMjCy3bfF9HTp04PDhw6XaF3/49vDwQKPRANCqVasSMwW++OKLUm0DAwMJDAws7zL47rvvSm0z9H+/cfn7+5c4v0GzZs3kCjuPysjIiICAAAICAlCpVMTGxjJgwADGjBlDYmIijRo1IjIy8r5LdkaMGMFXX31FixYteOedomUjH330Eb/99hsAWq2WuLg4Ll68KM/yuXDhAunp6TRt2rTEMqd7H/CLP/wblu5IksS0adMYNWrUfa9x9+7dWFtbl+gjOjqazp07lzhOo9GUWspkaWlJ48aN+fvvv7GzswPA3t6e9l17sGLfWc5ujMK4uiUXNKtQjZxZYb4if39/pk2bxsCBA0ttX7BgASEhIVy9epU9e/Ywc+ZMCgoKytxuqIIkCMKzQ8wQEQRBEARBEO5Lr5c4k5krJ6LU60UyyKpy4sSJErMqtFotTZo0kYMf1tbW5ObmVqrErLe3N+fOneOnn36SH/i//PJLOQ/MyZMnyc3N5fz58+h0OnQ6HdOmTXvo5KqdO3dmyZIlcvDr/PnzXL58udJt582bJy/xOXnyJDdv/n9p7lu3btGwYUN8fHw4e/Ys7dq1Izk5WQ5a5eTk0NKuEdFffoS1gx/VrF+jWu16fB4aWGG+IoVCweTJk0sEZ6D88riVLZsrCELVEzNEBEEQBEEQhArp9RJb0y7y9e/HyC/Qy0lvX9Q8L2XNcnmW5ObmMn78eK5fv46xsTFvvPEGMTEx1K5dm5EjR+Lk5ET9+vXx9PSsVH/9+vVDq9VSp06dUvvi4uJKVWDp06cP/fv3L3Mp0f106tSJY8eO0apVK6Bo2c7KlSupV69emcfr9RK6rJtczsmnfY8BnD17Fjc3NyRJwsbGpsTMI0MiW51OR/fu3Zk2bRqjR4+mY8eO/Oc//8HT05PPPpuOiYkJ9nVtqN2sPr6tepb7Ob53RpCB4fOhUCiYOXMmM2fOLLG/vO2GGT0GP/zwQ8U3SxCEJ07xopR68vDwkBITE6t6GIIgCIIgCC+cM5m5hCw5SH6BXt5mZqwkdpgX9jbmVTiyF0/xAEA9CzNsrWo+8aBT9+7dmTRpEh06dHii53lQTzIQ5+7uTs2aNdm+fXuJpT2CIDwZCoUiSZIkj6oex73EkhlBEARBEAShQpdz8ksEQwDyC/RczsmvohE9XUZGRri4uODk5ERwcDC3bt3i+vXrzJ07975tdTodTk5OlTqPIQAQsuQgE+IOE7LkIFvTLj6x5UnXr1+nWbNmVK9e/ZkLhgDosm7KwRAo+sx9/fsxdFk379Py/gzVbUQwRBBebiIgIgiCIAiCIFSonoUZZsYlf200M1ZWmIjyRVK9enW0Wi2pqamYmpoyf/78SgdEHsSTDACUpXbt2pw8eZJ169Y9kf4f1cseiBME4ckTARFBEARBEAShQrZWNZnWtaUcFDEsXagoEeWLyt/fn1OnTjF16lROnz6Ni4sL4eHhSJJEeHg4Tk5OqFQq1qxZU6ptYWEh4eHheHp6olarWbBgAVCUq6Jt27aEvh1MwreDOPc/i8jS7uTovHEkzRrOodTj5OTkYGdnJycUvXHjRonXL6KXPRAnCMKTJ5KqCoIgCIIgCBVSKhUEOtanRX2Lp5rb4llTUFDAli1bCAwMpEuXLqSmpqLVagFYv349Wq2W5ORkrly5gqenJ23atCnRfvHixVhaWpKQkEB+fj5+fn506tQJgOTkZLbGJ/L+L6dI+HYwSo8uOIz+gSsHNvLb6qX0bfcjAQEB/Pbbb/Ts2ZPVq1fTu3dvTExMnvp9eFoMgbh7c4i8jIE4QRCeDBEQEQRBEARBeABZWVlyvoWLFy9iZGSEjY0NAAcPHsTU1LQqh/fEKJUK7G3MX8okqnl5ebi4uABFM0SGDx/OhQsXShwTHx/PwIEDMTIy4pVXXqFt27YkJCSgVqvlY7Zt20ZKSopcDjc7O5v09HRMTU3x9PTEy+F1PpJqMnBRA2q94Y6ZsZKRPQI48OsqAEaMGMGMGTPo2bMnS5cuZeHChU/pDlQNEYgTBOFJEwERQRAEQRCEB2BlZSXPCoiMjMTc3JzJkyfL+wsKCjA2fvy/Yj2pfoX7M+QQeVSSJBEdHU3nzp1LbNdoNJiZmckBgJYNLBnV1Ym2fl7ojiSwt7AAAD8/P3Q6HRqNhsLCwkona32evcyBOEEQnjyRQ0QQBEEQBOERhYaGEhYWhre3N1OmTOH06dMEBgbi7u6Ov78/x48fJzs7myZNmqDXFyWJvHnzJo0aNeLu3btotVp8fHxQq9X06tWLa9euARAQEMDEiRPx8PBg9uzZVXmJwj0sLCzIycmRX/v7+7NmzRoKCwvJzMxkz549eHl5lWjTuXNn5s2bJ+f9OHnyJDdvlkyYqlQqqGZihKphbextzEvNhhg6dChvv/0277zzzhO6MkEQhJeH+DODIAiCIAjCY/DPP/+wb98+jIyM6NChA/Pnz6dp06b89ddfjBkzhl27duHi4sIff/xBu3bt2Lx5M507d8bExIShQ4cSHR1N27Zt+fTTT5k+fTrff/89AHfu3CExMbGKr064l5WVFX5+fjg5OdGlSxdmzJjB/v37cXZ2RqFQMGPGDOrXr49Op5PbjBgxAp1Oh5ubG5IkYWNjw6ZNmx7ovIMGDeLjjz9m4MCBj/mKBEEQXj5ihoggCIIgCMJjEBwcjJGREbm5uezbt4/g4GBcXFwYNWoUGRkZAPTv31+uPrJ69Wr69+9PdnY2169fp23btgCEhISwZ88eud/+/fs//Yt5QhQKBe+//778OioqisjISADmz5/P8uXLy22r0Wjo3r37A50vICDgsQSTcnNz5a9tbW25cuUKAD/99BOpqanMnDkThULBzJkzSU1N5ciRI/L7Fhoayo0bN5AkCaVSyVdffcXrr7+OTqdj9+7d3Lx5kx9++IHNmzeXuFYPDw/5Gorvi4+Pp2/fvtSuXfuhrsXIyAgXFxecnJwIDg7m1q1bD9XPvXx9fR+6rUajYd++fY9lHIIgCA9CBEQEQRAEQRAeg5o1iypf6PV6ateujVarlf8dO3YMgKCgILZu3crVq1dJSkqiffv2le73RWBmZsaGDRvkgEJxYWFhDB069KmOR6+XOJOZy4EzWZzJzEWvl57IeWrXrs3evXsBuH79uhwgA2jQoIGcZPV+xo8fz9SpU/nkk08eeiyGfCipqamYmpoyf/78SrUrKCiocP+jBDREQESoaoZAobOzM25ubvf9PF6/fp25c+fKrysK2I4YMYKjR48CJQOqxUVGRhIVFVXp8S5btgwbGxtcXFxwdHSkb9++jy24aVDeWMvzvH4fi4CIIAiCIAjCY1SrVi3s7OxYt24dUJRIMzk5GQBzc3M8PT1577336N69O0ZGRlhaWlKnTh3+/PNPAFasWCHPFnnRGBsb8+677zJr1qxS+4o/EJw6dYo333xTfjg5ffo0UDRTo2/fvrRo0YJBgwYhSUUBjJ07d+Lq6opKpWLYsGHk5+eX6n/06NF4eHjg6OhIREQEer3E1rSLtA0eSTsfN1RqNX3fGV0qKJKVlUWnTp1wdHRkxIgR8jkBVq5ciZeXlzwTqLCwsMzrHjBgAKtXrwZgw4YN9O7dW96n0+nk5KjLli2jZ8+edOzYEVtbW3744Qe+++47XF1d8fHxYfr06Zw6dYqtW7fi4OCAWq1mwIAB6PV6mjZtSmZmJlAUlHvjjTfk1+Xx9/fn1KlTXL16lZ49e6JWq/Hx8SElJUV+T4YMGYKfnx9Dhgxh2bJl9OjRg4CAAJo2bcr06dPlvszNi5KeajQaAgICynyffv/9d1q0aIG7uzsTJkyge/fu6HQ65s+fz6xZs3BxceHPP/9Ep9PRvn171Go1HTp04O+//waKZttMmDABX19f7O3tKx1IEoT7MQQKk5OT+frrr5k2bVqFx98bEKnIokWLcHBweBzDLKF///5otVrS0tIwNTWVZx9WFREQEQRBEARBEABYtWoVixcvxtnZGUdHR3755Rd5X//+/Vm5cmWJpTCxsbGEh4ejVqvRarV8+umnVTHsp2Ls2LGsWrWK7Ozsco8ZNGgQY8eOJTk5mX379vHqq68CcPjwYb7//nuOHj3KmTNn2Lt3L7dv3yY0NJQ1a9Zw5MgRCgoKmDdvXqk+v/zySxITE0lJSeGPP/5g656/+GzdAa6kxeM0YRGO42LIsOuKLqtkktPp06fTunVr0tLS6NWrl/xwfuzYMdasWcPevXvRarUYGRmxatWqMq+nQ4cO7Nmzh8LCQnmpVHlSU1PZsGEDCQkJfPTRR9SoUYPDhw/TqlUreUnRN998w+HDh0lJSWH+/PkolUoGDx4sn3/Hjh04OzvL5aDLUlBQwJYtW1CpVERERODq6kpKSgpfffVViZk6R48eZceOHcTFxQFFpaXXr19PSkoK69atK3NJUnnv06hRo9iyZQtJSUlysMbW1pawsDAmTZqEVqvF39+f8ePHExISQkpKCoMGDWLChAly3xkZGcTHx7N582amTp1a7vUJwsO6ceMGderUAYqCsB06dMDNzQ2VSiX/LJ86dSqnT5/GxcWF8PBw+diyAoHlLd378ssvadasGa1bt+bEiRPy9oULF+Lp6YmzszN9+vS578yPgoICbt68KY/5119/xdvbG1dXV958800uXboEQGZmJh07dpSDu02aNOHKlSvcvHmTbt264ezsjJOTU4nASnR0tHztx48fBygzgFpWYPN5IZKqCoIgCIIgPCRD/ot72dnZsXXr1jL39e3bt8QsAwAXFxcOHDhQ6liNRvOoQ3zm1KpVi6FDhzJnzhyqV69ean9OTg7nz5+nV69eAFSrVk3e5+XlRcOGDYGie6bT6bCwsMDOzo5mzZoBRTlYfvzxRyZOnFii37Vr1xITE0NBQQEZGRkkJR+h0LgxCmNTdBv/jWVzb2o39+FyTn6JEq979uxhw4YNAHTr1k1+6Ni5cydJSUl4enoCkJeXR7169cq8ZiMjI1q3bs3q1avJy8vD1ta23PvTrl07LCwssLCwwNLSkrfeegsAlUolz9xQq9UMGjSInj170rNnTwCGDRtGjx49mDhxIkuWLCm3Ck1eXh4uLi5A0QyR4cOH4+3tzfr16wFo3749WVlZ3LhxAyha5lX8ferYsSNWVlYA9O7dm/j4eDnfiUFZ75O5uTn29vbY2dkBMHDgQGJiYsoc4/79++V7PmTIEKZMmSLv69mzJ0qlEgcHB/lBTxAeleH74vbt22RkZLBr1y6g6OfPxo0bqVWrFleuXMHHx4egoCC++eYbUlNT5XLcGo2Gw4cPk5aWRoMGDfDz82Pv3r20bt26zPMlJSWxevVqtFotBQUFuLm54e7uDhR9X40cORKAjz/+mMWLFzN+/PhSfaxZs4b4+HgyMjJo1qyZ/LOidevWHDhwAIVCwaJFi5gxYwb//ve/mT59Ou3bt2fatGls3bqVxYsXA7B161YaNGjAb7/9BlAiWG1tbc2hQ4eYO3cuUVFRLFq0SA6gbtq0iV27djF06FC0Wi1hYWGlytA/D8QMEUEQBEEQhP/ztHJKvOwmTpzI4sWLS5WcvR8zMzP5ayMjo/vmtTA4e/YsUVFR7Ny5k5SUFLp164aZspBqZiY4hEVTx9Gf7BN/cWr5h9SzMLt/hxQthQoJCZHzxJw4caLcABkULZuZMGEC/fr1q/Q1KpVK+bVSqZSv97fffmPs2LEcOnQIT09PCgoKaNSoEa+88gq7du3i4MGDdOnShXPnzuHi4oKLi4ucK8SwNECr1RIdHY2pqWmF47k3h41Coajw9b3X8CDvU2UU7/vewKIgPCzD98Xx48fZunUrQ4cORZIkJEniww8/RK1W8+abb3L+/PlyA3GGQKBSqZQDgeX5888/6dWrFzVq1KBWrVoEBQXJ+1JTU/H390elUrFq1SrS0tLK7MOwZObixYuoVCpmzpwJFFU869y5s7zN0D4+Pp4BAwYAEBgYKAd3VSoV27dv54MPPuDPP//E0tJSPodheZ+7u7t8PfHx8QwZMgQoHUB9HomAiCAIgiAIAsg5JUKWHGRC3GFClhxka9pFERR5AurWrUu/fv3kv1AWZ2FhQcOGDeVytPn5+RVOGW/evDk6nY5Tp04BZedguXHjBjVr1sTS0pJLly6xZcsWrGuaMTGgMUYFedRu7s0bQWPQZ/0XW6uSAYA2bdrw008/AbBlyxauXbsGFC2D+fnnn7l8+TJQNI38v//9b7nj9Pf3Z9q0aY9cLlev13Pu3DnatWvHt99+S3Z2tlwFZ8SIEQwePFiueNSoUSM5+BEWFlbh2AzLbTQaDdbW1tSqVavMY7dv387Vq1fJy8tj06ZN+Pn5VWrczZs358yZM/JDVfFp+RYWFuTk5MivfX195Zwrq1atwt/fv1LnEITHoVWrVly5coXMzExWrVpFZmYmSUlJaLVaXnnlFW7fvl1mu8cVCAwNDeWHH37gyJEjRERElHs+A4VCwVtvvSVXJxs/fjzjxo3jyJEjLFiw4L7tmzVrxqFDh1CpVHz88cd89tlnpa7pcQc2nyUiICIIgiAIggDosm7y9e/HyC/QA5BfoOfr34+VyikhPB7vv/9+uRUMVqxYwZw5c1Cr1fj6+nLx4sVy+6lWrRpLly4lODgYlUqFUqks9fDv7OyMq6srLVq04O2338bPzw+lUoFPwxrc/u1rrq54j6trpjF71ncolSVnPERERLBnzx4cHR3ZsGEDjRs3BsDBwYEvvviCTp06oVar6dixY4nqMfdSKBRMnjwZa2vryt6iMhUWFjJ48GBUKhWurq5MmDBBLsEbFBREbm5uuctlyhMZGUlSUhJqtZqpU6cSGxtb7rFeXl706dMHtVpNnz59Si2XKU/16tWZO3cugYGBuLu7y0uCAN566y02btwo5x6Ijo5m6dKlqNVqVqxYwezZsx/oegThURw/fpzCwkKsrKzIzs6mXr16mJiYsHv3bjnoeW8Q70G1adOGTZs2kZeXR05ODr/++qu8Lycnh1dffZW7d++Wm5foXvHx8bz++utA0ZKX1157DaDE97Kfnx9r164FYNu2bXJw98KFC9SoUYPBgwcTHh7OoUOHKjxXeQHUR70nVUXxokw18/DwkB5HnXlBEARBEF5OB85kMSHucKntcwa64mNvVQUjEoQHk5iYyKRJk55YQsNly5aRmJjIDz/88FDtc3NzMTc3R5Ikxo4dS9OmTZk0adJjHqUgPDgjIyNUKhVQtBTrq6++olu3bly5coW33nqL3NxcPDw8OHDgAFu2bMHW1pa3336blJQUunTpQrdu3YiKimLz5s0AjBs3Dg8PD0JDQwkICCAqKgoPDw9sbW1JTEzE2tqaL7/8ktjYWOrVq0fjxo1xc3Nj8uTJzJs3jxkzZmBjY4O3tzc5OTksW7asxHiXLVtGeHg4r732Gnq9noYNG7Js2TLq1avHL7/8wqRJk6hTpw7t27cnISEBjUbD5cuXGThwIJcuXaJVq1Zs3rwZnU6HRqMhPDwcpVKJiYkJ8+bNKzXWxMREJk+ejEaj4erVqwwbNowzZ85Qo0YNYmJiUKvVnDx5kr59+6JUKomOji41s0uhUCRJklS5COpTJAIigiAIgiAIwJnMXEKWHJRniACYGSuJHeZVIsmmUJpeL6HLusnlnHzqWZhha1Wz1EwL4cn65ptvmDdvHqtWrSo3keOjetSAyKxZs4iNjeXOnTu4urqycOFCatSo8ZhHKQhFxM+lkvLz8zEyMsLY2Jj9+/czevRoOSns0yACIg9IoVDogBygECi4380TARFBEARBEB6FIYeIYdmMmbGSaV1bEuhY/6X+Jfp+xH0TBOFZI34ulZaenk6/fv3Q6/WYmpoyd+5cuUrW0/CsBkSe9Rwi7SRJcnkWb5wgCIIgCC8WpVJBoGN9Yod5MWegK7HDvF7qX54rS+ReEYSn459//qFHjx40bdoUe3t7xo0bR35+/mM/j0ajYd++ffLr+fPns3z58kq1PXLkiFzZqG7dutjZ2eHi4sKbb75Z4rgH6RNAp9Ph5ORU5r6AgAAMfxjftGkTCoWCnQcOlftzqfjx5Sl+jLn5o80QvPd+GkiShLW1tZzLIyMjA4VCQXx8vHyMjY0NWVlZ5fY9Z84cWrZsyaBBg8jPz+fNN9/ExcWFNWvWlLiGrl27YmNjw+HDh0lOTiYhIeGpBkOeZc96QEQQBEEQBOGpUSoV2NuY42Nvhb2NuQiGVMLlnPwSy4yg6OHjcs7jf1AThJeVJEn07t2bnj17kp6eTnp6Onl5eUyZMuWxn+veB/iwsDCGDh1aqbYqlUqubBQUFMTMmTPRarXs2LFDPqagoOCB+nwQcXFxtG7dmtWrVz8TP5cKCgrKDYgoFAp8fHzYv38/APv27cPV1VU+9sSJE1hZWWFlVX4Oq7lz57J9+3ZWrVrF4cNFObC0Wi39+/cvcdzvv/8uJ18WSnqWAyISsE2hUCQpFIp3q3owgiAIgiAIQmn1LMwwMy75K6WZsZJ6FmbltBAE4UHt2rWLatWqyRWEjIyMmDVrFsuXLyc3N5dly5Yxbtw4+fju3buj0WiAoooirVq1ws3NjeDgYLlMs62tLREREbi5uaFSqTh+/Dg6nY758+cza9YsuepPZGQkUVFRQNHMiQ8++AAvLy+aNWtW6QS+AQEBTJw4EQ8PD2bPnl2qz0mTJuHh4UHLli1JSEigd+/eNG3alI8//ljuo6CggEGDBtGyZUv69u1bqhx3bm4uO3bsIDc3l5ULojmz5nMK8/PQ383n9JovSZ09nE/HhZKXlye3GT16NB4eHjg6OhIREVHu+CdNmoSjoyMdOnQgMzMTgNOnT8tVk/z9/Tl+/DhQVDY3LCwMb29v+vXrV+p+Fufr6ysHQPbt28ekSZNKBEj8/PzIzc2lQ4cO8vv0yy+/AEWBqjNnztClSxe+/fZbBg8eTEJCAi4uLpw+fbrEeWxtbbly5Qo6nY6WLVsycuRIHB0d6dSpk3w/EhISUKvVuLi4EB4eXu6MnBfNsxwQaS1JkhvQBRirUCja3HuAQqF4V6FQJCoUikTDB1MQBEEQBEF4emytajKta0s5KGJYq29rVbOKRyYIL460tDTc3d1LbKtVqxa2tracOnWq3HZXrlzhiy++YMeOHRw6dAgPDw++++47eb+1tTWHDh1i9OjRREVFYWtrS1hYGJMmTUKr1ZaqFAJFgYmDBw/y/fffM3369Epfw507d0hMTOT9998vtc/U1JTExETCwsLo0aMHP/74I6mpqSxbtkxeMnLixAnGjBnDsWPHqFWrFnPnzi3Rx8qVKzExMSE+Ph53dzdaOb3Blf3ruXzwV4xNq/HzzgPM+OrkXA2pAAAgAElEQVQLkpKS5DZffvkliYmJpKSk8Mcff5CSklJqbDdv3sTDw4O0tDTatm0rX/O7775LdHQ0SUlJREVFMWbMGLnNP//8w759+9iwYUOF99PPz08OiBw8eJBevXpx7tw5oCgg4uvrS7Vq1di4cSOHDh1i9+7dvP/++0iSxPz582nQoAG7d+/mgw8+YNGiRfj7+6PVauUSvGVJT09n7NixpKWlUbt2bdavXw/AO++8w4IFC9BqtRgZGZX/Rr5gntmAiCRJ5//v/8vARsCrjGNiJEnykCTJw8bG5mkPURAEQRAE4aX3LOZeuXjxIgMGDOD111/H3d2drl27cvLkySd6ztDQUH7++WcARowYwdGjRx+pP51OR/Xq1eV8DC4uLty5c6fc4++9ZmNjY/bs2UPfvn0faRzC8+3AgQMcPXoUPz8/XFxciI2N5b///a+8v3fv3gC4u7uj0+kq1efDtAFKLeMoLigoCChacuPo6Mirr76KmZkZ9vb2coCgUaNG+Pn5ATB48OASuTYAFi9eTF5eHn5+fvz999/s+59NeNfTY3f3b/794TgCHevj4uKMWq2W26xduxY3NzdcXV1JS0sr8/tWqVTKYzecNzc3l3379hEcHIyLiwujRo0iIyNDbhMcHFypoIKnpyeHDx/m5s2b3L17F3Nzc+zt7Tl16pQ8Q0SSJD788EPUajVvvvkm58+f59KlS/ftuzyGvC7w/+/h9evXycnJoVWrVgC8/fbbD93/88a4qgdQFoVCURNQSpKU839fdwI+q+JhCYIgCIIgCGUw5F55FsoTS5JEr169CAkJYfXq1QAkJydz6dIlmjVrdt/2BQUFGBs/2q/IixYteqT2Bq+//nqlymKWdc3Vq1dHoVDIQZriHsc1Ck+Xg4NDqffyxo0bXLx4kebNm5Oamope//85M27fvg0UfTY6duxIXFxcmf2amRUtbTMyMqKgoKBSY3mYNgA1a5Y/a8zQp1KplL82vDacQ6EoGWQt/jo7O5uUlBSMjY25fv06CoWCmjVrsmZlLL169aJB7eqlgrRnz54lKiqKhIQE6tSpQ2hoqHzfKqJQKNDr9dSuXbvc78+KrrW4GjVq0LRpU5YsWYKbmxsAPj4+/P7771y+fJnmzZsTGxtLZmYmSUlJmJiYYGtrW6lxlqf4/TUyMiqxhOhl9KzOEHkFiFcoFMnAQeA3SZK2VvGYBEEQBEEQnlmPWgnhcSieF+BhaDQaLC0tcXFxkf8aevny5QfqY/fu3ZiYmBAWFiZvc3Z2xt/fH0mS5LXxKpWKNWvWyOf19/cnKCgIBwcHNBoNAQEB9O3blxYtWjBo0CAkSQIgKSmJtm3b4u7uTufOnUv8VdigvAoVP//8M6H/y96dh1VVrQ8c/24QAQU1EYe0BGeFczjMM+I8hJjTxSEFKc3ZHNNKQ39allaON62cpzTNuUxRTHFC0CMqaiqhOFwFTAREmfbvD+7ZlyODoBBo6/M8PHn2sPbam3Po7Hev9b5BQQD89NNP2NraYmdnh49PvpnhhSqovbCwMLKzs1m9ejUqlYpPPvkEQ0ND3njjDWxtbRkxYgT16tXD0tISCwsL1Go1qamp+Pv7U7VqVWUkyp07dwrNNyGUr3bt2vHo0SOlMkt2djYTJkxg1KhRmJqaYmVlhVarJScnh/j4eCIiIoDcm+ujR48q02rS0tKeOVrK3NyclJSUsj2h53Djxg0lv8aGDRvw8vJS1h04cICAgAAsLCwIDQ0lPj6eN998kw0bNuDj48OGDRsAOH/+vDIt5uHDh1StWpXq1atz9+5dfv311wKPm5OTowSjdMetVq0a1tbW/PTTT0Bu4Ons2bMF7v+s6+nh4cH8+fOV0Rnu7u4sWLAANzc3JEkiOTmZ2rVrY2RkRFhYmN4In9JSo0YNzM3NOXnyJIASWP0nqJABEVmWY2VZtvvvj40sy7PLu0+CIAiCIAhC6Sro6bJuDnx0dDTOzs4sWbKkWPvpnD9/Pl+uBZ2ff/4ZrVbL2bNnCQ0NZdKkSUpA4/Tp0yxYsEC5WTxz5gzz588nJiaG2NhYjh49SmZmJqNHj2bLli1ERUURHBzMxx9//DynzsyZM/ntt984e/YsO3fuLHCba9euKdNlRo4cWeQ5JyYmMnz4cM6dO0e9evWUdQ8fPiQuLo7Zs2djZGREVlYWM2fOJCQkhFOnThEXF0d6ejqjR49mwoQJReabEMqPJEls27aNLVu20LRpUywsLDAwMFDef56enlhbW9OqVSvGjBmjjDawtLRk1apV9OvXD7Vajbu7u5L8szDdunVj27ZtBSYBLU/NmzdnyZIltGzZkr/++ovhw4cr63777Tf69++vd66xsbGsW7eO4cOHk5qaSsuWLZk+fbry98HOzg57e3tatGhB//79lek4T6tatSoRERHY2tpy8OBBpk+fDsD69etZvnw5dnZ22NjYKMlOn/as6+np6UlsbKwSEHFwcODmzZt4eHgAMGDAACIjI1GpVKxZs4YWLVo8/0UswvLlyxkyZAgajYa0tDSqV69eJsepaCRdtPtl5+TkJD+rnrQgCIIgCMKryszMLN/T/F27djFr1iwyMjKwsLBg/fr1WFpa0qhRI7RarVKGsWnTpoSHh2NgYMCwYcO4ceMGAPPnz8fT05OQkBBu3LhBbGwsN27c4IMPPmDMmDFAblLC1atXU7t2bd544w0cHR2ZOHEi165dY+TIkSQkJFClShW+//57WrRoQVBQECYmJpw5cwZPT0+9G+5Dhw4xb948du/ejSzLjB49miZNmvDBBx8QEhLCtWvXiI2N5c033+Tzzz8nODiYxMRELC0tWblyJfXr16d27doMHDiQkJAQLCwsCAsLw8fHBx8fHxo1asRff/2FhYUFsbGxREVF0bdvXwYMGMCMGTMICwtT+jF79mz2798P5Fai0OVg8PDwoFGjRkDuU/p69eqxb98+goKC8PPzo3fv3vj6+jJv3jycnJz0fi9btmxh9+7drFq1imHDhnHt2jX+9a9/0bNnz3ylNePi4vDz8+P8+fOF/p517Tk4ODB58mRSUlIwMjLi4cOHvP7665w/fx4nJyfmzp2LJEn8/vvvJCcn079/f6ZPn86NGzdo0qSJci6VKlUiPj6eBg0aALlJMN3d3Vm+fPmLvDWFMnDs2DH69evHtm3blODHqyonRyYuKY17KU+obW6MlUVVURK9DKSmpioj0ObMmcOdO3dYsGBBqbUvSVKULMtOpdZgKRGTBwVBEARBEF5RXl5enDhxAkmS+OGHH/jyyy/56quv6N69O9u2bWPw4MGcPHmShg0bUqdOHfr378+4cePw8vLixo0bdOrUiYsXLwJw6dIlwsLCSElJoXnz5gwfPpzo6Gh+/PFHtFotWVlZODg4KE9fhw4dytKlS2natCknT55kxIgRHDx4EPhfBYaCkg4eOXIEjUZDUlISVatW5bPPPlPWxcTEEB4ejqmpKd26dSMwMJDAwEBWrFjBmDFj2L59O40aNeLIkSOEh4fj4ODAkSNHcHV1JT4+HkdHR/766y/lXN555x02bdpEQEBAvjn/T8+zz8rKQpZlbGxslGH7xZE3z0Heef9Lly7l5MmT7NmzB0dHR6KiovIFRYrbno2NDdnZ2flyLDytatWqJCcnK6+bNGmilwNh165dbNiwodB8E0Lpe96bfQ8PjzKZOlHR5OTI7L3wHz7/5SJPsnKUKlblnbj5VbRnzx4+//xzsrKyaNiwIatWrSrvLv0tKuSUGUEQBEEQBOHF3bx5k06dOqFSqZg7dy4XLlwAcqs96PJn/Pjjj0oFhdDQUEaNGoVGo8Hf35+HDx8qoxHeeustjI2NqVWrFrVr1+bu3bscOXKEHj16UKVKFapVq6ZUiniRCgy6KTPx8fEMHjyYyZMnK+v8/f0xNTUF4Pjx40olhIEDByoVJ7p3705SUhKLFi1i6tSphIeHs3HjRqytrfH29ub8+fN06dKFhw8fEhERQZ06dfjrr7+KdT2bN29OQkKCEhDJzMxUrmlh6tSpw8WLF8nJyWHbtm3K8mvXruHq6srMmTOxtLRUKmk8S0HttW3bFjMzM4YOHQrkDuXX5ZKoUqUKW7duJScnh0ePHnHo0CEg9/cZFxennMu9e/eoUaNGifNNCM9Pd7MfuCKCMRvPELgigr0X/kNOzqsxgr80xCWlKcEQgCdZOXz+y0XiktLKuWevnoCAALRaLefPn2fPnj38U6q4ioCIIAiCIAjCK2r06NGMGjWKc+fOsWzZMmVEgbu7O1evXiUhIYHt27crZTRzcnI4ceIEWq0WrVbLrVu3lCHUBY2YKEzeCgy6H91IEyh+BQZ/f38OHz5cov1at26Nvb09Z86cYcKECfz+++98/vnneHp60qNHD+rUqcOSJUto27YtX375JcbGxmRnZxerP5UrV2bLli18+OGH2NnZodFoOHbsWJH7zJkzBz8/Pzw8PPRye0yaNAmVSoWtrS0eHh7Y2dkVqw8FtSdJEr/++is7duygcuXKTJ8+nYyMDOrWrUu1atVo0KABH3/8Mfv378fBwYHq1avz6aef4u3tTfv27TE1NcXR0ZFLly6VON+EUDySJDFhwgTl9bx58xj34ccvdLOv1Wr55ZdfSq2PK1asQKVSoVarsbW1LTQnxt/pXsoT5froPMnKYeXKVYwaNaqceiW8SsSUGUEQBEEQhFdUcnIy9evXB2D16tXKckmS6NGjB+PHj6dly5bKVI2OHTuyaNEiJk2aBOTecGk0mkLb9/HxISgoiKlTp5KVlcWuXbt4//339Sow9OnTB1mWiY6OLvZNv054eDiNGzcucJ2Hhwc//vgjAwcOZP369Xh7ewPg4uLCmTNnlASIw4cPZ/fu3fTu3RtJkujYsSNmZmZMnDgRgP/7v//Dzc2Nvn37Km37+vri6+urvF68eLHyb41Goxek0ck7vFw3CgOgd+/e9O7dO9/2P//8c5HnbmVlRXT0OWITUvWmUxTWnpubG0lJSfmWnz9/ntTUVJYuXUpSUhIuLi6oVCrMzMzYtWtXgcc+depUkX0TSs7Y2Jiff/6ZqVOnUqtWLQDSMrIKvNm/l/KkWCWstVotkZGRdO3a9YX7d/PmTWbPns3p06epXr06qampJCQkvHC7L6q2uTHGlQz0rpNxJQPMTStRvHFduUSpaaEwYoSIIAiCIAjCK+DRo0c0aNBA+fn6668JCQmhT58+ODo6KjdhOgEBAaxbt06ZLgOwcOFCIiMjUavVtGrViqVLlxZ5TAcHBwICAqhSpQr16tUjMTGR+fPnc+zYMdavX8/ixYsxMTEpsgLD7du39W7wdTlE7OzsWLt2LV999ZWyTpZlYhNSORGbxKSQOaxcuRK1Ws3333/PH3/8gUajwdXVlcTERI4ePcqHH36It7c3KSkpqFSqfMe2srIqcKTL0qVLlfKmhYmMjFQSy5aF0pxO4efnh0ajwdvbm2nTplG3bt0y6LFQlEqVKjF06FC++eYbZVnVypUwrmRAZtoDrm6YwYVvR3Jx6ShuxJwGQKVS8eDBA2RZxsLCQnlPDho0iN9++43p06ezadMmNBoNmzZt4v79+7z99tuo1Wrc3NyU8rIhISEEBwfj6+tLo0aNWLhwYb7+3bt3D3Nzc2VEmJmZGdbW1gBcvXqV9u3bY2dnh4ODA9euXSM1NZV27drh4OCASqVSPt9xcXFK8uRmzZoxYMAAQkND8fT0pGnTpko54IiICNzd3bG3t8fDw4PLly8DuYHFnj170rlzZ5o2bcq3X85gateWGFcyICFqL+fmB3Fv3QT+OPu/YhoJCQn06tULZ2dnnJ2dOXr0qHLeAwcOxNPTk4EDB5beL1N4tciy/Er8ODo6yoIgCIIgCK+S7Owc+dq9FPn4tUT52r0UOTs7p7y7VKCqVasq/967d6/s4+Mjy7Is//nnn7KNjU2pHCM7O0feE31b9ppzQHaetV/2mnNA3hN9u8BrEh0dLTdo0EC+c+dOkW02bNhQTkhIKJX+lbZr91KUc9X9eM05IF+7l1LeXROeQ9WqVeXk5GS5YcOG8oMHD+S5c+fK06dPl/dE35Yt7drKLd77Rvaac0Be+VuE3KJFC1mWZfn999+Xd+/eLZ87d052cnKS33vvPVmWZblJkyZyamqqvHLlSnnkyJHKMUaNGiWHhITIsizLBw4ckO3s7GRZluVPP/1Udnd3lx8/fiwnJCTINWvWlDMyMvT6l5WVJXfs2FF+44035KCgIHnnzp3KOhcXF/nnn3+WZVmW09PT5bS0NDkzM1NOTk6WZVmWExIS5MaNG8s5OTnyn3/+KRsaGsrR0dFydna27ODgIA8ePFjOycmRt2/fLnfv3l2WZVlOTk6WMzMzZVmW5f3798s9e/aUZVmWV65cKVtbW8sPHjyQ09PT5TfffFOOi7suHz93Ra5Tr74cERMrp6c/lj08PJRz79evn3zkyBFZlmX5+vXryvX79NNPZQcHB/nRo0el8jsUXgwQKVeAuMHTP2LckCAIgiAIQgX0slZXePjwIa+99lq+5XFxcQwcOJC0tNz8CIsXL8bDw0OvvOyFCxcYPHgwGRkZ5OTksHXrVpo2bcq6deuY+/V8rv3nAVXqt6Ch/2ieZMHnv1ykRV1zvekFjx8/pn///ixZskQZCTF8+HBOnTpFeno6vXv3ZsaMGcr2X375Jb/++iumpqZs2LCBJk2aEBISokyr8fX1xdXVlbCwMB48eMDy5cvx9vbWKxFcFgrLnVDc6RRCxVOtWjUGDRrEwoULMTU1RZIkOtvUJftWNNkZ90g6LjF/o4GSzNjb25vDhw/TsGFDhg8fznfffcetW7d47bXXCsynEx4eztatW4HcRLtJSUk8fPgQ+F9SZGNjYyUpsq68MuTmBdq7dy+nTp3iwIEDjBs3jqioKCZMmMCtW7fo0aMHACYmJkBuQuGPPvqIw4cPY2BgwK1bt7h79y4A1tbWyogsGxsb2rVrhyRJqFQq4uLigNzpfIGBgVy5cgVJksjMzFT60q5dO6pXrw5Aq1atiI+/QWJiIh3bt8W5Ze6olYCAACXhb2hoKDExMcr+eZNB503ELAgFEQERQRAEQRCECqiw6gpPBwAqgvT0dDQaDY8fP+bOnTtKed28ateuzf79+zExMeHKlSv069ePyMhIvW2WLl3K2LFjGTBgABkZGWRnZ3Px4kU2bdrEko27Gb/lPHE7F5J09iC17DsUGCCYPHkyXl5eSsUbgNmzZ1OzZk2ys7Np164d0dHRqNVqAKpXr865c+dYs2YNH3zwQYEBjqysLCIiIvjll1+YMWMGoaGhpXXpClVY7oTa5sZF7CVUdB988AEODg4MHjwYAAMDCUmWiT59Sgk26Pj4+LBkyRJu3LjB7Nmz2bZtG1u2bFHy5ZREcZIiS5KEi4sLLi4udOjQgcGDB+slgs1r/fr1JCQkEBUVhZGREVZWVkrS5rzHMjAwUF4bGBgox502bRpt2rRh27ZtxMXF6eXsKUkCZ/hfMuinrx8UP4Gz8M8lcogIgiAIgiBUQEWNEKhoTE1N0Wq1XLp0ib179zJo0CByR0j/T2ZmJkOGDEGlUtGnTx+9J7o67u7ufPbZZ3zxxRdcv34dU1NTDhw4QFRUFEN7dSRmyTBSYs/w5H5uCd+nAwS//voroaGhfP3113rtbt68GQcHB+zt7blw4YLesfv166f8V1eC9mm6KjyOjo7KE+6yZmVRVcmdACgjhKwsxA3ey6xmzZr861//Yvny5coyXTJjHa1WC8Abb7xBYmIiV65coVGjRnh5eTFv3jx8fHwAMDc3JyUlRdnP29ub9evXA7mJfWvVqkW1atWK1a/bt29z+vRpvT40bNgQc3NzGjRowPbt2wF48uQJjx49Ijk5mdq1a2NkZERYWBjXr18v0XXIm/A5b0Liwri6uvL777+TlJREZmYmP/30k7KusOsnCMUhAiKCIAiCIAgVkG6EQF4vwwgBd3d3EhMT81Wo+Oabb6hTpw5nz54lMjKSjIyMfPv279+fnTt3YmpqSteuXTl48CCyLBMYGMj56LNs/u0IThNXU7/doHwBgnv37vH++++zfv16vSHyf/75J/PmzePAgQNER0fz1ltvKU+yIfepeEH/zkv3xLo4T6tLi4FB7nSK1cEuLOxnz+pglwo/XUoongkTJpCYmKi8LiqZsaurK82aNQNyAx63bt3Cy8sLgDZt2hATE6MkVQ0JCSEqKgq1Ws2UKVP0Kks9S2ZmJhMnTqRFixZKewsWLABg7dq1LFy4ELVajYeHB//5z38YMGAAkZGRqFQq1qxZQ4sWLUp0DSZPnszUqVOxt7cv1meqXr16hISE4O7ujqenJy1btlTWlTQZtCDkJT0dvX9ZOTk5yU8PuxQEQRAEQXhZvUw5RMzMzJQ5+5cuXcLLy4u7d+8SHx+v5AcZN24cDRo0YMKECaxcuZLg4GBkWdbLIRIbG4u1tTWSJDFx4kQaNGhAx44d6d69O0ePHqVWLUu0V+O5fvc+di2aYGVRVbkWfn5+tG7dWikZrHP27FkGDRrEmTNnSEhIQK1W88UXXxAUFISVlRXDhg1jypQprFu3jk2bNrFr1658OUTmzZuHk5MTiYmJODk5ERcXV+Y5RARBEF4lkiRFybLsVN79eJrIISIIgiAIglAB6UYItKhrzr2UJ9Q2N9YLAFQkuhwikFvBcPXq1RgaGuptM2LECHr16sWaNWvo3LlzgXP7N2/ezNq1azEyMqJu3bp89NFH1KxZk1mzZtGxY0dycnIwMjJiyZIlenlDjh8/zp49e4iPj1emDAB06NCBuXPnYm9vT4sWLXjjjTfw9PTUO+Zff/2FWq3G2NiYjRs3luZlEf4BcnJk4pLSKvxnVBCEgokRIoIgCIIgCKXM0NAQlUpFVlYWLVu2ZPXq1VSpUqVMjqXVarl9+zZdu3YFYOfOncTExDBlyhS97VatWsWkSZOoX78+GRkZjBs3jiFDhhTa7vz58xk6dKjS765du7JhwwZq1KihNyJEKL6nr9uqVauIjIxk8eLFpXqc6dOn4+PjQ/v27Qtcv337dpo1a0arVq2K3WZCQgJ+fn5kZGSwcOFCJbHnjh07WLlypZJj4vPPP2f58uVcvXoVgF27dvH999+zc+fOFzqn0nrPHTlyhGHDhmFkZMS3337LX3/9pXx2SuplGsUlCOWtoo4QETlEBEEQBEEQSpkuyej58+epXLlysee0P09+Cq1Wyy+//KK89vf3zxcM0QkICECr1XLo0CE++ugjpUxmQebPn0/MjXuciE0iNiGV3bv3UKNGjRL3T/j7zZw5s9BgCOQGRApKaluUAwcOoFKpOHPmjF6VEw8PD06cOKG8Pn78ONWqVePevXsAHDt2DA8PjxKewYsp6nO0fv16pk6dilar5fLly3qfnZIqrBJUXFLac7cpCMLfSwREBEEQBEEQypC3tzdXr15l165duLq6Ym9vT/v27ZVgREhICAMHDsTT05OBAwfi5ubGhQsXlP19fX2JjIwkIiICd3d37O3t8fDw4PLly2RkZDB9+nQ2bdqkJEJctWoVo0aNKrJPtWvXpnHjxly/fp3hw4fj5OSEjY0Nn376KQALFizg1q3btPZtS8f27QhcEUG9N97k3r2EItsVnl9CQgK9evXC2dkZZ2dnjh49CuS+P4KDg/H19aVRo0YsXLhQ2ef//u//aN68OV5eXvTr14958+YBEBQUxJYtWwCYMmUKrVq1Qq1WM3HiRI4dO8bOnTuZNGkSGo2Ga9eu6fUjLi6Otm3bolaradeuHTdu3ECr1TJ58mR27NiBRqMhPT1d2d7S0pJq1aopI0Ju3bpFr169OHbsGJAbEPH09Cyw3cKOB7nJcN3d3VGpVHzyySd6ffziiy9QqVTY2dkpwT9fX18++OADnJycWLBgAQcOHMDe3h6VSkVwcDBPnjzhhx9+YPPmzUybNo1+/frl++yU1MtUCUoQhIKJHCKCIAiCIAhlJCsri19//ZXOnTvj5eXFiRMnkCSJH374gS+//JKvvvoKgJiYGMLDwzE1NeWbb75h8+bNzJgxgzt37nDnzh2cnJx4+PAhR44coVKlSoSGhvLRRx+xdetWZs6cqTftojglLGNjY4mNjaVJkybMnj2bmjVrkp2dTbt27YiOjqZb/3f5MORzmgXPxahqdZ5k5ZD8KJMb99OoXduyLC/ZKy1vrhWA+/fv4+/vD8DYsWMZN24cXl5e3Lhxg06dOnHx4kUgN1FtWFgYKSkpNG/enOHDh6PVatm6dStnz54lMzMTBwcHHB0d9Y6XlJTEtm3buHTpEpIk8eDBA2rUqIG/vz9+fn707t07Xx9Hjx5NYGAggYGBrFixgjFjxrB9+/Z877O8PD09OXbsGNnZ2TRt2hQ3Nzd+++03/Pz8OHv2LM7OzvTp06fAdgs73tixYxk+fDiDBg1iyZIlyrF+/fVXduzYwcmTJ6lSpQr3799X1mVkZBAZGcnjx49p2rQpBw4coFmzZgwaNIhvv/2WDz74gPDwcOXcX3TKkq4SVN6gyMtQCUoQhP8RI0QEQRAEQRBKme7G18nJiTfffJN3332Xmzdv0qlTJ1QqFXPnztUbBeLv76+Uiv3Xv/6lPN3fvHmzctOanJxMnz59sLW1Zdy4cXr7F5fuaXi/fv1YtmwZNWvWZPPmzTg4OGBvb8+FCxeIiYnhXsoTns4yJwOJqflL5QrFp5tKpfuZOXOmsi40NJRRo0ah0Wjw9/fn4cOHSs6Mt956C2NjY2rVqkXt2rW5e/cuR48epXv37piYmGBubk63bt3yHa969eqYmJjw7rvv8vPPPxcrj83x48fp378/AAMHDiQ8PPyZ+3h4eHDs2DGOHTuGu7s7Li4unDx5kjNnztCiRQtMTEwKbbew5UePHqVfv37K8rzXafDgwcq51KxZU1kXEDl7M0IAACAASURBVBAAwOXLl7G2tlbK1QYGBnL48OFnnkdJWVlUZWrXlkp57KdLQQuCUPGJESKCIAiCIAilTHfjm9fo0aMZP348/v7+HDp0iJCQEGVd3oor9evXx8LCgujoaDZt2qTkH5k2bRpt2rRh27ZtxMXF4evrW+J+BQQE6D0N//PPP5k3bx6nTp3itddeIygoiMePH1Pb3JinU0JKQC2zyiU+plA8OTk5nDhxAhMTk3zrjI3/N+LA0NCw2LlmKlWqREREBAcOHGDLli0sXryYgwcPllqfdTw9PVm0aBHZ2dkMGTIEc3NzHj9+zKFDh14of4gklSwxaUGVi8rSy1QJShCEgokRIoIgCIIgCH+D5ORk6tevD8Dq1auL3DYgIIAvv/yS5ORk1Gp1vv3zTosxNzcnJSXlufr08OFDqlatSvXq1bl79y6//vorkPvku26t16iU/RjIffJdvYoRb9YUT77LSseOHVm0aJHy+umA2tM8PT3ZtWsXjx8/JjU1ld27d+fbJjU1leTkZLp27co333zD2bNngaLfMx4eHvz4449AbgLSvAlUC9OyZUtu375NeHg49vb2AGg0GpYuXaqUOS6s3cKWe3p66i3X6dChAytXruTRo0cAelNmdJo3b05cXJyS12Tt2rW0bt0633Yv8tnRMTCQaGRphlsjCxpZmolgiCC8ZERARBAEQRAE4W8QEhJCnz59cHR0pFatWkVu27t3b3788Uf+9a9/KcsmT57M1KlTsbe31xsh0KZNG2JiYp4rMaSdnR329va0aNGC/v37KzevBgYS40cPJ2lrCNm7Qlgd7IKpkaG42StDCxcuJDIyErVaTatWrZ5ZmcjZ2Rl/f3/UajVdunRBpVIRGxuLJEkkJycDkJKSQocOHTAxMcHLy4sePXowatQo+vbty9y5c7G3t8+XVHXRokWsXLkStVrN2rVrWbBggd769957L1+FGkmScHV1xcLCAiMjIwDc3d2JjY3F1NQUX19fzp07x4gRI6hWrRrffvut0m5hx1uwYAFLlixBpVJx69Yt5VidO3fG398fJycnNBqNkkg2LxMTE6ZMmaIkZTUwMGDYsGH5tnuRz44gCK8GSZafniH6cnJycpIjIyPLuxuCIAiC8LcxMzNTcgyUBysrK8zNzZEkibp167JmzRrq1q1b4LZarZbbt2/TtWtXAA4dOkTlypVfaDh9XFwcfn5+nD9//rnbEISXWWpqKmZmZjx69AgfHx9q1qxJeno6bdu2ZcaMGYD+5+RFk4hmZ2djaGhY7O3v3r2Lq6srGzZsUD7r4eHhJCYm8vbbb+ttm5WVRaVKYjY/5JZF7tGjBxcvXqRFixZleqzIyEjWrFmjV73oaYaGhqhUKrKysmjZsiWrV6/m3r17en9/g4KClGS17733HuPHj6dVq1Z67fj6+jJv3jycnJywsrIiMjKSWrVqKTlonpa3zeK4fPky77//Pg8ePODJkyd4e3vz3XffleBqCGVJkqQoWZadyrsfTxMjRARBEARBeG5hYWFER0fj5OTEZ599Vuh2Wq2WX375RXl96NChAr8AF6W4eRPKUk6OTGxCKidik4hNSCUn59V4sCQ8v/J8TwwdOhSNRoODgwN+fn5cuHCB5cuXK1NNChIfH4+vry9NmzZVgiYA69atw8XFBY1Gw/vvv092djaQG3idMGECdnZ2HD9+XCkDDbB3714cHByws7OjXbt2+Y61ePFiAgMD9QKfXl5eSjAkKCiIYcOG4erqyuTJkwkJCdEb8WFra0tcXBxxcXG0bNmSIUOGYGNjQ8eOHZXSv76+vnz44Ye4uLjQrFkzjhw5AuT+jfHz8wNyp9W8/fbbqNVq3NzciI6OBoouaVyeNm7ciJeXFxs3bixwfWn+LXRycnrmeetyIp0/f57KlSs/c/TSDz/8kC8YUpSS/r9AlmVycnLyLR8zZgzjxo1Dq9Vy8eJFRo8eXaJ2S3Is4dUhAiKCIAiC8BJLTU2lXbt2ODg4oFKp2LFjB5D7VLhFixYEBQXRrFkzBgwYQGhoKJ6enjRt2pSIiAgA0tLSCA4OxsXFBXt7e2X/CxcuKDdHarWaK1euFNkPHx8frl69yuPHjxk8eDAqlQp7e3vCwsLIyMhg+vTpSoWTL774gqVLl/LNN9+g0Wg4cuQICQkJ9OrVC2dnZ5ydnTl69CiQe8MycOBAPD099SpNlIecHJm9F/5D4IoIxmw8Q+CKCPZe+I8IivyDlfd7YsOGDWi1Wi5dukTTpk3p3LkzzZo1w8LCgqioqAL3iYiIYOvWrURHR/PTTz8RGRnJxYsX2bRpE0ePHkWr1WJoaKjk7UhLS8PV1ZWzZ8/i5eWltJOQkMCQIUOU0r8//fRTvmNduHABBweHIs/h5s2bHDt2jK+//rrI7a5cucLIkSO5cOECNWrUYOvWrcq6rKwsIiIimD9/vl6QR+fTTz/F3t6e6OhoPvvsMwYNGqSsu3TpEr/99hsRERHMmDGDzMzMIvtR1lJTUwkPD88X2Dp06BDe3t74+/vTqlUr0tLSeOutt7Czs8PW1laZ8hMVFUXr1q1xdHSkU6dO3LlzByhe4KiwgBSgHCssLIy9e/cCKEl0bWxs2LdvH0+ePOHatWuYm5srQbPPPvsMExMTXFxcuHz5Ml9++SWQ+zvTVd2qXLkyZmZmyLLMqFGjsLS0pFq1amzdulU5r/Hjx2NiYkKNGjWoWbMmN27cyHft7ty5Q4MGDZTXKpUKyM251L179wIDgV9//TW2trbY2toyf/58IPf/n82bN2fQoEHY2toSHx/P3LlzcXZ2Rq1W8+mnnz7X71aomERARBAEQRBeYiYmJmzbto3Tp08TFhbGhAkT0E2HvXr1KhMmTODSpUtcunSJDRs2EB4ezrx585TRHLNnz6Zt27ZEREQQFhbGpEmTSEtLY+nSpYwdOxatVktkZKTel8yC7N69G5VKxZIlS5AkiXPnzrFx40YCAwPJyclh5syZBAQEoNVq+fDDDxk2bJjyJM/b25uxY8cybtw4Tp06xdatW3nvvfeUtmNiYggNDS30aenfJS4pjc9/uciTrNynhU+ycvj8l4vEJaWVa7+E8lOR3hMbN26kb9++APTt27fQz0uHDh2wsLDA1NSUnj17Eh4ezoEDB4iKisLZ2RmNRsOBAweIjY0FcqdL9OrVK187J06cwMfHB2tra0C//G1hXF1dadmyJWPHjlWW9enTp1jTcKytrdFoNAA4OjoqN+oAPXv2LHC5Tnh4uBJQbdu2LUlJSTx8+BAouKRxedqxY0ehga3Tp0+zYMEC/vjjD/bu3cvrr7/O2bNnOX/+PJ07dyYzM5PRo0ezZcsWoqKiCA4O5uOPP1b2f1bgqDDZ2dm8/vrrynukc+fOgH6QqnLlypw8eZLGjRtjaGjI5cuXuX37Nl988QUhISEcPXpUSYQLuaN2hg4dyrlz5zAwyL0l3bZtG8eOHaN79+5cvHgRQ0NDYmNjOXz4MIMGDSIjI4O9e/fi5+fHuXPn8vVz3LhxtG3bli5duvDNN9/w4MEDZV1BgcCoqChWrlzJyZMnOXHiBN9//z1nzpxRzm3EiBFcuHCBy5cvc+XKFSIiItBqtURFRZVJGWehfIiJeoIgCILwEpNlmY8++ojDhw9jYGDArVu3lC/01tbWyhMyGxsb2rVrhyRJqFQq5aZh37597Ny5U3kq+PjxY27cuIG7uzuzZ8/m5s2b9OzZk6ZNmxZ4/DZt2mBoaIharWbWrFkMHjxYGabcokULGjZsyB9//PHM8wgNDdVL1Pjw4UMlP4q/vz+mpqbPd4FK0b2UJ8qNr86TrBzupTyhkaVZOfVKKE8V5T1x//59Dh48yLlz55AkiezsbCRJYu7cufm2fbqUrSRJyLJMYGAgn3/+eb7tTUxMSpQ3JC8bGxtOnz5N9+7dATh58iRbtmzRq4iTt1RupUqV9KYnPH78WPn306WHdVNm8q4rSUniwtot76l5GzduVAJGusCWo6MjAC4uLkoASqVSMWHCBD788EP8/Pzw9vbm/PnznD9/ng4dOgC5gYx69eopbT8rcFSYjIwMVq9ezc6dO/Hy8mLUqFHcvn1bL0hlYWFBQkICAPXq1WPXrl2YmJiQk5PDkCFDMDIyonbt2kqbT548Ud4Xutwxhw8fxtLSktDQUGWEya1bt7hy5QoZGRkYGRkxZMgQ7t+/j42NDd26ddPr5+DBg+nUqRN79+5lx44dLFu2TKmspAsE6q5DeHg4kiTRo0cP5T3Ys2dPjhw5gr+/Pw0bNsTNzQ3I/f/kvn37lApKqampXLlyBR8fn2JfQ6HiEgERQRAEQXiJrV+/noSEBKKiojAyMsLKykq5icj7Rd/AwEB5bWBgoHzpl2WZrVu30rx5c712W7ZsiaurK3v27KFr164sW7aMtm3b5jt+WFjYMyumFEdOTg4nTpzAxMQk37q8N0zlqba5McaVDPRugI0rGVDb3LiIvYRXWUV5T2zZsoWBAweybNkyZVnr1q05cuQIb775pt62+/fv5/79+5iamrJ9+3ZWrFhBlSpV6N69O+PGjaN27drcv3+flJQUGjZsWOgx3dzcGDFiBH/++SfW1tbcv38/3yiRkSNH4urqSqdOnZQ8InlHCTzNyspKCZacPn2aP//8s8TXoiDe3t6sX7+eadOmcejQIWrVqkW1atVKpe3S9KzAVt6/hc2aNeP06dP88ssvfPLJJ7Rr144ePXpgY2PD8ePHC2z/WYGjwgJSpqam3Lhxg19++YXvv/+eOXPmMGjQIL3/x+j6C2Bpacnx48extrbGwsJCCUQU19SpU3n//ffp2bMn/fv3x8/PjwYNGmBlZcW5c+cICQnRC5bl9frrrxMcHExwcDC2trZK0teCAoFFyXutZVlW+iS8esSUGUEQBEF4iSUnJ1O7dm2MjIwICwvj+vXrJdq/U6dOLFq0SJlmoxsuHBsbS6NGjRgzZgzdu3dXkhA+i+7GA+CPP/7gxo0bNG/eHHNzc1JSUpTtnn7dsWNHFi1apLzWarUlOo+/g5VFVaZ2bYlxpdyvT8aVDJjatSVWFhUjYFOaDA0N0Wg02Nra0qdPnyJvYstS3gSeVlZWJCYmlmjf5s2bo9Fo0Gg0bNmyBchNElpaCnpPvGX5F6OD+pbaMYpj48aN9OjRQ29Zr169Cpw24+LiQq9evVCr1fTq1QsnJydatWrFrFmz6NixI2q1mg4dOii5JwpjaWnJd999R8+ePbGzsyMgICDfNnXr1mXTpk1MnTqVJk2a4OHhwZYtWxg1alSBbfbq1Ut5+r948WKaNWtWgqtQuJCQEKKiolCr1UyZMoXVq1eXSrulTRfYun79OnFxccTHx2Ntba3k+8jr9u3bVKlShXfeeYdJkyZx+vRpmjdvTkJCghIQyczM5MKFC8U+vpWVFadPnwb0A1KyLOc7VlEMDAxwc3Nj5cqVpKen89dff5GVlaWMIIHc4MyuXbuA/yWJ9fHxISkpieXLl3P16lXCwsJISkoiPj4eyP27lJqaqnyWn7Z3714lB8x//vMfkpKSqF+/PvC/QGB6ejrbt2/H09MTb29vtm/fzqNHj0hLS2Pbtm14e3vna7dTp06sWLFCGbV469Yt7t27V7yLKlR4YoSIIAiCILyEsrKyMDY2ZsCAAXTr1g2VSoWTk1OJSzROmzaNDz74ALVaTU5ODtbW1uzevZvNmzezdu1ajIyMqFu3Lh999FGx2hsxYgTDhw9HpVJRqVIlVq1ahbGxMW3atGHOnDloNBqmTp1Kt27d6N27Nzt27GDRokUsXLiQkSNHolarycrKwsfH55mVDP5uBgYSnW3q0qKuOfdSnlDb3Bgri6oYGBT9pPFlpKsqATBgwACWLl3K+PHjn7lfRSudun79epycyq7KY0HvibhzpwgvpbdETo5MXFLaM99vYWFh+ZaNGTNG+Xfe0qhBQUEFHisgIKDAoMbTpb0PHTqk/LtLly506dKlyHNwc3Pj999/L3DdqlWr9F6bmpqyb9++ArfNW1574sSJBfanVq1aylQQX19ffH19gdz8Jtu3b8/XZkhISKHHKA8bN27kww8/1FumC2w9/bs5d+4ckyZNwsDAACMjI7799lsqV67Mli1bGDNmDMnJyWRlZfHBBx9gY2NTrOP36tWLNWvWYGNjg6urqxKQysnJwcXFRe9YT8vJydGbWtW5c2eOHj3KJ598gouLCzVr1sTExEQJSNasWZNvv/2WRYsWkZOTQ/Xq1enRowcHDx5k8+bNaDQaJEniq6++on379vTt25fvvvuOTp064ezsXGD/9+3bx9ixY5WRhnPnzlVKwesCgTdv3uSdd95R/i4EBQXh4uICwHvvvYe9vX2+6UQdO3bk4sWLuLu7A7lB1XXr1ulNARJeYrIsvxI/jo6OsiAIgiD8U2i1WtnZ2bm8u/GPNmvWLLlVq1aySqWS7ezs5BMnTpRo/5UrV8q3bt1SXr/77rvyhQsXSqVvVatWzXeskSNHFrlPWFiYfPTo0Xz7f/vtt/Lw4cPl1NRUefDgwbKzs7Os0Wjk7du3K21369ZNbtOmjezj41Pkdj169JA7deokN2nSRJ40aZJyjN9++012c3OT7e3t5d69e8spKSmyLMty69at5VOnTsmyLMsNGzaUExISZFmW5bVr18rOzs6ynZ2dPHToUDkrKyvf+eTdt6Brk5KSIrdt21a2t7eXbW1tlX7++eefcvPmzeXAwEC5adOmcv/+/eX9+/fLHh4ecpMmTeSTJ0/KsiwXep5hYWHyW2+9VeS1Lo7s7Bx5T/Rt2WvOAdl51n7Za84BeU/0bTk7O+eF2xb+ftnZOfK1eyny8WuJ8rV7KRXi91hafcrOzpYdHBz0/n7NnTtX/uSTT5TPcmZmpuzn5yf//PPPsizLclpampyTk3u8jRs3yv7+/i94NoUrzt8/oewBkXIFiBs8/SOmzAiCIAhCBZOTIxObkMqJ2CRiE1LzlfBcunQp/fr1Y9asWcVus6BpAkuXLmXNmjVA7lOywoYhFyTvVIbChISEUL9+fWXqxc6dO4vcXlf5BuDBgwf8+9//LnZ//m7Hjx9n9+7dnD59mujoaEJDQ3njjTeKvX92djarVq3i9u3byrIffviBVq1alUV3i+XQoUMcO3ZMb1lWVha//vorKpWq0IpEkDu8fsuWLfz+++9FbqfVatm0aRPnzp1j06ZNxMfHk5iYyKxZswgNDeX06dM4OTkVWYK1qBKxTxswYIAyZSYpKUlvXVlVaCotFamCjfBiyrs8c1n26fbt29ja2uLm5qb8/erRowdr1qxh7NixhISEKP8PsLa25u233wZyywPryrr/+9//5quvvir1cxSE4qg4YxoFQRAEQVC+pOpuhHR5Kjrb1FWGyg8bNoxhw4a98LFKo41nGTduHBMnTuTixYt4e3tz7949pcTi0z777DNlao4uIDJixIhiH0t52lNI+6Xpzp071KpVS0kqmDex7IEDB5g4cSJZWVk4Ozvz7bffYmxsjJWVFQEBAezfv5/x48cTGRnJgAEDMDU15fjx43Tp0oV58+bh5OSEmZkZY8eOZffu3ZiamrJjxw7q1KnDtWvXGDBgAGlpaXTv3p358+fnm9LwLLt27WLWrFlkZGRgYWHB+vXrSU9PZ+nSpRgaGrJu3ToePXqkVI/w9vbm3XffxcPDo8CKRJBbwUGXULOwykUA7dq1o3r16gC0atWK69ev8+DBA2JiYvD09ARyK1rohqYXJG+JWID09PRCh64XNWVGLqMKTaWlolSwEV5cYcGtFnXNy+13WVp9ev311/UqhEFu+Vwd3efjad7e3koFmLJW1FQxQRAjRARBEAShAvk7nwqHhITk+7J68OBB5Qke5CaiezpZ4/No2bIllSpVIjExkY0bN6JSqbC1tVXmy0+ZMoX09HQ0Gg0DBgxgypQpXLt2DY1Gw6RJk4Dc+eDOzs6o1Wo+/fRTAOLi4mjevDmDBg3C1tZWSb5X1jp27Eh8fDzNmjVjxIgRSo6Ex48fExQUpIyCyMrK0ptvb2FhwenTp5U57OvXr0er1eYrK5yWloabmxtnz57Fx8eH77//HoCxY8cyduxYzp07R4MGDQrtn+5a6n6mT5+urPPy8uLEiROcOXOGvn378uWXX2JlZcWwYcMYN24cWq2WKlWqoNVq0Wq1LFq0iMqVKysViXTLb9y4QcuWLYH8FRkK266gEqeyLNOhQwdl+5iYGJYvX17oucn/LRGr2/7y5cv5ckEUR94KTVqtljp16jxXhaaCzrM06CrY5CWqGr2cigpulZeK2CdBKA/PDIhIklSyOkmCIAiCIDy38v6S2qZNGy5duqRUA1i5ciXBwcEv3O7JkycxMDAgMzOTDz/8kIMHD6LVajl16hTbt29nzpw5SiLP9evXM2fOHBo3boxWq2Xu3Lns27ePK1euEBERgVarJSoqisOHDwNw5coVRowYwYULF4osE1qazMzMiIqK4rvvvsPS0pKAgABWrVrF5cuXsba2VpIRBgYGKv0ECkxaWZDKlSvj5+cHgKOjozIq4fjx4/Tp0weA/v37F7q/7lrqfmbOnKmsu3nzJp06dUKlUjF37txiV6EorCLR826n4+bmxtGjR7l69SqQGwz6448/Ct2+Xbt2bNmyRanycP/+/RJXV4Kyq9BUWv5JVY1edRUxuFUR+yQI5aE4I0ROSJL0kyRJXaVnFWwWBEEQBOGFlPeXVEmSGDhwIOvWrePBgwfKVI7n9c0336DRaJg4cSKbNm0iMjISX19fLC0tqVSpEgMGDNALGBRm37597Nu3D3t7exwcHLh06RJXrlwBoGHDhri5uT13H5+XoaEhvr6+zJgxg8WLF7N169Zn7pN3JEVRjIyM0H3t0o2kKC2jR49m1KhRnDt3jmXLlimjIp5l2rRpZGZmolarsbGxYdq0aS+0nY6lpSWrVq2iX79+qNVq3N3duXTpUqHbP0+J2IIMGDCAyMhIVCoVa9asea4KTSU5Tx1JknjnnXeU11lZWVhaWioBMB1dBZvVwS4s7GfP6mAXvalzcXFx2NraAhAZGalXVUaoWCpicKsi9kkQykNxcog0A9oDwcBCSZI2A6tkWS48dC8IgiAIwnPRfUl9OofI3/kldfDgwXTr1g0TExP69OnzQmVUdTlEdHbs2PFc7ciyzNSpU3n//ff1lsfFxRU7yFCaLl++jIGBAU2bNgVyk4U2bNiQ5s2bExcXx9WrV2nSpAlr166ldevWBbZhbm5OSkpKiY7r5ubG1q1bCQgI4Mcff3yuvicnJ1O/fn0AVq9erdefhw8fAvlLrULuqJNly5blW/70/Pzibrd7927l323btuXUqVP59slbUjVvKczCSsQWtm9eunOrVasWx48fL3CbvOVX85aGtbKyUtYVdp55y70WpGrVqpw/f5709HRMTU3Zv3+/8vt4moGBRCNLs3w5HZ4OkDk5OZVpeWHhxVTEkt0VsU+CUB6eOULkv1Vy9suy3A8YAgQCEZIk/S5JUuEZrwRBEARBKLFnPRX+O7z++uu8/vrrzJo1i8GDB5dq2y4uLvz+++8kJiaSnZ3Nxo0blYCBkZERmZmZQP5gQadOnVixYoVyM3vr1i1lykR5SE1NJTAwkFatWqFWq4mJiSEkJAQTExNWrlxJnz59UKlUGBgYFJq8NigoiGHDhqHRaEhPTy/WcefPn8/XX3+NWq3m6tWrSoLS4pDl3OpF/YaNp0fP3jg6Ouolg+3WrRvbtm1Do9Fw5MiRYrcrlFzXrl3Zs2cPABs3bqRfv37KurS0NIKDg3FxccHe3l4JIq5atQp/f3/atm1Lu3bt9No7dOiQMsIkJCSE4OBgfH19adSoEQsXLvybzkooii645dbIgkaWZhUi8FAR+yQIf7dnPvL5bw6Rd4CBwF1gNLAT0AA/AdZl2UFBEARB+Kcp7Knwi3j06JFeEs7x48cXuf2AAQNISEgoNElkVlaWkmjyvffeY9iwYcV6Ql2vXj3mzJlDmzZtkGWZt956i+7duwMwdOhQ1Go1Dg4OrF+/Hk9PT2xtbenSpQtz587l4sWLSvURMzMz1q1bh6GhYbHOvyRycmTiktKKfGrq6OiYr0StTrt27QrMJ5F3hANAr1696NWrl/I674iGvCM0evfuTe/evQGoX78+J06cQJIkfvzxRy5fvlxgH54e4TFoUCC1HTsRuCKCJ1n1aDhieb7qRc2aNSM6OrrA9oTS1bdvX2bOnImfnx/R0dEEBwcrQShdOd8VK1bw4MEDXFxcaN++PYBS5rlmzZr53k95Xbp0ibCwMFJSUmjevDnDhw/HyMjo7zg1QRCEl0pxxsAeB9YCb8uyfDPP8khJkpaWTbcEQRAEQXiW4ty4/2/bnAKX6+SdFgAQHh7OkCFDCtz2yZMnXL9+nTfffBOAH374ocDtCqv80a9fP70n4jpffPEFX3zxhfJ6w4YNeut1FVaelnd6w4sqTtnj8hQVFcWoUaOQZZkaNWqwYsWKYu1XEct+/pOp1Wri4uLYuHEjXbt21VtXVDnfvOWNi/LWW29hbGyMsbExtWvX5u7du0VWJRIEQfinKk5ApLmsS5/9FFmWv5AkaZEsy6NLuV+CIAiCIBShLG/cHR0dqVq1Kl999VW+dZGRkQwcOJARI0aUaLrGy6KiBw68vb05e/ZsifcrqnpRRTivfyJ/f38mTpzIoUOHSEpKUpbryvk2b95cb/uTJ08WO19OQeWNBUEQhPyeGRApLBiSh2cp9UUQBEEQhGIqyxv3qKioQtc5OTlx8eLFF2q/IntVAwe66kV5z02U2CxfwcHB1KhRA5VKpTddSlfOd9GiRUiSxJkzZ7C3ty+/jgqCILzCilN2VxAEQRCECqaoG3fh+ZV32eOyUtYlNmfPno2NjQ1qtRqNRsPJkyeB3PwyMTExBe5T1LriiouLw9TUeeWJNgAAIABJREFUFI1Gg52dHR4eHkpelbyJRkvKysqKxMTEF+rbszRo0KDAUrnPW85XEARBKDnp2QNAntGAJJ2WZdmhlPrz3JycnOTIyMjy7oYgCIIg/C1iE1L/myBT/4n/6mCXl3okQ3mr6DlEXkRJcs6UxPHjxxk/fjyHDh3C2NiYxMREMjIyeP311wvdJzs7u1QS4sbFxeHn56fkkVm2bBnHjh1j9erVHDp0iHnz5umV9y0uKysrIiMj9arwCIIgCM9PkqQoWZYrXH3w0hgh8nJ/OxAEQRCEl1BZP/H/p6oIZY/LSlmV2Lxz5w61atVS8lbUqlVLCYb4+vqie2BlZmbGhAkTsLOz4/jx4/nW6WzZsoWgoCAAfvrpJ2xtbbGzs8PHx+eZfXn48CGvvfZavuURERG4u7tjb2+vN4okOzubiRMnYmtri1qtZtGiRXr7paen06VLF77//vtnHjsnJ7es8YnYJGITUsnJebGHjoIgCELZK05SVQAkSaoiy/KjAlYtKMX+CIIgCIJQDLob9xZ1zUv9if8/XVmUPX6VdezYkZkzZ9KsWTPat29PQEAArVu3zrddWloarq6uBSbrLczMmTP57bffqF+/Pg8ePChwm2vXrqHRaEhJSeHRo0fKdJ28WrRowZEjR6hUqRKhoaF89NFHbN26le+++464uDi0Wi2VKlXi/v37yj6pqan07duXQYMGMWjQoCL7+SqPLBIEQXiVPXOEiCRJHpIkxQCX/vvaTpKkf+vWy7K8quy6JwiCIAhCYcrqib8glISZmRlRUVF89913WFpaEhAQkK+MM+RWO+nVq1eJ2vb09CQoKIjvv/+e7OzsArdp3LgxWq2Wa9euMX/+fIYOHZpvm+TkZPr06YOtrS3jxo3jwoULAISGhvL+++9TqVLuM8K8JW27d+/O4MGDnxkMgcKTHMclpZXofAVBEIS/V3GmzHwDdAKSAGRZPgs8e8yiIAiCIAiC8I9gaGiIr68vM2bMYPHixWzdujXfNiYmJoXmDZGk/wXzHj9+rPx76dKlzJo1i/j4eBwdHfXK0xbE39+fw4cP51s+bdo02rRpw/nz59m1a5feMQrj6enJ3r17KU6+PZHkWBAE4eVUrBwisizHP7Wo4BC9IAiCIAiC8I9y+fJlrly5orzWarU0bNiwRG3UqVOHixcvkpOTw7Zt25Tl165dw9XVlZkzZ2JpaUl8/NNfSfWFh4fTuHHjfMuTk5OpX78+gN7olQ4dOrBs2TKysrIA9KbMzJw5k9dee42RI0c+s/+vanUiQRCEV11xAiLxkiR5ALIkSUaSJE0ELpZxvwRBEARBEISXQGpqKoGBgbRq1Qq1Wk1MTAwhISElamPOnDn4+fnh4eFBvXr1lOWTJk1CpVJha2uLh4cHdnZ2+fbV5RCxs7Pjo48+4ocffsi3zeTJk5k6dSr29vZK8ANyS/+++eabqNVq7Ozs2LBhg95+CxYsID09ncmTJxfZf5HkWBAE4eX0zLK7kiTVIjdxantyK8rsA8bKslz0mMW/mSi7KwiCIAiCIJSXsiprLAiC8CqoqGV3n1llRpblRGDA39AXQRAEQRAEoYIQN/glI6oTCYIgvHyeGRCRJMkSGAJY5d1eluXgsuuWIAiCIAiCUF5EGVlBEAThn+CZARFgB3AECEUkUxUEQRAEQXjlFVZGtkVdczECQhAEQXhlFCcgUkWW5Q/LvCeCIAiCIAhChVBUGVkREBEEQRBeFcWpMrNbkqSuZd4TQRAEQRAEoUIQZWQFQRCEf4LiBETGkhsUSZck6aEkSSmSJD0s644JgiAIgiAI5UOUkRUEQRD+CYpTZcb87+iIIAiCIAiCUDEYGEh0tqlLi7rmosqMIAiC8MoqTpUZT0Ary3KaJEnvAA7AfFmWb5R57wRBEARBEIRyIcrICoIgCK+64kyZ+RZ4JEmSHTABuAasLdNeCYIgCIIgCIIgCIIglKHiBESyZVmWge7AYlmWlwBlPo1GkqTOkiRdliTpqiRJU8r6eIIgCIIgCIIgCIIg/HMUJyDyUJKkqcA7wB5JkgwoXrne5yZJkiGwBOgCtAL6SZLUqiyPKQiCIAjCy+fmzZt0796dpk2b0rhxY8aOHUtGRkZ5d0vPkydPaN++PRqNhk2bNumtW7VqFbdv31ZeW1lZkZiY+FzHiYuLw9TUFI1GQ6tWrRg0aBCZmZlF7rNz507mzJkDQEhICPPmzSty+/fee4+YmJjn6l9BCjrms67BgwcP+Pe//12s9s3MxHQfQRAEoXDFCYhcBp4A78qy/B+gAVDWKcZdgKuyLMfKspwB/EjuCBVBEARBEAQAZFmmZ8+evP3221y5coU//viD1NRUPv7447/l+FlZWcXa7syZMwBotVoCAgL01j0dEHlRjRs3RqvVcu7cOW7evMnmzZuL3N7f358pU4o/EPeH/2fvzsOqLNMHjn/PAQUFXBHNLEFTkeVwDiCKiIKKGw4uqWmaEqNppU6WpGYmOZaWjmtTpmVqmprklpmZCwOahoDggpgbNeWGmAgIKJzn9wc/3hFZxC0s7891cQ3nfZ/lfl/musKb+3meTz7BxaVy/0Z1JwkRIYQQojwVSYh4K6XmKKViAP5/M9VrDzYsHgf+e9PnX///WjE6ne4FnU4Xp9Pp4tLS0h5wSEIIIYR4mOzatQtra2uef/55ACwsLJg7dy5Lly7l2rVrBAcHc+jQIQBMJhPTpk0D4K233mLJkiVERUUREBBAv379cHZ2ZvDgwRSuEob4+Hg6dOiAl5cXXbt25dy5cwAEBATwyiuv4O3tzfz584vFc/nyZXr37o3BYKBNmzYcOnSIixcvMmTIEA4cOIDRaOTUqVNa+8jISOLi4hg8eDBGo5GcnBwAFi5ciKenJ+7u7qSkpACQnZ1NWFgYPj4+mEwmNm3aVO67sbCwwMfHh99++w2Ar7/+mtatW2MymejcuTMXLlwAChMyo0ePLtY3JSUFHx8f7XNqairu7u7a88fFxQGwfft2fH198fT0pH///mRlZXHgwAH69u0LwKZNm6hWrRrXr18nNzeXJk2a3OYnWtKcOXNwc3PDzc2NefPmATBx4kROnTqF0WgkPDwcgFmzZtGqVSsMBgNTp06943mEEEI8mspMiOh0uhd1Ot1hoIVOpzt009cZIOmPC7FsSqnFSilvpZR3vXr1KjscIYQQQvyBjh49ipeXV7FrNWrU4Mknn+TkyZP4+/sTExNDRkYGlpaW7N27F4CYmBjat28PFFZvzJs3j+TkZE6fPs3evXu5ceMGY8aMITIykvj4eMLCwopVnVy/fp24uDhee+21YnNPnToVk8nEoUOHePfddxk6dCgODg588skn+Pv7k5iYSNOmTbX2/fr1w9vbm1WrVpGYmEi1atUAsLe3JyEhgRdffFFbTvLOO+/QsWNHYmNj2b17N+Hh4WRnZ5f5bnJzc/nxxx/p1q0bAO3atWP//v0cPHiQgQMH8v7775fZ19nZmevXr3PmzBkA1q5dW6Ky5dKlS0yfPp0dO3aQkJCAt7c3c+bMwWQykZiYqL1nNzc3Dhw4wI8//kjr1q1LnW/u3LkYjUbtq6hiJj4+ns8++4wff/yR/fv3s2TJEg4ePMjMmTO1SphZs2axfft2Tpw4QWxsLImJicTHxxMdHV3m8wkhhBBFytsL5AvgW2AGcHMtZaZS6vIDjQp+A5646XOj/78mhBBCCFEh/v7+LFiwACcnJ4KDg/n++++5du0aZ86coUWLFpw7dw4fHx8aNWoEgNFoJDU1lVq1anHkyBGCgoIAKCgo4LHHHtPGvTU5UGTPnj189dVXAHTs2JH09HSuXr16x3EXVVh4eXmxfv16oLAaY/PmzVqCJDc3l19++YWWLVsW61tUOXHmzBmCg4MxGAxA4V4rzzzzDOfOneP69es4OTmVG8OAAQNYu3YtEydOZO3atSX2Ptm/fz/Jycn4+fkBhUkiX19fLC0tadq0KceOHSM2NpZXX32V6OhoCgoK8Pf3L3WucePGMX78eO2zo6MjUPg++/Tpg42NjfZeYmJiCAkJKdZ/+/btbN++HZPJBEBWVhYnTpzQkl5CCCFEWcpMiCilMoAMYNAfF47mANBMp9M5UZgIGQg8WwlxCCGEEOIh5eLiQmRkZLFrV69e5ZdffuGpp57C0tKSuLg4mjRpQlBQEJcuXWLJkiXFqkqsrKy07y0sLMjPz0cphaurK/v27St13qJ/oD8oRTEVxQOF+6V89dVXtGjRoty+RZUTly5dws/Pj82bNxMSEsKYMWN49dVXCQkJISoqioiIiHLHeeaZZ+jfvz99+/ZFp9PRrFmzYveVUgQFBbF69eoSfdu3b8+3335LlSpV6Ny5M6GhoRQUFDBr1qw7eAsVp5Ri0qRJjBw58oGML4QQ4q+rInuI/OGUUvnAaOA74BjwpVLqaOVGJYQQQoiHSadOnbh27RorVqwACis5XnvtNUJDQ6levTpVq1bliSeeYN26dfj6+uLv78/s2bNvWznQokUL0tLStITIjRs3OHr09r+G+Pv7s2rVKgCioqKwt7enRo0a5faxs7MjMzPztmN37dqVhQsXanucFG3UWhZ7e3tmzpzJjBkzAMjIyODxxwu3Y1u+fPlt52vatCkWFhb885//LLUipk2bNuzdu5eTJ08ChXuc/PTTT0Dhe5g3bx6+vr7Uq1eP9PR0jh8/jpub223nvZm/vz8bN27k2rVrZGdns2HDBvz9/Uu8s65du7J06VKysrIA+O2337h48eIdzSWEEOLR9FAmRACUUluVUs2VUk2VUu9UdjxCCCGEeLjodDo2bNjAunXraNasGc2bN8fa2pp3331Xa+Pv74+DgwPVqlXD39+fX3/9tcylG0WqVq1KZGQkEyZMwMPDA6PRyA8//HDbeCIiIoiPj8dgMDBx4sQKJR5CQ0MZNWpUsU1VSzNlyhRu3LiBwWDA1dWVKVOm3Hbs3r17c+3aNWJiYoiIiKB///54eXlhb29/275QWCWycuVKBgwYUOJevXr1WLZsGYMGDcJgMODr66ttANu6dWsuXLigJZ4MBgPu7u7odLoKzVvE09OT0NBQfHx8aN26NcOHD8dkMlG3bl38/Pxwc3MjPDycLl268Oyzz+Lr64u7uzv9+vWrUJJJCCGE0BX9peHPztvbWxXtei6EEEKIB8fW1lb7a3xFbdy4kebNm2tHtr711lu0b9+ezp07V6h/VFQUvXr10va+KKqAWLFiBQsWLLizB6AwEdGzZ0/69etXbruIiAiWLFlC0ebt3bp1Y+bMmQQEBDB79my8vb3L7Dtv3jxeeOEFqlevXu74tra2xfbQKHI371kIIYR4GOl0unilVNn/0awk5W2qKoQQQghxX2zcuJGePXtqCZGiI3BLYzYrUtOzuZiZh4OdFY51C/fs8Pf3Z8uWLcXalpeQuF9u3fSzoubNm8eQIUPKTYgIIYQQovI8tEtmhBBCCPHwioqKomfPntrn0aNHs2zZMgAmTpyIi4sLBoOB8ePH88MPP7B582bCw8MxGo2cOnWK0NBQbUNUR0dHpk6diqenJ+7u7izZEsOwpbGMXX2QYUtj2Xb0PGZzyYrWm2OIiIggLCyMgIAAmjRpUqxqZMWKFRgMBjw8PHjuuee069HR0bRt25YmTZqU2Jz1Tmzfvh1fX188PT3p378/WVlZLFiwgLNnzxIYGEhgYCAA27Ztw9PTEw8PDzp16qT1T05OLjXum82aNYtWrVphMBiYOnUqUFhlM2/ePK3N5MmTmT9//l0/hxBCCPGokQoRIYQQQtw36enpbNiwgZSUFHQ6HVeuXKFWrVqEhISUu0TF3t6ehIQEpr03l6n/nMmTvV8FIC/fzIytx3ixRR4xMTEYjUYA+vfvrx35WiQlJYXdu3eTmZlJixYtePHFF/npp5+YPn06P/zwA/b29ly+fFlrf+7cOfbs2UNKSgohISFlxjZ37lxWrlwJwHvvvUfXrl21e5cuXWL69Ons2LEDGxsb3nvvPebMmcNbb73FnDlz2L17N/b29qSlpTFixAiio6NxcnIqFkdpcVepUkW7v337dk6cOEFsbCxKKUJCQoiOjiYsLIy+ffvyyiuvYDabWbNmDbGxsXfy4xJCCCEeaZIQEUIIIcR9U7NmTaytrfn73/9Oz549i1WRlKdv374APN7MlZzLnxe7l5dv5sq16yWWzERFRRVrFxwcjJWVFVZWVjg4OHDhwgV27dpF//79tY1E69Spo7Xv3bs3er0eFxcXLly4UGZs5S2Z2b9/P8nJyVpy5vr16/j6+pbarn379toeKDfHUVrcjRo10u5v376d7du3YzKZAMjKyuLEiRO0b9+eunXrcvDgQS5cuKBtOCqEEEKIipGEiBBCCCHumKWlJWazWfucm5urXY+NjWXnzp1ERkbywQcfsGvXrtuOZ2VlBUBdO2tQ5uL3LPXUql61wmMAWFhYkJ+fX+H2RZvMT548mW+++QaAxMTE286plCIoKIjVq1fftm1F4igtbqUUkyZNYuTIkSX6Dh8+nGXLlnH+/HnCwsLuOgYhhBDiUSR7iAghhBDijjVu3Jjk5GTy8vK4cuUKO3fuBAqrFzIyMujRowdz584lKSkJADs7uwodhdqwZjUa162OlWXhryhWlnom9WhJgxrWdxVnx44dWbduHenp6QDFlqqU5p133iExMbFCyRCANm3asHfvXk6ePAlAdnY2P/30E1D8mdu0aUN0dDRnzpypUBw369q1K0uXLtVOnPntt9+4ePEiAH369GHbtm0cOHCg2FIeIYQQQtyeVIgIIYQQosLy8/OxsrLiiSeeYMCAAbi5ueHk5KQt58jMzKRXr17k5uailGLOnDkADBw4kBEjRrBgwYJyNzDV63XUsanK0jCfYqfMREcfv6t4XV1dmTx5Mh06dMDCwgKTyaRt/no/1KtXj2XLljFo0CDy8vIAmD59Os2bN+eFF16gW7duNGzYkN27d7N48WL69u2L2WzGwcGB77//vkJzdOnShWPHjmlLcWxtbVm5ciUODg5UrVqVwMBAatWqhYWFxX17LiGEEOJRoCsqEf2z8/b2VnFxcZUdhhBCCPGnVNpRt3q9rkS7pKQkRowYIZt3PiTMZjOenp6sW7eOZs2aVXY4QgghRKl0Ol28Usq7suO4lVSICCGEEI84s1mx7eh5Zmw9Rl6+WVum0s21QbGkyKJFi1iwYEGxo15F5UlOTqZnz5706dNHkiFCCCHEXZA9RIQQQohHXGp6tpYMgf8ddZuanl2s3ahRo0hOTqZLly6VEaa4hYuLC6dPn+Zf//pXsevnz59n4MCBNG3aFC8vL3r06KHta/KghIaGakuhhg8fTnJy8n0Zd968eVhbW5ORkXFX/e9nLEIIIf56JCEihBBCPOIuZuZpyZAieflmLmbmVVJE4m4ppejTpw8BAQGcOnWK+Ph4ZsyYUe6xwje73ck8FfHJJ5/g4uJyz+MArF69mlatWrF+/fo77ltQUHBfYxFCCPHXIwkRIYQQ4hHnYGelnepSxMpSj4OdVRk9xMNq9+7dVKlShVGjRmnXPDw88Pf3RylFeHg4bm5uuLu7s3btWgCioqLw9/cnJCQEFxcXoqKiCAgIoF+/fjg7OzN48GDtWOL4+Hg6dOiAl5cXXbt25dy5cyViCAgIoGhfN1tbW+16ZGQkoaGhAKxbtw43Nzc8PDxo3759qc9y6tQpsrKymD59erFjja9du8aAAQNwcXGhT58+tG7duth8r732Gh4eHuzbt69ELOPGjcPV1ZVOnTqRlpamxfuPf/wDo9GIm5ubtj9ObGwsvr6+mEwm2rZty/Hjd7exrxBCiIeXJESEEEKIR5xjXRsm9WhZ4qhbx7o2lRyZuFNHjhzBy8ur1Hvr168nMTGRpKQkduzYQXh4uJbQSEhIYP78+drSmoMHDzJv3jySk5M5ffo0e/fu5caNG4wZM4bIyEji4+MJCwtj8uTJdxXntGnT+O6770hKSmLz5s2ltlmzZg0DBw7E39+f48ePa1UuH374IbVr1yY5OZl//vOfxMfHa32ys7Np3bo1SUlJtGvXrth42dnZeHt7c/ToUTp06MDbb7+t3bt27RqJiYl8+OGHhIWFAeDs7ExMTAwHDx5k2rRpvPHGG3f1rEIIIR5esqmqEEII8YjT63V0c22AcwO7254yI/689uzZw6BBg7CwsKB+/fp06NCBAwcOUKNGDXx8fHByctLa+vj40KhRIwCMRiOpqanUqlWLI0eOEBQUBBQuSXnsscfuKhY/Pz9CQ0MZMGAAffv2LbXN6tWr2bBhA3q9nqeffpp169YxevRo9uzZwz/+8Q8A3NzcMBgMWh8LCwuefvrpUsfT6/U888wzAAwZMqTYvIMGDQKgffv2XL16lStXrpCZmcmwYcM4ceIEOp2OGzdu3NWzCiGEeHhJQkQIIYQQ6PU6mtSzpUk929s3Fg8tV1dXbXPTO2FjU7wayMrqf8ulLCwsyM/PRymFq6sr+/btq/C4Ot3/kmq5ubna94sWLeLHH3/km2++wcvLi/j4eOrWravdP3z4MCdOnNCSL9evX8fJyYnRo0eXO5+1tTUWFhZ3HNvN3xd9njJlCoGBgWzYsIHU1FQCAgIqNK4QQog/D1kyI4QQQoiHioWFBUajEQ8PDzw9Pfnhhx8qO6TbmjdvHteuXSvz/u1OO4mKirovz9mxY0fy8vJYvHixdu3bb7/lrbfewt/fn7Vr11JQUEBaWhrR0dE89thj7NixQ2u7bNky5s+fX+rYLVq0IC0tTUuI3Lhxg6NHj2r3zWYzRqORuLg4nn32WYxGI9euXaN79+6YzWY2bNigtT116hStW7dm2rRp1KtXj//+97/F5lq9ejURERGkpqaSmprK2bNnOXv2LD///DN+fn58+eWXQOHRw4cPH67QuzGbzVqy6Isvvii2pKZoP5U9e/ZQs2ZNatasSUZGBo8//rj2XoQQQvz1SEJECCGEEA+VatWqaXtdzJgxg0mTJlV2SLdVXkKkIqed3E1CpLQTYXQ6HRs2bGDHjh00bdoUV1dX3n77bWJiYujTpw8GgwEPDw86duzI+++/T3Z2Njt37qzQfFWrViUyMpIJEybg4eGB0WgsFrNerycxMRFvb2+++OILvv32W22ZTdu2bYstrwkPD8fd3R03Nzfatm2Lh4dHsbnWrFlDnz59il3r06cPa9as4aWXXiItLQ0XFxfefPNNXF1dqVmz5m3jt7GxITY2Fjc3N3bt2sVbb72l3bO2tsZkMjFq1Cg+/fRTAF5//XUmTZqEyWS6L6fvCCGEeAgppf4SX15eXkoIIYQQf342Njba919++aXq1auXUkops9msxo8fr1xdXZWbm5tas2aNUkqpzMxM1bFjR2UymZSbm5vauHFjqeN+++23ymQyKYPBoDp27KiUUio9PV316tVLubu7q9atW6ukpCSllFJTp05Vzz//vOrQoYNycnJS8+fPV0oplZWVpXr06KEMBoNydXVVa9asUfPnz1dVqlRRbm5uKiAgQHuGV199VRkMBhUTE6M6dOigDhw4UGocZ86cUfXr11cNGzZUHh4eKjo6Wp05c0YFBgYqd3d31bFjR/Xzzz8rpZQaNmyYGjlypPLx8VHjxo0r9nxnzpxR7dq1UyaTSZlMJrV3716llFKtW7dWNWrUUB4eHmrOnDnF+tx677PPPlN9+vRRXbt2VU899ZQKDw/X2n733XeqTZs2ymQyqX79+qnMzMwyf4Zms1kFBQVp700ppXbs2KGMRqNyc3NTzz//vMrNzS33elny8/NVTk6OUkqpkydPKkdHR5WXl1duH6WK///qZjf/bIQQQjwYQJx6CPIGt35VegD360sSIkIIIcRfg16vVx4eHqpFixaqRo0aKi4uTimlVGRkpOrcubPKz89X58+fV0888YQ6e/asunHjhsrIyFBKKZWWlqaaNm2qzGZzsTEvXryoGjVqpE6fPq2UKkyEKKXU6NGjVUREhFJKqZ07dyoPDw+lVGFCxNfXV+Xm5qq0tDRVp04ddf36dRUZGamGDx+ujXvlyhWllFKNGzdWaWlp2nVArV27Vvtc9I/usuKYOnWqmjVrlta+Z8+eatmyZUoppT799FPVq1cvVVBgVn2feVa1DQxSP527ogoKij9jdna2lij46aefVNHvRrt371bBwcGlvutb73322WfKyclJXblyReXk5Kgnn3xS/fLLLyotLU35+/urrKwspZRSM2fOVG+//XapYyql1L/+9S/VvXt37eeQk5OjGjVqpI4fP66UUuq5555Tc+fOLfN6ea5evaq8vLyUwWBQ7u7uauvWreW2LyIJESGEqDwPa0JENlUVQgghxEOlaMkMwL59+xg6dChHjhwp85SU7t2788YbbxAdHY1er+e3337jwoULNGjQQBtz//79tG/fXjtJpU6dOkDhnhFfffUVULj/Rnp6OlevXgUgODgYKysrrKyscHBw4MKFC7i7u/Paa68xYcIEevbsib+/f6nPUNZpJ2XFcat9+/axfv16AJ577jlef/11th09z54Tl7BxNBK2PJ5JPVrSzbWBdhrQjRs3GD16NImJiVhYWGhH6N6pTp06aUtQXFxc+Pnnn7ly5QrJycn4+fkBhZuc+vr6lto/KSmJefPmceDAAW2z0uPHj+Pk5ETz5s0BGDZsGP/+978JDAws9forr7xSZnx2dnbExcXd8XNlZWWVej0qKuqOxxJCCPHXIAkRIYQQQjy0fH19uXTpEmlpaWW2WbVqFWlpacTHx1OlShUcHR2LnWhyt0o7aaV58+YkJCSwdetW3nzzTTp16lRsL4oid3LaSUWYlWLG1mMUKIW+qjV5+WZmbD2GcwM77WSguXPnUr9+fZKSkjCbzVhbW9/VXGWdMBMUFMTq1avL7ZuTk8PgwYP56KOPqF+//l3NL4Q7FrOyAAAgAElEQVQQQvxRZFNVIYQQQjy0UlJSKCgooG7duqWekuLj40NGRgYODg5UqVKF3bt38/PPP5cYp02bNkRHR3PmzBkALl++DIC/vz+rVq0CCisF7O3tqVGjRpnxnD17lurVqzNkyBDCw8NJSEgACqsWMjMzb/s8ZcVxa/+2bduyZs0aoDDh4+7Vhrx8c7Gx8vLNXMzM0z5nZGTw2GOPodfr+fzzzykoKLhtbHcS9969ezl58iQA2dnZpVagjB8/ng4dOhAcHFzseosWLUhNTdX6f/7553To0KHM60IIIcQfQSpEhBBCCPFQycnJwWg0AoV7nS1fvhwLCwv69OnDvn378PDwQKfT8f7779OgQQMGDx7M3/72N9zd3fH29sbZ2bnEmPXq1WPx4sX07dsXs9mMg4MD33//PREREYSFhWEwGKhevTrLly8vN7bDhw8THh6OXq+nSpUqfPTRRwC88MILdOvWjYYNG7J79+4y+5cVx9/+9jf69evHpk2bWLhwIQsXLuT5559n1qxZ1KtXj3dmf8Ck7eeKjWVlqcfB7n/VHC+99BJPP/00K1asoFu3btjY2ABgMBiwsLDAw8OD0NBQxo0bp/W59V7t2rXLjHvZsmUMGjSIvLzCJMz06dO1pS5QmCz68MMPcXZ21n5+AK6urqxatYrPPvuM/v37k5+fT6tWrRg1ahRWVlalXhdCCCH+CLrC/U3+/Ly9vdXdrCcVQgghhHgQdDodgwcPZuXKlUDhMbmPPfYYrVu3ZsuWLWzevJnk5GQmTpxIREQEtra2jB8/ntDQUHr27Em/fv0YPnw4r776Ks7OLdl29Dwzth4jL9+MlaW+xB4iFfXuu+/yxhtvlHrP0dEROzs7LCwsKCgoYPr06fTq1avc8W6OtzQbN26kefPm5R47fDtRUVHMnj2bLVu23PUYQgghKo9Op4tXSnlXdhy3kgoRIYQQQjxwZrMiNT2bi5l5ONhZ4VjX5o7/If9nY2Njw5EjR8jJyaFatWp8//33PP7449r9kJAQQkJCyh3jk08+0b7v5toA5wZ29/wOy0uIAOzevRt7e3uOHz9Oly5dbpsQuZ2NGzfSs2fPUhMi+fn5WFrKr6NCCCEqh+whIoQQQogHymxWbDt6nmFLYxm7+iDDlsay7eh5zOa/RpVqeXr06ME333wDwOrVqxk0aJB2b9myZYwePbrc/gEBAdqJKtu3f0e/ru0Z2acjIwb2Qq/XkZ2dTVhYGD4+PphMJjZt2qSN3bdvX7p160azZs14/fXXAZg4caK2JGnw4MHlzn316lVtCU1qaipubm7avdmzZxMREVGiz8SJE3FxccFgMDB+/Hh++OEHNm/eTHh4OEajkVOnThEQEMArr7yCt7c38+fPZ+fOnZhMJtzd3QkLC9OW5Gzbtg1nZ2c8PT21E3eAMp9ZCCGEuFOSkhdCCCHEA5Wanq0t9QBKPSHlr2rgwIFMmzaNnj17cujQIcLCwoiJibnjcdLS0hgxYgTR0dE4OTlpm7G+8847dOzYkaVLl3LlyhV8fHzo3LkzAImJiRw8eBArKytatGjBmDFjmDlzJh988IF2rHFpAgMDUUpx+vRpvvzyywrHmJ6ezoYNG0hJSUGn03HlyhVq1apFSEhIiSU1169fJy4ujtzcXJo1a8bOnTtp3rw5Q4cO5aOPPmLUqFGMGDGCXbt28dRTT/HMM89ofct65qI9U4QQQoiKkgoRIYQQQjxQFzPzbntCyl+VwWAgNTWV1atX06NHj7seZ//+/bRv3x4nJycA6tSpA8D27duZOXMmRqORgIAAcnNz+eWXXwDo1KkTNWvWxNraGhcXl1JP3ynN7t27OXLkCIcPH2b06NFkZWVVqF/RXH//+99Zv3491atXL7NtUYLj+PHjODk5aZuzDhs2jOjoaFJSUnBycqJZs2bodDqGDBmi9S3vmYUQQog7IRUiQgghhHigHOyssLLUF0uK3HpCyl9ZSEgI48ePJyoqivT09Ps6tlKKr776ihYtWhS7/uOPP2Jl9b/3a2FhQX5+/h2N3bRpU+rXr09ycjINGzbEbP7fzy83N7dEe0tLS2JjY9m5cyeRkZF88MEH7Nq1q9Sx76Wao6xnFkIIIe6UVIgIIYQQ4oFyrGvDpB4tsbIs/LWj6IQUx7qPxhKHsLAwpk6diru7+12P0aZNG6Kjozlz5gyAtmSma9euLFy4kKJTAw8ePHjbsapUqcKNGzdu2+7ixYucOXOGxo0bU79+fS5evEh6ejp5eXmlnvaSlZVFRkYGPXr0YO7cuSQlJQFgZ2dHZmZmqXO0aNGC1NRUTp48CcDnn39Ohw4dcHZ2JjU1lVOnTgGF+68UuZtnFkIIIUojCREhhBBC3Hc3L3PQ63V0bmFP8qwBVNn5PsvDfLh+Kpb333+vkqMsFBAQwJNPPqn9Axugd+/e2Nrefn+TOXPm4OzsjLu7Ox4eHrz66qslkg2NGjVi7Nix9xRjvXr1WLx4MX379sXDw0NbcjJlyhRu3LiBwWDA1dWVKVOmADB+/HhycnIASjzHCy+8gMFgKHNT1cDAQIxGI4GBgcycOZP69etTpUoV3nrrLXx8fAgKCsLZ2blEv8zMTHr27InBYKBdu3bMmTMHKNxHZdasWZhMJi3BUcTa2prPPvuM/v374+7ujl6vZ9SoUVhbW7N48WKCg4Px9PTEwcFB61PWMwshhBB3Snfzf/z/zLy9vVXRLuxCCCGEqFy2trY89dRT7Nu3j2rVqvHtt98yadIkGjVqVGp1wd1SSqGUQq+/+7/xBAQEcPnyZT788EPatWvHlStX6Nq1K0ePHi11/4yiI4QXfbyI/bu+Y2Pkl9SpU5vr168zZ84cXnrpJWrUqHEvj3XPHB0diYuLw97eHltb2wrvAyKEEEI8CDqdLl4p5V3ZcdxKKkSEEEII8UBU9MjZ0NBQxo4dS9u2bWnSpAmRkZFau1mzZtGqVSsMBgNTp04FCo+AbdGiBUOHDsXNzY1//vOfhIeHlzp279698fLywtXVlcWLF5cZ68CBA1mzZg0A69evp2/fvsXuv/fee1oVyDMjxjBsaSzzZr1PTqtQ9v+Wi9msqFq1KhMnTtSSIatXr8bd3R03NzcmTJigjWVra8vkyZPx8PCgTZs2XLhwAYCvv/6a1q1bYzKZ6Ny5s3Y9LS2NoKAgXF1dGT58OI0bN+bSpUt39HxCCCGEKEkSIkIIIYR4IIqSDLm5uRw6dIjWrVuX2fbcuXPs2bOHLVu2MHHiRKDwNJETJ04QGxtLYmIi8fHxREdHA3DixAleeukljh49yksvvcSGDRu0sdauXcvAgQMBWLp0KfHx8cTFxbFgwYIyNzXt1KkT0dHRFBQUsGbNmmLHvH777bds2rSJH3/8kQ079vLfRp25lpWJ+XoOuhr1mbH1GKnp2cXGO3v2LBMmTGDXrl0kJiZy4MABNm7cCEB2djZt2rQhKSmJ9u3bs2TJEgDatWvH/v37OXjwIAMHDuT9998H4O2336Zjx44cPXqUfv36FTtRpaLPJ4QQQoiSJCEihBBCiAfiTo6c7d27N3q9HhcXF60yYvv27Wzfvh2TyYSnpycpKSmcOHECgMaNG9OmTRugcH+NJk2asH//ftLT00lJScHPzw+ABQsWaJUY//3vf7X+t7KwsKBdu3asWbOGnJwcHB0dtXs7duzg+eefp3r16lzMzMNctfieHHn5ZjZ/8y1GoxFHR0d++OEHDhw4QEBAAPXq1cPS0pLBgwdryZyqVavSs2dPALy8vEhNTQXg119/pWvXrri7uzNr1iyOHj0KwJ49e7QET7du3ahdu7Y2d0WfTwghhBAlSUJECCGEEA9M0ZGzNy+XKc3NR8QW7W+mlGLSpEkkJiaSmJjIyZMn+fvf/w6UPLZ14MCBfPnll3z11Vf06dMHnU5HVFQUO3bsYN++fSQlJWEymUo9LvbmMcaOHcuAAQPKbFN0hLCFtQ36qtXIu3wOK0s9IcHdSUxMxM3NjevXr5f7rFWqVEGn0wHFj8MdM2YMo0eP5vDhw3z88cflxgrc8fMJIYQQojhJiAghhBDigbmXI2e7du3K0qVLtQ1Bf/vtNy5evFhq2z59+rBp0yZWr16tVVNkZGRQu3ZtqlevTkpKCvv37y93Pn9/fyZNmlQieRMUFMRnn33GtWvXcKxrw2i/BlhZ6mnYYSC/bFnImHYNcaxrg1JKS0j4+Pjwn//8h0uXLlFQUMDq1avp0KFDufNnZGTw+OOPA7B8+XLtup+fH19++SVQWDXz+++/39XzCSGEEKI4y8oOQAghhBB/Xfdy5GyXLl04duwYvr6+QOFmpCtXrsTCwqJE29q1a9OyZUuSk5Px8fEBCpeXLFq0iJYtW9KiRQttiU1ZdDod48ePL3G9W7duJCYm4u3tTdWqVenevTvLX53MhX4GNq1YxJSwXky3ssLW1hY/Pz9MJhM1a9Zk5syZBAYGopQiODiYXr16lTt/REQE/fv3p3bt2nTs2JEzZ84AMHXqVAYNGsTnn3+Or68vDRo0wM7O7o6fTwghhBDFybG7QgghhBAPsby8PCwsLLC0tGTfvn28+OKLJCYmVnZYQgghRIU9rMfuSoWIEEIIISrMbFakpmdzMTMPBzsrHOvaoNfrKjusv7RffvmFAQMGYDabqVq1qnYqjRBCCCHujSREhBBCCFEhZrNi29HzzNh6jLx8M1aWeib1aEk31waSFHmAmjVrxsGDBys7DCGEEOIvRzZVFUIIIUSFpKZna8kQKDxudsbWY6SmZ1dyZEIIIYQQd04SIkIIIYSokIuZeVoypEhevpmLmXmVFJEQQgghxN2ThIgQQgghKsTBzgory+K/OlhZ6nGws6qkiIQQQggh7p4kRIQQQghRIY51bZjUo6WWFCnaQ8Sxrk0lRyaEEEIIcedkU1UhhBBCVIher6ObawOcG9jJKTNCCCGE+NOTChEhhBBCVJher6NJPVvaNKlLk3q2kgy5DVtb2xLXFi1axIoVK+56zMOHD2M0GjEajdSpUwcnJyeMRiOdO3e+l1AB6NGjB1euXLnncYQQQog/A51SqrJjuC+8vb1VXFxcZYchhBBCCKGxtbUlKyvrgY0fGhpKz5496devX4Xa5+fnY2kpBcJCCCH+WDqdLl4p5V3ZcdxKKkSEEEIIIf5AERERzJ49G4AFCxbg4uKCwWBg4MCBAMTGxuLr64vJZKJt27YcP368QuMGBARQ9MehS5cu4ejoCMCyZcsICQmhY8eOdOrUiaioKNq3b09wcDAtWrRg1KhRmM2Fpwc5Ojpy6dIlUlNTadmyJSNGjMDV1ZUuXbqQk5Nzn9+EEEIIUbkkISKEEEIIUUlmzpzJwYMHOXToEIsWLQLA2dmZmJgYDh48yLRp03jjjTfueZ6EhAQiIyP5z3/+AxQmXRYuXEhycjKnTp1i/fr1JfqcOHGCl19+maNHj1KrVi2++uqre45DCCGEeJhIzaQQQgghRCUxGAwMHjyY3r1707t3bwAyMjIYNmwYJ06cQKfTcePGjXueJygoiDp16miffXx8aNKkCQCDBg1iz549JZbdFO1NAuDl5UVqauo9xyGEEEI8TKRCRAghhBCiknzzzTe8/PLLJCQk0KpVK/Lz85kyZQqBgYEcOXKEr7/+mtzc3AqNZWlpqS19ubWPjU3xo5F1Ol25nwGsrKy07y0sLMjPz69QHEIIIcSfhSREhBBCCCEqgdls5r///S+BgYG89957ZGRkkJWVRUZGBo8//jhQuP9HRTk6OhIfHw9AZGRkuW1jY2M5c+YMZrOZtWvX0q5du7t+DiGEEOLPShIiQgghhBAPyLVr12jUqJH2NWfOHO1eQUEBQ4YMwd3dHZPJxNixY6lVqxavv/46kyZNwmQy3VFVxvjx4/noo48wmUxcunSp3LatWrVi9OjRtGzZEicnJ/r06XPXzyiEEEL8Wcmxu0IIIYQQj5CoqChmz57Nli1bKjsUIYQQjwg5dlcIIYQQf3q2trba91u3bqV58+b8/PPPlRhR+cLDw3F1dSU8PLzY9aioKH744Qftc2ho6G2XmdzMbFacTsti/+l0TqdlYTbf2x+Yli1bxtmzZ7XPw4cPJzk5GfjfUbgVdafthRBCiEeVnDIjhBBCiDu2c+dOxo4dy3fffUfjxo3/0Lnz8/OxtKzYrzCLFy/m8uXLWFhYFLseFRWFra0tbdu2veP5zWbFtqPnmbH1GHn5Zqws9Uzq0ZJurg3Q63UUFBSUmO92li1bhpubGw0bNgTgk08+ueO4KiogIICAgIAHNr4QQgjxZ/HQVYjodLoInU73m06nS/z/rx6VHZMQQggh/ic6OpoRI0awZcsWmjZtCsDKlSvx8fHBaDQycuRICgoKANi+fTu+vr54enrSv39/srKygMIqhtdffx13d3d8fHw4efIkAGlpaTz99NO0atWKVq1asXfvXgAiIiJ47rnn8PPz47nnnisWj1KK8PBw3NzccHd3Z+3atQCEhISQlZWFl5eXdg0gNTWVRYsWMXfuXIxGIzExMdpztW3bliZNmhSrFpk1axatWrXCYDAwdepUUtOztWQIQF6+mb95N+GFl8fi4eHBvn37ynwftra2jBs3DldXVzp16kRaWhqRkZHExcUxePBgjEYjOTk5BAQEUNpS4LLGvdXChQvx9PTE3d2dlJQUAC5fvkzv3r0xGAy0adOGQ4cOae929uzZWl83NzcOHDhAv379sLGxoXr16tjZ2TF37lwA4uPj6dChA15eXnTt2pVz584BMG/ePK5du6aNc3M10c3utBrnVleuXOHDDz8s876FhQVGoxEPDw88PT21SqCzZ8+WOFpYCCHEo+2hS4j8v7lKKeP/f22t7GCEEEIIUSgvL4/evXuzceNGnJ2dATh27Bhr165l7969JCYmYmFhwapVq7h06RLTp09nx44dJCQk4O3tXWxT0Zo1a3L48GFGjx7NK6+8AsA//vEPxo0bx4EDB/jqq68YPny41j45OZkdO3awevXqYjGtX7+exMREkpKS2LFjB+Hh4Zw7d47NmzdTrVo1EhMTeeaZZ7T2jo6OjBo1inHjxpGYmIi/vz8A586dY8+ePWzZsoWJEycChQmdEydOEBsbS2JiIvHx8Xy3c7eWDClivp6Lo4uRpKQk6tatW+r7AMjOzsbb25ujR4/SoUMH3n77bfr164e3tzerVq0iMTGRatWqlfruy3rPpbG3tychIYEXX3xRS3ZMnToVk8nEoUOHePfddxk6dGipfZVSjBw5kjp16vDss89y7do19uzZg7OzMzdu3GDMmDFERkYSHx9PWFgYkydPBkomRB6E/Pz82yZEin7mSUlJzJgxg0mTJgHQsGHDe0rECCGE+Ot5WBMiQgghhHgIValShbZt2/Lpp59q13bu3El8fDytWrXCaDSyc+dOTp8+zf79+0lOTsbPzw+j0cjy5cuL7TcyaNAg7X/37dsHwI4dOxg9ejRGo5GQkBCuXr2qVZWEhISUmizYs2cPgwYNwsLCgvr169OhQwcOHDhwx8/Wu3dv9Ho9Li4uXLhwAShMiGzfvh2TyYSnpycpKSlknP8FK8tbfoXS63mmf79y30dhM72WnBkyZAh79uypcHzljXurvn37AuDl5UVqaipQ+J6Kqms6duxIeno6V69eLdE3OzsbS0tLxo8fz/fff8+ECRO4evUq3bt3Z+XKlcTGxhIUFITRaOSll14iNjaWBQsWcPbsWQIDAwkMDNTGmjx5Mh4eHrRp00Z7p1D4c/b29qZ58+ba5q4FBQWEh4dr1Tgff/wxULi8yd/fn5CQEFxcXJg4cSKnTp3CaDSW2BvmVlevXqV27dpAYWWQm5sbULhEqW/fvnTr1o1mzZrx+uuva31sbW1LjXvdunW4ubnh4eFB+/bty51XCCHEn8PDuofIaJ1ONxSIA15TSv1eWiOdTvcC8ALAk08++QeGJ4QQQjya9Ho9X375JZ06deLdd9/ljTfeQCnFsGHDmDFjRrG2X3/9NUFBQSUqOorodLoS35vNZvbv34+1tXWJ9jY2NvfxSUqysrLSvi86hU8pxaRJkxg5cqR2z2xWGG7ZQ8TaypqmDjW0PqW9j9Lc/A5u507GLXoWCwuL2x7da2lpidn8v4qXrKwsOnXqRPPmzUlISGDr1q28+eabdOrUiUaNGmFnZ0diYiIAo0ePxtvbm9DQUObMmcPu3buxt7cHChMrbdq04Z133uH1119nyZIlvPnmm0BhciI2NpZTp04RGBjIyZMnWbFiBTVr1uTAgQPk5eXh5+dHly5dAEhISODIkSM4OTmRmprKkSNHtBhulZOTg9FoJDc3l3PnzrFr165S2yUmJnLw4EGsrKxo0aIFY8aM4Yknnigz7mnTpvHdd9/x+OOPc+XKldv+DIQQQjz8KqVCRKfT7dDpdEdK+eoFfAQ0BYzAOeBfZY2jlFqslPJWSnnXq1fvD4peCCGEeLRVr16db775hlWrVvHpp5/SqVMnIiMjuXjxIlC4V8XPP/9MmzZt2Lt3r7Y/SHZ2Nj/99JM2TtG+HmvXrsXX1xeALl26sHDhQq1NWf/ovZm/vz9r166loKCAtLQ0oqOj8fHxKbePnZ0dmZmZtx27a9euLF26VKtS+e2337h0KY1urg1YHubDgkEmlof5YKHXodcXJjfKeh9QmPApWrbxxRdf0K5duwrHU964FeHv768tsYmKisLe3p4aNWrg6OhIQkICUJh4uHz5MlC450b16tUZMmQI4eHhJCQk8MQTT3D9+nWtosdsNvPbb7+VOl/VqlXp2bMnULxSBWDAgAHo9XqaNWtGkyZNSElJYfv27axYsQKj0Ujr1q1JT0/nxIkTAPj4+ODk5FSh5yxaMpOSksK2bdsYOnSoluC6WadOnahZsybW1ta4uLho77KsuP38/AgNDWXJkiVl7t0ihBDiz6VSKkSUUp0r0k6n0y0BtjzgcIQQQghxh+rUqcO2bdto37498+fPZ/r06XTp0gWz2UyVKlX497//TZs2bVi2bBmDBg0iLy8PgOnTp9O8eXMAfv/9dwwGA1ZWVloVyYIFC3j55ZcxGAzk5+fTvn17Fi1aVG4sffr0Yd++fXh4eKDT6Xj//fdp0KBBuX3+9re/0a9fPzZt2lQsAXOrLl26cOzYMS1hY2try8qVK3FwcKBJPVua1Cu5caiLi0up76Nx48bY2NgQGxvL9OnTcXBw0JJCoaGhjBo1imrVqmnJhjsZtyIiIiIICwvDYDBQvXp1li9fDsDTTz/NihUrcHV1pXXr1jRq1IjDhw9z+PBhwsPD0ev1VKlShY8++ojc3FxMJhMTJkwgIyODX375hd69e5c6X5UqVbQKmFsrVW6tjNHpdCilWLhwIV27di12Lyoq6q6rg3x9fbl06RJpaWkl7t1cEXRzfGXFvWjRIn788Ue++eYbvLy8iI+Pp27duncVlxBCiIeEUuqh+gIeu+n7ccCaivTz8vJSQgghhLg7BQVmdepiptp36pI6dTFTFRSYH+h8jRs3VmlpaQ90joeRjY1NZYdwW2azWfn4+KiPP/5Yu5aUlKSio6PVL7/8oho3bqxyc3PV77//rhwdHdVnn32mlFLKzc1NnT59Wutz87OuW7dODRs2TCml1LBhw1T37t1VQUGBOnnypHr88cdVTk6O+vjjj1WvXr3U9evXlVJKHT9+XGVlZandu3er4OBgbaxLly6pJ598ssz4b5732LFjqm7duio/P1+dOXNGubq6KqWU+uyzz9TLL7+stQsODla7d+8uN+6TJ09q1729vdXBgwfLfY9CCCH+B4hTD0G+4davh3EPkfd1Op0RUEAqMLL85kIIIYS4F2azYtste2JM6tGSbq4NtGUg4tGh0+nYsGEDr7zyCu+99x7W1tY4Ojoyb948nnjiCQYMGICbmxtOTk6YTCat3wsvvEC3bt1o2LAhu3fvLneOJ598Eh8fH65evcqiRYuwtrZm+PDhpKam4unpiVKKevXqsXHjxhJ969ati5+fH25ubnTv3p1Zs2YVu1+0hwgU/uFv+fLlWFhY3PN7CQ8P58SJEyil6NSpEx4eHvc8phBCiMqlU6Wsqfwz8vb2VnFxcZUdhhBCCPGnczoti2FLY4sdJWtlqWd5mE+pS0KEEEIIIe6ETqeLV0p5V3Yct5Jjd4UQQohH3MXMvGLJEIC8fDMXM/MqKSLxIJjNitNpWew/nc7ptCzM5r/GH8WEEEKIu/UwLpkRQgghHhnp6el06tQJgPPnz2NhYUHRyWmxsbFUrVr1gcfgYGeFlaW+RIWIg93/Np2MiIjA1taW8ePHa9ccHR2Ji4vD3t6etm3b8sMPPzzwWMXdkWVRQgghREmSEBFCCCEqUd26dbWjZUtLOpQlPz8fS8v7859xx7o2TOrRssQ/lh3rVvxkD0mGPNxS07O1ny8UVgDN2HoM5wZ2sixKCCHEI0uWzAghhBAPmfj4eDp06ICXlxddu3bl3LlzAAQEBPDKK6/g7e3N/Pnzy203YcIEfHx8aN68OTExMQAUFBQwfvx43NzcMBgM2nGzBw8m8N7ogfz+xWvov3uXWcFP3nHlgK1t4T+qzWYzL730Es7OzgQFBdGjRw8iIyMB2Lp1K87Oznh5eTF27Fh69uwJwH/+8x+MRiNGoxGTyURmZub9eZH3kYWFhRaj0WgkNTWVtm3bApCamoqbmxsAcXFxjB079p7nCw0NxcnJSZtvwYIFQGFVzqVLlwCKzf/FF1+UO97Ny6KuX73EydXTyl0WdfM8QgghxF+VVIgIIYQQDxGlFGPGjGHTpk3Uq1ePtWvXMnnyZJYuXQrA9evXiYuL48aNG3To0KHMdvn5+cTGxrJ161befvttduzYweLFi0lNTSUxMRFLS0suX77MjRs3Ssy3eM67tPn/cW42d+5cVq5cqX0+e/ZsiTbr168nNTWV5NO5XyQAACAASURBVORkLl68SMuWLQkLCyM3N5eRI0cSHR2Nk5MTgwYN0vrMnj2bf//73/j5+ZGVlYW1tfX9fq33rFq1alolT5HSqmK8vb3x9r4/e8bNmjWLfv36lXm/aP6ihMizzz5bZtubl0VVrWHPU4PeKrEsSgghhHjUSIWIEEII8RDJy8vjyJEjBAUFYTQamT59Or/++qt2/5lnngHg+PHj5bbr27cvAF5eXqSmpgKwY8cORo4cqS21qVOnzm3Hudm4ceNITEzUvho2bFiizZ49e+jfvz96vZ4GDRoQGBgIQEpKCk2aNMHJyQmgWELEz8+PV199lQULFnDlypX7thToQSuqirlZVFSUVvkSERHB7NmztXtubm6kpqaSnZ1NcHAwHh4euLm5sXbt2nuaf+LEicTExGA0Gpk7dy7BwcEcOnQIAJPJxLRp03Csa0OjM1/ze8K35P1+nqMLRzCpR0ueqGVdatVQkZycHLp3786SJUvuKkYhhBDiYfbn+I1DCCGEeEQopXB1dWXfvn2l3rexsalQOyurwr/8W1hYkJ+ff9fz/REmTpxIcHAwW7duxc/Pj++++w5nZ+dKi6c0OTk5GI1GAJycnNiwYcNdj7Vt2zYaNmzIN998A0BGRkap7cLDw5k+fToAn3/+Oe7u7qW2mzlzJrNnz2bLli1AYVItJiaGxo0bY2lpyd69e9HrdZw/nshH7/6LzBs6JnxTjW6uDfj440UlqoaKZGVlMXDgQIYOHcrQoUPv+nmFEEKIh5VUiAghhBAPESsrK9LS0rQExY0bNzh69GiJdi1atKhQu5sFBQXx8ccfawmSy5cv39U45fHz8+Orr77CbDZz4cIFoqKitHhPnz6tVavcXBVx6tQp3N3dmTBhAq1atSIlJeWu539QipbMJCYm3lMyBMDd3Z3vv/+eCRMmEBMTQ82aNUttN2vWLG3OspIhpfH39yc6Opq9e/cSHBxMVlYW165d48yZM3T29cT0ZG2qWujR63WlVg0V6dWrF88//3yxZEhpVTH3W1RUFDVr1sRoNNKyZUvefvttABYtWsSKFSse+PxCCCEeHZIQEUIIIR4ier2eyMhIJkyYgIeHB0ajsdS9KqpWrVqhdjcbPnw4Tz75JAaDAQ8PD7744ou7Gqc8Tz/9NI0aNcLFxYUhQ4bg6elJzZo1qVatGh9++CHdunXDy8sLOzs7LREwb948bclGlSpV6N69+13P/zCxtLTEbP7fUca5ubkANG/enISEBNzd3XnzzTeZNm3afZ23VatWxMXFERMTQ/v27TGZTCxZsgQvL687GsfPz49t27ahlCq3XXkVSHfL39+fxMRE4uLiWLlyJQkJCYwaNUoqVYQQQtxXsmRGCCGEeEDMZkVqejYXM/NwsLPCsa5NuSe3REREaN9HR0eXuF9UbVHEaDTetp29vb1WlWFpacmcOXOYM2dOhcYpK7YiReNC4fIKKEzozJ49G1tbW9LT0/Hx8dGqGwIDA0lJSUEpxcsvv6xtPnrrvhV/FY6OjtoyloSEBM6cOQMUbkZbp04dhgwZQq1atfjkk0/uaR47O7tiJ/NUrVqVJ554gnXr1vHWW2+RlpbG+PHjSz3OuahqKDAwUFsyU1QlMm3aNKZNm8bLL7/Mhx9+WKxfVFQUU6ZMoXbt2qSkpLB48WKmTp1KrVq1OHz4MAMGDMDd3Z358+eTk5PDxo0badq0KV9//TXTp0/n+vXr1K1bl1WrVlG/fv0yn83GxgYvLy9OnjzJ5s2btWOpAwICaN26Nbt37+bKlSt8+umn+Pv7U1BQwIQJE9i2bRt6vZ4RI0YwZswY4uPjefXVV8nKysLe3p5ly5bx2GOP3dN7F0II8ecnFSJCCCHEA2A2K7YdPc+wpbGMXX2QYUtj2Xb0PGZz+X9t/yvo2bMnRqMRf39/pkyZQoMGDQBYsmQJRqMRV1dXMjIyGDlyZCVH+mA9/fTTXL58GVdXVz744AOaN28OwOHDh/Hx8cFoNPL222/z5ptv3tM8BoMBCwsLPDw8mDt3LlBYYeHg4EC1atXw9/fn119/xd/fv0Tf0qqGblaU0Hj99ddL9E1ISGD+/Pn89NNPACQlJbFo0SKOHTvG559/zk8//URsbCzDhw/Xkl7t2rVj//79HDx4kIEDB/L++++X+2zp6ens3/9/7N17XI/3//jxx7sSkcOkNIzKx/Hd4d2RejtGMpLDZg4hcj5us/XBbIRmM4ePDV/MRoxhzocPPpgSi+mgUpiUbA6jUFN0fv3+6Ne1UhFDyet+u3W79b7er+t1va6rq7ie7+fr+TqNWq0u9l7BSkpLly5VptUUXkkpOjoaLy8vZSWl7du3Ex4ejo+PDzNnzizDlZUkSZIqO9WT0iBfFQ4ODiIsLKy8hyFJkiRJACQkpeG99gyZOX9Pmaiqp8N6HycsjF98HQapbJ42i+d1Z2hoSFpaGkFBQcyZM4fAwEAgP2Pk888/58iRIwB06NCBL774Aq1Wy7Fjx/jmm2/YvXs3586d46OPPuLmzZtkZWVhbm7OoUOHihwjKCiI3r17Y2FhoWR5jBs3Dj8/vyIZIp9//jlarZZbt26h1Wq5fPky77zzDuPGjcPNzU3pLyYmBhcXFywsLADIzc3lzTff5PDhwy/pqkmSJEkqlSpcCPF81qV/juSUGUmSJEl6AW7fzywSDAHIzMnj9v1MGRCpIAqyeL44cIHMnDyq6ukwo0cruqtNZVCkDApWPCpQsLIR5E+dKnito6Oj1BmZPHkyU6dOxdPTk6CgoBKnYkF+hkvBdKPSvEorKUmSJEkVk5wyI0mSJEkvgEnNqlTVK/rPbFU9HUxqVi1lD+llS7yTrgRDID9g9cWBCyTeSS/nkVVeqampNGzYEID169c/9/5fxkpKkiRJUuUhAyKSJEmS9AKYGdVgRo9WSlCkIPvAzKjGE/aUXpbHZfFIL4afnx/9+/fH3t6eevXqPff+X8ZKSpIkSVLlIWuISJIkSdILIutTVGyyzoskSZIkvRwVtYaIzBCRJEmSpBdER0eFhbEhbS2MsDA2lMGQCkZm8fwtL0+QkJTG6YQ7JCSlvRarIUmSJEmSLKoqSZIkSdJrSUdHRXe1KS1Na77WWTyyuKwkSZL0upIZIpIkvTS3bt1i8ODBWFhYYG9vj7OzM7t27SrvYZGSkoKRkREFUwhPnTqFSqXi2rVrQH4RwLp165KXl/e4bsqsU6dOyCl+klQxyCweWVxWkiRJen3JgIgkSS+FEII+ffrQoUMHEhISCA8PZ8uWLUrQ4Z943HKLZVGnTh3efPNNLly4AEBISAi2trZK0b3Tp0/j5OSEjo78kylJUuUji8tKkiRJryv5v3tJkl6KY8eOoa+vz7hx45RtTZo0YfLkyQDk5ubi6+uLo6Mj1tbWrF69GsgPpPj6+mJpaYmVlRVbt24FICgoiPbt2+Pp6Unr1q3Jy8tjwoQJtGzZEjc3N3r06MH27dsBCA8Pp2PHjtjb2+Pu7s7NmzeLjc/FxUUJgISEhPDhhx8Wea3VaksdY1paGl26dMHOzg4rKyv27NkDQHp6Oj179sTGxgZLS0tl7IUdPnwYZ2dn7Ozs6N+/P2lpaRw7dow+ffoobY4cOYJKpUKj0WBjY4OdnZ1cIUGqUHR1ddFoNFhaWtKrVy9SUlIe23748OHK7+c/9bQZVyUd29Dw+RZQfdWywOQS0ZIkSdLrSgZEJEl6KWJjY7Gzsyv1/e+//57atWsTGhpKaGgoa9as4cqVK+zcuZPIyEiioqI4evQovr6+SkAjIiKCr7/+mkuXLrFz504SExM5f/48P/zwA6dOnQIgOzubyZMns337dsLDw/Hx8WHmzJnFjq/VapUgQ0JCAv3791ceaEJCQnBxcSl1jNWqVWPXrl1EREQQGBjIRx99hBCCQ4cO0aBBA6KiooiJiaF79+5FjpmcnIy/vz9Hjx4lIiICBwcHlixZQufOnbl48SJJSUkArFu3jmrVqinX4YsvvmDGjBn//IciSc+JgYEBkZGRxMTEULduXVasWFHeQ5KegiwuK0mSJL2uZEBEkqRyMXHiRGxsbHB0dATyMyU2bNiARqOhTZs23Llzh7i4OE6ePMmgQYPQ1dWlfv36dOzYkdDQUACcnJwwNzcH4OTJk/Tv3x8dHR1MTU3p3LkzAL/99hsxMTG4ubmh0Wjw9/cvcZpOQYbIlStXMDMzo1q1agghSEtLIzw8nDZt2pQ6RiEEn3zyCdbW1nTt2pXr169z69YtrKysOHLkCNOmTePEiRPUrl27yDFPnz7N+fPn0Wq1aDQa1q9fz9WrV1GpVAwdOpSNGzeSkpLCqVOn0NXVVfb766+/eOONN4DSs1MSExNp1aoVo0ePRq1W061bNx4+fAhAfHw83bt3x97envbt23Px4sXn+aOVXnPOzs5cv34dgMjISNq2bYu1tTV9+/bl3r17xdrPnTsXR0dHLC0tGTNmjFLLp1OnTkybNg0nJyeaN2/OiRMnAHj48CEDBw6kVatW9O3bV7mvAcaPH4+DgwNqtZrZs2c/9dhLy0grbTvAggULsLKywsbGhunTpyvbt23bVmzsFVVBcdn1Pk58M8iW9T5OsqCqJEmS9FqQq8xIkvRSqNVqduzYobxesWIFycnJODjkL0cuhGDZsmW4u7sX2e/gwYOl9lmjxpM/vRRCoFarlYyR0jRr1oyUlBT27duHs7MzAPb29qxbtw4zMzMMDQ1LHWNAQABJSUmEh4dTpUoVzMzMyMjIoHnz5kRERHDgwAE+/fRTunTpwqxZs4qMzc3Njc2bNxcbz4gRI+jVqxfVqlWjf//+LF68GI1GQ0ZGBjdv3uTYsWMASnZKrVq1SE5Opm3btnh6egIQFxfH5s2bWbNmDe+99x47duxgyJAhjBkzhlWrVtGsWTN+/fVXJkyYoPQnSf9Ebm4uP//8MyNHjgRg2LBhLFu2jI4dOzJr1izmzJnD0qVLi+wzadIk5fdi6NCh7N+/n169egH59YHOnDnDgQMHmDNnDkePHmXlypVUr16dCxcuEB0dXSTz7PPPP6du3brk5ubSpUsXoqOjsba2LjZOX19fBgwYgJWVVZHthTPSkpOTcXR0pEOHDoSEhJS4PTIykj179vDrr79y5swZ5s+fr/RV0tifxMzMjLCwMOrVq1fGK/78FBSXtTB+vtOHJEmSJKkikxkikiS9FK6urmRkZLBy5Upl24MHD5Tv3d3dWblyJdnZ2QBcunSJ9PR02rdvz9atW8nNzSUpKYng4GCcnJyK9a/VatmxYwd5eXncunWLoKAgAFq0aEFSUlKRKTSxsbEljrFt27Z8/fXXSkDE2dmZpUuXotVqHzvG1NRUTExMqFKlCoGBgVy9ehWAGzduUL16dYYMGYKvry8RERHFjvfLL79w+fJlIL/myKVLlwBo0KABDRo0wN/fnxEjRihTEi5evMihQ4cYNmwYQohSs1MAzM3N0Wg0QH5wJzExkbS0NEJCQujfvz8ajYaxY8eWWFNFkp7Gw4cP0Wg0mJqacuvWLdzc3EhNTSUlJYWOHTsC4O3tTXBwcLF9AwMDadOmDVZWVhw7dqzI72e/fv2Av+9fgODgYIYMGQKAtbV1kYDHTz/9hJ2dHba2tsTGxnL+/PkSx7tw4ULldyoyMlLZXlpGWmnbjx49yogRI6hevToA+vr6jx17Yf+0GLQkSZIkSf+cDIhIkvRSqFQqdu/ezfHjxzE3N8fJyQlvb28WLFgAwKhRo2jdujV2dnZYWloyduxYcnJy6Nu3L9bW1tjY2ODq6spXX32Fqalpsf7feecdGjVqROvWrRkyZAh2dnbUrl0bfX19tm/fzrRp07CxsUGj0ZRakFSr1fLHH38oWSvOzs4kJCTg4uLy2DF6eXkRFhaGlZUVGzZsoGXLlgCcO3cOJycnNBoNc+bM4dNPPy1yPGNjYwICAhg0aBDW1tY4OzsXmb7i5eXFW2+9RatWrYrs5+zsTHJyMklJSWzatEnJTomMjKR+/fpkZGQAULXq3wURdXV1ycnJIS8vjzp16igPgpGRkcrqOq+7gsKgarUaGxsbFi9e/NRLLd+4cYN33323zO3T0tIYO3YsTZs2xd7enk6dOvHrr78+7dCLKa2o57Zt22jVqpUypex59V0QXLh69SpCiDLXEMnIyGDChAls376dc+fOMXr0aOX+hb/v4YL793GuXLnCokWL+Pnnn4mOjqZnz55F+iqLlJQUlixZokwnS01NBfIDPitWrMDR0RFHR0elvk9pcnJylEBljx49lGk9fn5+DB06FK1Wy9ChQ7lz5w7dunVDrVYzatQoZboQQJ8+fbC3t0etVvPtt98q2w0NDZk5cyY2Nja0bdtWCYBKkiRJkvQMCj5hfNW/7O3thSRJL19ubp6Iv31fnIpPFvG374vc3LxyG8v9+/eFEEIkJycLCwsLcfPmzXIby/MwceJE8d133wkhhKhRo4ay/cKFC8LIyEjk5OSIpUuXikmTJgkhhDh27JgAxJUrV8SVK1eEWq1W9lm4cKGYPXu2EEIIZ2dn8dNPPwkhhMjLyxORkZEv6YwqtsLX+NatW6JLly5i1qxZZd4/Ozv7qY85YMAAMX36dJGbmyuEECIhIUHs37+/SJu8vDzl/bLq2LGjCA0NLbbd3d1dnDhxosz9lHROJfVd+NpFRESIxo0bi+zsbGFtbS2Cg4OFEELMnj1bfPDBB0IIIby9vcW2bdvEvXv3hImJiXjw4IG4f/++UKvVyn1a+DhJSUmiSZMmQgghFi9eLEaOHCmEEOLcuXNCV1dXhIaGisjISGFtbS1yc3PFn3/+KUxMTMS6deuKjb/g2IXHXPC9paWlaNeuncjJyREHDx4UVatWFTdv3hTt2rUTjo6OIicnR0RERAg9PT1x8+ZNcfDgQeHs7CzS09NFYGCgcHNzE0II0aBBAzF69GghhBA7d+4UVapUUa6BnZ2dePDggRBCiMmTJ4s5c+YIIYTYv3+/AERSUpIQQog7d+4IIYR48OCBUKvVIjk5WQghBCD27t0rhBDC19dXzJs3r7QfnyRJkiRVGECYqABxg0e/ZA0RSZKeWV6e4FDsn3xx4AKZOXnKygTlVYzPw8ODlJQUsrKy+Oyzz0rMJHlV2NvbU6NGDRYvXgz8PSUB8gPZ69evR1dXFy8vL3r16oWVlRUODg5KdsrjbNq0ifHjx+Pv7092djYDBw7ExsbmhZ7Pq8bExIRvv/0WR0dH/Pz8yMzMZPz48YSFhaGnp6esBhQQEMDOnTtJS0sjNzeX9evX4+HhQUxMDLGxsYwYMYKsrCzy8vLYsWMHzZo1U44RHx/Pr7/+yqZNm9DRyU/YNDc3x9zcnMTERNzd3WnTpg3h4eEcOHCA5cuXc/DgQVQqFZ9++ikDBgwA8ot6bty4ER0dHd5++22+/PJL5Rh5eXn4+PjQqFEj9PX1OXnyJCNHjsTT05N58+aV6ZwOHTrEiBEjiIqKomXLlkWKmJbE1tYWa2trNm/ezPr16xk3bhwPHjzAwsKCdevWFWlbp04dRo8ejaWlJaampkqR5ccZP348I0aMoFWrVrRq1Qp7e3sAbGxssLW1pWXLlrz11lvKVLeySktLIy4ujlq1ainL8BoZGWFqasrFixdRqVTK9po1a2JoaEj37t2JjIzEwcGBrKwspa/U1FR69OgBQPv27cnLy+Ovv/4CwNPTEwMDAyB/+s/OnTsB6Nmzp1IsGeCbb75h165dAPzxxx/ExcVhZGSEvr4+Hh4eQP7fiSNHjjzVeUqSJEmS9DcZEJEk6Zkl3klXgiEAmTl5fHHgAi1Na5ZLYb6CuiGvkrw8QeKddG7fz8SkZlXMjGqgo6MiPDy8SLvc3NwS969Xr16pBWNjYmKU7z/++GPle3Nzcw4dOvQcRl+5WVhYkJuby+3bt9m4cSMqlYpz585x8eJFunXrptR7iYiIIDo6mrp16xapFbFq1Sref/99vLy8yMrKKvYzjI2NRaPRFFlBqLC4uDjWr19P27Zt2bFjxxOLelavXp27d+8q+xdM57K0tFSWmj527BiLFi3CwcGBxYsXl+mclixZUmoR0wJpaWlFXu/bt0/5/vTp08XaBwQEKN/7+/vj7+9frE3h3+d69eop19bAwIAtW7aUeM0K91uagjbDhw9XtqWlpSmrN5VUU0cIwR9//EG1atWKvTd9+nSmT59OUFAQixYtAvKLNBfUNqlXrx5vvvmm0r4sxaCDgoI4evQop06donr16nTq1EmZ/lOlShVUqvyAc1mmEkmSJEmSVDpZQ0SSpGd2+36mEgwpkJmTx+37meU0oldLQYaN99ozTNl8Fu+1ZzgU+yd5eeLJO0sv1cmTJ5VCni1btqRJkyZK8MDNzY26desW28fZ2Zn58+ezYMECrl69qmQFlFWTJk1o27atcvyyFPUsPI6xY8cWCYY87TnVqfMGCUlp7Dl4FFePd8jLE8WKmFYmtWrVwtzcnG3btgH5QZCoqCgAunXrxrJly5S2hQuxlqR9+/Zs2rQJyA9u1KtXj1q1ahVr16FDB3788Ucgf0WtgmWJU1NTeeONN6hevToXL14sMagkSZIkSdI/JwMikiQ9M5OaVamqV/TPSFU9HUxqVi1lD6mw0jJsEu+kl/PIJICEhAR0dXUxMTF5bLvSPvEfPHgwe/fuxcDAgB49ehRb2litVhMVFVVq9k9ZMgkex8XFhcDAwKcuLApQvXp1JVgXfT2VBQcvVrpg3YMHD2jUqJHytWTJEjZt2sT333+PjY0NarWaPXv2APnTV8LCwrC2tqZ169asWrWqWH85OTlKEVg/Pz/Cw8OxtrZm+vTprF+/vsQxzJ49m+DgYNRqNTt37qRx48YAdO/enZycHFq1asX06dOVwJgkSZIkSc+XnDIjSdIzMzOqwYwerYrVEDEz+mcPcq+Lx2XYlMeUI+lvSUlJjBs3jkmTJqFSqZRP/F1dXbl06RK///47LVq0KLaUcmEJCQlYWFgwZcoUfv/9d6Kjo3F1dVXeb9q0KQ4ODsyePZt58+ahUqlITEwkNjYWtVpdpK/27duzevVqvL29uXv3LsHBwSxcuBB9fX3mzp2Ll5eXMmWmIEtk5MiRBAcH895777Fz50709PSK9VnaOd3PyFF+r2uaWfHn2aN8ccAW1b0/iI6Ofo5X+vkqbQpayW1LXkGopOlk9erVY+vWrY89dmxsLE2bNgXyM3V2795drI2fn1+R10ZGRhw+fLjE/g4ePFji9sLTk959992nWtVIkiRJkqSiZEBEkqRnpqOjorvalJamNcv0ACIVVZBhUzgoIjNsyk9B4drs7Gz09PQYOnQoU6dOBWDChAmMHz8eKysr9PT0CAgIKLKscUl++uknfvjhB6pUqYKpqSmffPJJsTbfffcdH330Ef/6178wMDCgXr16LFy4sFi7vn37curUKWxsbFCpVMry04WLeurr69OjRw/mz5+v7Dd16lRSU1MZOnSoMoWjwOPO6UF2rnJfmjj14srORYQtHs4CW2uliGlFU55FnkeOHElMTAw//fTTCz2OJEmSJEnPl0qIypH+6uDgIMLCwsp7GJIkSWVW0VbpqayeJmtAypeQlIb32jPFgnXrfZwqbPbSqzhmSZIkSXpdqFSqcCGEQ3mP41EyQ0SSJKmcyAybF08GnZ7NqzgdTk5BkyRJkiTpacmAiCRJUjnS0VFhYWwoH9hekIq2NPSr4lUM1skpaJIkSZIkPS25yowkSZJUacmloZ9dQbCurYURFsaGFToYAn9ntRSsfPUqZLVIkiRJklS+ZIaIJEmSVGlV5qwBXV1drKyslCKww4YN48MPP0RH58V81vH555+zbds2AM6dO4eVlRUAPj4+RERE4OHhUa4rnryKWS2SJEmSJJUvWVRVkiTpJSt4kC2we/duBg8eTEhISDmOqnKqzDVEDA0NlSVYb9++zeDBg9FqtcyZM+elHhtg+PDh5R4QkSRJkiSp4qqoRVXllBlJkqSXzMDAgMjISOXLzMysxGBITk5OOYyucinIGljv48Q3g2xZ7+NUKYIhjzIxMeHbb79l+fLlCCHIzc3F19cXR0dHrK2tWb16NQBpaWl06dIFOzs7rKys2LNnDwCJiYm0atWK0aNHo1ar6datGw8fPnyqMQQHB+Pi4oKFhQXbt28HQAiBr68vlpaWWFlZsXXrVgCCgoLo2LEjvXv3xsLCgunTp7Np0yacnJywsrIiPj4egH379tGmTRtsbW3p2rUrt27dAuD48eNoNBo0Gg22trbcv3//uVxHSZIkSZJeLzIgIkmvKV1dXeWBQqPRkJiY+Ez9+Pn5sWjRoiLbUlJSMDIyoiAD7dSpU6hUKq5duwZAamoqdevWJS8vr1h/z6JTp0686hlihob5BT6DgoJo3749np6etG7dutQH26CgIDp16sS7775Ly5Yt8fLyQghBWFiY8jO1srJCpcp/8I+Pj6d79+7Y29vTvn17Ll68WG7nCnDr1i0GDx6MhYUF9vb2ODs7s2vXrmLtbty48cSsg8TERCwtLUt9/2lqYbzK95KFhQW5ubncvn2b77//ntq1axMaGkpoaChr1qzhypUrVKtWjV27dhEREUFgYCAfffSR8nsaFxfHxIkTiY2NpU6dOuzYseOpjn/z5k1OnjzJ/v37mT59OgA7d+4kMjKSqKgojh49iq+vLzdv3gQgKiqKVatWceHCBX744QcuXbrEmTNnGDVqFMuWLQOgXbt2nD59mrNnzzJw4EC++uorABYtWsSKFSuIjIzkxIkTGBgYPK/LKEmSJEnSa0TWEJGk11RBlkJJhBAIIZ65FkGdOnV48803uXDhAq1btyYkJARbW1tCQkJ47733OH36NE5OTi+s1kFF9/DhQzQaDQDm5ubFAgERERHExMRgbm7Ot99+qzzYZmZmotVq6datGwBnz54lNjaWBg0aoNVq6SXlHAAAIABJREFU+eWXX2jXrp3yc/X19aV79+4AjBkzhlWrVtGsWTN+/fVXJkyYwLFjx17iWf9NCEGfPn3w9vbmxx9/BODq1avs3bu3SLucnBwaNGigZBtIZXf48GGio6OVa5eamkpcXByNGjXik08+ITg4GB0dHa5fv65kXZibmyv3pb29/VMHSfv06YOOjg6tW7dW+jx58iSDBg1CV1eX+vXr07FjR0JDQ6lVqxaOjo68+eabADRt2pS5c+cSHx+Pj48PgYGB5OTk0LRpU3R1dTE1NSUrKwtzc3MAtFotU6dOxcvLi379+tGoUaPncdlKVJA906JFC2XbmTNn+PHHHwkLC2P58uWsWrWK6tWrM2zYsFL7iYyM5MaNG/To0eOFjVWSJEmSpKfzej6NSJJUTGJiIi1atGDYsGFYWlryxx9/sHDhQiUzYfbs2Urbzz//nObNm9OuXTt+++23EvtzcXFRpoGEhITw4YcfFnmt1WqfOq0/PT2dnj17YmNjg6WlpZJ+X9jhw4dxdnbGzs6O/v37k5aWxrFjx+jTp4/S5siRI/Tt2/f5XLhnUHjKTElZEU5OTsqD3+HDh9mwYQMajYY2bdpw584d4uLilHaNGjVCR0enWJbP1q1biYiI4MsvvyQtLY2QkBD69++PRqNh7Nixyqf05eHYsWPo6+szbtw4ZVuTJk2YPHkyAQEBeHp64urqSpcuXYpkfwQEBNC7d286depEs2bNitTKyM3NLXG6R2RkJG3btsXa2pq+ffty7969x24vkJeXx/Dhw/n0009f9OV4bhISEtDV1cXExAQhBMuWLVPusytXrtCtWzc2bdpEUlIS4eHhREZGUr9+fTIyMgCoWvXvQrO6urpPPWWr8P5lqU9WuL2Ojg4GBgbExMSQnZ1NTk4OR44cISsrCzMzM86dO8fq1auVsU6fPp3vvvuOhw8fotVqlYynFzXNrGnTpkWmuenr6xd5f9y4cY8NhkD+PXfgwIEXMj5JkiRJkp6NDIhI0muqIEtBo9EowYG4uDgmTJhAbGwsv/32G3FxcZw5c4bIyEjCw8MJDg4mPDycLVu2KP+5Dw0NLbF/rVarBEASEhLo37+/MhUhJCQEFxeXp07rP3ToEA0aNCAqKoqYmBgl+6FAcnIy/v7+HD16lIiICBwcHFiyZAmdO3fm4sWLJCUlAbBu3Tp8fHxe1KX9x2rU+HuZ0NIebKH0B9iYmBj8/PzYsmULurq65OXlUadOnSIPdBcuXHi5J1VIbGwsdnZ2pb4fERHB9u3bOX78eLH3zpw5w44dO4iOjmbbtm3KPVXadI9hw4axYMECoqOjsbKyUoIopW2H/IdqLy8vmjVrhr+///M89RcmKSmJcePGMWnSJFQqFe7u7qxcuZLs7GwALl26RHp6OqmpqZiYmFClShUCAwO5evXqCx1X+/bt2bp1K7m5uSQlJREcHIyTk1Op7Xv06MHp06cB2Lx5M7Vq1aJatWpA/jSZiIgIbG1tsbOzQ19fn2nTpmFsbMywYcOUIFpaWhojRozAysoKa2tr5V4omJYGsH37doYPHw7Atm3bsLS0xMbGhg4dOjzTeRaeOtipUyemTZuGk5MTzZs358SJE2RlZTFr1iy2bt2KRqMpMZgrSZIkSdLLJwMikvSaKilLoUmTJrRt2xbIz0w4fPiw8vBx8eJF4uLiOHHiBH379qV69erUqlULT0/PEvsvyBC5cuUKZmZmVKtWDSEEaWlphIeH06ZNm1KzH4QQfPLJJ1hbW9O1a1clrd/KyoojR44wbdo0Tpw4Qe3atYsc8/Tp05w/fx6tVotGo2H9+vVcvXoVlUrF0KFD2bhxIykpKZw6dYq33377xV7g56S0B9vSpKSkMGjQIDZs2ICxsTEAtWrVwtzcXFkyVQhBVFTUix98GU2cOBEbGxscHR0BcHNzo27duiW2dXNzw8jICAMDA/r168fJkyeBkqd7pKamkpKSQseOHQHw9vYmODi41O0Fxo4di6WlJTNnznxh5/w8FAQ11Wo1Xbt2pVu3bkom16hRo2jdujV2dnZYWloyduxYJdATFhaGlZUVGzZsoGXLli90jH379sXa2hobGxtcXV356quvMDU1LbX9wIEDOXbsGLm5uURHRzNhwgTCw8Oxt7fHwsICW1tbzp49S+PGjZXMMl1dXW7cuKEE0ebNm0ft2rU5d+4c0dHRuLq6PnaMc+fO5X//+x9RUVHFpm0ViI+PVwLIEydOfOJ55+TkcObMGZYuXcqcOXPQ19dn7ty5DBgwgMjISAYMGPDEPiRJkiRJevFkDRFJkhSPZibMmDGDsWPHFmmzdOnSMvXVrFkzUlJS2LdvH87OzkD+g+q6deswMzPD0NBQyX5wd3cvsm9AQICS1l+lShXMzMzIyMigefPmREREcODAAT799FO6dOnCrFmziozZzc2NzZs3FxvPiBEj6NWrF9WqVaN///7o6b0af/5GjRpFYmIidnZ2CCEwNjZm9+7dpbbfs2cPV69eZfTo0cq2yMhINm3axPjx4/H39yc7O5uBAwdiY2PzMk6hGLVaXaRg54oVK0hOTsbBIX8ltsL34aMKisQ++vrRbJmnXSGlMBcXFyUzqSA7oSLKzc0t9T0dHR3mz5/P/Pnzi7136tSpEveJiYlRvv/4448fe+zCS+5C/u9sSe+rVCoWLlzIwoULi7zfqVMnOnXqpLwOCgrC0NAQa2tr0tPTGT58OHFxcbRr1w5XV1f279/PH3/8wZQpU7C0tESlUtGgQQOio6MJCAjg+PHjShDt6NGjbNmyRen7jTfeeOy5aLVahg8fznvvvUe/fv1KbFMwZaasCvp5lloskiRJkiS9PDJDRJKkErm7u7N27Vrlweb69evcvn2bDh06sHv3bh4+fMj9+/fZt29fqX20bduWr7/+WgmIODs7s3TpUrRarXKMp0nrv3HjBtWrV2fIkCH4+voSERFR7Hi//PILly9fBvJrjly6dAmABg0a0KBBA/z9/RkxYsRzvFJP79GHycLbOnXqxP79+5XtBQ+2586dIyYmhsDAQGrXrl2s3fLlyxk+fDje3t789ddfRabHQH4GxaFDh4iKiuL8+fNFAkkvm6urKxkZGaxcuVLZ9uDBgzLte+TIEe7evcvDhw/ZvXu3ci+VpHbt2rzxxhucOHECgB9++IGOHTuWur3AyJEj6dGjB++9995LX/o4L0+QkJTG6YQ7JCSlkZf35FoclY2npycff/wxgwYNKrL9s88+o3PnzsTExLBv3z6lngg8PohWoHAwrfC+q1atwt/fnz/++AN7e3vu3Lnzj8+hIED3LLVYJEmSJEl6eV6Nj0glSXrpunXrxoULF5RghqGhIRs3bsTOzo4BAwZgY2ODiYmJMs2hJFqtlgMHDiif/Ds7O5OQkICLiwtQevaDl5cXvXr1wsrKCgcHByWt/9y5c/j6+qKjo0OVKlWKPFADGBsbExAQwKBBg8jMzATA39+f5s2bA+Dl5UVSUhKtWrV6vheL/AfZxDvp3L6fiUnNqpgZ1Xjs8q6vM5VKxe7du/nwww/56quvMDY2pkaNGixYsOCJmR1OTk688847XLt2jSFDhuDg4PDYT+DXr1/PuHHjePDgARYWFqxbt+6x2wtMnTqV1NRUhg4dyqZNm17Kikh5eYJDsX/yxYELZObkUVVPhxk9WtFdbfpa3Us+Pj7UqVMHKysrgoKClO2pqak0bNgQKJ6RUpibmxsrVqxQstnu3bvHG2+8Qf369blw4QItWrRg165d1KxZE8ifDtOmTRvatGnDwYMH+eOPPzAyMnru51WzZk3u37//3PuVJEmSJOnZqcpSCf5V4ODgIAqK60nS60w+mJdu0qRJ2NraMnLkyOfar3yQfTkCAgKUZU4ro4SkNLzXniEzJ0/ZVlVPh/U+TlgYGz5mz8rB0NCwWPZUUFAQixYtYv/+/Zw6dQpvb29q1KhBz5492bhxI4mJicXui7S0NCZOnEh4eDi6urrMnj2bfv36sX37dqUIq4ODA2lpaQQEBNCvXz+ldlGXLl1YunRpkWySxMREPDw8ikwpgqL3o5+fH4aGhnz88cd06tSJRYsW4eDgoEwFS0xM5O7du7i7u5Odnc2MGTNkHRFJkiTptaJSqcKFEA7lPY5HyYCIJFUi8sG8dPb29tSoUYMjR44UqTfxPLzuD7IFXnQwrrIHRE4n3GHK5rPFtn8zyJa2Fs8/Y0GSJEmSJOllqagBETllRpIqkcQ76UowBCAzJ48vDlygpWnN1+rBvCTh4eEvrO/b9zOLBEMg/9rfvp/52lz3lxGMGz58uLJUamVkUrMqVfV0igXWTGo+3wDeyyQz1iRJkiRJqshkUVVJqkQe92AuvTgFD7KFvSoPsrq6usrSrTY2NixevJi8vLwn71jI8OHDWRmwqcRgXOKddKXN9u3bX+h4w8LCmDJlyjP3/bzG+KzMjGowo0cr5V4qCCqZGT25YGhFVBAk8157himbz+K99gyHYv98LQvFSpIkSZJUMckMEUmqRCrjJ8yvgoIH2UezI16FB1kDAwNlJZrbt28zePBg/vrrL+bMmfNU/aQ+zH4pWTKPG6+Dg4NSwPdVpKOjorvalJamNStFRoXMWJMkSZIkqaKTGSKSVIlUtk+YXxUFD7LrfZz4ZpAt632cXsm6LSYmJnz77bcsX74cIQS5ubn4+vri6OiItbU1q1evBkAIwaRJk2jRogVdu3bl9u3b1DaoQlU9Ha4f+4HYlROJ+WY0v+9dirGhfrHjmJmZkZycDORndXTq1AmA48ePo9Fo0Gg02NraPnFFjkfHGxQUhIeHBwBJSUm4ubmhVqsZNWoUTZo0UY45b948WrRoQbt27Rg0aBCLFi0q1nd4eDgdO3bE3t4ed3d3bt68+czX9Wno6KiwMDakrYURFsaGr9w9VJjMWJMkSZIkqaKTGSKSVIlUtk+YXyUFD7Kv+iffFhYW5Obmcvv2bfbs2UPt2rUJDQ0lMzMTrVZLt27dOHv2LL/99hvnz5/n1q1btG7dmuHDRzDDsRVzH/SloetQqurpUOXk/xFzKpCmvT3LdOxFixaxYsUKtFotaWlpVKtW7anGW9icOXNwdXVlxowZHDp0iO+//x6A0NBQduzYQVRUFNnZ2djZ2WFvb19k3+zsbCZPnsyePXswNjZm69atzJw5k7Vr15bxKv5zurq6WFlZKa93796NmZlZsXYpKSn8+OOPTJgwocR+Slq5pazMzMwICwujXr16z7S/zFiTJEmSJKmikwERSapkKsuDeVmV9cFRenqHDx8mOjpaqauRmppKXFwcwcHBDBo0CF1dXRo0aICrq6sSjEsMTWfFN/NIzcogLTWFCxcc6F3GgIhWq2Xq1Kl4eXnRr18/GjVq9MxjP3nyJLt27QKge/fuvPHGGwD88ssv9O7dm2rVqlGtWjV69epVbN/ffvuNmJgY3NzcAMjNzeXNN9985rE8i8JTgx4nJSWF//u//ys1IFKeXuWpZJIkSZIkvR5kQESSpFdaWR8cpbJJSEhAV1cXExMThBAsW7YMd3f3Im0OHDhQ4r5ZWZnMmTGVsLAw3nrrLfz8/MjIyCjWTk9PTymEWvj96dOn07NnTw4cOIBWq+V///sfLVu2LPN4L1y48LSnWyIhBGq1mlOnTj2X/p6HtLQ0evfuzb1798jOzsbf35/evXszffp04uPj0Wg0uLm5sXDhwif2tW/fPvz9/cnKysLIyIhNmzZRv3597ty5w6BBg7h+/TrOzs4IkV/8dNasWdStW5cPPvgAgJkzZ2JiYsL777//2OPIjDVJkiRJkio6WUNEkqRKJS0tjS5dumBnZ4eVlRV79uwBIDExkVatWjF69GjUajXdunXj4cOHQP40CmtrazQaDb6+vlhaWpbnKZSbpKQkxo0bx6RJk1CpVLi7u7Ny5Uqys7MBuHTpEunp6XTo0IGtW7eSm5vLzZs3CQwMBP4ObtSrV4+0tLRSV2wxMzNTlkHesWOHsj0+Ph4rKyumTZuGo6MjFy9efKrxFqbVavnpp5+A/EyXe/fuKdv37dtHRkYGaWlp7N+/v1i/LVq0ICkpSQmIZGdnExsb+/iL95w9fPhQqafSt29fqlWrxq5du4iIiCAwMJCPPvoIIQRffvklTZs2JTIyskzBEIB27dpx+vRpzp49y8CBA/nqq6+A/GlG7dq1IzY2lr59+/L7778D4OPjw4YNGwDIy8tjy5YtDBkypEzHqkw1USRJkiRJqnzKLUNEpVL1B/yAVoCTECKs0HszgJFALjBFCPG/chmkJEkVXsGDI4C5uTnbtm1j165d1KpVi+TkZNq2bYunZ/6Ujbi4ODZv3syaNWt477332LFjB0OGDGHEiBGsWbMGZ2dnpk+fXp6n89IVXL/s7Gz09PQYOnQoU6dOBWDUqFEkJiZiZ2eHEAJjY2N2795N3759OXbsGK1bt6Zx48Y4OzsDUKdOHUaPHo2lpSWmpqY4OjqWeMzZs2czcuRIPvvsM6WgKsDSpUsJDAxER0cHtVrN22+//VTjffQYgwYN4ocffsDZ2RlTU1Nq1qyJo6Mjnp6eWFtbU79+faysrKhdu3aRffX19dm+fTtTpkwhNTWVnJwcPvjgA9Rq9bNe5qf2aOZTdnY2n3zyCcHBwejo6HD9+nVu3br1TH1fu3aNAQMGcPPmTbKysjA3NwcgODiYnTt3AtCzZ09lmpGZmRlGRkacPXuWW7duYWtri5GR0T88Q0mSJEmSpPKnKkiJfekHVqlaAXnAauDjgoCISqVqDWwGnIAGwFGguRAi93H9OTg4iLCwsMc1qdQK6ijk5OTQqlUr1q9fT/Xq1UtsGxkZyY0bN+jRo8czH2/WrFl06NCBrl27lqm9n58fa9aswdjYmPT0dKysrPD396d169bPPIbC/knhQOnV9ujPPjs7mw8//FB5cPztt9+4cuUKGRkZuLm5ERcXB8CCBQvIzs5m0qRJ2NjYcPXqVQCio6MZPHgwMTEx5XI+0vORmZmJrq4uenp6nDp1ivHjxysBhrS0NAwNDXnw4AEdOnTg22+/xc7OrpxHXNSj93VAQAAHDx5k48aNVKlSBTMzM4KCggDw8PAo9X4t6W9jp06dmDp1Kp6engQFBeHn50dQUBAajYadO3diYWEBQN26dbl06RL16tVj69athISE8Oeff+Lt7f2P/v2QJEmSJOn1o1KpwoUQDuU9jkeV25QZIcQFIcRvJbzVG9gihMgUQlwBLpMfHJEeo+DTxJiYGPT19Vm1alWpbSMjI0utAVBWc+fOLXMwpMCHH35IZGQkcXFxDBgwAFdXV5KSksq8f05OztMOU3oNbdq0iaSkJMLDw4mMjKR+/frKVI6qVf9e3UJXV7dS31N5eYKEpDROJ9whISmNvLzyCX6Xl99//x1HR0dsbGyYMmUKa9asUd4bM2YMGo0GOzs73nnnnQoXDClJamoqJiYmVKlShcDAQCWAV7NmzScuT1xSXw0bNgRg/fr1yvYOHTrw448/AnDw4EFlmhFA3759OXToEKGhocVqykiSJEmSJL2qKmINkYbAH4VeX/v/26Qyat++PZcvXyY9PR0fHx+cnJywtbVlz549ZGVlMWvWLLZu3YpGo2Hr1q34+fmxaNEiZX9LS0sSExMfW3Nh+PDhSn2AuXPn4ujoiKWlJWPGjKEsWUcDBgygW7duyn++zczMSE5OBiAsLExJo/fz82Po0KFotVqGDh1KbGwsTk5OaDQarK2tlU/7C1u4cCGOjo5YW1sze/ZsID+jZenSpUqbmTNn8vXXXz/D1ZUqutIeHEtTp04datasya+//grAli1bXsYwX6i8PMGh2D/xXnuGKZvP4r32DIdi/3ytgiLNmjXj7NmzREVFERoaWmT6zo8//khkZCQXL15kxowZ5TjKsvPy8iIsLAwrKys2bNigFJs1MjJCq9ViaWmJr69vsf0ePHhAo0aNlK8lS5bg5+dH//79sbe3L7Kk7uzZswkODkatVrNz504aN26svKevr0/nzp1577330NXVffEnLEmSJEmS9BK80BoiKpXqKGBawlszhRB7nkP/Y4AxQJH/uL3OcnJyOHjwIN27d+fzzz/H1dWVtWvXkpKSgpOTE127dmXu3LmEhYWxfPlyID/oUJrSai4UNmnSJGbNmgXA0KFD2b9/f4lLWT7Kzs7uiUUTAc6fP8/JkycxMDBg8uTJvP/++3h5eZGVlUVubtGZVIcPHyYuLo4zZ84ghMDT05Pg4GB8fHzo168fH3zwgVIU8MyZM088tvTq8fLyolevXlhZWeHg4PDEVUoAvv/+e0aPHo2Ojg4dO3YsVlPiVZN4J11Z6hQgMyePLw5coKVpzddmOebSPM30wvL06DSXevXqlbrqTUFguSQFq/k8qnfv3sW2GRkZcfjw4VL7OX36NNu2bSv1WJIkSZIkSa+aFxoQEUI83ZyKfNeBtwq9bvT/t5XU/7fAt5BfQ+QZjlVpFC4s2b59e0aOHImLiwt79+5Vsj8yMjKUVQPKytzcXOnX3t6exMTEYm0CAwP56quvePDgAXfv3kWtVpcpIFLW+jWenp4YGBgA4OzszOeff861a9fo168fzZo1K9L28OHDHD58GFtbWyD/oSIuLo4OHTrIooCV1NM8OBaus/Dxxx8r36vVaqKjowH48ssvcXCocNMbn8rt+5lKMKRAZk4et+9nvvYBkcLFSr28vFi1alWJRVlfhLw8QeKd9FduCdrz58/j4eFB3759i/3NlSRJkiRJepWV2yozj7EX+FGlUi0hv6hqM0B+lP8Ej65IAPkBhx07dtCiRYsi2wumBhTQ09Mr8iliQb0FKF5zoWDKTOG2EyZMICwsjLfeegs/P78i+z/O2bNnlQfPwmN4dP8aNWoo3w8ePJg2bdrw3//+lx49erB69WpcXV2LnPOMGTMYO3ZsseONGjWKgIAA/vzzT3x8fMo0Rql8vOwHx//+97988cUX5OTk0KRJEwICAl7YsV4Gk5pVqaqnUyQoUlVPB5OaVR+z1+unffv2REdHk56ezuTJk4mJiSE7Oxs/Pz969+5Nbm4u06dPJygoiMzMTCZOnMjYsWMZOHAgQ4cOpWfPnkD+FMKCgEFJ7W/evMmAAQO4dvsOt1Ie0LjXFOr9y4YZPVrRXW1a4YMirVu3JiEhobyHIUmSJEmS9NyVWw0RlUrVV6VSXQOcgf+qVKr/AQghYoGfgPPAIWDik1aYkUrm7u7OsmXLlEyMs2fPAsWL8JmZmREREQFAREQEV65cKfMxCoIX9erVIy0tTakr8iQ7duzg8OHDDBo0SBlDeHi48l5pEhISsLCwYMqUKfTu3Vv5VL+Au7s7a9euVbIGrl+/zu3btwFZFPBVUR71LwYMGKAUJf7vf/+LsbHxcz/GrVu3GDx4MBYWFtjb2+Ps7MyuXbtKbHvjxg3efffdZz6WmVENZvRoRVW9/D/xVfV0mNGjFZEnjnD+/HmlXUBAADdu3ChzvwEBAUyaNKnItk6dOvE8VvhKTEzE0tKyxPfi4uLw8PCgadOm2Nvb07lzZ4KDgx/b36O1kQoIIbC0tCQnJ4fNmzdz4cIFZXrhmTNnCAwMxNfXl/T0dL7//ntq165NaGgooaGhrFmzhitXrjBgwAB++uknALKysvj555/p2bNnqe1//PFHHNt1puGIZbSeuIrqbzZVpjEl3kn/x9dOkiRJkiRJejblliEihNgFlPg0IIT4HPj85Y6o8vnss8/44IMPsLa2Ji8vD3Nzc/bv30/nzp358ssv0Wg0zJgxg3feeYcNGzagVqtp06YNzZs3L/Mx6tSpw+jRo7G0tMTU1LRI4cJH/ec//2Hjxo2kp6djaWnJsWPHlAfP2bNnM3LkSD777DOloGpJfvrpJ3744QeqVKmCqakpn3zySZH3u3XrxoULF3B2dgbyl5zcuHEjJiYmSlHAOnXqyKKAFVhlrH8hhKBPnz54e3sr9R6uXr3K3r17i7XNycmhQYMGZQ4ulkRHR0V3tSktTWsWybLxWbyHvDwPZbnrgIAALC0tadCgwTMf60XLyMigZ8+eLFq0CE9PTyB/6lNYWBgdOnR4pv7i4+NxcHCgffv2LF68uNTphYcPHyY6Olr5WaSmphIXF8fbb7/N+++/T2ZmJocOHaJDhw4YGBiU2t7R0ZHBQ4cjml7hjdYuVH/zX4CcxiRJkiRJklTeVGWt41DROTg4iOfxKWVF86rOOa+I8vLysLOzY9u2bXIefAV2OuEOUzafLbb9m0G2tLV4Neu+/Pzzz8ydO5fjx4+X+H5AQAA7d+4kLS2N3Nxc1q9fj4eHBzExMQQEBLB3714ePHhAfHw8ffv25auvvgLyi8EuWLCAOnXqYGNjQ9WqVVm+fDmJiYn4+PiQnJyMsbEx69at49q1a3h4eFC7dm1q167NoEGDmDdvHg0bNsTAwIBTp04xZ84c9u7di56eHt26dSuWYREQEFCkIDPkZ4gsWrQIBwcHDh8+zOzZs8nMzKRp06asW7cOQ0ND5s6dy759+3j48CEuLi6sXr0alUpFeHi4Mn2tW7duHDx4sEidl4JzDA4OLrI8bGF3797Fx8eHhIQEqlevzrfffou1tTV+fn7Ex8dz+fJlkpOT+fe//83o0aOpUaMG5ubmxMTEEBQUxKJFi7h58ybOzs48ePCAhIQEfv/9dz744AOOHz/OmDFjSswoGzZsGO+++y5btmxh4MCBeHp68s4775Ta/tS5OIb5reJ6yG5Mte9Sz9aNqno6rPdxkgERSZIkSZIqPZVKFS6EqHCF+ipiDRHp/yuYOlDwaXlB2vurMOe8opFFAV8dlbH+RWxsLHZ2do9tExERQXR0NHXr1i1WvDgyMpKzZ89StWpVWrRoweTJk9HV1WXevHlERERQs2ZNXF1dsbGxAWDy5Ml4e3vj7e3N2rVrmTJlCrt378ZYWmsIAAAgAElEQVTT0xMPDw9lOs7BgweVYMadO3fYtWsXFy9eRKVSkZKSUuI4t27dysmTJ5XXly9fBiA5ORl/f3+OHj1KjRo1WLBgAUuWLGHWrFnFVqLS0dHBy8uL6Oholi9fjouLC7Vq1Soxc+tJ12727NnY2toSGRlJnTp1GDZsGJGRkZw/f56jR49y/fp10tPTsbW1VWp+PMrd3Z2jR4+iq6tLUFAQv/zyC/3792f06NGMHz+e3377jSpVqnDp0iUaNmxIjRo1GDBgAN999x1hYWFKzRl3d3dWrlyJq6trkfbJyck4tDTna7+PmfxpNuk34qjq6M6MHq0wM6pR4pgkSZIkSZKkF08GRCqwyjh1oLzIooCvjoL6F48GAivTg+PEiRM5efIk+vr6hIaGAuDm5kbdunVLbN+lSxdlKeDWrVtz9epVkpOT6dixo7JP//79uXTpEgCnTp1i586dQH4A4t///vcTx1S7dm2qVavGyJEj8fDwwMPDo8R2AwYMKJYhAnD69GnOnz+PVqsF8mtrFExde3QlKn19faKiorh37x4dOnTg4MGDNG7cmOvXiy8o9uiysX379iUuLo7mzZuzc+dOTp48yY4dO1i3bh2///47GRkZ/PXXXwC89dZbGBgYYGBgQOfOnUtdavuzzz7j0KFD/P7779jZ2WFubo6xsTETJkxAR0cHOzs7hBAYGxuze/duID+jZejQofTu3Rt9fX0gv3BzYmJisfZBQUEsXLiQKlWqULeqAQsXLEfTurnM+JMkSZIkSSpnMiBSgcmlM6XXUWn1L17lB0e1Wl2kWPCKFSvyswYKLe9beDWlRz262lNOTs5zH6Oenh5nzpzh559/Zvv27Sxfvpxjx46VeX8hBG5ubmzevLnI9pJWopo/fz5ubm5s2LABgM2bN9O9e3e+//57AGW6S0JCAjk5OVy5coVNmzaRlZVFXl4ec+fO5ZtvvlGOkZcnyMkTDBgxnv9bOFcpwKtS5d8zd+/eJTAwkODgYJo3b64UlQ4ICCAyMpKuXbuSnZ2NtbU19evXJyEhgZs3bxISEkJ0dDTnzp3j+PHjvP/++3Ts2BGVSkVwcDB3794tcq46OjrMnz+f+fPnF9lekK0jSZIkSZIkVSzltsqM9GQFUwcKe9WnDkilu3btGr1796ZZs2Y0bdqU999/n6ysLACCgoKUT+z37t3Ll19++dyPXzDtAPILexYUpC1gb2+vrEb0rEpb+eNROjoqLIwNaWthhIWx4SsdDAFwdXUlIyODlStXKtsePHjwj/p0dHTk+PHj3Lt3j5ycnCIBFxcXF7Zs2QLApk2baN++PVB8hanCr9PS0khNTaVHjx785z//ISoq6qnG07ZtW3755RdlCk16ejqXLl0qdSWq4cOHk52dzc8//0x0dDS3bt0q0l/BlJegoCCCgoJo164dkZGRhIWFUbNmTaVdu3btmLN0Ncn3M9kTl0FmVg7bf4lFCKFkjEybNo2//vqLkJAQfH19i2Si3L9/n6NHj/LOO+8UOe5bb71VZDyLFi1ixYoVREZGcuLECQwMDJ7q+kiSJEmSJEkVjwyIVGClLZ1ZmaYOSPmEEPTr148+ffoQFxfHpUuXSEtLY+bMmcXaenp6Mn369H98zEezDLRaLSEhIQBERUXRvHlz5XV6ejrx8fFKjQrp6ahUKnbv3s3x48cxNzfHyckJb29vFixY8Mx9NmzYkE8++QQnJye0Wi1mZmbKtJply5axbt06rK2t+eGHH/j6668BGDhwIAsXLsTW1pb4+HiGDx/OuHHj0Gg03L9/Hw8PD6ytrWnXrh1Llix5qvEYGxsTEBDAoEGDsLa2xtnZmYsXLxZZicrd3V1Zicra2pqGDRsyfPhwbt68yaMFvj09PZXpLp999hlr1qyhbt26ODk5sXDhQj799FMARkz25UDgL2T9dYebQZt4s+MgPvWbR3pmLm+88QadO3dmw4YNTJs2jQYNGuDi4kJOTo4yraZ+/fpFghsFx32UVqtl6tSpfPPNN6SkpKCnJxMsJUmSJEmSXnlCiErxZW9vLyqj3Nw8EX/7vjgVnyzib98Xubl55T0k6QU4evSoaN++fZFtqampom7duiI9PV0EBgaKnj17CiGEWLdunZg4caJISUkRjRs3Frm5uUIIIdLS0kSjRo1EVlaWuHz5snB3dxd2dnaiXbt24sKFC0IIIby9vcXYsWOFk5OT+PDDD4scb9OmTcLLy0sIIcQ333wjVq9eLZydnYUQQhw7dky4uroKIYRYvHixUKvVQq1Wi//85z/K/qVt9/f3F82aNRNarVYMHDhQLFy48Hleutfa/fv3hRBCZGdnCw8PD7Fz585S2+ro6AgbGxuhVqvFu+++K9LT01/4+JYuXSref/995fWYMWNEly5dRI0aNYQQQrz99tuiWrVqIjo6usg9Pnv27GL3yeXLl8XXX38t/vWvf4mff/5Z2X4qPlk4+h8RVWrVE9XqvSXs5xwUVY0aiCkz5wlvb28hhBAajUbEx8cr+zRq1EikpqYWO86jrwuPSQghoqOjxZdffikaN26s/E5JkiRJkiRJTwaEiQoQN3j0S2aIVHCVbeqAVLLY2Fjs7e2LbKtVqxaNGzdWpiA8qnbt2mg0GmUp1/379+Pu7k6VKlUYM2YMy5YtIzw8nEWLFjFhwgRlv2vXrhESElIsA6BwhkhISAgdOnSgatWq3L9/n5CQEFxcXAgPD2fdunX8+v/Yu/e4nO//8eOPq1RSzpHNWEVIXXV1lkQ59pljQs7SspGzmdn2QQwfG5vzd+3jo8ISw8ScZ9UcQjoJaciiD+aQU2fV9f790e96f7pUZDOyve63m9tc7+PruiJ7P3seTp3i5MmTrFu3juTk5Kdu37JlCykpKezbt09uIPpXolZLXLmTy8kr2Vy5kyv3r3gZgoODUalU2NjYYG5uzoABA6o81tDQkJSUFM6dO4e+vj4hISHVuscf6VdS/s8UlGUePXz4UH6tp6eHn58fSqXyqde5cuUKFhYWTJkyhf79+5Oamirve7K0UEe3Fm91GsS28G/kbR4eHkRERABl5WcmJibUq1fvud5LRkYGSqWSjz76CGdnZ9LT05/rfEEQBEEQBKHmETm/gvAa8/PzY+vWrXh5ebFlyxaCgoLIzc0lLi6OwYMHy8cVFRXJvx88eHCl403ffvttHj9+zG+//UZ6ejpt27bF2dmZU6dOERcXx+TJkzl27Bg+Pj5yA9CBAwdy9OhRJEmqdLtarcbHx4c6deoAZeUINY2urq7WA3lUVBSZmZksW7aMPXv2PPXclStXsmzlGorqv03LATO4/O0cGukWsmjeHIYNG/pnL71a/Vgq4+HhQWpqKnl5eUyePJlz585RXFxMcHAw/fv3Jzw8nO+//57c3FxKS0vZu3cvkydPJiEhAYVCwbx583j48CGpqamsWLECgHXr1pGWlsby5cvl+6hUKi5evEhBQQGPHz/G0NCQ1q1bc/78eaBsnPCxY8fIyMhg1qxZ/PLLL3h4eGBnZ4exsTE//PADCxcuJCsri0ePHmFmZsZbb71Fly5dUKlUQFk50qdff8eI/9/H1KCWDl98MoXRXdezZ88ebG1t8ff358iRIzRs2JCmTZuybds2AHbs2KHV2PZpVqxYQUxMDDo6OlhbW/OPf/zjd332giAIgiAIQs0hAiKCUAO0b99ebjap8ejRI65du0br1q2rHBfar18/PvnkE+7du0diYiJdu3YlLy+PBg0ayA1Sn/S0aSYdO3Zk27ZtvPHGGygUCrlRZnx8PG5ubvzyyy+//03WUJrMifIyMzOrde6qNWt5Y+hCMGpMblYaklqieeBqXLu7/AkrfTFKSkrYv38/3t7eLFq0iK5duxIaGsqDBw9wcXGhe/fuACQlJZGamkqjRo346KOPqF+/PmfPngXg/v376OnpsWjRInmcbFhYGN98843WvWrVqoW9vT2nT5+moKAAV1dXLC0tsbe35/r160iSRIsWLejWrRsRERFYWlpy6tQpPv74Y9asWcP9+/c5efIkCoWC//znP1y4cIEvv/ySvn37snbtWtzd3cnNzUVf34Afo2MZO2wQGwJcOLQjgtmzZ/PPf/6ToqIi3N3d2bZtG9euXWP58uXY2try8OFDcnNzWbdunbze4OBgrfV7enrKY4VXr179531RBEEQBEEQhFdClMwIQg3QrVs38vPz5TGkpaWlfPDBB/j7+8vZFZUxNjbG2dmZqVOn0qdPH3R1dalXrx7m5ubyT8ElSar2xJCOHTuyYsUK3NzcAHBzc2Pjxo00a9aM+vXr4+HhQVRUFPn5+eTl5bFz5048PDyq3N65c2eioqIoKCggJyeHH3744Q9+Ui/fk5NxbGxsyMzMZPz48Vy7msm50NncPLKFK9s+J+/6LySuGMd/1q9n2rRp8jnr1q1j+vTpr2L5soKCAlQqFU5OTrRs2ZJ3332XQ4cOsWTJElQqFZ6enhQWFnLt2jUAevToQaNGjQA4fPgwEydOlK/VsGFDjI2N6dq1K3v27CE9PZ3i4mKsrW0qlA917NiRuLg44uLicHNzw83NTX7dsWNHrYwmlUrF+++/z82bN4Gy8q5evXqhVCpZunSpnFnyZINTfX09WjY2wlBfF4smxhw+/CMbN25EpVLh6upKdnY2ly5dokuXLly6dIk7d+4QGRmJr6+vaI4qCIIgCILwNyb+T1B4LpryguLiYmrVqsXo0aOZPn06OjrVj62Fh4eTkJDAmjVrCA4OxtjYmJkzZ/6hdQUHB7Nu3TqaNGlCXl4eSqWShQsX0r59+z90XQ1jY2Nyc3NfyLUqo1Ao2LlzJ0FBQXz22Weo1WreeecdFi9e/Mxz/fz8GDx4MLGxsfK2iIgIJkyYwMKFCykuLmbo0KHVmhDj7u7O9OnT5YDIG2+8QWlpKR07dgTAwcEBf39/XFzKMiACAwOxt7cHqHK7n58fdnZ2NG3aVJ4wUpNoAgUA5ubm7Ny5s1rnhYSEsGffft7y/wq1QV2M3rLit+PbUI5dzLAh7RnQ3f2p2RMvW2WZMJIksWPHDtq2bau1/dSpU0/NJNIIDAxk8eLFtGvXDn9/fw6c/41/7btAUYlanorl5taRf//7GwoLC5k4cSJNmjQhLS2NJk2a0LFjR9RqdZUZTZMnT2bGjBn069eP2NhYOYNj9uzZ9O7dm3379uHu7s7BgwepXbu21vtavXo1vXr1qnDN0aNH8+2337JlyxbCwsKq89EJgiAIgiAIf1EiICI8l/IPVbdv32b48OE8evSI+fPnv+KVwfTp0+XAytatW+natStnz56lSZMm1Tq/pKTklf60uEWLFlVmUJRP3ff398ff31/eN2jQoAojS83NzTlw4ECF64SHhz91Dc7OzhWu9WT5yIwZM5gxYwZQ1m9DoVBw4cIFre3lffrpp5WOD/6jKuv9MXz4cOLi4sjMzKRPnz6cO3euyvPNzMxISEioNFBQXbV0FEztbsn/nbgNgI4CPn7HCuu3TeXsCSsrK4qLi5/ZOPRV6NWrF6tXr2b16tUoFAqSk5PlQFZ5PXr0YO3atXK/kPv379OwYUNcXV3JysoiKSmJ3dFxTPm+LBgCUFSi5l/7LrBqoC0nT56kefPmNG3aFCgb0btr1y62bdumldE0ePBgJEkiNTUVOzs7Hj58SPPmzQHYsGGDvB5Ng1OlUsnp06dJT0+Xg1qa9/X111/TtWtX9PT0uHjxIs2bN8fIyEgO3DVr1uyFBUwFQRAEQRCE15MomanBvLy8OHjwoNa2FStWMGHChFe0ov8xMzOjW7duZGVlsXDhQj799FPWrVvHpEmT5GP69OkjZy2EhYXRpk0bXFxcOH78eKXXzMjIwNvbGzMzM958803S09PJycnB3Nyc4uJioKyvRvnXVfHz86Nnz55s3rxZXu/du3cBSEhIkIMLwcHBjBo1Cnd3d0aNGsX58+dxcXFBpVJha2vLpUuXKlx76dKlODs7Y2try7x58wCYO3eu/LAIZUGAlStXAq92CsmfLTIykk6dOhEZGVnp/j8yoeRZNIEMzS8zMzOtiSYvSq1atVCr1fLrwsJCrf3d2pmyIcCFKd1ao2rRAG/rZujoKAgMDCQ8PJywsDDGjh37wtf1IsyZM4fi4mJsbW2xtrZmzpw5lR73z3/+k/v372NjY4OdnR0xMTHyviFDhuDu7k6Rbh05GKJRVKKmSLcOTZo0wdraWt7u5ubG7du35ayliIgI1q9fj52dHdbW1uzatQso+/s5ePBgHB0dMTExkc9fsWIFNjY22NraoqenV6HBaWBgIO3bt8fBwQEbGxvef/99+c+iqakpVlZWNfZrIgiCIAiCILw8IkOkBhs2bBhbtmzRSvvesmULX3zxRbXOLy0trXSayIsSExODiYkJ9evX58KFC8TGxlb60+WbN28yb948EhMTqV+/Pl5eXtjb21NaWqp13HvvvUdISAjHjx9n7969BAUFER0djaenJ3v37mXAgAFs2bKFgQMHoqen98z1OTg4VGs0ZlpaGseOHcPQ0JDJkyczdepURowYwePHjyus8dChQ1y6dIn4+HgkSaJfv34cOXKEgIAABg4cyLRp01Cr1WzZsoX4+HjUaqnSMgLNQ/PrLDc3l2PHjhETE0Pfvn3lLKHY2FjmzJlDw4YNSU9PJz09nUmTJhEdHU2LFi3Q09MjICCAQYMGyVkaJiYmJCQkMHPmTGJjY/n555+ZOnUqUFZOdOTIEerWrfvMNVVW2lRaWspHH33EgQMH0NHRYdy4cUyePBkoa5RZUFCAUqlk27ZttGvXrsI1zczM5GkzSUlJ/Prrr1r7dXQUWJgY0/7N+tTRryV/XctnT5QfE/uqVFbyZWhoWGkpz5NZSMbGxloZGuUdO3aM6dOny+NvywdFDGrp0LSugdz7QyM4OFirgWlVGU39+/enf//+FbZX1uDUzMxMzgjS0dFh8eLFlZac5efnc+nSJYYNG1bp+xEEQRAEQRD+PkSGSA02aNAg9u7dy+PHj4Gy0oUbN27g4eHBoUOHcHNzw8HBgcGDB8sPO2ZmZnz00Uc4ODiwbds2zMzMmDdvHg4ODiiVSjlAcO/ePQYMGICtrS0dOnSQH9iCg4MJCAjA09MTCwsLVq1a9cx1KhQKvvjiC5KTkyksLCQ2NpY+ffrI+999911atGhBkyZNaNOmDYaGhmzdupVt27Zx6tQpli5dio2NDbGxsQwePJi5c+cSExPDzZs3uXPnDr/++itjx47F2dmZVatWMWbMGCwtLblz5w4AarWaVatWVXjge7L0oyr9+vXD0NAQKPvJ9eLFi/n888+5evWqvF3j0KFDHDp0CHt7ezngcunSJczMzGjcuDHJycny/saNG5OZnScHQ+B/ZQSZ2XnVWltNtmvXLry9vWnTpg2NGzcmMTFR3peUlMTKlSu5ePEi33//PZmZmaSlpbFp0yZOnDjxzGsvW7aMtWvXkpKSwtGjRyt8HeB/vT9UKhU+Pj5VXuvf//43mZmZpKSkkJqayogRI+R9JiYmGBoaMmHChCpH2Pr6+nLv3j2sra1Zs2YNbdq0eeb6NTTZEw0bNqz2Oc/jVWYfPXjwQP773K1bN8waG/HxO1YY1Cr7Z0UT/DNr/OxeJC/L4cOHsbKyYvLkydSvX/9VL0cQBEEQBEF4xURApAZr1KgRLi4u7N+/HyjLDhkyZAjZ2dksXLiQw4cPk5SUhJOTE1999ZV8XuPGjUlKSmLo0KFA2UNfUlKS1kPfvHnzsLe3JzU1lcWLFzN69Gj5/PT0dA4ePEh8fDzz589/annKlStX0NXVpVWrVjRp0oT79+/L+54sLdAwMjLCz8+PoUOHyj9djouLw8TEhJSUFBYsWMDQoUO5cOECU6dOZeHChbRs2ZKZM2eSkZGBra0tI0eOJCIiAih7yGnWrBnGxsZa90lOTsbKygrQLnt4cl3lm0cOHz6c3bt3Y2hoyDvvvEN0dLTWsZIk8fHHH8tlGpcvX+bdd98F0CqRCAgIAOB2TlGlZQS3c4qq/ExfF5GRkfKfsaFDh2qVzbi4uGBubg6UZRAMHjwYHR0dmjVrhpeX1zOv/eQUkcp6u5QvmamqEeqVO7l8t2sf/fxGo6NTli2lmZwCMHDgQHJzc3F0dNTqleLp6SlnhRgaGnLo0CHOnz9PaGgoFy5cwMzMDCgLUmpKOcqfo3Hs2DHGjRv3zPf7e2iyj8aExjMlMpkxofEcOP/bSwuKNGjQgIsXL8rTjHR0FHhbN2NDgAurhtmzIcClxmVCde/enatXr2pNABIEQRAEQRD+vkRApIbTlM1AWUBk2LBhnDx5krS0NNzd3VGpVGzYsIGrV6/K5/j5+WldY+DAgQBaD33Hjh1j1KhRAHTt2pXs7GwePXoEQO/evTEwMMDExISmTZty69atStd29+5dxo8fz6RJk1AoFHLzQrVaTUFBAfHx8UBZzX56ejrZ2dkA3LhxQ76GqakpmzdvZvfu3ZiZmVUYFXv48GEmTZrE3bt3GTlyJAYGBuTm5hIQECCPqA0NDdVqqAiwY8cODh06JKfFm5mZyRkMO3bsqPLzvnLlChYWFkyZMoX+/ftXKHXo1asXoaGhcjbK9evXuX27rKGmj48PBw4c4PTp03KZk6aMoDxNGcHr7N69e0RHRxMYGIiZmRlLly7lu+++k7NyqjOhBKoOVM2ePZv//Oc/FBQU4O7uXq3Sp/LUaoncwhLGhMZzJusBXxxMrzRYYGBQ9nXQ1dV9of1Onsye+DPUxOwjHR0FFk2M6WDRGIsmxjUqGCIIgiAIgiAITxIBkRquf//+/PTTTyQlJZGfn4+joyOSJNGjRw/5p+NpaWmsX79ePufJh9HnfejTHF/ZOZoyhRs3buDr60vPnj2ZN28eOTk53LlzRx6/ef78eRwcHORrDBgwADc3N27evClnbUBZRkbHjh1JSkoiOzubdevWMWfOHCIjI9m1axdqtZqTJ0+SmJhIrVq1yMzMxNjYmBYtWmBqakp0dDTx8fG0bt2a5cuXo1KpsLS05NtvvyU6OlqeMDNv3jymTp2Kk5PTU/uqfPfdd9jY2KBSqTh37pxW5gxAz549GT58OG5ubiiVSgYNGkROTg4A+vr6eHl5MWTIEPker0MZwe+xfft2Ro0axdWrV8nMzCQrKwtzc3OOHj1a4Vh3d3d27NiBWq3m1q1bWuOBqwpUaaaIfPTRRzg7Oz93QOS/9/O5k1uWnVOvtQM3Tu5h8Q/nyMzO4969e7/vTT+HJ7Mn/gx/5ewjQRAEQRAEQXgZRFPVGs7Y2BgvLy8CAgLkbIcOHTowceJELl++TOvWrcnLy+P69evP1dvAw8ODiIgI5syZQ3R0DPUaNCLtbjH38x5jZFR1yr2myaiZmRk///wzJiYm5ObmEhQUxIABA9iwYQNZWVl4eHhw8OBBCgoKGDt2LPPmzWP9+vWYmZnx1VdfYWJiglqtJiAgADMzM4qLi9myZQvfffcdUVFRJCQkMHfuXNLT01m9ejXm5uYMGjSIzMxMORskMDCQkSNHMmrUKBYsWMCCBQue+n4vXrxYYXv5xo5Qlpkwe/bsCseV708ydepUueFneZrgTfmHYE0ZQbtmdbmdU0TTugaYNTZ67X9yHhkZyUcffaS1zdfXl8jIyAoZSr6+vvz000+0b9+eFi1a4ODgIPdvmDdvHu+++y5z5syRJ/9A2RSRmJgYdHR0sLa2rjBF5Fmy8x6jaSHTxPEdCu9eJ3FFIL021WXqxPFa05BeV09rYioIgiAIgiAIwrOJgMhrYNiwYfj4+MilM02aNCE8PJxhw4ZRVFT20+CFCxc+V0BE0zzV1taWx+hRp9skpkQm81vydXrY1UKtlp750O7l5YUkSajVanx8fOSRnS1atGDIkCHY2Nhgbm5e6eQZKAuujBw5kocPHyJJElOmTKFBgwZax6xatQo3NzeuXbtGixYtCAkJISQkBChrhjp27NgaMT4zLS2NPn364OPjg6WlpdY+TRmBRRPjKs5+/ZQfu6oxZcoU+fflgxs6OjosW7YMY2NjsrOzcXFxQalUAlUHqiqbIvKkyqamaLbZWVniOGM9RSVqFLq6tHxnPAa1gtgQ4CJ/Hcr3DHFyctLKXHkdaLKPnpxg9LpnHwmCIAiCIAjCy6Ko7iSOms7JyUlKSEh41ct47Vy5k8uY0PgKP2Uu/+BYUyUkJDB9+vRKyzSE30+tlsjMznuhGS2enp48ePCAx48fM2vWLK2Rrn+Gv/K44/L+jK/Vy7Jo0SI2b96Mrq4uOjo6fPPNN7i6ur7qZVWQmZmJlZUVbdu2lbft3r2bGTNmsH379t91zZCQEOrUqVOhJE8QBEEQBOGvSqFQJEqS5PSq1/EkkSHyCtSkh5in9SGoyQGRJUuW8PXXX8uTZoQX488KJLzs7Iu/aqnSk17X7KMTJ06wZ88ekpKSMDAw4O7du/J48ZqoVatWpKSkaG37vcEQgPHjx//RJQmCIAiCIAgvgGiq+pK96lGZT3pdp6DMnj2bq1ev0qlTp1e9lL+Umji55PcSE09qrps3b2JiYiI3cDYxMeHNN98EIDExkS5duuDo6EivXr24efMmAOvWrcPZ2Rk7Ozt8fX3Jz88HwN/fnwkTJtChQwcsLCyIjY0lICAAKysrrUyk8mO5t2/fLu/btm0bNjY22NnZ0blz52qtPzMzExsbGwDCw8MZOHAg3t7eWFpaMmvWLK17fvrpp9jZ2dGhQwd5YldwcLA8Av306dPY2tqiUqn48MMP5etmZmbi4eGBg4MDDg4OxMXFAWXBRU9PTwYNGkS7du0YMWIEf5VMT0EQBEEQhJdNBERespr2wPlXnYIi/D5icom28g/RUPbw+7wNWc3MzLh79261jn3nnXd48ODBc13/ddSzZ0+ysrJo06YNQUFB/PzzzwAUFxczefJktm/fTmJiIhfs9awAACAASURBVAEBAXz66adA2fjw06dPc+bMGaysrLQma92/f58TJ06wfPly+vXrx/Tp0zl//jxnz56tkNnxpAULFnDw4EHOnDnD7t27Kz0mIyMDlUqFSqVi4sSJFfanpKSwdetWzp49y9atW8nKygIgLy+PDh06cObMGTp37sy6desqnDt27Fi++eYbUlJStCZgNW3alB9//JGkpCS2bt2q1aMnOTmZFStWkJaWxpUrVzh+/PhT36MgCIIgCIJQOVEy85LVtBKVv0tpgVA9YnLJq7Vv374/fA1dXV2USiUlJSVYWVmxYcMG6tSp8wJWV31mZmbUrVsXhUJBs2bN2LhxI82aNZP3Gxsbk5iYyNGjR4mJicHPz48lS5bg5OTEuXPn6NGjB1DWePmNN94AYO/evQQFBVFaWoqJiQm9e/eWr9e3b18UCgVKpRJTU1O5aa+1tbXWZKrKuLu74+/vz5AhQxg4cGClxzxZMlO+IS9At27d5MlJ7du35+rVq7Ro0QJ9fX369OkDgKOjIz/++KPWeQ8ePCAnJwc3NzegbAz5nj17gLLg0KRJk+RASfnmwy4uLrz11lsAqFQqMjMzRbacIAiCIAjC7yAyRF6ymliiIkoLBA2RMVR9d+7cwdfXF2dnZ5ydneWf0mdnZ9OzZ0+sra0JDAyUyxmWLl3KqlWrAJg+fTpdu3YFIDo6mhEjRgDa2SSfffYZbdu2pVOnTgwbNkwusXgWQ0NDUlJSOHfuHPr6+vJUppctJiaG1NRUnJycWLx4cYX9urq6eHp6Mn/+fNasWcOOHTuQJAlra2tSUlJISUnh7NmzHDp0CIBp06YxZswYCgoK+OyzzygsLJSvpaenB5RNNNKU4Whel5SUAKBQ/O/7WvlzQ0JCWLhwIVlZWTg6OpKdnf3c77X8PXV1deV76unpyfctv706li9fjqmpKWfOnCEhIUGrx0pV9xMEQRAEQRCejwiIvGTigVOoyTQZQxsCXFg1zJ4NAS5/ucksz6OgoEAulVCpVMydO1feN3XqVKZPn87p06fZsWMHgYGBAMyfP59OnTpx/vx5fHx8uHbtGlA2YlgzESkhIYHc3FyKi4s5evRohd4VmmueOXOG/fv383snaHl4eHD58mXu3bvHgAEDsLW1pUOHDqSmpgJlvSxGjRqFm5sblpaWcklHbGwsnTt3pnfv3rRt25bx48ejVqsJDQ1l2rRp8vXXrVvH9OnTn7qGzp07c/nyZQoLCxk7dixKpRIrKys2bdoElJUhffrpp6SkpNCnTx8uX77MlClTsLe3x8XFhbi4OPbt28eDBw/YsWMHXbp04T//+Q87d+5k9OjRREVFkZ2dzdKlS+nXrx+XL19m3rx5QFlpiSbjwtTUlPfff5/ly5ezc+dOeX0ZGRm4urqyYMECmjRpIpe7vAwNGjSgbt26nDp1CkAerQ7w8OFD3njjDXR0dNi0aROlpaUvbV2CIAiCIAh/F6Jk5iUTJSpCTfe6Ti75M2iyLTTCw8Pl4MThw4dJS0uT9z169Ijc3FyOHDnC999/D0Dv3r1p2LAhUFYykZiYyKNHjzAwMMDBwYGEhASOHj0qZ45oHD9+nP79+1O7dm1q165N3759n3vtJSUl7N+/H29vb+bNm4e9vT1RUVFER0czevRo+X2lpqZy8uRJ8vLysLe3l0tR4uPjSUtL4+2338bb25vvv/+eIUOGsGjRIpYuXYqenh5hYWF88803T13Hnj17UCqVrF27FoVCwdmzZ9mxYwfDhw9n8eLF5Obmcv/+fc6dO4eRkRHm5ubs37+fOnXqkJGRwcqVK9m6dSv/+Mc/OHHiBAUFBVhZWXH8+HGCgoLQ0dHhxo0b3Lp1i127dtG3b18SExM5cuQIlpaWcn+SxYsXM2LECLnBaW5uLgAffvghly5dQpIkunXrhp2d3XN/1n/E+vXrGTduHDo6OnTp0kUuvQkKCsLX15eNGzfi7e2NkZEImguCIAiCILxoIiDyCogHTkF4/anVak6ePEnt2rWrdbyenh7m5uaEh4fTsWNHbG1tiYmJ4fLly1hZWb2wdWmyWqAsQ+Tdd9/F1dWVHTt2ANC1a1eys7N59OgRAP3798fQ0BBDQ0O8vLyIj4+nQYMGuLi4YGFhAcCwYcM4duwYgwYNomvXruzZswcrKyuKi4vlfh1P8vLyQldXF1tbWxYuXMjYsWOZPHkyAL6+vri4uLB27VqSkpI4fvw4ZmZmADRq1IjY2FiaN29OaGionM3i7OyMl5cXM2fOJDMzkyNHjtChQwc6dOjAzJkzOXToEPHx8dSqVYv09HQuXbrE9u3b6dGjB8nJydSrV4/+/ftXGJerCV5VxczMjHPnzlW5zd/fX2uajSYjBZCDLgCDBg1i0KBBQFlmjoa1tbX8HjV9VAAsLS3l7QCff/45AJ6ennh6esrb16xZ89T1C4IgCIIgCFUTJTOCIAi/Q8+ePVm9erX8WpNx0blzZzZv3gzA/v37uX//vnyMh4cHy5Yto3Pnznh4eBASEoK9vb1Wfwsoa/T5ww8/UFhYSG5urtZD9rNoslpSUlJYvXo1+vr6Tz3+yXtrXle1PTAwkPDwcMLCwhg7dmyF66nVEiVqiaVhO/j+x2OEh2+gQYMGT13Dk30/NK/L9wB5UvmMCUmS+Pjjj+X3ffnyZd59990K6w0ICHjqOl6FvXv3olKpsLGx4ejRo/zzn/981UsSBEEQBEH42xABEUF4BaKiolAoFKSnp8vbMjMzsbGxAX7feNdniY2NpX79+tjb29O2bVs6d+78XA/az+Lv71/hp++a+2ombVTm1q1bDB8+HAsLCxwdHXFzc8PGxuZ3983Q6Nix41P3e3p6PvMekiQxbdo0WrdujaWlJStXrpR/6r9q1So++eQTbG1tad26tdwktV+/fvz73//G2tqa77//npYtW8rX8/Dw4ObNm7i5uWFqakrt2rXx8PCocF9nZ2f69euHra0t//jHP1AqlXIpBZRlGFS3yarmvhEREUDZ18PExIR69eoBsGvXLgoLC8nOziY2NhZnZ2egrGTm119/Ra1Ws3XrVnmKiaurK1lZWWzevJlhw4Zp3Uetljhw/jfu5hTx8fdnGRMaz4Hzv6FWS1pruHjxIteuXaNt27bVfg9P06tXL0JDQ+WvzfXr17l9+zYAPj4+HDhwgNOnT9OrV68Xcr8Xyc/PT26Cu3fvXpo0afKqlyQIgiAIgvC3IUpmBOEViIyMpFOnTkRGRjJ//vyXdl8PDw85CJKSksKAAQMwNDSkW7duL20N5UmSxIABAxgzZoycVXH16lW6d+9e7WuUlJSgUCjQ1dWVX9eqVYu4uLhKj1erJTKz83hUWMx/7+fjoJaq7OEzYcIE7t+/zy+//IKuri5hYWF8/fXXSJKEiYkJBgYGpKamkpmZKQd9unfvLjdSfVK3bt0oLi6WX5cfpQra41xnzpxJcHAw+fn5dO7cGUdHx2p/Jk/65z//yXvvvYetrS116tRhw4YN8j5bW1u8vLy4e/cuc+bM4c033+TixYs4OzszadIkLl++jJeXFz4+PvI5Q4YMISUlRe6PIq8/O49/7buA9P9fF5Wo+de+C7RrVpegoCAmTJiAUqmkVq1ahIeHa2WG/BE9e/bkwoUL8vhaY2Njvv32W5o2bYq+vj5eXl40aNBA/jMiCIIgCIIgCCAyRAThpcvNzeXYsWOsX79ea6rEk7KysvD09MTS0lIOmpTPIgFYtmyZ3I9g1apVtG/fHltbW4YOHfrMdWimpmh6EDyZ4WFsXNbjJjY2li5dutC/f38sLCyYPXs2ERERuLi4oFQqycjIkM85fPgwTk5OtGnTptLsk7y8PAICAnBxccHe3p7PPvsMfX19xowZw9ChQ7GysmLatGk0atRIfr/t2rWTe1yMHDlSXpOuri6tWrXCyMiI//u//6Nt27Y0bNgQIyMj3n//fXn9UNZ/QalUYmdnh9+4yYwJjefyrVyCd59n39kbjBnjX6FUIT8/n7CwMJYvXy4/SI8dOxYDAwOio6Or/Fw1GTFqtRozMzMePHgg77O0tOTWrVv88MMPuLq6Ym9vT/fu3bl16xZQlvkREBCAp6cnzZo1o3nz5jg4OODr68v+/ftp06YNnTp14pdffpGvmZGRgbe3N46Ojnh4eMhZL/7+/owfPx5XV1eWLFlCVFSU3EDV1tZWPt/W1pYTJ05w6dIlxo0bJ2+vV68ee/fu5ZdffiEkJAQdnf/9c3Hs2DGtYzVu5xRRVKLGbua36BmVZbQUlai5nVNE7dq1CQsL4+zZsyQnJ+Pl5SWvs3wfjMzMTExMTCrsCw4OZubMmUDlfT2mTp3K2bNnOXv2LCdOnKBVq1bA/3q9aEpoBEEQBEEQBEFDBESEV6L8wyr8OSUildGUjahUKqysrJ6ZnREeHs6NGzfk1ytWrCA/P/8PrWHXrl14e3vTpk0bGjduTGJiYqXHxcfHs2PHDlJTU9m2bdszyzuWLFlCcnIyqamphISEVGstDg4OWmU7VTlz5gwhISFcuHCBTZs2cfHiReLj4wkMDNTqo5GZmUl8fDx79+5l/PjxFBYWal1n0aJFdO3alfj4eGJiYlizZg1KpZKvv/6aOnXqcOHCBebPny9/JqWlpeTl5XHt2jWSkpLYvXs3UVFRQNmD7vTp0ykqKqJevXpkZGRw6tQpioqK0NXVlXtP7N+/n127dnHq1Cl2Hj5O1lvdKSpRA/C4uJixY0Zh0vxtFi5cqLXWy5cv07JlS7m0RMPJyYnz588/8zPT0dGhf//+8ojXU6dO8fbbb2NqakqnTp04efIkycnJDB06lC+++EI+Lz09nYMHD5KZmUlhYSFnz56lZ8+ebNmyhZ0/HmP+2m+JOxmPJJXlYbz33nusXr2axMREli1bRlBQkHyt//73v8TFxfHVV189c73V8eDBA9q0aVNlVlHTugbySHENg1o6NK37YjJBnldaWhqtW7emW7duWFpavpI1CIIgCIIgCDWXKJkRXkuasoiqXj+NpmwkLy8PlUpF3759cXBwqPTY8PBwbGxsePPNN4GygMjIkSOpU6dOtddaWlqqlaofGRnJ1KlTARg6dCiRkZGVlkP06NGDxo0bAzBw4ECOHTvGgAEDqryPra0tI0aMYMCAAU89rjzNQ/WzODs788YbbwDQqlUrevbsCYBSqSQmJkY+bsiQIejo6GBpaYmFhUWFYMuhQ4fYvXu33P+iuLiYnJwcjhw5wpQpU5g4cSLHjh2TSylOnTqFnp4eXbt2RVdXl6KiIo4cOUK/fv2AspIWgKSkJHR1dRkyZAhQNmlFrS4Lehw+fJixY8dSp04dbv+WjVr/f8G4zF0raWTTmcGBU6r1OTwvPz8/FixYwNixY9myZQt+fn5AWaDCz8+Pmzdv8vjxY8zNzeVzevfujYGBAQYGBjRt2pRbt25x5MgRbNy7M37LOYpK1JS8ZU/6bzk8epRDXFwcgwcPls8vKiqSfz948OCnlomUn3ZS3pOTTDQaNGhQocynPLPGRnz8jhX/2neBohI1BrV0+PgdK8wav5qRse3bt+fKlSuv5N6CIAiCIAhCzScCIkKN88MPP7Bw4UIeP35M48aNiYiIwNTUlODgYDIyMrhy5QotW7akbdu2Wq+vX7/OqlWr5JGjnTp1Yu3atdjZ2VV6HyMjIxwdHbl8+TI6OjqMHz+e/Px8WrVqRWhoKD/99BMJCQmMGDECQ0NDxo4dy40bN/Dy8sLExISYmBgOHTrEvHnzKCoqolWrVoSFhWFsbIyZmRl+fn78+OOPzJo1Sy5huXfvHtHR0Zw9exaFQkFpaSkKhYKlS5dWWF9lUz5q1aolP+gDWhkYe/fu5ciRI/zwww8sWrSIs2fPPjNIlJycLI98LX9ttVrN48eP5eOqOwWkqskkGpIksWPHDrmZ5k8//cSCBQvkXhRr167l7t27NG/eHIDdu3djaGjImTNnUKvVWuvQ1dWVH/YlSaJFixbypBeomIUE/8tg0GSIGLdsT25mKvX1KgaGWrVqxbVr18jJyaFu3bry9sTExKc2iS3Pzc2Ny5cvc+fOHaKiouSynMmTJzNjxgz69etHbGysVmDiyfdYUlLCvbzHHL90l2YtytZdqobo9Nv8ejeHBg0aaL3v8spPYnkZdHQUeFs3o12zutzOKaJpXQPMGhtV2aNFEARBEARBEF4lUTIjvBIFBQWoVCr519y5c+V9TysnSEtL4/Dhw0RGRlZ4/e677xIeHg6UNassLCysMhgCkJ2dzcmTJ7G2tmb06NF8/vnnpKamolQqmT9/PoMGDcLJyYmIiAhSUlKYOnUqb775JjExMcTExHD37l0WLlzI4cOHSUpKwsnJSas0oXHjxiQlJWn189i+fTujRo3i6tWrZGZmkpWVhbm5OUePHq2wvh9//JF79+5RUFBAVFQU7u7umJqacvv2bbKzsykqKpL7dKjVarKysvDy8uLzzz/n4cOH8sSNqqSmpvLZZ58xceJEoKwvg6ZUZffu3VrNP6tr27ZtqNVqOVD15BSRXr16sXr1ajkzpWHDhhQWFlKrVi25qWpycrIcjKlXrx43btzg3r17bNiwAbVaTZcuXSrc18HBgZs3b8qTRe7duyffo0ePHoSFhZGfn49ZYyMmuTeTyzredHmHwQP6MisooMJ4VyMjI8aMGcOMGTMoLS0FYOPGjeTn58sTZZ5FoVDg4+PDjBkzsLKykjN+Hj58KAd9yjc4rUprW2funj+OuriI0qJ8HvxyghK1RAEGmJubs23bNqAsMHTmzJlqre3PoqOjwKKJMR0sGmPRxFgEQwRBEARBEIQaS2SICK+EoaGh1k+1w8PD5R4ZTysn6NevH4aGhpW+Hjx4MJ999hlLly4lNDQUf3//Su999OhR7O3t0dHRYfbs2bz11ls8ePBAftAeM2aMVglCVU6ePElaWhru7u4APH78WJ5yAcjlEeVFRkby0UcfaW3z9fWtdLuLiwu+vr7897//ZeTIkTg5OQEwd+5cXFxcaN68Oe3atQPKynJGjhzJw4cPkSSJKVOm0KBBgyrfe35+Pk2bNmXVqlVyL4hx48bRv39/7Ozs8Pb2/l3ZBS1btsTFxYVHjx4REhJC7dq1tfbPmTOHadOmYWtri1qtxtzcnKioKKZMmcKWLVuIiIjA2NhYboj54YcfcuDAAVq0aIGRkRF6enr079+f2NhYreuamZnRtm1bevbsiVqtRk9PTw6IeHt7k5KSgpOTE/r6+vzjH/9gw4xPGbTTmLn9rOnXbTzz5wczatQoIiIitJqH/utf/2LmzJm0adMGHR0d2rVrx86dOytkvjyNn58fzs7OcrAOykpVBg8eTMOGDenatSu//vrrU6/h4eZCUzsvzq15Hz2jBhg1b0stHQVN6xoQERHBhAkTWLhwIcXFxQwdOvSpgUBBEARBEARBEMooqttDoKZzcnKSntV0Uqg5jI2NtTIYNAGRNWvW4OnpWaGcQPNfY2NjedLEk6+hrKdEt27dmDVrFomJiRXGgsbGxrJs2TKtCSgPHz5EqVTKo1IzMjIYPHgwSUlJeHp6smzZMjkYYWZmRkJCAiYmJvzwww9s3ryZyMhIeZSrpkygq7ONfJwg/FFqtcSB879V6M3hbd1MZGAIgiAIgiAINZ5CoUiUJMnpVa/jSSJDRKhxnrecoLzAwED69u2Lh4dHhWBIVerXr0/Dhg05evQoHh4ebNq0Sc4WqVu3Ljk5OfKxmtcmJiZ06NCBiRMncvHiJS4XGbMwKonce3eo36wlBcWlqNV/jWDj7/FkgEj0kfhjRG8OQRAEQRAEQXjxREBEqHGet5ygPEdHR+rVq8fYsWOf654bNmyQm6paWFgQFhYGgL+/P+PHj8fQ0JATJ07w3nvv4e3tLfcSCQ8PZ5DfUDJ+u48kQfPu/tQ2eYuH+cVcu5dH06ZNnmsdfwUim+HPoenNYdGkYrNYQRAEQRAEQRCenyiZEV6oV50ZcOPGDTw9PUlPT9fqBfFnOnklmymRyRW2rxpmTweLxi9lDTXJlTu5jAmNlye5ABjU0mFDgIt4mBf+FqKiovDx8eHChQtyn5/n8WRJ4bOULx/09/enT58+DBo0qNrnrlu3jiZNyoK33t7emJmZUadOHUaPHv3caxcEQRAEQahMTS2ZEVNmhBdGkxkwJjSeKZHJjAmN58D5315a6cjGjRtxdXVl0aJFLy0YAv8b5VqeQS0dmtY1qOKMv7bbOUVawRCAohI1t3OKXtGKaiaFQsEHH3wgv162bJk8fjckJISNGzc+9zUzMzOxsbH5w2vz9PREoVBgaGiIoaEhFhYWxMXFYWxs/MLuoblP+UB2bGzsU0cam5mZoVQqUalUKJVKdu3a9ULW8aJFRkbSqVMneRrWk56caPSqTZ8+nZSUFFJSUliyZAnjx48XwRBBEARBEP4WREBEeGEys/PkMgkoewj+174LZGbnvZT7jx49mqysrGpNiHmRzBob8fE7VnJQRFMiYtb4+ae0/BWIAFH1GBgY8P3333P37t0K+2rCA6mhoSEFBQUUFBTw9ddf8/HHH7/S9WjExMSQkpLC9u3bmTJlynOdqxmf/GfKzc3l2LFjrF+/ni1btsjbY2Nj8fDwoF+/frRv3x6AAQMG4OjoiLW1Nf/+97+1rjN9+nSsra3p1q0bd+7cAcoaPnt7e+Po6IiHhwfp6elPXcuCBQtwdnbGxsaG9957j+pmhAYHB7Ns2TIATp8+ja2tLSqVig8//FAOhuXn5zNkyBDat2+Pj48Prq6uiCxNQRAEQRBeNyIgIrwwf9fMAE3Dyw0BLqwaZs+GAJe/db8MESCqnlq1avHee++xfPnyCvvKP5BevnyZ7t27Y2dnh4ODAxkZGUiSJD+cKpVKtm7dWuEamZmZeHh44ODggIODA3FxcQDcvHmTzp07o1KpsLGx4ejRo89c66NHj7SaFKvVarp164ZKpaJhw4a8/fbb2NvbExkZSbt27Rg1ahT16tWjQYMGtG7dGhsbGywtLTly5AhDhw6lbdu2vP322yQkJDBixAgmT57MtGnT5OuvW7eO6dOnP9eaqgouGBsb88EHH2BnZ8eJEyf46quvsLGxwcbGhhUrVsiflZWVFePGjcPa2pqePXtSUFDwzM+lMrt27cLb25s2bdrQuHFjEhMT5X1JSUmsXLmSixcvAhAaGkpiYiIJCQmsWrWK7OxsAPLy8nBycuL8+fN06dKF+fPnA/Dee++xevVqEhMTWbZsGUFBQU9dy6RJkzh9+jTnzp2joKBAa7pWecuXL0elUqFSqTh48KDWvrFjx/LNN9+QkpKCrq6uvP3//u//aNiwIWlpaXz22Wda71MQBEEQBOF1IZqqCi+MJjPgyd4Rf4fMANHw8n/ERJTqmzhxIra2tsyaNavKY0aMGMHs2bPx8fGhsLAQtVrN999/T0pKCmfOnOHu3bs4OzvTuXNnrfOaNm3Kjz/+SO3atbl06RLDhg0jISGBzZs306tXLz799FNKS0vJz8+v9L4FBQUYGhoiSRL6+vrExMRw+PBhAHR0dNi5cyfr1q0jMTGR+Ph4Nm/eTPfu3fntt9/o06cPvr6+pKamyoGPL7/8kqCgIFxcXPD19cXY2Ji5c+cSEhLCuHHjUKvVcrlMWFgY33zzTaXr8vLyQpIkrly5wnfffSdvDw0NpVGjRhQUFODs7Iyvry+NGzcmLy8PV1dXvvzySxITEwkLC+PUqVNIkoSrqytdunShYcOGXLp0icjISNatW8eQIUPYsWMHI0eOfK6vJ5SVy0ydOhWAoUOHEhkZiaOjIwAuLi6Ym5vLx65atYqdO3cCkJWVxaVLl2jcuDE6Ojr4+fkBMHLkSAYOHEhubi5xcXFaGXBFRU8PNsfExPDFF1+Qn5/PvXv3sLa2pm/fvhWOmz59utb48hMnTgDw4MEDcnJycHNzA2D48OFyUOXYsWPy+7SxscHW1vY5PiVBEARBEISaQQREhBdGkxnw5HQRkRnw9yMCRNVTr149Ro8ezapVqzA0NKywPycnh+vXr+Pj4wNA7dq1gbKH0WHDhqGrq4upqSldunSRSxs0iouLmTRpkvyTfU1WgrOzMwEBARQXFzNgwABUKlWlazM0NJSDJSdOnGD06NFyyYUkSXzyySds2rQJExMTbty4QcOGDXnzzTfR1dUlIyODyZMnEx4eTq9evbhz5w5GRkZkZWWxatUqZs2aRWFhIfr6+rz//vs8fvwYV1dXTpw4QW5uLsXFxSiVykrXFRMTg4mJCRkZGXTr1g1PT0+MjY2rDC7o6uri6+srf24+Pj4YGZV9Txo4cCBHjx6lX79+mJuby5+Fo6MjmZmZ1f9C/n/37t0jOjqas2fPolAoKC0tRaFQsHTpUgD5vlBWQnP48GFOnDhBnTp18PT0pLCwsNLrKhQK1Go1DRo0ICUlpVprKSwsJCgoiISEBFq0aEFwcHCV1xcEQRAEQfi7EiUzwgsjSkcE4flNmzaN9evXk5f3YnvtLF++HFNTU86cOUNCQgKPHz8GoHPnzhw5coTmzZvj7+9freatbm5uWr1OHj58yJ07d/D09GTdunWYmprKD9v6+vrycTo6OhgYlGWIKRQKrYDKjh07aNeuHZs3b+batWvMnDmTAwcOkJWVVa2x2a1atcLU1JS0tDSt4MKZM2ewt7eX11O7dm2tUo+qaNYJoKur+7san27fvp1Ro0Zx9epVMjMzycrKwtzcvNKypIcPH9KwYUPq1KlDeno6J0+elPep1Wq2b98OwObNm+nUqRP16tXD3Nycbdu2AWWf4ZkzZ6pci+b9m5iYkJubK1/veTRo0IC6dety6tQpAK2eKO7u7nKGTlpaGmfPnn3u6wuCIAiCILxqIiAivFCazIAOFo2xaGL8WgdDdHV1UalUWFtbY2dnx5dffolarX72iS9IeHg4CoVCLlOAsnGecIhXJwAAIABJREFUCoXimQ83/v7+8jFHjx7F2toalUr1u/siCH+eRo0aMWTIENavX19hX926dXnrrbeIiooCykok8vPz8fDwYOvWrZSWlnLnzh2OHDmCi4uL1rkPHz7kjTfeQEdHh02bNskNRa9evYqpqSnjxo0jMDCQpKSkZ64xPT1dqyFpaWkpTZs2pUuXLixbtoyrV69y5coVbty4gb6+Ph4eHkRERABlo7CvXbuGhYUFderUkUt2goODSU1NBSA5ORlXV1fu3LnDjRs3GDZs2DPXdPv2bX799VfefvvtpwYXyvPw8CAqKor8/Hzy8vLYuXMnHh4ez7xXdUVGRsrZPBq+vr6VTpvx9vampKQEKysrZs+eTYcOHeR9RkZGxMfHY2NjQ3R0NHPnzgUgIiKC9evXY2dnh7W1tdaUnVmzZqFSqdi1axdffvkl+vr69O7dm2bNmtGrVy+cnZ1/13tav34948aNQ6VSkZeXR/369eVAWGRkJHXq1GHq1KlYW1tTv379CueXn0oUHh7OpEmTKhzze6cqCYIgCIIg/FGiZEYQqmBoaCinp9++fZvhw4fz6NEjucGhRklJCbVq/Tl/lZRKJVu2bKF79+5A2QOXnZ3dc10jIiKCjz/++Hf1QxBejg8++IA1a9ZUum/Tpk28//77zJ07Fz09PbZt24aPjw8nTpzAzs4OhULBF198QbNmzbTKPIKCgvD19WXjxo14e3vL5RqxsbEsXboUPT09jI2Nq3wQLSoqkktIJEliw4YNcl+LBg0akJCQQHR0NI8fP8bAwIDJkyezbNkyFi1aRFBQEBMmTGDXrl38/PPPhIeHY2BgQKNGjeQpLEVFRejr68uTSvbs2YOnpyd79uzRapb6JC8vL3R1dSkuLmbJkiWYmpri7e1NSEgIVlZWtG3bViu4UJ6DgwP+/v5y8CgwMBB7e/tnlseo1RKZ2XnP7IkTExNTYVv5STienp7y7w0MDNi/f3+l98vNza10u7m5OQcOHKiwXdOEV/P9asSIEYSEhBAaGkpoaOhT35tm1DP873tZ+W3W1tZy4GrJkiU4OTlx5swZNm3ahJ2dHRs3bmTr1q08fPiQt99++6n3qsr48eN/13mCIAiCIAh/mCRJf4lfjo6O0t+Bjo6OZGdnJ1lbW0t9+vSR7t+//0Kv/+uvv0rW1taV7uvSpYt0+vRprW1RUVFS//795deLFy+WWrVqJb/evXu31Ldv3xe2PiMjoxd2ree9V0ZGhtSoUSNJrVZLYWFhUt++fSUvLy+pc+fOUk5OjtS1a1fJ3t5esrGxkaKiouTzNmzYICmVSsnW1lYaOXKkJElln7OXl5ekVCqlrl27SlevXq1w/7CwMCkoKEhSKpXS48ePpZycHMnBwUEaM2aMtG3bNkmSJGn+/PmSk5OTZG1tLY0bN05Sq9WSJEnyMevWrZMaNmwomZmZScOHD5fUarU0c+ZMydraWrKxsZG2bNkiSZIkjRo1Stq5c6d87+HDh2u9B0F4GXr37i0dPnz4VS9DS2mpWtqbekPqtOQnyXnhj1KnJT9Je1NvSKWl6le9NC3lv199/fXX0oQJE6SYmBipd+/ekiRJUm5urjR27FjJ2dlZUqlU8t/vJ7+X3bhxQ/Lw8JD/nZk3b578+3feeUe6ffu21KVLFyk2NlZydHSU2rRpIxkYGEh79+6t9HtL+X9TwsLCpIkTJ0qSJEl79uyROnToIN25c0eaN2+etHTpUkmSJGnlypWSlZWVpFQqJT8/P0mSJCk2Nlays7OT7OzsJJVKJT169OjlfKiCIAiCILwwQIJUA+IGT/4SJTOvGU3Wwrlz52jUqBFr1659pevp2LGjVnr6iRMnqFevHrdv3wYgLi6Ojh07vqrlvVAWFhaUlpbK7y0pKYnt27fz888/U7t2bXbu3ElSUhIxMTF88MEHSJLE+fPnWbhwIdHR0Zw5c4aVK1cCMHnyZMaMGUNqaiojRozQ+ilyeQqFgu7du3Pw4EHq1q2r1edg2bJl5OXlPXWsZmBgIP369WPp0qVERETI00mCgoJ47733+PDDD/Hz86NVq1aEh4fj6elJbGwscXFx9O7d+5mfSfnSnD/D814/JSWFffv2ya817+VlUaslrtzJ5eSVbK7cyUWtll7avaurJq7xwYMHtGnTBkNDQ7p16/aql6MlMztPbhQNZaPE/7XvApnZL7bny4tSUlLC/v37KzSlXbRoEV27diU+Pp6YmBg+/PBDuW9N+e9lmpImzRSjDz74QP43Z+/evTRp0gQoK+tJSEggMDCQ/v37U1BQIJ9z+PBhPvzwQ27evFnpGnfu3MmSJUvYt28fJiYmWvuWLFlCcnIyqamphISEAGXf69auXUtKSgpHjx6ttAGxIAiCIAjC7yECIq8xNzc3rl+/DpQ9CHbo0AFbW1t8fHy4f/8+UJai/dFHH+Hi4kKbNm3k5n6ZmZl4eHjg4OCAg4NDpQ+NBQUFDB06FCsrK3x8fCrtP9GkSRPq1avH5cuXAbh+/Tq+vr7y9eLi4nB3d+fOnTv4+vri7OyMs7Mzx48fByA+Ph43Nzfs7e3p2LEjv/zyCwDnz5/HxcUFlUqFra0tly5dqnDvpUuX4uzsjK2tLfPmzQNg7ty5rFixQj7m008/lYMQL1qPHj1o1KgR8L+pG7a2tnTv3p3r169z69YtoqOjGTx4sPw//ZrjT5w4wfDhwwEYNWoUx44dq/I+Q4cOZcuWLejo6HDt2jWtSRG//vorrq6uKJVKoqOjOX/+/FPXrJlOEhQUxOTJk+nSpQt3797F2tqaS5cuUVxczMGDB/H19f3TyoD+TK8yIKJWSxw4/xtjQuOZEpnMmNB4Dpz/rUYEHDRq6hobNGjAxYsX5YahNcntnCKtUeJQFhS5nfP0kbcvW0FBASqVCicnJ1q2bMm7776rtf/QoUMsWbIElUolT7S5du0aoP29zNnZmbCwMIKDgzl79ix169at9H4jRoxApVJx/Phxli1bVuXkoydFR0fz+eefs3fv3kpLo2xtbRkxYgTffvut/D3I3d2dGTNmsGrVKh48ePBafm8SBEEQBKFmEgGR11RpaSk//fQT/fr1A2D06NF8/vnnpKamolQqtfpclJSUEB8fz4oVK+TtTZs25ccffyQpKYmtW7dWmqHw9ddfU6dOHS5cuMD8+fNJTEysdC3u7u7ExcXxyy+/YGlpSYcOHYiLi6OkpIQzZ87g7OzM1KlTmT59OqdPn2bHjh0EBgYC0K5dO44ePUpycjILFizgk08+Acqa7E2dOpWUlBQSEhJ46623tO556NAh/l97dx5f07n2f/xzJ6YQtGKotipoKvMgMVVrbM1F1FDVGlIdDKU66ymP03p66PDT0kGf86jwGFs9WqXtUS1FUYQYSxERVTRUQxAy3L8/kqyTyIA2JLG/79crL3uvtfZa1953tiTXvu/r2rt3Lxs2bCA2NpaYmBhWrVpFVFSUUxMhIyOD+fPnF1ntjLi4ONzd3alZsyaQu4XmnDlzSExMJCYmhtjY2FxdN/6qJk2aOB0chg8fzq5du4DMtqpLly5l4cKFfPfdd1StWpWpU6fSuHFjfvvtNzIyMvD29na6i0BmUcOkpCSn5kBOAwYM4NixYyxevJioqCiWLVtG8+bNadSoEb179y6wrsHFUlJSGDx4MEFBQYSFhTl1FaKjo+nZsycdO3bEx8eH559/3nnM9OnTueOOO2jSpAmPPvporsKLy5cvJyIigjvuuMOZAZPfNS5cuMC4ceNYsGABoaGhTJo0iWnTpjF58mRCQ0NZvXo18fHxtG3bluDgYNq1a+f8QTho0CCGDh1Ks2bNqF+/PitXriQqKgo/Pz8GDRp0Wc+7NMwkKA0xljQ1K5enfJncPyrLl3GjZuXyBTyieGTPHoyNjWXq1Km5uv3Afzr7ZB+TkJCAn58fkPv/ssvtQjRnzhxiY2P57LPPqFOnzmXH2aBBA06fPu20gb7Y0qVLGT58OJs3b6Zx48akpaXx4osv8r//+7+cO3eOFi1asHv37su+noiIiEhhlBApZbI/Bbzppps4duwY9957L0lJSfzxxx+0atUKgIEDB7Jq1SrnMT179gQgPDzcKR6YmprKo48+SlBQEL1793b+yM5p1apVTjIhODiY4ODgfGO68847Wbt2LWvXrqV58+Y0adKEH3/8kS1btuDr60uFChVYvnw5I0aMIDQ0lG7dunHq1CmSk5NJSkqid+/eBAYGMnr0aGeGQ/PmzXnttdeYNGkSBw8ezDNFetmyZSxbtoywsDAaNWrE7t272bt3L97e3nh5ebFlyxZnv5eX11970YHExESeeOIJRowYgTF5iykmJSVRs2ZNypYty4oVKzh48CAAbdu25ZNPPuHEiRMA/P77785rlt3Ccs6cOZfsdDFx4kTKlSvH8OHDiYuL48yZM05b0OrVqzN8+HDOnTvHo48+yqeffsratWtxc3Oje/fuTiw//vgjderU4euvvyYjI4Pk5GRWrVrlzF4ZNGgQv/zyC5CZMJswYQLLly9n8+bNRERE8P/+3/+7rNfqvffewxjD9u3bmTdvHgMHDnSSQ7GxsSxYsIDt27ezYMECDh06xK+//sqrr77K+vXr+eGHH/L8sRMfH8+GDRtYunQpTzzxBCkpKfleIyMjg1deeYW+ffsSGxvLCy+8wBNPPMHo0aOJjY3l7rvvLnSp0smTJ1m3bh2TJ0+mW7duzvfj9u3bnWKVhSkNMwlKQ4wljbdXJcZ09nOSIuXLuDGmsx/eXpUu8ciSpUOHDkydOtVpfbxly5Z8j/szXYiAy+p8BFC3bl0+/fRTBgwYkGdGW0ZGBocOHaJNmzZMmjSJpKQkkpOT2b9/P0FBQbzwwgs0btxYCREREREpMpp3Wspkfwp49uxZOnTowHvvvcfAgQMLfUx23Ql3d3fnj+jJkydTq1Yttm7dSkZGBhUqVPhT8bi7u+Pj40N8fDxffvklM2bMoHLlyqSkpLBy5UqnfkhGRgbr169n/vz5bNq0yemoMWLECNq0acOiRYuIj493ujA8+OCDNG3alKVLl9K5c2c+/PBD2rZt61zXWsuYMWN4/PHH88Q0ZMgQoqOj2b9/vzOzItv48ePx9PTk2WefveRzy04+paamUqZMGR5++GGefvrpXMdkJ4P69+/PfffdR1BQEBEREVStWpUvv/ySYcOG8be//Y1WrVrh7u5OWFgY0dHRTJ06lcGDB/PGG29Qo0YNZsyYUWgsnTp1wt3dnSpVqtCgQQO++uorIiIiCA8PJzAwkISEBCpXrsy0adP47LPPuHDhAufOnaNv375ODY758+czYsQI9u7dy7Rp03B3d+ftt992Ol3UqlWLihUr0q1bN9avX8+uXbto0aIFABcuXKB58+aXfM0gc1nOk08+CWTOAKpbt67zaXC7du2c1pz+/v4cPHiQ48eP06pVK2fKfu/evXN9etynTx/c3Nzw8fGhfv367N69u9BrFGbdunX861//AjKXKuWcpXLfffdhjCEoKIhatWo5NRgCAgKIj493Oq4UJHsmQc6EQ0mbSVAaYixp3NwMHQNuwvemypfsMlOSjR07lqeeeorg4GAyMjKoV69enppDcPldiC52OZ2Psvn6+jJnzhx69+7NF1984WxPT0/noYceIikpCWstI0eO5IYbbmDs2LGsWLECNzc3AgIC6NSp059+HURERERyUkKklKpYsSJTpkyhR48eDBs2jBtvvJHVq1dz991383//93/ObJGCJCUlceutt+Lm5sbMmTNJT0/Pc0zLli2ZO3cubdu2ZceOHU7rxZw8PDz46aefqFGjBqdOneKHH36gXbt2hIaGMm3aNF5//XUA2rdvz9SpU52CfLGxsYSGhpKUlMQtt9wCZC6pyBYXF0f9+vUZOXIkCQkJbNu2LVdCpEOHDowdO5b+/fvj6enJ4cOHKVu2LDVr1iQyMpJx48Zx7ty5Ate/X478XpNsDz30UK6lFNWrV2fdunXOfWuts7Rm4MCBeZJWdevW5bvvviv0+oMGDcp3ucaKFSto1KgRfn5+tG3blvHjx1O9enV++eWXPIktay0eHh60atWK5557jpdffhkvLy8qVaqEp6cnffv2dRIiZ8+e5dy5c3To0IHTp09z7733Mm/evEJjvFI5i8LmTNAV5uIZOfnN0CkK2bG5ubnlitPNze2y4syeSZC9JKUkziQoDTGWRG5uhvo1PKlfw7O4QylQfkvaWrdu7SSZPTw8+PDDD/Mcc/H/M/n9f3WxlStX5tlmjOGNN97gjTfeyLXd29ubHTt25LlWWFiYMzMxZ5vf/OopTZ06tdB4RERERP6sYlsyY4zpbYzZaYzJMMZE5NjubYw5Z4yJzfqaVlwxlnRhYWEEBwczb948Zs6cyXPPPUdwcDCxsbGMGzeu0McOGzaMmTNnEhISwu7du3OtIc82dOhQkpOT8fPzY9y4cYSHh+d7LmMMTZs2pXr16hw9ehSA77//nri4OO68806OHz/O6tWr2bRpE2PHjmXmzJl07twZHx8fvLy8GDNmDGFhYWzZsoUjR44QGhpKv379CAwMJDQ0lLfffpsBAwYAmfVQBg0aRPv27fH396d69ep4eHjg5+fH6dOnAShXrhxt2rShS5cu+f7xbG1ml40xr00mOCyckJAQ7r//fs6ePQvA/v37adasGUFBQbz88st4emb+EbRy5UruvvtuunXrhr+/P4Czz1rLiBEjaNiwIffcc4/TieZqqFatGn369GH69OnOtuyEU7bsJR7GGCIjI3n66afx8/MrcPnQtm3b8PPz45ZbbsHT05NmzZrxww8/OMVyz5w5c1kzMCBz6vycOXMA+Pnnn0lISKBhw4YFHt+4cWO+//57Tp48SVpaGp9++mmu/Z988gkZGRns37+fuLg4GjZsWOA1Kleu7HwfAHnuX+lSpSuRPZNgZlQTpvQLY2ZUEzoG3FSiZhKUhhglt5LYFUhERETkelGcM0R2AD2BvB9ZwX5rbeHz013UxZ8C5pxunLP9bbacn+RVr17dmb7s4+OTa8bHpEmTgNyf5nl4eDh/PF7K4sWLeeCBB5wirzfddBOzZ8+mdu3aHD9+HHd3dxYsWEB0dDRjxoxh+/btVKxYkcaNGzN37lwqVarE888/T3JyMmXLlmXYsGE0a9aMAQMG4Onp6SynmD17tjPNe9OmTezfv59bbrmFP/74gxtuuAH4z/KcyZMnEx0dnWupw9GjR+nS/zEGfrSBM2fqUvWBNxjT2Y8f5r/L9OnTefLJJxk1ahSjRo2iX79+TtvHbJs3b2bHjh3Uq1cv1/ZFixaxZ88edu3axbFjx/D39ycqKuqyXrs/45lnnnGWHQFMmTKF4cOHExwcTFpaGi1btnRi79u3L40bN841A+diwcHBHDx40Pk0uUaNGkRHR9OvXz/On8+sLzFhwgTuuOOOPI99/PHHeeqppwCoU6cOK1asYOjQoQQFBVGmTBmio6Nzzbi42C233MJLL71EkyZNqFatGr6+vs6yGoDbbruNJk2acOrUKaZNm0aFChUYNmxYvtdo06aN00ljzJgx3HffffTq1YvPP/+cqVOnXvFSpStVGmYSlIYYJVN2V6CLZ/QoiSUiIiJSNEx2gbViC8CYlcCz1tpNWfe9gSXW2sArOU9ERITdtGlTkcd3LWRkWOJPnCmV69Pd3d0JCgri8OHD+Pn5sWLFCtzd3WndujVvvvkmERERHD9+nIiICOLj44mOjua7775z1qWPGzeOatWqUaZMGV577TVnmcm5c+fo16+fU/MjOxG0cOFClixZQnR0NE888QT79++nT58+9OzZEy8vL3bt2kXXrl2JjIzkySefpGvXrk6CB2DUcy+xeNfv1LizF6cObOXw8mgyUs5QrXwGXTp1ZNq0aXh5eXHs2DHKlCnDqVOnuPnmm0lOTmblypX8/e9/d7qmAE5s2Wvzs5MgPXv25MEHH6RXr17XaihKteTkZDw9PUlLSyMyMpKoqCgiIyOLOyyRYhWXmMzAjzbkqfkyM6qJEloiIiJSqhhjYqy1EZc+8toqqTVE6hljtgCngJettauLO6CrpbR/AphfkdeRI0dSpkwZMjIyf4m/uP1sfjUhrLUMHDiQf/zjH3mukfP4nOeaNm0aP/74I0uXLiU8PJyYmBj8/f2Ji4sDyLeY35kLaaRlTTk/8Omb+PQfT8XaDehQdjeHdl06oZbf0qK/qjQnxIrK+PHjWb58OSkpKbRv354ePXoUd0gixa6wrkBKiIiIiIj8dVe1hogxZrkxZkc+X90LedgR4DZrbRjwNDDXGFOlgPM/ZozZZIzZlJiYeDWewlUXf+KMkwyBzF92//HlT8SfOFPMkV2Z7CKvb731FmlpaXh7exMTEwPgdDnJ9s033/D7779z7tw5PvvsM1q0aEG7du1YuHChU3vj999/d9rF1qpVi59++omMjAwWLVrknGf//v00bdqUV155hRo1anDo0KFLxlmpXBnKZCUbMi6cpWzlapQ1GaxY+i/nmGbNmjl1LC53yVDLli2dlpNHjhzJNYukMNkJsYEfbWDkvC0M/GgDX+886nJ1At58801iY2PZvXs3U6ZMuWqFU0VKk+yuQDmpK5CIiIhI0bmqCRFr7T3W2sB8vj4v5DHnrbUnsm7HAPuBvIULMvf/j7U2wlobkd29pLQp7BPA0iZnkddnn32WDz74gLCwMI4fP57ruCZNmnD//fcTHBzM/fffT0REBP7+/kyYMIH27dsTHBzMvffey5EjRwCYOHEiXbt25c4776R27drOeZ577jl8fX2pUqUKe/fupWfPnowYMcKpeZGfGyqWpa1vTfb939+o3bIfP304kuPzXiA0yN85Jjk5mddff53g4GD27duXq55FQSIjI/Hx8cHf358BAwYU2qI2KSmJAQMGcPvtt1OvfgMGDXiYM6eTgMITYkOGDHG6MvxZ3t7eznhkF4QVkZIpuytQdlJEXYFEREREilZJrCFSA/jdWptujKkPrAaCrLW/F3ae0lpDRGvE/zxrLU2bNmXo0KEMHjyY9PR0HnvsMTw9PXnnnXcKfFxBS1SstVhrSUlJwcPDA2MM8+fPZ968eXz+eYE5vCvWq1cvAgMDGT9+POvjTnD/kKc4e2Q/Pg+94hwzpV8Yzern3xHmYunp6bi7uxd4Pydvb282bdpE9erVc9VmEZGSSUvqRERE5HpQUmuIFGfb3UhjzC9Ac2CpMebfWbtaAtuMMbHAQuCJSyVDSrOS+AlgaWnz+N1331GhQgUGDx4MZBZ4nTx5MrNmzSI5OZno6GhGjBjhHN+1a1dWrlyJm5uhbeNAbq9icTtzHD8/XwYMGEBgYCCHDh2iQYMGBAYG4uvrS1RUFBUqVCAgIID27dtz7tw5AFq3bk12Au748eN4e3sDsHPnTpo0aUJoaCjBwcHs3bs3V8z79u0jJiaGsWPHAplT4uvdO4CzR+M4l3iIU3Fb2Tf7ZWdK/IgRI5zuMDmv6enpyTPPPENISAjr1q3Lc3/27NlOHI8//jjp6elXZxBE5KrK7grUrL4X9Wt4KhkiIiIiUoSKLSFirV1krb3VWlveWlvLWtsha/un1toAa22otbaRtfaLS52rNHNzM3QMuImZUU2Y0i+MmVFNirWgammqabFz507Cw8NzbatSpQre3t7s27fvss+zd+9ehg0bxs6dO6lbty7ly5fn+++/5+uvv+bChQuMGTOGnTt3csMNNzi1RQoybdo0Ro0aRWxsLJs2beLWW2/NtX/Xrl2EhoY6Mzi8vSrxUtdAPG++nZTEBMq6G26vWfmSCbEzZ87QtGlTtm7dyl133ZXrvpeXFwsWLOCHH34gNjYWd3d35syZc9mvh4iIiIiIiCsoqV1mXEr2J4AlYYlMQUVefW+qXCLiuxrq1q1Ls2bN8t1Xr149QkNDAQgPD8+3c01OzZs357//+7/55Zdf6NmzJz4+PoUen50QC697I+3urk+dm6oz5/B3l0yIubu7c//99+d7/9tvvyUmJobGjRsDmS2Ms9sZi4iIiIiISKZimyEiJVNpKvLq7+/vdLLJdurUKY4ePUrDhg1ztf6FvO1/sxXWSrd8+f90c3B3dyctLQ2gwLbCDz74IIsXL8bDw4POnTvz3Xff5Yk5NjY2V1xg2bd7J/06t+K26pWx9tIxV6hQIVedkJz3s1sYx8bGEhsby549exg/fnyBz1FERERERMQVKSEiuZSmNo/t2rXj7NmzzJo1C8gsJvrMM88wYsQIPDw88Pb2dpIPhw4dYsOGDUV27YLaCsfFxVG/fn1GjhxJ9+7d2bZtW67H3X777YSFhTFhwgRn24QJE2jXrh233XYbdevWZdeuXZw/f54//viDb7/99opjK6yF8fWoTZs2/Pvf/8617e2332bo0KEsXryYiRMnXpM44uPjmTt3boH7f/75Zzp37oyPjw+NGjWiT58+HDt27IrOHxgYmO++nN2DRERERETk8ighIrmUxCKvBTHGsGjRIhYuXIiPjw9eXl64ubnxt7/9DYAWLVpQr149/P39GTlyJI0aNSqyaxfUVvjjjz8mMDCQ0NBQduzYwYABA/I89qOPPmLv3r00aNCAGjVqsH79eqZNmwZAnTp16NOnD4GBgfTp04ewsLArjq2wFsbXo379+jF//vxc2+bPn0+/fv3o1q0bL7744jWJo7CESEpKCl26dGHo0KHs3buXzZs3M2zYMBITE3Mdlz0DSURERERErr5ib7tbVEpr292SqCS0efwzMaxdu5Z+/fqxaNGiIk1+XE179uyhS5cuTJkyhc6dOxd3OKXS77//jq+vL7/88gvlypUjPj6eli1bcvDgQWbOnMmmTZt49913GTRoEFWqVGHTpk0cPXqU119/nV69egEwadIkZs+ejZubG506dWLixIns37+f4cOHk5iYSMWKFfnnP//QxTVYAAAbI0lEQVSJr69vgedp1qwZP/30E/Xq1WPgwIGMHj3aifGjjz5i5cqVzmymnKKjo/nXv/5FcnIy6enpLF26lO7du3Py5ElSU1OZMGEC3bt3Jz4+no4dOxIeHs7mzZsJCAhg1qxZVKxYEW9vb/r06cNXX32Fh4cHc+fO5fbbbycxMZEnnniChIQEIHPmTIsWLa7NwIiIiIiIZCmpbXdVVFXyKO4ir9mdbrKLu2bPUrlU950777yz1C0Nadiw4RV1xJG8qlWrRpMmTfjqq6/o3r078+fPp0+fPhiT93vlyJEjrFmzht27d9OtWzd69erFV199xeeff86PP/5IxYoV+f33zC7fjz32GNOmTcPHx4cff/yRYcOGOTVh8jvPxIkTefPNN1myZEme6+7YsSNPR6ScNm/ezLZt26hWrRppaWksWrSIKlWqcPz4cZo1a0a3bt2AzATa9OnTadGiBVFRUbz//vs8++yzAFStWpXt27cza9YsnnrqKZYsWcKoUaMYPXo0d911FwkJCXTo0IGffvrpL7/mIiIiIiLXAyVEpMRxxU438tdkL5vJTohMnz493+N69OiBm5sb/v7+Tv2O5cuXM3jwYCpWrAhkJliSk5NZu3YtvXv3dh57/vz5Qs/zV9x7771Uq1YNyCyK+9JLL7Fq1Src3Nw4fPiwc406deo4MzweeughpkyZ4iRE+vXr5/ybPTtl+fLl7Nq1y7nOqVOnSE5OxtNT7yMRERERESVEpMQprNONEiKSn+7duzN69Gg2b97M2bNnC5yNkbNrUGHLBTMyMrjhhhuIjY39S+fJFhAQwPfff1/g/pydjubMmUNiYiIxMTGULVsWb29vp9vQxbNect7P73ZGRgbr16+nQoUKl4xRRERERMTVqKiqlDilqdONlAyenp60adOGqKgoZ6bE5br33nuZMWMGZ8+eBTJrklSpUoV69erxySefAJlJj61btxZ6nsqVK3P69Ol89z344IOsXbuWpUuXOttWrVrFjh078hyblJREzZo1KVu2LCtWrMi1DCwhIYF169YBMHfuXO666y5n34IFC5x/mzdvDkD79u2ZOnWqc0xBCR4REREREVekhIgLuHh6fHR0NCNGjLgq1xoyZEiuKfp/xqU63WzYsIHWrVs77Uu7dOnC9u3b/3LsUrr169ePrVu3XnFCpGPHjnTr1o2IiAhCQ0N58803gcyZGtOnTyckJISAgAA+//zzQs8THByMu7s7ISEhTJ48Odc+Dw8PlixZwtSpU/Hx8cHf35/333+fGjVq5DlP//792bRpE0FBQcyaNQtfX19nX8OGDXnvvffw8/Pj5MmTDB061Nl38uRJgoODeeedd5zrT5kyhU2bNhEcHIy/v7/TzUhERERERNRlxiV4enqSnJzs3I+OjnY6b1yOtLQ0ypS5tqurCuoyc+zYMZo2bcrcuXO58847AVizZg3Hjx+nR48exR53cVyztDp27BijR49m/fr13HjjjZQrV47nn3+eyMjI4g4tj7S0NMaNG8cnn3ziLG/p3bu30+L5SsTHx9O1a9d8Z4eIiIiIiFyP1GVGSqSC2nKOHz+e/fv3ExcXx2233UbDhg05cOAAcXFxJCQkMHnyZNavX89XX33FLbfcwhdffEHZsmVp3bo1b775JhEREcybN4/XXnsNay1dunRh0qRJQGaCZtSoUSxZsgQPDw8+//xzatWqdVktQt99910GDhzoJEOAXMsGBg0aRIUKFdiyZQstWrTggQceYNSoUaSkpODh4cGMGTNo2LAh0dHRLF68mLNnz7J//34iIyN5/fXXAZg+fTqTJk3ihhtuICQkhPLly/Puu+9e9ms1b968qzdg1wlrLT169GDgwIHMnTsXgIMHD7J48eJcx2VkWPYdS+L3c+lXpQV0eno67u7ulzzu5Zdf5ujRo2zfvp0KFSpw+vRp3nrrrSKLQ0REREREioG19rr4Cg8Pt5I/Nzc3GxIS4nzVqVPHDh8+3Fprbb9+/ezq1auttdYePHjQ+vr6Wmut/a//+i/bqFEje/bsWed+ixYt7IULF2xsbKz18PCwX375pbXW2h49ethFixZZa61t1aqV3bhxoz18+LCtU6eO/e2332xqaqpt06aNcwxgFy9ebK219rnnnrOvvvpqobHkFBkZaT/77LMCn+vAgQNtly5dbFpamrXW2qSkJJuammqttfabb76xPXv2tNZaO2PGDFuvXj37xx9/2HPnztnbbrvNJiQk2MOHD9u6devaEydO2AsXLti77rrril8rubTly5fbli1bFrh/xowZtmvX+2xw4xa2Sr1g22jcYlszvKO9IzDUhoaGOt8DZ86csb1797Z+fn62R48etkmTJnbjxo3WWmvnzp1rAwMDbUBAgH3++eedc1eqVMk+/fTTNjg42P7973+33bt3d/YtW7bM9ujRI1csZ86csdWqVbOnTp0qMN633nrLBgQE2ICAADt58mRrrbVjx451bltr7UsvvWTffvtte+DAARsQEGCttTYtLc0+++yzNiIiwgYFBdlp06Zd7ksoIiIiIlJqAJtsCcgbXPylGSIuwMPDI1cxxewlM1BwW06Abt264eHh4ezr1KkTZcuWJSgoiPT0dDp27AhAUFAQ8fHxua65ceNGWrdu7dRI6N+/P6tWraJHjx6UK1eOrl27AhAeHs4333xTaCyFtQht2rQpp06don379rzzzjtA5lKG7E/9k5KSGDhwIHv37sUYQ2pqqvPYdu3aUbVqVQD8/f05ePAgx48fp1WrVk4L1N69e/Pzzz9f8Wslhdu5cyeNGjUq9JhNMTHUffQ9Gpbz5Jdl06lUL4SaEc8x9f476NO5Lffccw8ffPABN954I7t27WLHjh2EhoYC8Ouvv/LCCy8QExPDjTfeSPv27fnss8/o0aMHZ86coWnTprz11ltYa/Hz8yMxMZEaNWowY8YMoqKicsWxb98+brvtNipXrpxvnDExMcyYMYMff/wRay1NmzalVatWREVF0bNnT5566ikyMjKYP38+GzZsyFV4dfr06VStWpWNGzdy/vx5WrRoQfv27alXr95ffIVFRERERORSlBBxcYW15czZChT+02rUzc2NsmXLOq093dzcSEtLu+xr5nysu7u789jLaRF68uRJHn30UcaOHYubmxsffvghhw4dYsmSJfnGPXbsWNq0acOiRYuIj4+ndevWeZ7PxXEU5EpeK4AlS5YwduxYMjIySE1NZdSoUTz++OOFXsNVDR8+nDVr1lCuXDk2btwIQPidrfitXGYyLGlfDH/sXs/RNZ/QZ2ZFUlJSSEhIYM2aNYwaNQqAwMBAgoODgcITcu7u7tx///1AZnvahx9+mNmzZzN48GDWrVvHrFmzCo11xowZvPPOO5w4cYK1a9eyZs0aIiMjne+Bnj17snr1akaOHImXlxdbtmzh2LFjhIWF4eXllSshsmzZMrZt28bChQszn2dSEnv37lVCRERERETkGlCXGRd3tdpyNmnShO+//57jx4+Tnp7OvHnzaNWq1V+KZd26dZw+fZoKFSowbdo0li9fTp06dZx2qflJSkrilltuATJnxlxK48aN+f777zl58iQpKSl8+umnlx1fTqmpqTz22GN88cUXbN26lS1btuRKxri6gIAANm/e7Nx/7733+Pbbb0lMTHS2VataOVf75Qb9xhH+1D/5+vt1JCQk4Ofn96euXaFChVx1QwYPHszs2bOZN28evXv3zlMU9/bbbychIcFJZAwePJjY2FiqVq1Kenp6odcaMmQI0dHR+c48gcwli1OnTiU2NpbY2FgOHDhA+/bt/9TzEhERERGRK6OEiIu7Wm05a9euzcSJE2nTpg0hISGEh4fTvXv3vxTLkSNHqF27Nh9//DFjxoyhWbNm9OrVi4ULF9KuXTtatWrFF198wYQJEzhy5Ai7d+9mz549jBkzhrCwMI4fP86vv/4KZHb6WLRoEeHh4XTo0IGUlBQgcyZBgwYNqF27NnfccQeHDx92HjNlyhReeuklgoOD8fHxoVOnToSGhvL+++8TFxeXK9bTp0+TlpaGl5cXkDkbpWHDhkBm4deRI0dy5513Ur9+fWd2QHJyMu3ataNRo0YEBQU5bV7j4+Px9fWlf//++Pn50atXLycJFBMTQ6tWrZznceTIkT89ZtdS27ZtSUlJ4YMPPnC2XZzYqlyhjNN+uert4ZzY8DkvdvLF26sSW7ZsAaBFixZ8/PHHAOzatctpv3wlCbmbb76Zm2++mQkTJjB48OA8+ytWrMgjjzzCiBEjnO+T9PR0Lly4AMDdd9/NZ599xtmzZzlz5gyLFi3i7rvvBiAyMpKvv/6ajRs30qFDhzzn7tChAx988IGzlOvnn3/mzJkzl/9CioiIiIjIn1fcRUyK6ktFVa9/p0+ftiEhIdbHx8cOHTrUrly50lpr7YULF2zz5s3tb7/9Zq21dv78+Xbw4MHWWmtDQkJsXFyctdbaiRMn2ldffbXQ41u1amWHDBlirbU2NTXV3nrrrfbZZ591YqhUqZK11to333zTTpgwwVqbWRgzv4KbjzzyiK1Ro4Z94IEH7OzZs216erq1NrPwa69evWx6errduXOnbdCggXO9pKQka621iYmJtkGDBjYjI8MeOHDAAnbNmjXWWmsHDx5s33jjjUKfR2nw66+/2r59+1pvb2/buHFj27p1azt//nxrbWZR1eHDh9v09Ay7/7fTdsXOQ/aBhwfbwMBA6+/vb7t06WKttTY5Odnef//91s/Pz0ZGRtqQkBD7888/W2sLL6p6sXnz5tmmTZsWGOuFCxfsCy+8YBs0aGBDQ0Nt8+bN7YQJE+z58+ettfkXVc32+OOP2xdeeMG5n7Ooanp6uh0zZowTZ+vWre0ff/zxZ15OEREREZESixJaVNVkxlb6RURE2OxCoa4gI8MSf+IMv50+f1XakZZU6enprF69mhUrVvDhhx8yceJEIiIinNkW2cfUrl2bZcuW8dprr+Hm5saLL75Io0aNWLBgAefPny/w+NatW1OrVi327NlDSkoKxhheeeUVevfuDWS2DE5OTmbVqlVERUXx0EMP0aNHD6eY58W2b9/O8uXLmTVrFiEhIURHRzNo0CDuvfde+vfvD0DlypU5ffo0qampjB49mlWrVuHm5saePXs4cOAAKSkptGzZ0mn3+9133zFlyhQmTJhQ4PNwFenp6aSmplKhQgX279/PPffcw549eyhXrtwVnWfEiBGEhYXxyCOPFGl8GRkZNGrUiE8++QQfH58iPbeIiIiISGlhjImx1kYUdxwXU1HVUigjw/L1zqP848ufOJ+WQfkybozp7EfHgJuu+6SIu7s7rVu3pnXr1gQFBTFz5kzCw8MJCAhg3bp1eY7v27cvvXv3pmfPnhhj8PHxYfv27QUeD/Dcc88REZH5Xh0yZAjZScOMjAxnmUTLli1ZtWoVS5cuZdCgQTz99NMMGDAgz7mCgoIICgri4Ycfpl69ek4dk5wFXbPPP2fOHBITE4mJiaFs2bJ4e3s7SzSyi9BmM8ZgrS30eRSHa52oO3v2LG3atCE1NRVrLe+///4VJ0PCw8OpVKkSb731VpHGtmvXLrp27UpkZKSSISIiIiIiJZBqiJRC8SfOOMkQgPNpGfzjy5+IP3F91x7Ys2cPe/fude7HxsZSt25dGjZsSGJiopMYSE1NZefOnQA0aNAAd3d3Xn31Vfr27QtQ6PEX8/b2JiYmBoDFixc7tR4OHjxIrVq1ePTRRxkyZEiuAqGQWQ9k5cqVeWItTFJSEjVr1qRs2bKsWLGCgwcPOvsSEhKceOfOnctdd911Rc/jWshO1A38aAMj521h4Ecb+HrnUTIyrt4stMqVK7Np0ya2bt3Ktm3b6NSp0xWfIyYmhlWrVuVKUhUFf39/4uLiijzRIiIiIiIiRUMzREqh306fd5Ih2c6nZfDb6fPUr+FZTFFdfcnJyTz55JP88ccflClThttvv53/+Z//oVy5cixcuJCRI0eSlJREWloaTz31FAEBAUDmLJHnnnuOAwcOAFzy+JweffRRunfvTkhICB07dnRaq65cuZI33niDsmXL4unpmadVq7WW119/nccffxwPDw8qVap0yS43/fv357777iMoKIiIiAh8fX2dfQ0bNuS9994jKioKf39/hg4dekXP41ooKFHne1Pl6/r7UkRERERESifVECmF4hKTGfjRhlxJkfJl3JgZ1UR/eF6H4uPj6dq1Kzt27CjuUAq1Pu4EI+dtybN9Sr8wmtX3KoaIRERERESkJCipNUS0ZKYU8vaq5LQjBZwaIt5elYo5sj8vI8MSl5jM+rgTxCUmX9VlFnJ11Kxc3vmezFa+jBs1KxftUhQREREREZGioBkipdT11GXGlYvEXk80jiIiIiIikp+SOkNENURKKTc3Q/0antfFEhnVnrg+uLkZOgbchO9Nla+LRJ2IiIiIiFzflBCRYueqRWKvR9dTok5ERERERK5vqiEixU61J0RERERERORaU0JEit31WCRWRERERERESjYtmZFip9oTIiIiIiIicq0pISIlgmpPiIiIiIiIyLWkJTMiIiIiIiIi4nKUEBERERERERERl6OEiIiIiIiIiIi4HCVERERERERERMTlKCEiIiIiIiIiIi5HCRERERERERERcTlKiIiIiIiIiIiIy1FCRERERERERERcjhIiIiIiIiIiIuJylBAREREREREREZejhIiIiIiIiIiIuBwlRERERERERETE5SghIiIiIiIiIiIuRwkREREREREREXE5SoiIiIiIiIiIiMtRQkREREREREREXI4SIiIiIiIiIiLicpQQERERERERERGXo4SIiIiIiIiIiLgcY60t7hiKhDEmEThYBKeqDhwvgvNI6aDxdi0ab9ei8XYtGm/XovF2HRpr16Lxvn7VtdbWKO4gLnbdJESKijFmk7U2orjjkGtD4+1aNN6uRePtWjTerkXj7To01q5F4y3XmpbMiIiIiIiIiIjLUUJERERERERERFyOEiJ5/U9xByDXlMbbtWi8XYvG27VovF2Lxtt1aKxdi8ZbrinVEBERERERERERl6MZIiIiIiIiIiLicpQQERERERERERGXo4QIYIx5wxiz2xizzRizyBhzQ459Y4wx+4wxe4wxHYozTikaxpjexpidxpgMY0xEju3exphzxpjYrK9pxRmnFI2Cxjtrn97f1zFjzHhjzOEc7+nOxR2TFD1jTMes9/A+Y8yLxR2PXF3GmHhjzPas9/Sm4o5HipYx5iNjzG/GmB05tlUzxnxjjNmb9e+NxRmjFJ0Cxls/u+WaUkIk0zdAoLU2GPgZGANgjPEHHgACgI7A+8YY92KLUorKDqAnsCqfffuttaFZX09c47jk6sh3vPX+dhmTc7ynvyzuYKRoZb1n3wM6Af5Av6z3tlzf2mS9pyMufaiUMtFk/kzO6UXgW2utD/Bt1n25PkSTd7xBP7vlGlJCBLDWLrPWpmXdXQ/cmnW7OzDfWnveWnsA2Ac0KY4YpehYa3+y1u4p7jjk2ihkvPX+Fin9mgD7rLVx1toLwHwy39siUgpZa1cBv1+0uTswM+v2TKDHNQ1KrpoCxlvkmlJCJK8o4Kus27cAh3Ls+yVrm1y/6hljthhjvjfG3F3cwchVpfe3axiRtRzyI02zvi7pfex6LLDMGBNjjHmsuIORa6KWtfZI1u2jQK3iDEauCf3slmumTHEHcK0YY5YDN+Wz62/W2s+zjvkbkAbMuZaxSdG7nPHOxxHgNmvtCWNMOPCZMSbAWnvqqgUqReJPjrdcBwobe+AD4FUy/4B6FXiLzKS3iJRed1lrDxtjagLfGGN2Z33KLC7AWmuNMba445CrSj+75ZpymYSItfaewvYbYwYBXYF21trs/2gPA3VyHHZr1jYp4S413gU85jxwPut2jDFmP3AHoKJtJdyfGW/0/r4uXO7YG2P+CSy5yuHItaf3sYux1h7O+vc3Y8wiMpdNKSFyfTtmjKltrT1ijKkN/FbcAcnVY609ln1bP7vlWtCSGTIr1APPA92stWdz7FoMPGCMKW+MqQf4ABuKI0a5+owxNbKLahpj6pM53nHFG5VcRXp/X+eyfnHOFklmgV25vmwEfIwx9Ywx5cgslLy4mGOSq8QYU8kYUzn7NtAeva9dwWJgYNbtgYBmfl7H9LNbrjWXmSFyCe8C5cmcegmw3lr7hLV2pzHmY2AXmUtphltr04sxTikCxphIYCpQA1hqjIm11nYAWgKvGGNSgQzgCWutCj2VcgWNt97fLuF1Y0womdNu44HHizccKWrW2jRjzAjg34A78JG1dmcxhyVXTy1gUdbvamWAudbar4s3JClKxph5QGugujHmF+C/gInAx8aYR4CDQJ/ii1CKUgHj3Vo/u+VaMv9ZHSIiIiIiIiIi4hq0ZEZEREREREREXI4SIiIiIiIiIiLicpQQERERERERERGXo4SIiIiIiIiIiLgcJURERESkyBljbjDGDCvuOEREREQKooSIiIiIXA03AEqIiIiISImlhIiIiIhcDROBBsaYWGPMP40xq7Ju7zDG3A1gjEk2xvy3MWarMWa9MaZW1vYaxphPjTEbs75aFHQRY8w7xphxWbc7ZF1Hv9+IiIjIJRlrbXHHICIiItcZY4w3sMRaG2iMeQaoYK39b2OMO1DRWnvaGGOBbtbaL4wxrwOnrLUTjDFzgfettWuMMbcB/7bW+hVwnYrARmAEMA3obK3dfw2eooiIiJRyZYo7ABEREbnubQQ+MsaUBT6z1sZmbb8ALMm6HQPcm3X7HsDfGJP9+CrGGE9rbfLFJ7bWnjXGPAqsAkYrGSIiIiKXS1NKRURE5Kqy1q4CWgKHgWhjzICsXan2P1NV0/nPBzVuQDNrbWjW1y35JUNyCAJOADdfhfBFRETkOqWEiIiIiFwNp4HKAMaYusAxa+0/gf8FGl3iscuAJ7PvGGNCCzow69zPAGFAJ2NM078Yt4iIiLgILZkRERGRImetPWGM+cEYswOoBJwxxqQCycCAwh/NSOA9Y8w2Mn9XWQU8cfFBJnNNzXTgWWvtr8aYR8icgdLYWptSlM9HRERErj8qqioiIiIiIiIiLkdLZkRERERERETE5WjJjIiIiJR4xpjBwKiLNv9grR1eHPGIiIhI6aclMyIiIiIiIiLicrRkRkRERERERERcjhIiIiIiIiIiIuJylBAREREREREREZejhIiIiIiIiIiIuBwlRERERERERETE5SghIiIiIiIiIiIu5/8DJRP8+ecsbxUAAAAASUVORK5CYII=\n"
- },
- "metadata": {
- "needs_background": "light"
- }
- }
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/tomaz/.local/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py:795: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.\n",
+ " warnings.warn(\n",
+ "/home/tomaz/.local/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py:805: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.\n",
+ " warnings.warn(\n"
+ ]
},
{
- "cell_type": "markdown",
- "metadata": {
- "id": "AvPxkrdGd8hG"
- },
- "source": [
- "The KC library also features the NEU algorithm. The procedure uses an arbitrary embedding and augments it by higher order proximities with a recursive meta learning algorithm."
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABEwAAAJNCAYAAAArjeAlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde1yP5//A8dddSNQYctwoJtHp00EOicihYYgZ5hRzPm2GYZuJ8Z2NbcYOzJBthmFhmGEkOXeico7MuZwrlepz/f5I968oZ8vs/Xw8PNZ9uq7rvj/1fXzv9+d9vS9NKYUQQgghhBBCCCGE+H8mhT0AIYQQQgghhBBCiGeNBEyEEEIIIYQQQggh7iABEyGEEEIIIYQQQog7SMBECCGEEEIIIYQQ4g4SMBFCCCGEEEIIIYS4gwRMhBBCCCGEEEIIIe5QpLAH8KSUK1dOWVtbF/YwhBBCCCGEEEIIkUt4ePglpZRVYY/jYT03ARNra2vCwsIKexhCCCGEEEIIIYTIRdO0U4U9hkchU3KEEEIIIYQQQggh7iABEyGEEEIIIYQQQog7SMBECCGEEEIIIYQQ4g4SMBFCCCGEEEIIIYS4gwRMhBBCCCGEEEIIIe4gARMhhBBCCCGEEEKIO0jARAghhBBCCCGEEOIOEjARQgghhBBCCCGEuIMETIQQQgghhBBCCCHuIAETIYQQQgghhBBCiDtIwEQIIYQQQgghhM7U1BSDwYCzszOurq7s3Lnznudfu3aNb7/9Vt8ODg6mbdu2+Z7br18/Dh48CIC1tTWXLl2665yAgABmzJjxwOMNDAzEysoKg8GAvb09r7/+Ojdv3nzg6x9EQWMtSHBw8H2fm3j2ScBECCGEEEIIIYTO3NycqKgo9u/fzyeffML48ePvef6dAZN7+eGHH6hTp86TGGYeXbp0ISoqitjYWIoVK8ayZcueeB8PQwImzwcJmAghhBBCCCGEyNeNGzd48cUXAUhOTsbHxwdXV1ccHR1ZvXo1AOPGjSMuLg6DwcCYMWP0c19//XXs7Ozo3r07SikAvL29CQsLu6ufqVOnYmtrS6NGjThy5Ii+f968edStWxdnZ2c6dep038yRzMxMUlJS9DH//vvv1KtXDxcXF5o3b87FixcBSExMpEWLFtjb29OvXz+qVavGpUuXSElJoU2bNjg7O+Pg4JAn8DJ79mz93g8fPgzAlStX6NChA05OTtSvX58DBw4QHx/PnDlz+PLLLzEYDGzfvv2Rnr0ofBIwEUIIIYQQQgihS01NxWAwYGdnR79+/ZgwYQIAxYsXJygoiIiICLZu3cqoUaNQSjFt2jRq1KhBVFQU06dPByAyMpKZM2dy8OBBTpw4wY4dOwrsLzw8nKVLlxIVFcX69evZt2+ffqxjx47s27eP/fv3U7t2bebPn59vG8uWLcNgMFClShWuXLnCa6+9BkCjRo3YvXs3kZGRdO3alc8++wyASZMm0axZM2JjY3n99df5+++/AdiwYQOVK1dm//79xMTE4Ovrq/dRrlw5IiIiGDx4sD5laOLEibi4uHDgwAH+97//0atXL6ytrRk0aBAjR44kKioKLy+vR/0oRCGTgIkQQgghhBBCCF3OlJzDhw+zYcMGevXqhVIKpRTvv/8+Tk5ONG/enLNnz+oZG3fy8PDgpZdewsTEBIPBQHx8fIH9bd++HT8/P0qUKMELL7xAu3bt9GMxMTF4eXnh6OjI4sWLiY2NzbeNnCk5Fy5cwNHRUQ/cnDlzhlatWun7cq4PDQ2la9euAPj6+uoZKY6OjmzatImxY8eyfft2SpUqpffRsWNHANzc3PT7CQ0NpWfPngA0a9aMy5cvc+PGjfs9YvEvIQETIYQQQgghhBD5atCgAZcuXSIxMZHFixeTmJhIeHg4UVFRVKhQgbS0tHyvMzMz0382NTUlMzPzkfr39/fn66+/Jjo6mokTJxbYXw5N03jttdcICQkBYPjw4QwbNozo6Gjmzp173+ttbW2JiIjA0dGRDz/8kMmTJ991T49zP+LfRQImQgghhBBCCPEvomkaPXr00LczMzOxsrLSV6ZZs2YN06ZNeyJ9HT58mKysLMqWLcv169e5fPkyI0eOZOvWrZw6dQoAS0tLkpKSCmzj4sWLTJs2jZo1axIeHs4777xDdHQ0p06dwtvbm++++47p06fz8ccfk5SUxO+//65fm5SURKVKlcjIyGD69Ons3r37vmMODQ2lRo0aAFy/fp1PP/2Ua9eusWjRIv0cT09Pfv31V7y9vfn666+5evUqAPv376dHjx5Mnz6dkydP8s0339yzLy8vLxYvXgyAg4MD5cqV48qVKxw7duyezwQefuUd8c8r1ICJpmkLNE1L0DQtJte+AE3TzmqaFnX7X+vCHKMQQgghhBBCPEtKlixJTEwMqampAGzatIkqVarox9u1a8e4cePuuu5BsyJyapgYDAa6dOnCokWLMDU1pXv37pw8eZIlS5bw448/YmdnB0DZsmXx9PTEwcFBL/qa4+LFi/z555906tSJY8eO4ebmhr+/P3FxcWiaRnBwMEeOHOHDDz/kp59+4tVXX6Vu3br69R9//DH16tXD09OTSpUqFTjmnBomTk5OREZGMmHCBJRSfPTRR5w/fx4fHx/KlSunnz9x4kQ2btzIvn372Lx5MxUrVsTS0pLx48cTFRWFpmlUqFCBmTNn3vNZBQQEEB4ejpOTExYWFixatIj4+HjOnTtHUFCQFH39lytSyP0HAl8DP96x/0ul1IMvvC2EEEIIIYQQ/yGtW7dm3bp1vP766yxZsoRu3brpL+aBgYGEhYXx9ddf4+/vT/HixYmMjMTT05OuXbvy9ttvk5aWhrm5OQsXLqRWrVoEBgayZs0abt68SfXq1WnZsqVeIHXhwoXY2tpSunRpmjVrhpmZGV9//TW///47Xbp04datW5QtW5a//vqLChUqANmr4QB8/fXXjBw5kkmTJgHZy+3mKFGiBMnJybzxxhtcunSJl19+mYULF9K4cWNSU1OZMGECmqZhZ2fHiy++SGRkJFWqVMHX15e4uDiqVKlCSkoK6enpVKtWDche1WfPnj2MHj2a0NBQbG1tMRqNvPPOOwwYMIBvvvkGBwcHjh49SufOnalbty7t2rXj5MmTDBw4kOPHjzN79mw6deqU53m3adOGnTt30q5dO6ZOnUr16tUBWLVqFfb29qxatQoLCwt9tZxDhw5hY2ND7969adiwIaNHj2bDhg2YmJjQv39/hg8fDmSvvPP777+TkZHB8uXL9SCUeDYUaoaJUioEuFKYYxBCCCGEEEKIf5uuXbuydOlS0tLSOHDgAPXq1Svw3DNnzrBz506++OIL7Ozs2L59O5GRkUyePJn3339fPy8qKoply5YRHR3NsmXLOH36NOfPn2fixIns2LGD0NBQDh48qJ9f0Ao0ucXGxuLq6prvuFJTU3F2dub48eOYmJhQs2ZNRowYAcDevXs5fvw4AwcOJD09nRUrVjBhwgQOHDjAsmXL+PLLLwkPD2flypVERUVRpkwZvvjiC/744w+uXLlCy5YtOXr0KEePHgVg9+7d1KhRg4kTJzJ16lRatmzJgQMHCAsLY/r06VSsWJGaNWsye/Zs3nrrLZo2bcrUqVM5d+4ckD31JicgdfbsWf05bN++ncaNG+e5r2nTpuHl5UVUVBQjR47k+++/Jz4+nqioKA4cOED37t31c/NbeUc8Owo7w6QgwzRN6wWEAaOUUlcLe0BCCCGEEEII8axwcnIiPj6eJUuW0Lr1vasYdOr0OqeupJKQlE7mjURmBIzn+PFjaJpGRkaGfp6Pj4++KkydOnU4deoUly5dwtvbGysrKyB7NZqcIMSZM2fo0qUL58+f59atW9jY2Nx33PXq1ePGjRu0bNkSc3NzihYtSlxcHEWLFiUjI4NKlSphYWFBs2bN8Pf3p3Llyri6umJpaYmlpSXm5uYopQgODiYzM5NmzZphYWHB2bNn6dmzJ+bm5piYmFCkSBGKFClCjRo1OHjwIBEREbi7u3Pq1Cmio6Np3bo1Q4YMwdvbm6tXr9K4cWM++OADAE6cOMGGDRv4448/cHFx0VfqyVkmuU6dOly9epXz58+za9cuZs2adc973rx5M4MGDaJIkezX7zJlyujHcq+889tvv933+Yl/1rNY9PU7oAZgAM4Dnxd0oqZpAzRNC9M0LSwxMfEfGp4QQgghhBBCFL527doxevRounXrVuA5SsGxKxn0XrCXEUsi6fTW21S0c+XAgWh+//33PKvGPOzKNg+yAo29vT0RERH69p49e/j444+5fv36Pdv+8ssvmTJlCteuXWP16tVcvnwZABMTEzIzM1FKUbNmTX744QeCgoIoVaoUUVFRbNiwgRdeeEEfS870nqJFi2Jra8vp06cJDQ3Fy8tL76thw4Zs3bpVv6ZMmTK8+eab/PTTT9StW5eQkBCqVKnCtWvX2LBhA40bN8bLy4tff/0VCwsLLC0t73kv9yIr7zzbnrmAiVLqolIqSyllBOYBHvc493ullLtSyj0n4imEEEIIIYQQ/wV9+/Zl4sSJODo6FnhOcnoGQZFnSM80AnArNYVtZ7KIv5xCYGDgffuoV68e27Zt4/Lly3qdjRzXr1/Xi83mXoEmt6FDhxIYGMjOnTv1fTdv3tR/btiwIUuXLgVg8eLFeiDj5MmT1KtXDz8/P8zNzTl9+nSedlu1asXff/9NamoqN27coFixYqSnp5OYmJhndRovLy9u3LiBu7s77du35+zZsxw6dAgHBweuXMmuDvHWW2/RunVr3njjDTZt2qSPLykpibi4OKpWrQpA/fr1mTlzph4wmTFjRp7AS447Vw1q0aIFc+fO1QMiOf2KZ98zNyVH07RKSqnztzf9gJh7nS+EEEIIIYQQ/0UvvfSSXvOjIGkZRjI0pW9X8nqDEys/wzfyN97wa3ffPipVqkRAQAANGjSgdOnSGAwG/VhAQACdO3fmxRdfpFmzZpw8efKu6ytWrMiyZcsYO3YsZ8+epXz58pQrV46PPvqIn376iePHjzNkyBAGDBhAhQoVCAkJoXHjxkyaNIlTp05x9epVKlasiLOzM1FRUXq7LVu2pEqVKgwZMgQLCwsSExNp0KABlStXpkSJEvp59erVIysriwYNGmBvb0+9evWIiIjAYDDg4uKin/fuu+9y/fp1xowZQ3p6OkWLFsVoNNKvXz991R4vLy82btzIK6+8QrVq1bhy5Uq+ARMnJydMTU1xdnbG39+f4cOHc/ToUZycnChatCj9+/dn2LBh9332ovBpSqn7n/W0Ote0JYA3UA64CEy8vW0AFBAPDMwVQCmQu7u7CgsLe0ojFUIIIYQQQoh/nxOJyfResFfPMAEwK2LCor4eVLeyKMSRif8STdPClVLuhT2Oh1WoGSZKqfwm283/xwcihBBCCCGEEIXEaFTEX04hISmd8pZmWJctiYmJ9kTati5bkvGta/PJ+kOkZxoxK2LC+Na1sS5b8om0L8Tz7JmrYSKEEEIIIYQQ/xVGo2JD7AW9KGvvBXvZEHsBo/HJzAQwMdHwta/Ior4ezOrmwqK+HvjaV7xvQGbVqlVomsbhw4cLPMfb25vcWf5Go+JEYjK7T1zmRGIyRqPKc46FxeNltAQHB+ephZJDKUW5cuW4ejV7cdXz58+jaRqhoaH6OVZWVnrh2PzMmjWL2rVr0717d9LT02nevDkGg4Fly5bluYfWrVtz7dq1x7oP8e8hARMhhBBCCCGEKCTxl1P07A+A9Ewjn6w/RPzllCfWh4mJRnUrC+pXL0t1K4sHyl5ZsmQJjRo1YsmSJQ/UR0GBnyclMzOzwICJpmnUr1+fXbt2AbBz505cXFz0c48cOULZsmUpW7Zsge1/++23bNq0icWLFxMZGQlAVFQUXbp0yXPe+vXrKV269BO6K/Gsk4CJEEIIIYQQQhSShKT0PPVFIDtokpCUXkgjguTkZEJDQ5k/f76+gg1AamoqXbt2pXbt2vj5+ZGamqof69m3P11e9Sbsi76c/WuRHvhJy8jK0/bIkSOxt7fHx8eHxMREAOLi4vD19cXNzQ0vLy89q8Xf359BgwZRr1493njjDebMmcOXX36JwWBg+/btedpt2LChHiDZuXMnI0eOzBNA8fT0JDk5GR8fH1xdXXF0dGT16tUADBo0iBMnTvDqq6/y6aef0qNHD/bt24fBYCAuLi5PP9bW1ly6dIn4+Hhq165N//79sbe3p2XLlvrz2LdvH05OThgMBsaMGYODg8NjfyaicEjARAghhBBCCCEKSXlLM8yK5H0tMytiQnlLs0IaEaxevRpfX19sbW0pW7Ys4eHhAHz33XeUKFGCQ4cOMWnSJH0/QK8R46g9+Bschs0l6eQBbl44QXqmkVtZ/x8MSklJwd3dndjYWJo0acKkSZMAGDBgALNnzyY8PJwZM2YwZMgQ/ZozZ86wc+dOfvvtNwYNGsTIkSOJioq6a3UaT09PPWCyd+9e/Pz89KWId+7cScOGDSlevDhBQUFERESwdetWRo0ahVKKOXPmULlyZbZu3crYsWP54Ycf8PLyIioqiho1ahT4nI4dO8bQoUOJjY2ldOnSrFy5EoA+ffowd+5coqKiMDU1fZyPQhQyCZgIIYQQQgghRCHJKcqaEzR5FoqyLlmyhK5duwLQtWtXfVpOSEgIPXr0ALKXznVyctKv2ffXOg5+O5jYbwaTmnCK1IRTmBUxoZjp/79ympiY6FNcevToQWhoKMnJyezcuZPOnTtjMBgYOHAg58///yKpnTt3fqCgQ926dYmMjCQlJYWMjAwsLCyoXr06x48f1zNMlFK8//77ODk50bx5c86ePcvFixcf+TnZ2Njoyyy7ubkRHx/PtWvXSEpKokGDBgC8+eabj9y+KHyFukqOEEIIIYQQQvyX5RRltato+VRWyXlYV65cYcuWLURHR6NpGllZWWiaxvTp0wu85uTJkwTOnc38X3/n69DzHFo2DVNjBuNb1+azPwoOdmiahtFopHTp0kRFReV7TsmSDxY4KlGiBDVr1mTBggW4uroCUL9+fdavX09CQgK1atVi0aJFJCYmEh4eTtGiRbG2tiYtLe2B2s+Pmdn/ZwGZmprmmaIkng+SYSKEEEIIIYQQhehRirI+LStWrKBnz56cOnWK+Ph4Tp8+jY2NDdu3b6dx48b88ssvAMTExHDgwAEAbty4QcmSJelUz5bP21pj/DuKfo2r42tfMU/bRqORFStWAPDLL7/QqFEjXnjhBWxsbFi+fDmQveLN/v378x2bpaUlSUlJBY69YcOGzJw5U8/uaNCgAV999RX169dH0zSuX79O+fLlKVq0KFu3buXUqVOP97DyUbp0aSwtLdmzZw9Anhow4t9HAiZCCCGEEEIIIYDs6Th+fn559nXq1IklS5YwePBgkpOTqV27Nh999BFubm4AODs74+LiQp06tRk/oj/ejRtR3rL4XYGfkiVLsnfvXhwcHNiyZQsfffQRAIsXL2b+/Pk4Oztjb2+vF2O902uvvUZQUFC+RV8hu47JiRMn9ICJq6srZ86coWHDhgB0796dsLAwHB0d+fHHH7Gzs3u8h1WA+fPn079/fwwGAykpKZQqVeqp9COePk2pJ7O+d2Fzd3dXudcAF0IIIYQQQggh/mnJyclYWFgAMG3aNM6fP89XX31VyKMqXJqmhSul3At7HA9LapgIIYQQQgghxHPOaFTEX055JuqkPO/WrVvHJ598QmZmJtWqVSMwMLCwhyQekUzJEUIIIYQQQojnmNGo2BB7gd4L9jJiSSS9F+xlQ+wFjMbnY7ZBbqamphgMBhwcHOjcuTM3b94kPj4eBweHh2rH29ubnBkM1tbWXLp0CUCf3nMnf39/vT5Lly5diIqKIiYmhnXr1mFlZXXX+UeOHMHb2xuDwUDt2rUZMGDAQ41P/DMkYCKEEEIIIYQQz7H4yyl8sv4Q6ZlGANIzjXyy/hDxl1MKeWRPnrm5uR6sKFasGHPmzHmi7e/cufOJtDNixAhGjhxJVFQUhw4dYvjw4Y/dplIKo9H4BEYnckjARAghhBBCCCGeYwlJ6XqwJEd6ppGEpPRCGtE/w8vLi+PHjwOQlZVF//79sbe3p2XLlqSmphIXF6cvQQxw7NixPNv5yalNopRi2LBh1KpVi+bNm5OQkKCfM3nyZOrWrYuDgwMDBgwgv7qh58+f56WXXtK3HR0dAQgMDKR9+/Z4e3tTs2ZNJk2apJ/zxRdf4ODggIODAzNnzgQgPj6eWrVq0atXLxwcHDh9+jTTp0+nbt26ODk5MXHixId8aiI3CZgIIYQQQgghxHOsvKUZZkXyvvqZFTGhvKVZIY3o6cvMzOSPP/7QAxHHjh1j6NChxMbGUrp0aVauXEmNGjUoVaoUUVFRACxcuJA+ffo8UPtBQUEcOXKEgwcP8uOPP+bJPBk2bBj79u0jJiaG1NRU1q5de9f1I0eOpFmzZrz66qt8+eWXXLt2TT+2d+9eVq5cyYEDB1i+fDlhYWGEh4ezcOFC9uzZw+7du5k3bx6RkZH6vQ0ZMoTY2FiOHDnCsWPH2Lt3L1FRUYSHhxMSEvKIT1FIwEQIIYQQQgghnmPWZUsyvnVtPWhiVsSE8a1rY122ZCGP7MlLTU3FYDDg7u5O1apVeeuttwCwsbHBYDAA4ObmRnx8PAD9+vVj4cKFZGVlsWzZMt58880H6ickJIRu3bphampK5cqVadasmX5s69at1KtXD0dHR7Zs2UJsbOxd1/fp04dDhw7RuXNngoODqV+/Punp2Rk/LVq0oGzZspibm9OxY0dCQ0MJDQ3Fz8+PkiVLYmFhQceOHfWllatVq0b9+vUB2LhxIxs3bsTFxQVXV1cOHz7MsWPHHulZClklRwghhBBCCCGeayYmGr72FbGraPncr5KTU8PkTmZm/59NY2pqSmpqKgCdOnVi0qRJNGvWDDc3N8qWLftY/aelpTFkyBDCwsJ4+eWXCQgIIC0tLd9zK1euTN++fenbty8ODg7ExMQAoGl5P5c7t+9UsuT/B76UUowfP56BAwc+1n2IbJJhIoQQQgghhBDPORMTjepWFtSvXpbqVhbPZbDkURQvXpxWrVoxePDgB56OA9C4cWOWLVtGVlYW58+fZ+vWrQB6cKRcuXIkJyfrK+fcacOGDWRkZABw4cIFLl++TJUqVQDYtGkTV65cITU1lVWrVuHp6YmXlxerVq3i5s2bpKSkEBQUhJeX113ttmrVigULFpCcnAzA2bNn89RXEQ9HMkyEEEIIIYQQQvxnde/enaCgIFq2bPnA1/j5+bFlyxbq1KlD1apVadCgAQClS5emf//+ODg4ULFiRerWrZvv9Rs3buTtt9+mePHiAEyfPp2KFSsC4OHhQadOnThz5gw9evTA3d0dyF662MPDA8ieSuTi4qJPLcrRsmVLDh06pI/HwsKCn3/+mfLlyz/4AxE6Lb+Kvf9G7u7uKmedbCGEEEIIIYQQ4kHMmDGD69ev8/HHHxf2UAgMDCQsLIyvv/66sIfyRGmaFq6Uci/scTwsyTARQgghhBBCCPFMMhoV8ZdTnlrtFT8/P+Li4tiyZcsTa1M8PyTDRAghhBBCCCHEM8doVGyIvcAn6w+RnmnUV/fxta8oNVj+Zf6tGSZS9FUIIYQQQgghxDMn/nKKHiwBSM808sn6Q8RfTinkkYn/CgmYCCGEEEIIIYR45iQkpevBkhzpmUYSktILaUTiv0YCJkIIIYQQQgghnjnlLc0wK5L3ldWsiAnlLc0KaURPnqZpjBo1St+eMWMGAQEBj9VmVFQU69evf8yR/b8FCxbg6OiIk5MTDg4OrF69+om1/aRpmuavadoTq5grARMhhBBCCCGEEM8c67IlGd+6th40yalhYl225BPva9WqVWiaxuHDh59423cKCwtjxIgRAJiZmfHbb79x6dKlh27H39+fFStWANnLDB88eBB4sgGTM2fOMHXqVEJDQzlw4AC7d+/GycnpibT9LNA07Z4L4UjARAghhBBCCCHEM8fERMPXviKL+nowq5sLi/p6PLWCr0uWLKFRo0YsWbIk3+OZmZlPrC93d3dmzZoFQJEiRRgwYABffvnlXeclJibSqVMn6tatS926ddmxYwcAjo6OXLt2DaUUffr04ccff+SHH35g2rRp/Pnnn3z00UcsW7YMg8HAsmXLuHLlCh06dMDJyYn69etz4MABAAICAujbty/e3t5Ur15dH1NuCQkJWFpaUrJkSYxGIxYWFtjY2ABw/PhxmjdvjrOzM66ursTFxZGcnIyPjw+urq44OjrmzkYppmnaYU3TAjVNO6pp2mJN05prmrZD07RjmqZ5AGia5qFp2i5N0yI1TdupaVqt2/v9NU37TdO0DbfP/yynYU3T+txucy/gmWu/laZpKzVN23f7n+ft/QGapv2kadoO4Kd7fVYSMBFCCCGEEEII8UwyMdGobmVB/eplqW5l8VSCJcnJyYSGhjJ//nyWLl2q7w8ODsbLy4t27dpRp04dUlJSaNOmDc7Ozjg4OLBs2TIAwsPDadKkCW5ubrRq1Yrz588D4O3tzdixY/Hw8MDW1pbt27fr7bZt2xaAW7dukZWVxeLFi7l+/TozZszg2rVrpKSk4OzszP79+0lNTcXf359+/foB4OnpyY4dO7h27RoVKlRg+/bteHt7ExwcTKNGjWjevDkZGRkUK1aMzZs34+3tjYuLC0FBQVy/fp169erx4Ycf8r///Y/Dhw/z559/0qtXL959910cHR2ZOHEiAPHx8XTt2pWEhATMzc3p0qULv//+u/58unfvztChQ9m/fz87d+6kUqVKFC9enKCgICIiIti6dSujRo0i18q8rwCfA3a3/70JNAJGA+/fPucw4KWUcgE+Av6X66MyAF0AR6CLpmkva5pWCZhEdqCkEVAn1/lfAV8qpeoCnYAfch2rAzRXSnW71++GBEyEEEIIIYQQQvxnrV69Gl9fX2xtbSlbtizh4eH6sYiICL766iuOHj3Khg0bqFy5Mvv37ycmJgZfX18yMjIYPnw4K1asIDw8nL59+/LBBx/o12dmZrJ3715mzpzJpEmT8u2/ePHi9OrVK0+Gx4YNG7h69SoWFhYUKVKEOXPmcOPGDZKTk/Hy8iIkJISLFy/SsmVLoqOjSU9Px9LSkuvXr7NmzRpef/11duzYweHDhzl//jw9e/bk7bff5qOPPqJcuXKULVsWgDZt2rBt2zbOnTtHzZo1WbduHeHh4YSEhADZWSQrV65kx44duLq6MnLkSAICAkhKSuLs2bP4+fnp91CiRAmUUrz//vs4OTnRvHlzzp49y8WLF3Nu66RSKlopZQRigb9UdjQlGrC+fU4pYLmmaTHAl4B9rkf1l1LqulIqDTgIVAPqAcFKqUSl1C1gWa7zmwNfa5oWBawBXtA0zeL2sTVKqdR7/2ZIwEQIIYQQQggh7nLx4kXefPNNqlevjpubGw0aNCAoKKiwh5WvmTNncvPmTX3bwsLiHmff282bN+nevTuOjo44ODjQqFEjkpOTn8Qwn1lLliyha9euAHTt2jXPtBwPDw99CoqjoyObNm1i7NixbN++nVKlSnHkyBFiYmJo0aIFBoOBKVOmcObMGf36jh07AuDm5kZ8fHyBY3jnnXeYP38+RqNR7+vWrVv4+Pgwe/ZsoqOjOXv2LBYWFjRu3Jjt27dz8eJF7O3tsbKyIjExEYPBwN69e6lVqxbFixenaNGidO7cWe9j165d+nbOf83MzNi4cSMbN24kPj4eX19fDh8+zLFjxwCoVq0aDRo0wMPDg/Hjx7N06VJWrlxZ4H0sXryYxMREwsPDiYqKokKFCqSlpeUczr28kTHXthHIqSXyMbBVKeUAvAYUz3VN7uuzcl1TEBOgvlLKcPtfFaVUzi/zA61NLQETIYQQQgghhMhFKUWHDh1o3LgxJ06cIDw8nKVLl+Z5Ec7xJGtb3CkrK+uBzrszYPI4vvrqKypUqEB0dDQxMTHMnz+fokWLPpG2czzNZ/awrly5wpYtW+jXrx/W1tZMnz6dX3/9VZ9GUrLk/xeYtbW1JSIiAkdHRz788EMmT56MUgp7e3uioqKIiooiOjqajRs36teYmWWv6GNqaprvfWuahtFopEyZMrzxxhtcvXpV78vPz49z587pfUVFRQHw8ssvc+nSJZKSkqhQoQKNGjXizJkzuLq6AlC0aFGSkpL0PipVqsTixYsB2LZtG+XKleOFF17QjyulGD9+PDVq1GD9+vUcP36ct956C4BixYoRERGhnxsVFUW1atWwtLTkpZdeYtWqVQCkp6dz8+ZNrl+/Tvny5SlatChbt27l1KlTD/uRlALO3v7Z/wHO3wM00TStrKZpRYHOuY5tBIbnbGiaZnjYwUjARAghhBBCCCFy2bJlC8WKFWPQoEH6vmrVqjF8ePa7V2BgIO3ataNZs2b4+PiQkpJC37598fDwwMXFRS90efPmTd544w3q1KmDn58f9erVIywsDMjOasjJ4hg7dqzej4WFBaNGjcLZ2ZmpU6fSoUMH/dimTZv0KRA5Zs2axblz52jatClNmzbV93/wwQc4OztTv359fUpEQUVEczt//jxVqlTRt2vVqoWZmRnx8fHY2dnh7++Pra0t3bt3Z/PmzXh6elKzZk327t0LwN69e2nQoAEuLi40bNiQI0eO5PvMAgMD6dChAy1atMDa2pqvv/6aL774AhcXF+rXr8+VK1eIi4vTgwAAx44dy7P9JKxYsYKePXty6tQp4uPjOX36NDY2Nnq9kdzOnTtHiRIl6NGjB2PGjCEiIoJatWqRmJjIrl27AMjIyCA2NvaB+9c0TQ9ItGjRQg+qnDt3jpkzZ2I0Gvn777+ZPn06c+bM0a+rV6+eHvTw8vIiPT0dZ2dn6tatS1xcHNHR0Tg7O/Pdd9/h4eFBeHg4GRkZDBo0iEWLFuWp1dKqVSsWLFigZ7ecPXuWhIQEIDuYMnr0aOzs7PQisl999RUAP/30E7NmzcLJyYmGDRty4cIFunfvTlhYGI6Ojvz444/Y2dk98LO47TPgE03TIrl/BglKqfNAALAL2AEcynV4BOCuadoBTdMOAoPubuH+HTwX/9zc3JQQQgghhBBCPK6vvvpKvfPOOwUeX7hwoapSpYq6fPmyUkqp8ePHq59++kkppdTVq1dVzZo1VXJyspo+fboaMGCAUkqp6OhoZWpqqvbt26fOnj2rXn75ZZWQkKAyMjJU06ZNVVBQkFJKKUAtW7ZMKaWU0WhUtWrVUgkJCUoppbp166bWrFlz13iqVaumEhMT9W1AP2/MmDHq448/1q/fvn27UkqpU6dOKTs7u7vaioyMVFZWVqp+/frqgw8+UEePHlVKKXXy5EllamqqDhw4oLKyspSrq6vq06ePMhqNatWqVap9+/ZKKaWuX7+uMjIylFJKbdq0SXXs2DHfZ7Zw4UJVo0YNdePGDZWQkKBeeOEF9d133ymllHrnnXfUl19+qZRSytvbW0VGRurPedasWQV+Lo/C29tb/fHHH3n2ffXVV2rQoEFq69atqk2bNvr+DRs2KEdHR+Xs7Kzc3d3Vvn379Gfm5eWlnJycVJ06ddT333+vlFKqSZMm+jmJiYmqWrVqSimVp92bN2+qFi1aqDp16qg+ffooOzs7dfLkyQL7yq179+7655y7r7lz56pXXnlFeXh4qF69eqn3339fKaXU0aNHlYeHh3J0dFRjxoxRlStX1tuaOXOmcnBwUA4ODqp+/frq+PHj6uTJk8re3v6xn7FSSgFh6hmIGzzsv/tGbIQQQgghhBDiv2zo0KGEhoZSrFgx9u3bB2RnA5QpUwaAjRs3smbNGmbMmAFAWloaf//9N6Ghobz99tsAODg44OTkBMC+ffvw9vbGysoKyF5tJCQkhA4dOmBqakqnTp2A7OyDnj178vPPP9OnTx927drFjz/+eN/xFitWTF+Fxc3NjU2bNgGwefNmDh48qJ+XU0Q0d80Tg8HAiRMn2LhxI5s3b6Zu3brs2rULc3NzbGxscHR0BMDe3h4fHx80TcPR0VGvz3H9+nV69+7NsWPH0DSNjIwMve3czwygadOmWFpaYmlpSalSpXjttdeA7PodOUvf9uvXj4ULF/LFF1+wbNkyPZPlSdm6detd+0aMGKH/7O3trf/cqlUrWrVqddf5BoNBL5KaW3BwsP5zuXLl9Gfk7e2tt2tubp5nCk8Oa2vrfPvKYTQaOXToEDVq1LirrzfffJMBAwaQmZmJn5+fnqVUpUoVdu/ejaZpLF26VM/+AXj77bf139XcYmJiChzDf4EETIQQQgghhBAiF3t7+zyFLb/55hsuXbqEu7u7vi93bQulFCtXrqRWrVqP3Xfx4sUxNTXVt/v06cNrr71G8eLF6dy5M0WK3P8VrmjRomha9vK7uWtnGI1Gdu/eTfHixe91ORYWFnTs2JGOHTtiYmLC+vXr6dSpk16PA8DExETfNjEx0fuYMGECTZs2JSgoiPj4+DwBh9zPDHig9jp16sSkSZNo1qwZbm5u+uouzyqjURF/OYWEpHTKW5phXbbkE18K+dy5czRv3pymTZtSp06du44HBASwefNm0tLSaNmypR4wCQ8PZ9iwYSilKF26NAsWLHii43oeSQ0TIYQQQgghhMilWbNmpKWl8d133+n77lVUtVWrVsyePVsvFBoZGQmAp6cnv/76KwAHDx4kOjoayF55Zdu2bVy6dImsrCyWLFlCkyZN8m27cuXKVK5cmSlTptCnT598z7G0tMxT5LMgLVu2ZPbs2fp2ThHR3Hbs2KEXHr116xYHDx6kWrVq9207x/Xr1/UaKIGBgQ98XUGKFy9Oq1atGDx4cIH3fyejUXEiMZndJy5zIjEZo1E99jgetN8NsRfovWAvI5ZE0nvBXjbEXnji/VeuXJmDBw/yzTff5Ht8xowZREVFcfjwYWbNmqUHz7y8vNi/fz8HDhwgJCSEV1555YmO63kkARMhhBBCCCGEyEXTNFatWsW2bduwsbHBw8OD3r178+mnn+Z7/oQJE8jIyMDJyQl7e3smTJgAwJAhQ0hMTKROnTp8+OGH2NvbU6pUKSpVqsS0adNo2rQpzs7OuLm50b59+wLH0717d15++WVq166d7/EBAwbg6+ubp+hrfmbNmkVYWBhOTk7UqVMnTxHRHHFxcTRp0gRHR0dcXFxwd3fXpwg9iPfee4/x48fj4uLyxFbD6d69OyYmJrRs2fK+5/5TQYv8xF9O4ZP1h0jPzC6emp5p5JP1h4i/nL2C7ZkzZ2jfvj01a9akevXqDBs2jPT09Hs1+UiCg4PZuXOnvj1nzpwHmsoFEB0djcFgwGAwUKZMGWxsbDAYDDRv3jzPeQ/T5m3FNE3Ld36PpmnBmqa553essGk5UdB/O3d3d5VTcVoIIYQQQgghCltWVhYZGRkUL16cuLg4mjdvzpEjRyhWrNhDtTNs2DBcXFz0pV7/a2bMmMH169f5+OOP73vuicRkei/YqwctAMyKmLCorwfVrSzuceXj233iMiOWRN61f1Y3F+rZlKFevXp6pkxWVhYDBgzAwsJCX3XmSQkICMDCwoLRo0c/Vjv+/v60bduW119/Pc/+zMzMB5oalpumadGAiVLKIZ9jwcBopdQz90IvNUyEEEIIIYQQz71/orbEnW7evEnTpk3JyMhAKcW333770MESNzc3SpYsyeeff/6URvls8/PzIy4uji1btjzQ+QlJ6XmCJZCd6ZGQlP7UAyblLc0wK2JyV7CmvKUZW7ZsoXjx4vq0IlNTU7788kuqVavG1KlTWbFiBWFhYXz99dcAtG3bltGjR+Pt7c3GjRuZOHEi6enp1KhRg4ULF2JhYYG1tTW9e/fm999/JyMjg+XLl1O8eHHmzJmDqakpP//8M7Nnz+avv/7SAyje3t7Uq1ePrVu3cu3aNebPn4+Xl9d9783b2xuDwUBoaCjdunUjKSkpT5suLi5s376dlJQUfvzxRz755BOio6Pp0qULU6ZMyWmmiKZpiwFXIBbopZTKM9dN07SWwCTADIgD+iilkh/zo3lkMiVHCCGEEEII8VwrrGkalpaWhIWF6XUjXn311YduIzw8nJCQkDwFUv9LgoKCOHDgAOXKlXug83OCFrnlBC2eNuuyJRnfurbev1kRE8a3ro112ZLExsbi5uaW5/wXXngBa2trjh8/XmCbly5dYsqUKWzevJmIiAjc3d354osv9OPlypUjIiKCwYMHM2PGDKytrRk0aBAjR44kKioq32BIZmYme/fuZebMmUyaNOmB7+/WrVuEhYUxatSou44VK1aMsLAwBg0aRPv27fnmm2+IiYkhMDCQy5cv55xWC/hWKVUbuAEMyd2GpmnlgA+B5kopVyAMePeBB/gUSIaJEEIIIYQQ4rlWUG0Ju4qWTz3rQPyzcoIWOZ937qDF02ZiouFrXxG7ipZPLJNp9+7dHDx4EE9PTyA7aNGgQQP9eMeOHYHsTKTffvvtgdrMfU3OUscPokuXLgUea9euHZC9JLS9vT2VKlUCoHr16pw+fTrntNNKqR23f/4ZGAHMyNVMfaAOsON2odpiwK4HHuBTIAETIYQQQgghxHOtMKdpiH/W0whaPGz/1a0s7vq9qlOnDitWrMiz78aNG1y4cIFatWoRExOD0fj/v6NpaWlA9pLVLVq0YMmSJfn2l5N5lHv56Pt5lGvg7mWh82sz9/LQOdu5+rgzpevObQ3YpJTq9sCDespkSo4QQgghhBDiuVaY0zTEPy8naFG/elmqW1n8Y8GSe/Hx8eHmzZv6yjJZWVmMGjWKYcOGYW5ujrW1NVFRURiNRk6fPs3evXsBqF+/Pjt27NCn7aSkpHD06NF79vWgy0wXgqqapuWkx7wJhN5xfDfgqWnaKwCappXUNM32nxzgnSRgIoQQQgghhHiu3au2hBD/BE3TCAoKYsWKFdSsWZOyZctiYmLCBx98AICnpyc2NjbUqVOHESNG4OrqCoCVlRWBgYF069YNJycnGjRowOHDh+/Z12uvvUZQUBAGg4Ht27c/9Xt7CEeAoZqmHQJeBL7LfVAplQj4A0s0TTtA9nQcu396kLnJssJCCCGEEEKI515hrJIjREF27txJt27dCAoK0oMjzzNN08KVUu6FPY6HJTVMhBBCCCGEEM+9gmpLCPGoHicI17BhQ06dOvWURygelwRMhBBCCCHEf56pqSmOjo5kZGRQpEgRevXqxciRIzExebIz2NesWcPBgwcZN27cE21XCPHPylmq+s7VeHztK0rm0nNEpuQIIYQQQoj/PAsLC5KTkwFISEjgzTffxNPTk0mTJhXyyIQQz6ITicn0XrA3z+pLZkVMWNTXQ7KY8vFvnZIjRV+FEEIIIYTIpXz58nz//fd8/fXXKKXIyspizJgx1K1bFycnJ+bOnQtAcHAw3t7evP7669jZ2dG9e3dyvoy0trZm4sSJuLq64ujoqBdpDAwMZNiwYQAsX74cBwcHnJ2dady4ceHcrBDikdxrqWrx/JApOUIIIYQQQtyhevXqZGVlkZCQwOrVqylVqhT79u0jPT0dT09PWrZsCUBkZCSxsbFUrlwZT09PduzYQaNGjQAoV64cERERfPvtt8yYMYMffvghTx+TJ0/mzz//pEqVKly7du2fvkUhxGPIWar6zgwTWar6+SIZJkIIIYQQQtzDxo0b+fHHHzEYDNSrV4/Lly9z7NgxADw8PHjppZcwMTHBYDAQHx+vX9exY0cA3Nzc8uzP4enpib+/P/PmzSMrK+ufuBUhxBMiS1X/N0iGiRBCCCGEEHc4ceIEpqamlC9fHqUUs2fPplWrVnnOCQ4Oxszs/79NNjU1JTMzU9/OOXbn/hxz5sxhz549rFu3Djc3N8LDwylbtuxTuiMhxJNkYqLha18Ru4qWslT1c0wyTIQQQgghhMglMTGRQYMGMWzYMDRNo1WrVnz33XdkZGQAcPToUVJSUh67n7i4OOrVq8fkyZOxsrLi9OnTj92mKFyrVq1C0zS9Zg1AfHw8Dg4OAISFhTFixIh7ttG6deuHmqK1du1aXFxccHZ2pk6dOnqNnYI8yBgexapVqzh48OATb/dZlrNUdf3qZaluZSHBkueQZJgIIYQQQoj/vNTUVAwGg76scM+ePXn33XcB6NevH/Hx8bi6uqKUwsrKilWrVj12n2PGjOHYsWMopfDx8cHZ2fmx2xSFa8mSJTRq1IglS5bku8KSu7s77u73Xihk/fr1D9xfRkYGAwYMYO/evbz00kukp6fnO/3rYcfwKFatWkXbtm2pU6fOE29biMIiywoLIYQQQgghxGNKTk6mVq1abN26lddee40jR44A2Rkmbdu2JSYmhuDgYGbMmMHatWtJTk5m+PDhhIWFoWkaEydOpFOnTlhbWxMWFka5cuXo0KEDp0+fJi0tjbfffpsBAwbk6fOnn36iV69eREZGYjAY8hzz9/enePHihIWFcePGDb744gvatm2bZwwBAQH8/fffnDhxgr///pt33nmHESNGEB8fz6uvvkqNGjXYtm0bDRo0oH///sTFxdG5c2eGDh1KYmIiJUqUYN68eVy5coW2bdtSqlQpSpUqxcqVK6lRo0aBzyr3PeYn9zMTz4d/67LCkmEihBBCCCGeS0ajIv5yitQXEP+I1atX4+vri62tLWXLliU8PBw3N7cCz//4448pVaoU0dHRAFy9evWucxYsWECZMmVITU2lbt26dOrUKU+dm7Vr11KhQgU8PT1p164dbdu2pVu3bpiYZFdeiI+PZ+/evcTFxdG0aVOOHz9+Vx+HDx9m69atJCUlUatWLQYPHgzAsWPHGDVqFAAlSpQgPT2dcePG4ePjw5w5c6hZsyZ79uxhyJAhbNmyRe//9ddff/SHKMQzRmqYCCGEEEKIf52LFy/y5ptvUr16ddzc3GjQoAFBQUH6caNRsSH2Ar0X7GXEkkh6L9jLhtgLGI35Z1d7e3sj2cricSxZsoSuXbsC0LVrV5YsWXLP8zdv3szQoUP17RdffPGuc2bNmoWzszP169fn9OnT+upMkJ3REhoaSkhICFZWVnh4eDBjxgxat26Nt7c3wcHB7N+/n549e/LKK69QvXp15s2bR69evdi+fTsjRozgl19+oU2bNmRmZvLee+9x8+ZNDAYDGzduxMbGhldeeQXIXunpt99+Y8CAAezcuZN69ephZWVFs2bNCA0NZcWKFQCkpaXh4+ODq6srjo6OrF69+r7P7YsvvsDBwQEHBwdmzpyp78/KyqJ///7Y29vTsmVLUlNTgey/1bFjx+Lh4YGtrS3bt28HIDY2Fg8PDwwGA05OTvqzyq/9+Ph4ateunW/7QuQmARMhhBBCCPGvopSiQ4cONG7cmBMnThAeHs7SpUs5c+aMfk785RQ+WX+I9EwjAOmZRj5Zf4j4yyn5rlgjxOO4cuUKW7ZsoV+/flhbWzN9+nR+/fVXHqf8QXBwMJs3b2bXrl3s378fFxcX0tLS9OO5M1oqV65M48aN2bRpEyEhIURGRlK3bl2mTJnCiRMn2LFjB0ajkSlTpvDpp5/i5eVFYmIikL2a09SpU2nWrBk1atRgyZIlfPLJJxQtWlTvy9TUFKMx+2+pdOnStGvXDm9vb5KSkoiKimLcuHEAFC1alKCgICIiIti6dSujRo265zMIDw9n4cKF7Nmzh927dzNv3jwiIyOB7AyXoUOHEhsbS+nSpVm5cqV+XWZmJnv37mXmzJl6rZg5c+bw9ttvExUVRVhYGC+99NIjty9EDgmYCCGEEEKIf5UtW7ZQrFgxBg0apO+rVq0aw4cPJy0tjT59+tCikQcRXw3gxokoAC5F/ElM4Ae80e5VfHx8SE1NpWvXrtSuXRs/P7883y4vWbIER0dHHBwcGDt2rL7fwsKCDz74QP/G/+LFi//YPYtn24oVK+jZsyenTp0iPj6e06dPY2Njo2c/5KdFixZ88803+vadU3KuX7/Oiy++SIkSJTh8+DC7d+/Oc3zJkiW0b9+e4OBgPaMlKiqKChUq4OHhQcmSJVm5ciXOzs7s2bOHY8eOYWtrS6VKlQDo1q2b3tbGjRuZNm0acXFxdO3alfT0dH1VqNyKFSuGjY0N8fHxdOjQAU3TyMjI4OLFi1haWpKUlMT777+Pk5MTzZs35+zZs/f8OwkNDcXPz4+SJUtiYWFBx44d9WdmY2Oj12Vxc3PLU8y2Y8eOd+1v0KAB//vf//j00085deoU5ubmj9y+EDkkYCKEEEIIIf5VYmNjcXV1zffYN998g6ZpbArdi123Dzm58jOMGbcAuHnuON8vWsy2bdv47rvvKFGiBIcOHWLSpEmEh4cDcO7cOcaOHcuWLVuIiopi3759+oo4KSkp1K9fn/3799O4cWPmzZv3j9yveDZYWFjoP69fvx5bW1tOnToFZAcv/Pz88pxfs2bNPAGRjz76SP89A/jwww+5evUqDg4OODs7s3Xr1jzX79u3j02bNlG8eHHq1q1LmTJl9CyPnIyWoUOH8uqrrzJq1ChmzZpFnz59cHV1xczMjNDQUDIzM/ntt9+YPn06H3zwgV7b5E5KKb1Q6/r169m5cydmZmb5nrt48WKOHTvGBx98gL29PatXr0YpRdeuXZk4cSKLFy/m119/1YM3ubNiHkbu/k1NTfNkhuUcy73/zTffZM2aNZibm9O6dWu2bNnyyO0LkUMCJkIIIYQQ4l9t6NChODs7U7duXUJDQ+nRowfWZUvysX8rir9YgbTLZyhiotG4aTMMr7wMQEhICD169ADAyckJJycnIPsl1dvbGysrK4oUKUL37t0JCQkBsr9db9u2LSDfSP+X/fXXX4wYMYI//viDatWqAbB161Z8fX3znJeZmUnnzp2xtrYmJiaGyZMnM2rUKNauXQtkB2AWLVpETEwM+/fv17Mm4uPjKVeuHEWKFGHKlCmkpaVx/fp1qlevjqZlFy3OyWg5ffo0qampZGRk0KBBA5o3b0758uX1MTg6OvLGG28wbdo0+vfvz4kTJ7C2tmbt2rUsW7YMW1tbRo8eTatWrZg9ezbR0dFYW1tz9erVPCvUjB49mg4dOgDZmRktWrRgxowZHDx4kI8++ggAT09P3nvvPXr06IGdnR1bt27VA0oF8fLyYtWqVdy8eZOUlBSCgoLw8vJ6pM/lxIkTVK9enREjRtC+fXsOHDjwRNsX/00SMBFCCCGEEP8q9vb2RERE6NvffPMNf/31l16TAcDERMPXviK2FSwZ96od/RpXx7ZKucdaJado0aL6C6t8I/38MxoVJxKT2X3iMicSk4HsQFv//v1Zu3atvmzuvHnzqFu3Ls7OznTq1ImbN2+yc+dO1qxZw5gxYzAYDMTFxeHv768XRw0PD6dJkya4ubnRqlUrzp8/f8+x3Lp1i7S0NL0w7IIFC/RVeLy8vDh8+DCdOnXSV9zJj7m5Od9++y2+vr64ublhaWlJqVKlAJgwYQIZGRk4OTlhb2/PhAkTHumZde/enbCwMBwdHfnxxx+xs7PL97zMzEzMzMxwdXXF398fDw8P6tWrR79+/XBxcXmkvn/99VccHBwwGAzExMTQq1evJ9q++I9SSj0X/9zc3JQQQgghhHj+GY1G5eHhob799lt936lTp1S1atXU559/rvr27auUUurIkSOqatWqKi0tTS1cuFANHTpUP//zzz9Xb731llJKqejoaGVqaqr27dunzp07p6pWraoSExNVZmam8vHxUatWrVJKKVWyZEn9+uXLl6vevXv/A3crCkNWllGtO3BONZr2l6o7ZZNqNO0vZVqkiHrxxRfV/v3785x76dIl/ecPPvhAzZo1SymlVO/evdXy5cv1Yznbt27dUg0aNFAJCQlKKaWWLl2q+vTpc9cYJk6cqCpXrqycnZ1V6dKlVbdu3fRjzZo1U0ePHlVKKbV7927VtGlT/Zrp06fn279SSiUlJSmlsv+GBg8erL744otHe0CPISEhQVWuXPkf71cULiBMPQNxg4f9JxkmQgghhBDiX0XTNFatWsW2bduwsbHBw8OD3r178+mnnzJkyBCMRiOOjo506dKFwMDAfGsxDB48mOTkZGrXrs1HH32Em5sbAJUqVWLatGk0bdoUZ2dn3NzcaN++/T99i6KQ5bfKktJMMbh7MH/+/DznxsTE4OXlhaOjI4sXLyY2NvaebR85coSYmBhatGiBwWBgypQp+gpPubNarqbc4p133iEqKoqEhARSUlJYunQpycnJ7Ny5k86dO2MwGBg4cOB9M1RyzJs3D4PBgL29PdevX2fgwIGP8HQe3Zo1a/Dy8uKTTz75R/sV4lEVKewBCCGEEEII8bAqVarE0qVL8z22cOHCu/b5+/vj7++vb5ubmxd4fbdu3fKsIJIjOTlZ//n111/n9ddff8hRi3+LhKR0PVii0zQ++nIe4/u9wf/+9z/ef/99IPt3a9WqVTg7OxMYGEhwcPA921ZKYW9vz65du/LsNxoVG2Iv6IGaC5FnaeFcBKNRUbRoUXx9fQkJCaF169aULl2aqKioh76vkSNHMnLkyIe+7klp164d7dq1K7T+hXhYkmEihBBCCCEK3Z31IoxGVdhDEv9h5S3NMCty96tS1fIvsm7dOhYvXqxnmiQlJVGpUiUyMjJYvHixfm7OMrt3qlWrFomJiXrAJCMjg9jY2LuyWrKMii2HE4i/nIJSih07dlCjRg1eeOEFbGxsWL58OZAdgNm/f/8TfwZCCAmYCCGEEEKIQpbzzXrvBXsZsSSS3gv2siH2ggRNRKGxLluS8a1r60ETsyImFDM1wbpsScqUKcOGDRuYMmUKa9as4eOPP6ZevXp4enrmKXLatWtXpk+fjouLC3Fxcfr+YsWKsWLFCsaOHYuzszMGg4GdO3fmm9VydvsKfJs0wMHBgaysLIYMGQKgB2ycnZ31pX2FEE+ell1/5d/P3d1dhYWFFfYwhBBCCCHEQzqRmEzvBXvzvCyaFTFhUV8PqltZFOLIxH+Z0aiIv5xCQlI65S3NsC5b8rFWWbof+TsQzzNN08KVUu6FPY6HJRkmQgghhBCiUOX3zXp6ppGEpPRCGpH4L7jfNDATE43qVhbUr16W6lYWTzVYAvlntYxvXRvrsiWfar9CiIJJ0VchhBBCCFGocupF3PnNennLu1e3EeJJuLPAak5wwte+4lMPjBTExETD174idhUt/7GsFiHEvUmGiRBCCCGEKFTyzbr4p+W3bPAn6w8RfzmlUMf1T2e1CCHurVADJpqmLdA0LUHTtJhc+8pomrZJ07Rjt//7YmGOUQghhBBCPF0536wv6uvBrG4uLOrrUajf9Iu7Xbx4kTfffJPq1avj5uZGgwYNCAoKuuc18fHxODg4ABAcHEzbtm0fqs/4+Hh++eWXAo8fO3aMtm3bUqNGDdzc3GjatCkhISH5nhsWFsaIESP07QeZBhYQEMCMGTPuOcYHOed+AgMDGTZsWL7HLCykdkl+TE1NMRgM+r9p06Y9lX5at27NtWvXHujc4OBgdu7cqW/7+/uzYsWKR+7b2toaR0dH/R5z//7mp1+/fhw8eFC/9tKlS4/ct/h/hT0lJxD4Gvgx175xwF9KqWmapo27vT22EMYmhBBCCCH+ITnfrEtxy2ePUooOHTrQu3dvPYBx6tQp1qxZ89T6LFmyJOvWreOXX37hzTffJDAwkLCwML7++msA0tLSaNOmDTNmzKBdu3YATJkyhUmTJvHXX3/laSszMxN3d3fc3f+/3uSjTgPz9vbm/PnzFC9enGLFiuHm5sYrr7zypG77ocXHx9O2bVtiYmLuf/JzxNzcnKioqKfWvlIKpRTr169/4GuCg4OxsLCgYcOGT2wcW7dupVy5cg907g8//PDE+hX/r1AzTJRSIcCVO3a3Bxbd/nkR0OGfHJMQQgghhBDi/23ZsoVixYoxaNAgfV+1atUYPnw4AFlZWYwZM4a6devi5OTE3Llz79leSkoKffv2xcPDAxcXF31J3MDAQNq1a0ezZs1IS0tj3LhxbN++HYPBwJ9//pmnjcWLF9OgQQM9WALw0ksvUbt2bSA786Nnz554enrSs2fPPBkuAQEBfPzecK6v+JADX/Ti4q4gfRrYL3NnYmtrS6NGjThy5IjedlxcHL6+voSHh1OiRAmWLVvGkCFD2LhxIwAJCQm4ubkBsH//fjRN4++//wagRo0a3Lx5k99//5169erh4uJC8+bNuXjx4l3P5uTJkzRo0ABHR0c+/PDDB/h08tI0jR49eujbmZmZWFlZ6fe+Zs0aPRvjSWTHxMfHY25ujsFgwNnZmYYNG+rP7UGyiqKioh4oKFFQps2d92Btbc348eMxGAy4u7sTERFBq1atqFGjBnPmzNHPmz59uv77OnHiRP1eatWqRa9evXBwcOD06dN5MjV+/PFHnJyccHZ2pmfPnnc9hzlz5vDll19iMBjYvn07ACEhITRs2JDq1avnyTbJr/8HcfjwYTw8PPL06+joCGQH82TV2CevsDNM8lNBKXX+9s8XgAqFORghhBBCCCH+y2JjY3F1dS3w+Pz58ylVqhT79u0jPT0dT09PWrZsiablP6Vq6tSpNGvWjAULFnDt2jU8PDxo3rw5ABERERw4cICqVasybdo0ZsyYwdq1a/UME4DExESmTZtGeno6devWZebMmXh6eubpIyUlhbVr11K9enWOHz9OdHQ0kP2CvXr1ak6cOEGZMmUYNmgA876dxcbvpzCgmx979+7B2tqazp07M3v2bD0IMmDAAObMmUP//v3x9/dnyJAhfPvttyQlJQFQokQJjhw5grOzM4mJibzyyits376d0NBQjEYjJUqUoFGjRvj6+mJpaUnp0qXp3LkzqampXLhwgUqVKgHQv39/Tp06RZs2bZg/fz5paWmkpqZibm7O8ePHGTRoEImJiZiamrJ8+XJMTU31e46Pj8fExITffvsNg8HAt99+y/Xr11FK6cGZhQsX8uKL2RUPIiMjSU5OZvTo0Q/3C3GHGjVq6Nkec+fO5X//+x+LFi2690W3RUVFERYWRuvWrR+qz9TUVAwGAxcuXMDExISXX36ZLl26AFC1alWioqIYOXIk/v7+7Nixg7S0NBwcHBg0aBAbN27k2LFj7N27F6UU7dq1IyQkhKpVq3Ls2DEWLVpE/fr18/QXGxvLlClT2LlzJ+XKlePKlbzf+VtbWzNo0CAsLCz05zl//nzOnz9PaGgohw8fpl27drz++usF9t+4ceO77rNp06b6Z9y7d29GjhzJrVu3OHnyJDY2Nixbtky/b/F0PIsBE51SSmmapgo6rmnaAGAAZP9hCCGEEEIIIZ6uoUOHEhoaSrFixdi3bx8bN27kwIED+jfo169f59ixY9ja2uZ7/caNG1mzZo2eGZCWlqZnY7Ro0YIyZcqQmppKv379SEhIwGAwcOXKFT2b5O2338bV1ZWGDRvi5+dHq1atsLOzY9++fZiZZU+p2bBhAx07dmT+/Pn8/fffNGrUCCcnJwAuXbrEu+++y9ChQ6lVqxaVKpSnpDGFVq1a0qRJY8aPH0/dunVp0aIFAMnJyezcuZPOnTtz/Phxzp07h6mpKRs2bMDOzg6A4sWL06lTJ7p27cqcOXPYs2cP27Zto2rVqmRmZgJw5swZPv/8c1566SVSUrKLy/79998sXLiQyZMnExISQnh4ODdu3GDo0KF8/vnnlClThpUrV9KjRw+6d+/OuHHj8PPzIy0tDaPRSEJCgv5cy5cvj7m5OSNGjKBSpUqMGDGCOnXq0LJlS/bs2QNkZ7/cvHkTyJ5WVbduXSA7g2bo0KEkJiZSokQJ5s2bh52dHcuXL2fSpEmYmppSqlSpAmvE5Lhx44YekMktJSWF4cOHExMTQ0ZGBgEBAbz66qt89NFHpKamEhoayvjx42nTpg19+vTh999/x9bWlokTJ9KpUydu3bqFj48Ply5dwtzcnOLFixMVFUVAQADR0dGkp6cTFxfHxYsX+e677/jll1/w9fXFxcUFJycnjh49ipmZGTExMbRv357y5cvj4uJCcnIy58+fx8/Pj6pVq1KtWrW7giWQnWXVuXNnfXpMmTJl9GPff/89X3zxBZcuXaJEiRLUr1+fRo0aAdChQwdMTEyoU6cOZ8+epW3bttjZ2bFx40ZcXFz036+OHTty+PBhkpOT80yxym9KzhtvvMGyZcsYN24cy5Ytw9raWv/bGzhw4H0zvMTDeRYDJhc1TauklDqvaVolIKGgE5VS3wPfA7i7uxcYWBFCCCGEEEI8Gnt7e1auXKlvf/PNN1y6dEmvCaKUYvbs2bRq1SrPdfHx8fm2p5Ri5cqV1KpVK8/+PXv2ULJk9spI5ubm/PDDD/lmmGzevBkzMzM2bdrEwoULuXHjBj/99BPTp0/X6zicOHGCy5cvYzAYALh586YeuKhZsyYlS5akXLlylC9fHqPRSGZmJiEhIURGRrJ69WpOnz6tF/s0Go2ULl2aqKgovYZJWloaU6dO1admKKU4d+4cvXv3JiUlhaysLMLDwzExMdGP9enTh5dffplDhw7RpUsXVq9ejYuLC1euXNGDTAA2NjYYDAZu3LiBqakp8fHxJCUlcfbsWfz8/IDsAM2dMjIySE9PZ/ny5SQmJpKenk5mZiYffPABf/zxBwcPHqRy5cqcPXuW8+fPc+bMGTp37gz8fwZNzZo12bNnD0OGDGHLli1MnjyZP//8kypVqhRY/DQuLg6DwUBSUhI3b97UgzO5FZRVNHny5Dy1acaOHYulpSWvvPIKBw4c4OrVq/q9VatWjb/++ov33nuPiIgI/bNp0KABvXr1wsfHhzJlyrBlyxbi4uLw9/fHx8cHb29v1q1bh4mJCUuXLgXg/fffZ+DAgQQHBzNjxgzeeust4uPj9d+/B7V27Vrmzp1LaGgoX3/9NdeuXePNN99k7969AHoALzelFOPHj2fgwIH6Pmtr6wfus0uXLnTu3JmOHTuiaRovvPDCQ41ZPJxncVnhNUDv2z/3BlYX4liEEEIIIYT4T8upKfLdd9/p+3KyFABatWrFd999R0ZGBgBHjx7VMyjy06pVK2bPno1S2d93RkZG5nuepaWlPuUlN6PRyIEDByhTpgyTJ0/m7NmzWFhYcOvWLf0cpRTDhw8nKiqKqKgoVqxYQZEi2d8V5/wX0Kc77N69mwsXLmBlZcXu3btxdHTU61C88MIL2NjYsHz5cgB+/vlngoKC6N27N3/88QeQXVPFzMyM4sWL4+fnR8WKFXnhhRdYv3493bp1Y8WKFZw5c0av6REbG6tPHZk8eTI9e/bkrbfews3NjbS0NL1NQA/03M+XX36JpmkcOXKEGjVqkJ6eTuvWrbGysiIjI4MNGzZga2tL5cqV+fXXXylWrBhmZmZ5MmgMBgMDBw7k/PnsCgmenp74+/szb948srKy8u03Z0pOXFwcM2fOZMCAAXeds3HjRqZNm4bBYMDb2ztPVlFumzdvzlMfJCdbxdTUVK9Ps3btWr2Q7+7du9m4cSNTp05l586dJCQkYG1tjbe3N8ePH+f69ev069ePhQsXAvDtt9+SmZnJu+++y9tvvw3A5cuXee211/Dx8eHMmTP672V4eDgXLlzAx8eHpUuXsmTJEi5fvgygT8n59NNPmT59OuXKlcPS0pJSpUrRu3dvvvnmGyD7d9vOzg5XV1f9c2zVqhVz587Fx8cHe3t7unXrlufZZmZm0r17d86ePUufPn30v7XJkydTt25d2rdvz+nTp5k8ebJMx/kHFPaywkuAXUAtTdPOaJr2FjANaKFp2jGg+e1tIYQQQgghRCHQNI1Vq1axbds2bGxs8PDwoHfv3nz66adA9nKmderUwdXVFQcHBwYOHHjPl/wJEyaQkZGBk5MT9vb2TJgwId/znJycMDU1xdnZOU/R15YtW/LDDz+wdu1a5syZw0svvUSDBg34/fff9ayXGjVqsGPHDv2a48eP3/Meb9y4wcsvv0y3bt2oXbs2O3fuzJMBs3jxYubPn09YWBhdunRhzZo1fPzxx5w5c4aEhASuX7+OjY0NSikqVKjAqVOncHd3p3Tp0vj7+7N06VJMTEz49ddfcXNzo3bt2ly4cIHk5GQge1pGQkICEydO5MqVKzg6OnL27Fm9f0tLS1566SVWrVoFQHp6ep6gFWRPhdI0DRMTE6pWrYpSim7dugHZgYeZM2dSq1YtKleuzIwZM/SSBrkzaHL+HTp0CIA5c+YwZcoUTp8+jZubmx4wKEhOPY475WQV5bT/999/6wGQB2FiYqLXxNE0DaUUmZmZHDhwgF27drFhwwZKly6NiYkJ33zzDampqXz77beUKFECT09P4uPjSUtLo3LlytSqVYv//e9/bNmyhT59+rBv3z7Gjh3Lpk2buHXrFjt27CAjI4Phw4djZWXFX3/9xYgRI3jppZdo0qQJzs7OvPvuu0B24Cunzs1rr71GUFAQP//8M9u2bSMrK4u5c+fy+++/Ex4ergdiWrZsiYWFBTExMZiYmBAZGcmZM2f0ez1y5AhDhgyhSpUqhIaG8sorr2AwGIiNjWXfvn3ExMRQtWpVFi9ezBtvvPHAz1A8opwlk/7t/9zc3JQQQgghhBDi369kyZJ5thcuXKiGDh2qlFIqMTFRvfHGG8rR0VHVrl1bDRw48IHPmThxopo+fbrerr29vTp58qRKS0tTvr6+ys7OTrVv3141adJEbd269a5xNWnSRO3bt0/fnjFjhurbt69KTExU9evXVw4ODsrf31/Z2dmpkydP6uc5ODgob2/vPG3NnDlTOTg4KAcHB1W/fn11/PhxdfLkSWVvb6+fM336dDVx4kSllFJHjx5VTZs2VY6OjsrV1VXFxcXlOf/o0aPKxMREOTk5qcGDB6tixYoppZTaunWrcnJyUpUqVVILFy5UgwcPViVKlFBvvPGG/iwaNGigfv31V6WUUkajUUVFRSmllDp+/Lg+Fnd3dxUZGZnnHu4c78aNG5WDg4Peb5s2bZRSSo0fP14NHTpUGY1GpZRSERERSimlVqxYoXr16qVfP3bsWNWnTx+9zStXriillCpatKiaMWOGUkqpOnXqqFatWimlsj/PFi1aqOnTpysPDw9VpkyZu+4h53OqVKmS+vjjj/OMd+vWrap58+b69qBBg9RPP/2koqOjlaWlpXJ2dlbOzs7KwcFBtWjRQt3pxRdfVNeuXcuzb9WqVcrPz09FRkYqLy8vff/q1av15+Hs7Kzi4uLytJOYmKhOnjypXn75ZX3/X3/9pdq3b68/Kw8PD+Xg4KAqV66sPvnkE6WUUr1791bLly9XSt39+/ksAcLUMxA3eNh/z2INEyGEEEIIIcR/WE7mRQ5/f3/8/f0BKFeuHMuWLbvrmgc5JyAgIM92TnFNQJ9ecy/BwcF5tkeNGqX/vGvXrgKvy1mlJ7e3335bnxZS0Jhyr2BTs2ZNtmzZUuD5NWvWxNzcnP379wPZ009yvPzyy+zfv5/AwEBMTExISUnJ8ywWL17M4MGDmTJlChkZGXTt2hVnZ2fGjBnDsWPHUErh4+ODs7PzXf3n1DBRSlGsWDG9jkxuEyZM4J133sHJyQmj0YiNjQ1r166ladOm+lSdsWPH0X3gO4x6eyiHb684NHHiRDp27AiQp/hp7mlVOX744Qfq1q2Ls7NznnsA6N69Ox9++CHt2rXT65jkyF1nxNTUlMzMTJRS2Nvb3/MzBahTpw7h4eE0a9ZM3xceHo69vf09r7uXO1eX0jSNtLQ0hgwZQlhYGC+//DIBAQH61K2CmJqa4ujoSGZmJrVr12bRokWUKFHigcZgbW1NWFjYXQVnH1MxTdNSgSNAMSAEGKKUMuZ3sqZpHYCjSqmDt7cnAyFKqc2apgUDo5VST30dZQmYCCGEEEII8R9jNCriL6eQkJROeUszrMuWxMQk/2WA/439/VfdGWgC8Pb2xtvbG8gbVModMLGxsWHDhg13Xfvbb7/dsz9ra2tSU1PzPZa7X3Nz83xXbylTpgz79u3DaFRsiL3AkF8Pkl5vMOYRMXQd/iEdOvhx5coVrK2t9ZVnrKys9LEHBAToPzs6OmIwGBg3bhwdOnTQpy2VKFGC0NBQXn/9dapUqZJvXZw71apVi8TERHbt2kWDBg3IyMjg6NGjdwVC3nvvPcaOHcuGDRsoW7YsUVFRBAYGsmfPHl588UXi4+OJi4ujRo0aLFmyRL+ucePG/PLLL3z44Yf88ccfenFbyF45KaffX375hUaNGunBkXLlypGcnMyKFSt4/fXX73kP5ubm+nLP3bt3Z86cOfpUokIUp5QyaJpWBNgCdAAK+iXrAKwFDgIopT76JwZ4p2ex6KsQQgghhBDiKcl5Oe29YC8jlkTSe8FeNsRewGh8OotO/tP9PU+MRsWJxGR2n7jMicTk5/aZxV9O4ZP1h0jPzE42sO70Hp9+MhUHJ2eaNWvGxIkTqVGjxn3b+emnn5g1axZOTk40bNiQCxcuMHz4cMaNG8eECRMoW7Ysnp6eODg4MGbMmALbKVasGCtWrGDs2LE4OztjMBjYuXPnXee1a9eOvn370rBhQ+zs7Ojfvz8///wzlSpVonjx4nz//fe0adMGV1dXypcvr183ceJEQkJCsLe357ffftPryUB2sOabb76hdu3aXL16lcGDB1O6dGn69++Pg4MDrVq10peDflBeXl4cP36c33//nXr16uHi4kLz5s25ePEikF34tmXLltjb29OvXz+93kp8fDx2dnb4+/tja2tL9+7d2bx5M56entSsWVNfDWjv3r00aNAAFxcXGjZsyJEjR+45HqVUJrATeEXTtP6apu3TNG2/pmkrNU0roWlaQ6AdMF3TtChN02pomhaoadq9o0RPgZbzMP7t3N3dVc5SY0IIIYQQQoj8nUhMpveCvfrLKYBZERMW9fWgupXFv76/50VOoCknkGBWxITxrWvja1/xucvO2X3iMiOW3L1a0qxuLtSvXrYQRvTvZ2FhQXJyMpmZmXTq1AlfX1+6du1K6dKl0TSNH374gUOHDvH5558zYsQIypUrx0cffcS6deto27YtiYmJJCcn88orrxAZGYm9vb0+5Wn+/PmsWbOGhQsXsmrVKm7cuEGJEiUoUqQImzdv5rvvvsuzFDmApmnRgIlSykHTtBLANuAjYK9S6vLtc6YAF5VSszVNCwTWKqVW3D6mb8uUHCGEEEIIIcRTkZCUnid4AZCeaSQhKf2pBDD+6f6eF3dmXaRnGvlk/SHsKlr+K5/bvaZllbc0w6yIyV1BtfKWZgU1J+4jNTUVg8EAZGeYvPXWWxw5coQuXbpw/vx5bt26hY2NDQAhISH69Ks2bdroyzlD9nQtR0dHAOzt7fHx8UHTNBwdHYmPjweyV2jq3bs3x44dQ9M0fYnxfNTQNC0KUMBqpdQfmqY1uR0oKQ1YAH8WdHFhkICJEEIIIYQQ/yH/9MupvAw/mucp0HS/bBnrsiUZ37r2Xcety5Ys7KH/a+WuYZJj+PDhvPvuu7Rr147g4OC7iiDnJ3dRXBMTE33bxMREXz58woQJNG3alKCgIOLj4/XaNfmIU0oZ7tgXCHRQSu3XNM0fKPDiwiA1TIQQQgghhPgPyXk5NSuS/SrwtF9O/+n+nhc5gabc/q2BpoKyZeIvpwBgYqLha1+RRX09mNXNhUV9PZ7LqUeF7fr161SpUgWARYsW6ftzitACdxWhfdh2AwMDH3ZYlsB5TdOKAt1z7U+6faxQSYaJEEIIIYQQ/yE5L6d2FS3/kVVr/un+nhfPU9bFg2TLmJhoVLey+Ndlzzwtj7MscEECAgLo3LkzL774Is2aNePkyZNAdhHabt26YW9vT8OGDalatSrt27fn/PnznDt3Dk9PTxYsWFBgu++99x69e/dmypQptGnThszMTBwcHPIskX1bcU3TZimlRuTaNwHYAyTe/m9OkGQpME/TtBHAP17sNYcUfRVCCCGEEEKIZ9DzshyzFP59eDlFWyF7WWA3N7d/dFlgb29vZsyYgbu7O99//z1r165lzZo1970uMzOTM2fO0LZt2zwBE03TwpVS7k9zzE+DTMkRQgghhBBCPJPi4+NxcHDIsy8gIIAZM2YUeE1YWBgjRowo8Pi/SU7WRf3qZaluZfGvDJaATMt6XPdbFjggIIC+ffvi7e1N9erVmTVrFgApKSm0adMGZ2dnHBwcWLZsGVu2bKFDhw5625s2bcLPz++e/Tdu3Jjjx48THx+Pl5cXrq6uuLq66kstBwcH4+XlRbt27ahTp06ea0+cOIGLiwtACU3TvDVNWwugaVqApmkLNE0L1jTtxO1MEjRNK6lp2rrbywzHaJrW5fZ+H03TIjVNi759ndnt/fGapk3SNC3i9jG7x37guciUHCGEEEIIIcRzw93dHXf3x/8iOysrC1NT0ycwIiHTsh5dZmYmf/zxBy1btuIlOwMzf1lHhReKszloCZ999hmff/45AIcPH2br1q0kJSVRq1YtBg8ezIYNG6hcuTLr1q0DsmuNvPDCCwwZMoTExESsrKxYuHAhffv2vecYfv/9dxwdHSlfvjybNm2iePHiHDt2jG7dupEzyyMiIoKYmBhsbGz01XOOHDlC165dCQwMxGAw3MynaTugKdnTcI5omvYd4AucU0q1AdA0rZSmacXJLg7ro5Q6qmnaj8BgYObtdi4ppVw1TRsCjAb6PdLDzodkmAghhBBCCCH+dby9vRk7diweHh7Y2tqyfft2IPvb7rZt2wKQnJxMnz59cHR0xMnJiZUrVwKwZMkSHB0dcXBwYOzYsXqbFhYWjBo1CmdnZ3bt2oWFhQUffPABzs7O1K9fX/9GXzy85yVb5p+Ssyywu7s7L7/8Mi81aMNb3/6Jb6tWODo6Mfl/04iJidXPb9OmDWZmZpQrV47y5ctz8eJFHB0d2bRpE2PHjmX79u2UKlUKTdPo2bMnP//8M9euXWPXrl28+uqr+Y6he/fuGAwGduzYwYwZM8jIyKB///44OjrSuXNnDh48qJ/r4eGhL1MMkJiYSPv27Vm8eDHOzs4F3eY6pVS6UuoSkABUAKKBFpqmfappmpdS6jpQCziplDp6+7pFQONc7fx2+7/hgPWDPuMHIRkmQgghhBBCiH+lzMxM9u7dy/r165k0aRKbN2/Oc/zjjz+mVKlSREdHA3D16lXOnTvH2LFjCQ8P58UXX6Rly5asWrWKDh06kJKSQr169fRv7VNSUqhfvz5Tp07lvffeY968eXz44Yf/+H2K/57cywLn1IA5vmo2FTw78WLthqSeOsD12CD9/NzL/5qampKZmYmtrS0RERGsX7+eDz/8EB8fHz766CP69OnDa6+9RvHixencuTNFiuQfFli8eHGebK2AgAAqVKjA/v37MRqNFC9eXD9WsmTe6VWlSpWiatWqhIaG3jVNJ5f0XD9nAUVuZ5C4Aq2BKZqm/QWsvs/jymkniycc45CAiRBCCCGEEOKZpGn5ZyHk7O/YsSMAbm5u+jSA3DZv3szSpUv17RdffJGQkBC8vb2xsrICsr9FDwkJoUOHDpiamtKpUyf9/GLFiunZKm5ubmzatOmJ3JcQDyNnlaGs9BSKvVAOgAthf/JyMeM9rzt37hxlypShR48elC5dmh9++AGAypUrU7lyZaZMmXJXkPFerl+/zksvvYSJiQmLFi0iKyurwHOLFStGUFAQrVq1wsLiwQv7appWGbiilPpZ07RrZE+v+Qyw1jTtFaXUcaAnsO2BG30MEjARQgghhBBCPJPKli3L1atX8+y7cuWKnvqf8616zjfqj6t48eJ56pYULVpUD848qT6EeFjlLc0wK2JC5Wa9iFv6Mabmlrz4igvFMvMrC/L/oqOjGTNmDCYmJhQtWpTvvvtOP9a9e3cSExOpXbv2A49jyJAhdOrUiR9//BFfX9+7skruVLJkSdauXUuLFi0ASj1gN47AdE3TjEAGMFgplaZpWh9guaZpRYB9wJwHHvhjkGWFhRBCCCGEEM8sd3d3PvvsM5o1a8aVK1eoX78+f/zxB2+99Za+7OmlS5dwd3cnPj6e4OBgZsyYwdq1axk3bhxpaWnMnDkTyJ6Sk5aWRv369fUpOa1atWL48OG0b98+z1KukHdp1xUrVrB27VoCAwML4SmI/zKjUbEh9gKfrD9EeqZRX2XI177iI9eCGTZsGC4uLrz11ltPeLT5+7cuKywZJkIIIYQQQohn1o8//sjQoUN59913AZg4cSI1atR4oGs//PBDhg4dioODA6ampkycOJGOHTsybdo0mjZtilKKNm3a0L59+6d5C0I8lie9ypCbmxslS5bUa/WIgkmGiRBCCCGEEEII8RQZjYr4yyn/2WWVJcNECCGEEEIIIYQQeTyNKTXin2FS2AMQQgghhBDi32zq1KnY29vj5OSEwWBgz549//gYAgICqFKlCgaDATs7OwYPHozReO8VNAqD0ag4kZjM7hOXOZGYjNH4fGS7C3Ev8ZdT9GAJQHqmkU/WHyL+ckohj0zcj2SYCCGEEEII8Yh27drF2rVriYiIwMzMjEuXLnHr1q1CGcvIkSMZPXo0RqORxo0bs23bNpo2bVooY8mPfMsu/qtylgXOLT3TSEJSOtWtHnzJXfHPkwwTIYQQQgghHtH58+cpV66cvrxtuXLlqFy5MgDW1tZcunQJgLCwMLy9vQHYtm0bBoMBg8GAi4sLSUlJJCcn4+Pjg6urK46OjqxevRqA+Ph4ateuTf/+/bG3t6dly5akpqbec0y3bt0iLS2NF198EYCoqCjq16+Pk5MTfn5++jK93t7ejB07Fg8PD2xtbdm+fTsAWVlZjBkzhrp16+Lk5MTcuXP1e23cuDEGgwEHBwf9/Af1X/6W/fLly/pnXrFiRT0byGAwPJUA25PMOAoMDOTcuXNPeIT/LTnLAudmVsSE8pZmhTQi8aAkYCKEEEIIIcQjatmyJadPn8bW1pYhQ4awbdu2+14zY8YMvvnmG6Kioti+fTvm5uYUL16coKAgIiIi2Lp1K6NGjSJncYZjx44xdOhQYmNjKV26NCtXrsy33S+//BKDwUClSpWwtbXFYDAA0KtXLz799FMOHDiAo6MjkyZN0q/JzMxk7969zJw5U98/f/58SpUqxb59+9i3bx/z5s3j5MmT/PLLL7Rq1YqoqCj279+vt/+g7vUt+/OubNmyREVFERUVxaBBgxg5cqS+XaxYsQKvy8zMvOf2veT0cfDgQaKjox/odzM/EjB5fNZlSzK+dW09aJKTXWVdtuRT6a+gAF3p0qWpU6fOU+nTwuLpZMpomqY0Tfs81/ZoTdMC7nNNB03T6uTa9tc0rfKj9C8BEyGEEEIIIR6RhYUF4eHhfP/991hZWdGlSxcCAwPveY2npyfvvvsus2bN4tq1axQpUgSlFO+//z5OTk40b96cs2fPcvHiRQBsbGz04ISbmxvx8fH5tpvzgpyQkEBKSgpLly7l+vXrXLt2jSZNmgDQu3dvQkJC9Gs6dux4V7sbN27kxx9/xGAwUK9ePS5fvsyxY8eoW7cuCxcuJCAggOjoaCwtLR/qWcm37HmFh4fTpEkT3NzcaNWqFefPnweyM3/eeecd3N3d+eqrr/JsT506FRsbGzIyMgC4ceMGNjY2aJpGjx499LaNRiMTJ06kbdu2D5xxlN/+FStWEBYWxmuvvUa5cuXum92U42nV1AkMDGTYsGH59jdjxox7Xuvv78+KFSseewx3Cg4OZufOnfc8J2dZ4EV9PZjVzYVFfT2e6lS0ewXoTEwKPwSgadrDlAZJBzpqmlbuIa7pAOSODPkDEjARQgghhBDin2Zqaoq3tzeTJk3i66+/1jNAihQpor8kpqWl6eePGzeOH374gdTUVDw9PTl8+DCLFy8mMTGR8PBwoqKiqFChgn5NznSfnL7ul2VQtGhRfH198wRGCpLTdu52lVLMnj1bf8E6efIkLVu2pHHjxoSEhFClShVcXFyoVq2a/i32tGnTgOyX/bCwMACWL19O7dq19Toqub9lv3XjEieWTn7gb9nvzHLIPd3pYcXHx2Nubq6P3WAw8OOPPz5SW49KKcXw4cNZsWIF4eHh9O3blw8++EA/fuvWLcLCwhg1alSe7YkTJ+Lt7c26desAWLp0KR07dqRkyZLExMToAY24uDhu3brF9u3bHzjjKL/9r7/+Ou7u7gwYMICuXbtibm7+wPf4IBkuD5MxU9iysrLy3f8gARPIDppUt7KgfvWyVLeyKLS6PVlZWflO8YuLi8PX1xc3Nze8vLw4fPgwkP330qxZM5ycnPDx8eHvv/8G4OTJkzRo0ABHR0c+/PBDvX2lFGPGjMHBwQFHR0eWLVuWc8hS07TtmqatAQ5qmmaqadp0TdP2aZp2QNO0gQUMORP4Hhh55wFN06w1Tdty+/q/NE2rqmlaQ6AdMF3TtChN08YC7sDi29sP/kuMBEyEEEIIIcRz5s7U8IK+lX4Sjhw5wrFjx/TtqKgojh07xooVK7C2tiY8PBwgzzSauLg4HB0dGTt2LFWqVKF27docPXqU8uXLU7RoUb788ktOnTqVb3+5X6oLopRix44d1KhRg6CgICwsLPR6I0OHDqVhw4b3vL5Vq1Z89913ehbD0aNHSUlJ4dSpU1SoUIH+/ftTrFgx/Pz89KDKuHHj7mpn/vz5zJs3j61btwL//y37/F6uzBnYgr1b1j/wt+xPelpIjRo19LFHRUXRq1evJ9b2nfILCqSnpxMTE0OLFi0wGAxMmTKFM2fO6Me7dOmS5/zc2/369WPhwoUALFy4kD59+gDQunVrPZASExNDy5Yt8fLyIiEhgTNnzlCzZk2cnJw4cuQIFStWBLL/VgIDA/Hx8eHQoUP69b179yYoKAhbW1siIiLYv38/AElJSflmuORs5+fODJc7M2j++usvXFxccHR0pG/fvqSnZ0/R2rdvHw0bNsTZ2RkPDw+SkpLytLtu3ToaNGhwV+CsoBd/gJCQEBo2bEj16tX1bJPg4GDatm2rnzNs2DA9S8za2pqxY8fi6urK8uXLmTVrFnXq1MHJyYmuXbsSHx/PnDlz9OlwD1vXJ0d+01nmzJmjB/IeNjvG29ubqlWr6tP6ADp06ECdOnUKnOI3YMAAZs+eTXh4ODNmzGDIkCEADB8+nN69e3PgwAG6d+/OiBEjAHj77bcZPHgw0dHRVKpUSe/nt99+06ftbd68mTFjxujZU4Ar8LZSyhZ4C7iulKoL1AX6a5pmU8AtfQN01zSt1B37ZwOLlFJOwGJgllJqJ7AGGKOUMiilPgXCgO63tx8sTeo2CZgIIYQQQgjxiJKTk+ndu7f+EnXw4EH9m/yJEyfy9ttv4+7ujqmpqX7NzJkzcXBwwMnJiTNnztCwYUMyMjIICwvD0dGRjRs3UrLkw9c2yHlpc3BwICsriyFDhhAYGMgHH3zAmDFjcHJyIiQkhHfeeeee7fTr1486derg6uqKg4MDAwcOJDMzk+DgYJydnXFxcSEzM5O33367wDYmT55MaGgob731FmPGjCEwMJB27drRvLkP/bu2p6JJEu2a1sfERCMrK4vRo0frz2T27Nl52sqZFtK9e3cMBoP+jfjs2bP1Irk5L8UpKSn07dsXDw8PXFxc9OK5D2rw4MG4u7tjb2/PxIkT9f3r16/Hzs4ONzc3RowYob9gF9Rfzv02a9YMHx+fu/pRSmFvb68HbKKjo9m4caN+/M7PP/e2p6cn8fHxBAcHk5WVhYODAwBdu3Zl6dKlpKWlcfHiRapWrQpkZxx16NABHx8ftm/fTqlSpXj//ff19lJTU1m4cCEVK1Zk2bJlnD59moSEBM6fP8+OHTtwcXHh5MmTAFhaWuab4VK0aNG77rGgmjrw/xkzQ4cOxd/fn2XLlhEdHU1mZibfffcdt27dokuXLnz11Vf6i3fu7JagoCCmTZvG+vXrKVcu70yNgl78IbtwcWhoKGvXrs03yJefsmXLEhERQdeuXZk2bRqRkZEcOHCAOXPmYG1tnWfKi5eX1wO1+SAGDRr0WIG80qVLs2PHDiD7M84JWuQ3xS85OZmdO3fSuXNnDAYDAwcO1M/ftWsXb775JgA9e/YkNDQUgB07dtCtWzd9f47Q0FC6deuGqakpFSpUoEmTJuzbty/n8F6l1MnbP7cEemmaFgXsAcoCNfO7F6XUDeBHYMQdhxoAv9z++Seg0UM9pAcgARMhhBBCCPGf8fvvv1OvXj1cXFxo3ry5XickICCAvn374u3tTfXq1Zk1axZw71Vq5s2bx6BBg0hJSaF27drs3r2b3377jeLFixMSEsLYsWPJzMxk3LhxzJgxg+DgYCD7RT8mJoadO3eSlZXFwoULWbNmDbt27SI6Olr/Rnvo0KG0atWKRo0a6VN7ihYtyvXr17G3t8fHx4fExEQg+9vjl19+GaPRiK2tLd9++y3r1q0jLCyMyZMnk5aWxltvvUVmZiZ+fn40bdqU4OBg3N3dgezVfXJqmJiYmPC///2P6OhoYmJi2Lp1K6VKlaJ3797ExMQQGRkJgJ+fnz6lJVfaPQAfffQR7u7uLF68mOnTpwMQERHBihUr7pqa8f333xMfH09UVJT+LXZuOdNCFi9eTFRUlP7iXK5cOSIiIhg8eLBev2Lq1Kk0a9aMvXv3snXrVsaMGUNKyt2r8MTFxeWZkpOTGTB16lTCwsI4cOAA27Zt48CBA6SlpTFw4ED++OMPwsPD9Wd+v/4Kul/IngqVmJjIrl27AMjIyCA2Nvau8wrSq1cv3nzzTT27BMDJyYn4+HiWLFlCzZr//96plCI0NJTQ0FA8PT1JSkrSX2B37tyJra0tVatWpUyZMlSsWJFTp07x1VdfUaNGDaysrHjhhRdo3Lix3l5BGS53yq+mTo6cjJkjR45gY2ODra0t8P81do4cOUKlSpWoW7cuAC+88AJFimSXvdiyZQuffvop69at07NWctzrxR+y/05MTEyoU6eO/rd/P7mze5ycnOjevTs///yzPp6nJb+6LFu2bKFDhw769qZNm/Dz88v3+pwAGkB0dLRer8jMzEyfNvPll18ya9Ysli9fTunSpYmMjKRFixZkZmZSpEgR/e9627ZteHt706VLF65du6b/jWraQ08ryv3HqAHDb2d9GJRSNkqpjQVdCMwkOyvl6VTKLYAETIQQQgghxHMlNTU1z8vwRx99pB9r1KgRu3fvJjIykq5du/LZZ5/pxw4fPsyff/7J3r17mTRpEkfOXSXy76scO3aMwYOH3JXC3rFjR/bt28f+/fupXbs28+fP19t6kG+yV69eja+vL7a2tpQtW1afvgOwd+9eZs+ezcGDB4mLi+O3334DsjMa3N3diY2NpUmTJg9UfyIn0PD2229TuXJltm7dqk+TeVTm5uZ5prTcOYUkPy1atKBMmTJ37d+8eTMDBw7UX0DzOyc/BRWsnTZtGgaDAW9vb9LS0vSaC7ndOSUnJzPg119/xdXVFRcXF2JjYzl48CCHDx+mevXq2NhkzxbI+Vb9fv0VdL+QHZRasWIFY8eOxdnZGYPB8EB1MHJ0796dq1ev5hkLQLt27fRsnRUrVrB9+3YcHByIjIzE39+fmJgYVq5cycWLF3FycuLvv/+mXr16ACxatIijR4/Su3dvTp48iZOTE5A9HeTXX39l6dKlet2d/DJcCpJfTZ1HyaDKUaNGDZKSkjh69Ohdx4xGI6VLl87z2R46dEg/nrseUM50ldy1hiBvvaE7x7pu3TqGDh1KREQEdevW/cdrsDRt2pTDhw/rQbuFCxfSt2/ffM/18fEhJCQEo9F4199ozrSZd999l169ejFx4kSqVKnC6NGj9ef21VdfMWbMGFxdXdmyZQuRkZE0atSItm3bcuLECWrXrq0HZBYvXqy37eXlxbJly8jKyiIxMZGQkBA8PDzyG+KfwGBN04oCaJpmq2lagb8YSqkrwK9kB01y7AS63v65O5AzJyoJyF2V+s7tByYBEyGEEEII8Vy582V+8uTJ+rEzZ87QqlUrHB0dmT59ep5v9du0aYOZmRllypSlRKky9Px6IwFrYilauiIXilbEaFR5Xs5jYmLw8vLC0dGRqVOnMmnSJAwGA2vWrMHT0zPfb7KvXbvGt99+C8CSJUvo2jX7/+t37dqVJUuWYGpqSr9+/ShSpAgdO3bk9OnTdOvWTU+DNzEx4eeff+batWv06NGD0NDQ+66E86x4nJfk/BRUsHblypX6Z//3339Tu3btB2rv5MmTzJgxg7/++osDBw7Qpk2bu16e73Sv/gq634CAAEaPHo3BYCAkJIT9+/cTGxtL//79AfJk/uS3DdnTHl5//XVKly6dZ3/fvn2ZOHEi3333HcuXL8fLy4vY2FgMBoMe8Nm7dy+VKlXiwIEDjBgxguLFiwNgMBjw9PRk/vz5rFq1it27d3P58mXatWuHra1tnqKv+WW43OsZ5dTUuVOtWrWIj4/n+PHjAPz00080adKEWrVqcf78eT0TJikpSf+Mq1WrxsqVK+nVq9ddWTkvvPACNjY2LF++XO87p/5KQapVq8bBgwdJT0/n2rVr/PXXX/meZzQaOX36NE2bNuXTTz/l+vXrJCcnY2lpeVd9ladF0zR69uyp/2/Arl27ePXVV/M919TUlEaNGhETE0NGRgbW1tb6sZxpMyYmJlhYWNCkSRMGDhzIypUrOXz4ME5OToSGhtKkSRPeeOMNNmzYgNFoZN26dcyaNQuDwUDHjh355ptvcHR05OzZs3rbfn5+ODk54ezsTLNmzfjss8/0mjl3+AE4CERomhYDzAXul7bzOZB7DtZwoI+maQeAnkDOPMGlwBhN0yI1TasBBAJzpOirEEIIIYQQ9zB8+HCGDRtGdHQ0c+fOzfNCnPMCHn85hSs3M0m/lV3IUjMtyifrDxF/OSXPy7m/vz9ff/010dHRmJmZ0bZtW6KiomjXrh0vvfSS3m7uwos5AZMrV66wZcsW+vXrh7W1NdOnT+fXX3/F3NycH374ATc3N6KiovSXHE3TUEqhlOL333/XX5QfJCW+oNU9nhUtWrRg7ty5+nO9cuXKXec86Etpq1atmD17tv7Mc6YPPYgbN25QsmRJSpUqxcWLF/njjz+A7Jf6EydO6IGy3NOPHqe/RzV8+HDGjRvHhAkT7jr20ksv6UU5c3vvvfcYP368Xn/mfipVqkRAQAANGjTA09PzrqBTQRkuueVXU+dOxYsXZ+HChXTu3BlHR0dMTEwYNGgQxYoVY9myZQwfPhxnZ2datGiR52/Vzs6OxYsX07lzZ+Li4vK0uXjxYubPn4+zszP29vb3rWPz8ssv88Ybb+Dg4MAbb7yBi4tLvudlZWXRo0cPHB0dcXFxYcSIEZQuXZrXXnuNoKCgxyr6+jD69OnDzz//zJIlS+jcufM9pwZ17dqVbdu28e677wLZAdeYmBj9+OjRowkICACgQoUK+Pn5MWnSJA4ePKhn5pUvX54vvviCJk2a8Ndff1G1alVMTU0pU6aMPo1wypQpJCcnA9n/mzR9+nRiYmKIjo7OndmSpJTSq+sqpYxKqfeVUo5KKQelVFOl1PU770EpZZHr54tKqRJKqYDb26eUUs2UUk5KKR+l1N+39+9QStVRSrkopeKUUiuVUrUepejr0514JYQQQgghxDPk+vXrVKlSBciegpCfhKR0csU4AEjPNJKQlJ5nX1JSEpUqVSIjI+Oul9DU1FR8fHy4evUqN2/eZPXq1bRv355x48YRFxeHs7MzNWvWzPPtd5MmTfQVP/bu3cvJkyf15Wfd3d1xcHBAKUWlSpU4dOgQv/zyC9evX6dZs2YkJCQwZswYpk+fzk8//URMTAyjRo0iIiKCPXv26NMucgIPdxbKfFg5055y+Pr66ksLP6x+/fpx9OhRnJycKFq0KP37979rVSN/f38GDRqEubm5XvcjPxMmTOCdd97ByckJo9GIjY0Na9euveu8nBomOfr27cuIESNwcXHBzs6Ol19+GU9PTyA7Y+nbb7/F19eXkiVL6nU1AD744EP6DR7GK3b2mGqKmjVqsG7d3f09SXcWxQX0l9XcvL298fb2BqBBgwZ5prBMmTIFyH6u/v7++v7cz6pPnz4FZpAUlOGSIyAgQH8Rv1NOLZ8cPj4++Qaa6taty+7du/Psyz1eFxcXDh48qPeXw8bGhg0bNtzVXs7KNzlyP7PPPvssz/S8HDlBMsieWpST6ZWbra0tBw4cuGv/k2Y0Kk4kJpOQZkbpcuWZMmUKmzdvvuc1Xl5ejB8//q7AlpeXF3PnzqV3795cuXKFkJAQpk+fTmZmZr77c6809F8jARMhhBBCCPGfERAQQOfOnXnxxRdp1qyZvvpHbuUtzbgzccOsiAnlLc3y7Pv444+pV68eVlZWGI1G1qxZg8Fg4MqVK7z66qsEBQXxwgsvULJkSUaNGkW7du2YNm0aMTExWFlZMXbs2DztderUie3bt9OvXz9MTU1p0KABJUqU4ObNm3zyySc0bNgQCwsLbt26RaNGjahcuTIbNmzA1taW3bt306xZM9atW4etrS0ZGRnUq1ePhg0b8v7777NgwQJ27drFgAED8PX11WuZPKqCslZyvwzn/vnOF3Nra2v9m+4iRYrwxRdf8MUXXxTYX6dOnejUqZO+nftF1t3dXe/L3NycuXPn3nPs1tbWeuHeO935Up0jp3aEUoqhQ4fi7u6O0ajYduI6Z+x7ULbWm5gVMWFo69oYjequ+32eDB8+nD/++IP169cX9lCeGzdv3syTlZaTEZJDKYg6fY3ZC/aSnmnkRlk3LMsmUKuW3T3b1TSN0aNH37Xfz8+PXbt24ezsjKZp+rSZgvb/lwMmmrozfP4v5e7ursLCwgp7GEIIIYQQ4l/OaFRsiL3AJ+sPkZ5pxKyICeNb18bXviImJvlPgbGwsMjzjXVGRgYjR44kJCQEExMTjhw5wsmTJ0lLS6Nt27Z50uLv1U58fDxNmzbNE9ixtrYmLCyMcuXKERAQQFBQkH7un3/+Sf369SlSpAjp6el5ljO+3z3HX04hISmd8pZmWJctWeC9/hd9+eWXLFq0iFu3buHi4sK8efO4kGKk9+0X2BxmRUxY1NeD6lYW92jt/v4tn4epqSmOjo76dteuXe+5XO+aNWs4ePBgvufc+bufIzU1FV9fX/6PvfuOq7J8Hzj+OaCCAioCbhNwIXAOh60CinvjTnGBpOUepaaWSWZmaUvLzMqZIe4sR05UXAwFBPc4fc00EUVBRQXu3x/8zhNHhrgS9H6/XrziPPN+Hg7kc53rvq5du3bleT8HBwfTqVMnevbsyeDBg3n77bdxdHR8iisqWEHj++CDD2jatCmtWrV6puebOXOm0v75fHI6Wg9vHN78GoA/f5tH+Zr1+OO70CK91/r06cNHH31k0D3pv6ZSqWKFEB6P3rJ4kRkmkiRJkiRJUrH2Xz88GhmpaOdUFYeqFk98zhUrVpCcnExsbCylS5fG1tb2kQVEC1JQ8dCIiAh27NjBwYMHKVeunNKlBXJqQzxOsORxA0SvmnHjxjFu3DiDZVevpBgES+DfqVtPEzApST8PfYHlogoICCAgIOCxzrFo0SK6d+/+yPfzjz/++FjHfVZyF5V+lnIHTK6m3VOCJUnzh2NU2pRa7d8q8ntt2LBhfPbZZ/zwww/PZawvM1n0VZIkSZIkSSq29A+PQYuiGB12lKBFUWxNukJ29vPNkjYyUmFvY04jeyvsbcwf+0H15s2bVK5cmdKlS7N7927+/PNPoOjFS4t6DktLS8qVK8fJkyfz1HsoKl3KbeXhHHIe+vVFbqWCVbYwwaSU4eNUflO3HtfL8POwtbVl2rRpuLm5oVarlSkdS5YsUerTXLhwgcaNG6NWq3n//fcLPNaKFSvo0qULkFNAeeTIkTRo0IBWrVpx9epVZTt/f39iYmLIysoiODgYZ2dn1Go1X375JQA//PADnp6euLi40KNHD+7cuQPkZKkMGzaMRo0aYW9vT0REBCEhITRs2DDPtKpx48bh5OREy5Ytlda+wcHBrFmzBoDNmzfj4OCAu7s7QUOG4dOiDeeT05k2bRpz5sxRjuPs7KxMK+vatSvu7u44OTmxcOFCACZNmqTUCerXrx+VLUyInd4ZAMdh32Jey4ET340gqFNTpQhxREQE/v7+9OzZEwcHB/r166cUI/bz82PHjh3/eRvkl4EMmEiSJEmSJEnFVkl9eOzXrx8xMTGo1WqWLVuGg0NOrQErKyt8fHxwdnZmwoQJT3WOdu3akZmZScOGDZk0aRKNGjV6ouNcTbtXYKaEVDBbKzMmd2ioBE30mSC2Vk/XPrkk/Tz0D/X6r9wdhKytrTly5AjDhg0zCBbojRkzhmHDhnHs2DGqVauW7/Hv37/P+fPnlW5R69ev59SpUxw/fpxly5Zx4MCBPPvExcVx6dIlpUuLvnBt9+7diY6OJj4+noYNG/LTTz8p+9y4cYODBw/y5ZdfEhAQwLhx40hKSuLYsWNKBs3t27fx8PAgKSmJZs2a8eGHHxqcNyMjg7feeotNmzbz0ZLf2Rx9iqS/bxG0KIqzV9MpqBTGokWLiI2NJSYmhrlz55KSksKsWbOU7J0VK1Zga2VGGWMjTEoZceN4JBlXzrFy6z4idu5kwoQJXL58Gcjp0vTVV19x/Phxzp8/z/79+4Gc7jh169Z9ZItlKS85JUeSJEmSJEkqtgp7eHzaOhHP0sO1DaytrQvs5vLLL78U+Ti5i6Pq5S54qm99+6jjFEafKfFwLY6nzZR42T2LqVv5KUk/j8Km5HTv3h0Ad3d31q1bl2f9/v37Wbt2LQADBgzIUwQZ4Nq1awadePbu3UtgYCDGxsZUr16dFi1a5NnH3t6e8+fPM2rUKDp27EibNm0ASExM5P333yc1NZX09HTatm2r7NO5c2dUKhVqtZoqVaoodVmcnJzQ6XRotVqMjIyUFrn9+/dXrk/v5MmT2NvboypfmU/WRFHR2Z/kmM3cy8xm35lrvFalUr73ae7cuUodoosXL3LmzBmsrKwMtjEyUmFspGJpiBdT3l2F68g36KipgZGRimbNmhEdHU358uXx8vJSisdqtVp0Oh2+vr5ATnvgv//+G3d393zHIeVPZphIkiRJkiRJxdbzmvYg/et5ZUq8Cp526lZ+Xpafh4lJzu+osbFxgVNBVA+3o3pI2bJlH7v2j6WlJfHx8fj7+7NgwQIGDx4M5Eyd+eabbzh27BjTpk0zOK5+rEZGRsr3+tePO/b8grzZGJF2977yWn/u3HWI4uPjcXV1LfR67W3MqVahLDYWpvm+13KP/eH7npGRQdmyZQs8tpQ/GTCRJEmSJEmSiq0X9fCYnS04n5zOofMpnE9Of+41U14kfabE0hAv5ga6sjTEq1gWGH1VvCo/Dx8fH1auXAnk1CnJj6WlJVlZWUoQoWnTnJodWVlZXL58Od/W2NeuXSM7O5sePXowY8YMjhw5AkBaWhrVqlXjwYMHBZ6vMNnZ2Uqtkl9++UXJ3NBr0KAB58+f5/6NK5iUMuL6sT3KOjPrquhOJwFw5MgRpetVYXWISpcuzYMHD/KMw8/PT7kHycnJ7N27Fy8vr0eO//Tp0zg7Oz/2db/q5JQcSZIkSZIkqdh6XtMeClOSupQ8K/pMieI0zelVVlJ+HvoaJnrt2rVj1qxZRdr366+/pm/fvnz66adKUdf8tGnThsjISFq1akW3bt3YtWsXjo6OvPbaazRu3DjP9pcuXWLQoEFkZ+dkeXzyyScAfPTRR3h7e2NjY4O3t/djF182MzMjKiqKGTNmULlyZYN6LZCTDTN//nze7NeDTKMylClfm/vkBHlnvTOE+VOG4uTkhLe3N/Xr1wdy7teCBQto2LAhDRo0MKhD9Oabb6LRaHBzczMI8HTr1o2DBw/i4uKCSqXis88+o2rVqkph3fz8888/lC1blqpVqz7WNUugKqj4TEnj4eEhYmJiXvQwJEmSJEmSpBLufHI6QYui8tSQWBriVewfYCXpZXPkyBG+/PJLli9f/qKH8kjp6emYm5uTlZVN0OC3sKpRmzFjxj73IO+jfPnll5QvX5433njjhY1BpVLFCiE8XtgAnpCckiNJkiRJkiRJuZSkLiWS9CwVx6lobm5uNG/enKysrBc9lEf64Ycf0Gq1qNXOiPt3+GTK28+sts3TqFixIkFBQS90DCWVzDCRJEmSJOmVlpKSQsuWLQG4cuUKxsbG2NjYABAVFUWZMmVe5PCkF0BmmEivoldxKpr035EZJpIkSZIkSSWQlZUVcXFxxMXFMXToUMaNG6e8LlOmTIEdEp7W8zqu9PReli4lkvQ4dCm3lWAJ5GRVfbL5BLqU2y94ZJL04siAiSRJkiRJ0kOCg4MZOnQo3t7eTJw4kXPnztGuXTvc3d3x8/Pj5MmT3Lx5k9q1ayuFBW/fvk2tWrV48OABcXFxNGrUCI1GQ7du3bhx4wYA/v7+jB07Fg8PD77++utnOuaUlBS0Wi1arZaqVatSo0YN5fX9+/cffQBJ8ap0KZGk3ORUtOdLpVLRv39/5XVmZiY2NjZ06tTpPx1HcHAw5cqVMyh6O3bsWFQqFdeuXXvs4y1ZsgQbGxtcXV2pV68ebdu25cCBA89yyI+kUqkiVCrVc8lekV1yJEmSJEmS8vHXX39x4MABjI2NadmyJQsWLKBevXocPnyY4cOHs2vXLrRaLXv27KF58+b8/vvvtG3bltKlSzNw4EDmzZtHs2bN+OCDD/jwww/56quvALh//z7PYxqxPlMGIDQ0FHNzc8aPH//Mz/OqKCldSiTpWalsYYJJKaM8U9EqW5i8wFG9PMzMzEhMTOTu3buULVuW7du3U6NGjcc6RmZmJqVKPf0jfN26dfn111/p378/2dnZ7Nq167HHklvv3r355ptvANi9ezfdu3dn9+7dNGzY8KnH+qLJDBNJkiRJkqR89OrVC2NjY9LT0zlw4AC9evVCq9Xy1ltvcfnyZSDnH4n61pIrV66kd+/e3Lx5k9TUVJo1awZAUFAQe/fuVY7bu3fv/+wadu7ciaurK2q1mpCQEO7dy/mk2NbWlsmTJ6PVavHw8ODIkSO0bduWOnXqsGDBgv9sfNLzt2HDBlQqVaEtR/39/QsM4g0ePJjjx48/9TgiIiKoUKECWq2Whg0b8uGHHz71MaVnS05Fe/46dOjApk2bAAgLCyMwMFBZd/36dbp27YpGo6FRo0YkJCQAOQHwAQMG4OPjw4ABA9DpdPj5+eHm5oabm5uSzZGdnc3w4cNxcHCgdevWdOjQgTVr1uQ7jj59+ij/74qIiMDHx8cgENO1a1fc3d1xcnJi4cKFyvKtW7fi5uaGi4uLUvvrYc2bN+fNN99U9tNnXAKOKpVqvUqlsgTDrBCVSmWtUql0//99OZVKtUqlUh3//+0P59ruO5VKFaNSqZJUKtV/8kdEBkwkSZIkSZLyYWaW85CQnZ1NxYoVlbomcXFxnDhxAoCAgAC2bt3K9evXiY2NpUWLFkU+7vOWkZFBcHAw4eHhHDt2jMzMTL777jtl/WuvvUZcXBx+fn4EBwezZs0aDh06xLRp0/6T8Un/jbCwMHx9fQkLC3vsfbOysvjxxx9xdHR8JmPx8/MjLi6OmJgYfv75Z44cOfJMjis9G3Iq2vPXp08fVq5cSUZGBgkJCXh7eyvrpk2bhqurKwkJCcycOZOBAwcq644fP86OHTsICwujcuXKbN++nSNHjhAeHs7o0aMBWLduHTqdjuPHj7N8+XIOHjxY4Djq169PcnIyN27cICwsjD59+hisX7RoEbGxscTExDB37lxSUlJITk5myJAhrF27lvj4eFavXl3g8d3c3JQg7cCBA/n0008BjgPHgEf9T2Y4cEMI4QhMBdxzrXvv/wvHaoBmKpVK84hjPTUZMJEkSZIkSSpE+fLlsbOzU/5xKIQgPj4eAHNzczw9PRkzZgydOnXC2NiYChUqYGlpyb59+wBYvny5km3yX8rKysLOzo769esDeTNdAgICAFCr1Xh7e2NhYYGNjQ0mJiakpqb+5+OVnr309HQiIyP56aefWLlypbL87t279OnTh4YNG9KtWzfu3r2rrDM3N+edd97BxcWFgwcPGmSfDBs2DA8PD5ycnAwCa7a2tkybNg03NzfUanWh2SyQEzR0d3fn7NmzhIaGMmfOHGWds7MzOp0OgGXLlqHRaHBxcWHAgAEAJCcn06NHDzw9PfH09GT//v1kZ2dTr149kpOTgZwgZ926dZXXUtHpp6I1srcqFu1wXzYajQadTkdYWBgdOnQwWBcZGam8z1u0aEFKSgq3bt0Ccv5ely1bFoAHDx4wZMgQ1Go1vXr1UjLAIiMj6dWrF0ZGRlStWpXmzZsXOpbu3buzcuVKDh8+jJ+fn8G6uXPn4uLiQqNGjbh48SJnzpzh0KFDNG3aFDs7OwAqVapU4LH1nXgfzrgElgJNH3GbfIGV/3+cRCAh17rXVSrVEeAo4AQ8m2huIWTARJIkSZIk6RFWrFjBTz/9hIuLC05OTvz666/Kut69e/Pzzz8bTLVZunQpEyZMQKPREBcXxwcffPAihl0oE5OcugRGRkbK9/rXsoPPy+HXX3+lXbt21K9fHysrK2JjYwH47rvvKFeuHCdOnODDDz9UlkNO8WJvb2/i4+Px9fU1ON7HH39MTEwMCQkJ7NmzR5kyAGBtbc2RI0cYNmyYQQAkPykpKRw6dAgnJ6cCt0lKSmLGjBns2rWL+Ph4pUjymDFjGDduHNHR0axdu5bBgwdjZGRE//79WbFiBQA7duzAxcVFaQ9eUhgbG6PVanFxcTGYavE4Zs6cafC6SZMmj7W/ra0tarUarVaLWq02+FuXn9TUVObPn6+81ul0/PLLL491zldNQEAA48ePN5iO8yi5MxO//PJLqlSpQnx8PDExMU9c1Lt3795MnTqV1q1bY2T0b1ggIiKCHTt2cPDgQeLj43F1dSUjI+Oxjn306NGi1C/J5N94hOmjNlapVHbAeKClEEIDbCrKfk9LFn2VJEmSJEn6f6Ghofkut7OzY+vWrfmu69mzp/Jpmp5Wq+XQoUN5to2IiHjaIRaZsbExOp2Os2fPUrdu3ReW6SK9OGFhYYwZMwbImQoQFhaGu7s7e/fuVdL4NRoNGs2/We3Gxsb06NEj3+OtWrWKhQsXkpmZyeXLlzl+/Liyb/fu3QFwd3dn3bp1+e6/b98+XF1dMTIyYtKkSTg5ORWY1r9r1y569eqFtbU18O+n2Tt27DCoqXLr1i3S09MJCQmhS5cujB07lkWLFjFo0KAi36fiomzZskrh5j/++IPJkyezZ8+eIu0rhEAIwcyZM5kyZYqy/EmCLrt378ba2ppTp07Rpk0bunTpUuC2+oDJ8OHDgX8DJn379n3s874qQkJCqFixImq12uD/CX5+fqxYsYKpU6cSERGBtbU15cuXz7P/zZs3qVmzJkZGRixdupSsrCwAfHx8WLp0KUFBQSQnJxMREVHoz6F27dp8/PHHtGrVKs/xLS0tKVeuHCdPnlT+X9aoUSOGDx/OhQsXsLOz4/r16/lmmezZs4eFCxeye/fuPBmXwABA/6bWkTPdJgromesQ+4HXgd0qlcoRUP//8vLAbeCmSqWqArQHInjOZMBEkiRJkqSXTna2QJdym6tp96hsYYKtldkrl1puamrK4sWL6dWrF5mZmXh6ejJ06NAXPSzpP3L9+nV27drFsWPHUKlUZGVloVKpmD17dqH7mZqaYmxsnGf5hQsXmDNnDtHR0VhaWhIcHGzwqbM+S8nY2LjADCU/Pz9+//13g2WlSpVSWnMDj/wkOzs7m0OHDmFqavjBsrm5OVWqVGHXrl1ERUUp2SYl1a1bt7C0tFRez549m1WrVnHv3j26devGhx9+iE6no23btnh7exMbG4uXlxd3795Fq9Xi5OTEihUrMDc3Jz09vcBjPM4YvvjiCxYtWgTkFAMeO3YskyZN4ty5c2i1Wlq3bs2+ffs4ceIEWq2WoKAgxo0b9xzuTslWs2ZNJWCZW2hoKCEhIWg0GsqVK8fSpUvz3X/48OH06NGDZcuW0a5dOyX7pEePHuzcuRNHR0dq1aqFm5sbFSpUKHQsb731Vp5l7dq1Y8GCBTRs2JAGDRroC7ZiY2PDwoUL6d69O9nZ2UotFYDw8HAiIyO5c+cOdnZ2rF27VskwWbp0qf7/PY7AX4A+mjkHWKVSqd4kJ1tEbz6wVKVSHQdOAknATSHEGZVKdfT/l10kJ7Dy/OmjkSX9y93dXUiSJEmSJGVlZYtNCX8L31k7heeM7cJ31k6xKeFvkZWV/aKHJkn/me+//168+eabBsuaNm0q9uzZIz7//HPxxhtvCCGEOHbsmDA2NhbR0dFCCCHMzMwM9mnWrJmIjo4WcXFxQqPRiKysLHHlyhVRuXJlsXjxYiGEELVr1xbJyclCCCGio6NFs2bN8oxn9+7domPHjnmWL1++XPTu3VsIIURsbKwwMjISFy5cEImJiaJevXri2rVrQgghUlJShBBCBAYGis8++0zZ/+jRo8r3a9asEdWqVRMTJ04s6m0qVoyMjISLi4to0KCBKF++vIiJiRFCCPHHH3+IIUOGiOzsbJGVlSU6duwo9uzZIy5cuCBUKpU4ePCgcoyHf3761wUd42G1a9cWzs7OwsnJSZQtW1b89ttvQgghYmJihLOzs0hPTxdpaWnC0dFRHDlyRFy4cEE4OTkp+xf0c5b+G2lpaUIIIa5duybs7e3F5cuXX/CI/gXEiCI81wPGgOn/f18HuACUKcq+z+NL1jCRJEmSJOmloku5zSebT3AvM+dT63uZ2Xyy+QS6lNsveGRPJjtbcD45nUPnUzifnE52tnj0TtIrLywsjG7duhks69GjB2FhYQwbNoz09HQaNmzIBx98gLu7ewFH+ZeLiwuurq44ODjQt29ffHx8nsk4e/TowfXr13FycuKbb75RihQ7OTnx3nvv0axZM1xcXHj77beBnGKUMTExaDQaHB0dDdpgBwQEkJ6eXiKn48C/U3JOnjzJ1q1bGThwIEIItm3bxrZt23B1dVW6j5w5cwbImVahzwAoTGHHeNju3btJTEzk2LFjjBw5Uike3K1bN8zMzDA3N6d79+65p1lIxUSnTp3QarX4+fkxdepUqlat+qKH9CTKAZEqlSoeWA8MF0I8WaGWZ0BOyZEkSZIk6aVyNe2eEizRu5eZzdW0e9jbmL+gUT2Z7GzB1qQrSgDIpJQRkzs0lK0+pUfavXt3nmW5pwHk7pqTm376hl7uGgtLlizJdx99VxsADw+PfGv1+Pv74+/vn2d52bJl2bZtW77HDQoKIigoyGCZtbU14eHh+W4fHx+Pi4sLDg4O+a4vSRo3bsy1a9dITk5GCMHkyZPzTJ/Q6XRFblNe0DEKU6dOHapUqWJQM0b6V3Gc+vlf1sl6XoQQaYDHix6HnswwkSRJkiTppVLZwgSTUob/xDEpZURlC5MC9ii+XrZsGenpyGyjgs2aNYsePXrwySefvOihPBMnT54kKysLKysr2rZty6JFi5Rg1qVLl7h69Wq++5UuXZoHDx7kWf44x9C7evUqFy5coHbt2vj5+bFhwwbu3LnD7du3Wb9+PX5+flhYWJCWlqbs8/Drl5U+mB20KIrRYUcJWhTF1qQr8nfyJSQzTCRJkiRJeqnYWpkxuUPDPFkZtlZF+yS2OHmZsmWkpyOzjQo3adIkJk2a9KKH8VT0BVshJyNk6dKlGBsb06ZNG06cOEHjxo2BnAK3P//8c77Fed988000Gg1ubm4GhW8LOkblypXzHKN58+YYGxvz4MEDZs2aRZUqVahSpQrBwcF4eXkBOUVfXV1dgZzuLM7OzrRv356ZM2dibGyMi4sLwcHBL23R14KC2Q5VLeTf5peMSoiXIwrm4eEhYmJiXvQwJEmSJEkqBopjqvSTOJ+cTtCiKIOgiUkpI5aGeOX5R7mxsTFqtZrMzEwaNmzI0qVLKVeu3H895EfKzs5m7Nix7Nq1C5VKhampKatWrcLOzu65nTMiIoIyZcrQpEmT53aO5+1x3guSJD1fh86nMDrsaJ7lcwNdaWRv9QJGVPypVKpYIUSxmWpTVHJKjiRJkiRJLx0jIxX2NuY0srfC3sa8RAZL4N9sGf0Uo8KyZfQFIxMTEylTpoxBMcziJDw8nL///puEhASOHTvG+vXrqVixYpH3L6hlbWEiIiI4cODAY+9XnBSWbVQcbdiwAZVKxcmTJ5VlOp0OZ2fnR+7boUMHUlNTi3wuf39/nucHp497/Iffbxs2bJB1QF4yL9PUT6lwMmAiSZIkSZJUTBkZqWjnVJWlIV7MDXRlaYhXkaZg+Pn5cfbsWa5fv07Xrl3RaDQ0atSIhIQEAEJDQwkKCsLPz4/atWuzbt06Jk6ciFqtpl27dkoNhJ07d+Lq6oparSYkJIR793Iezm1tbZk2bRpubm6o1WrloTgqKorGjRvj6upKkyZNOHXqVJ6xXb58mWrVqmFklPPP0Jo1a2JpaQnkTBMYN24cTk5OtGzZkuTkZCDngXXs2LF4eHjw9ddfFzqua9euARATE4O/vz86nY4FCxbw5ZdfotVqS2xnj5L2gBYWFoavry9hYWGPve/mzZsfK4hW3OQOmGRnC5avXM2G3Ydl3ZmXyOMEs6WSTQZMJEmSJEmSirHHzZbJzMxky5YtqNVqpk2bhqurKwkJCcycOZOBAwcq2507d45du3axceNG+vfvT/PmzTl27Bhly5Zl06ZNZGRkEBwcTHh4OMeOHSMzM5PvvvtO2d/a2pojR44wbNgw5syZA4CDgwP79u3j6NGjTJ8+nSlTpuQZ3+uvv85vv/2GVqvlnXfe4ejRf9Pab9++jYeHB0lJSTRr1owPP/xQWXf//n1iYmIYMWJEoeN6mK2tLUOHDmXcuHHExcXh5+f36JteDJWkBzR9G9qffvqpwG48d+7c4fXXX8fR0ZFu3brh7e2tZHHkDnz9/PPPeHl5odVqeeutt8jKyirSGAoLFoaEhODv74+9vT1z585V9vnoo49o0KABvr6+BAYGKu9rgOXLl6PVanF2diYqKqrAczwcoJu9dD0bN/7Gh+9PQeOiZfHWQxw5cpRGjRqh0Wjo1q0bN27cAHICg+PGjcPDw4OGDRsSHR1N9+7dqVevHu+///5j/hSKp5SUFLRaLVqtlqpVq1KjRg3l9f37BXeOLWp20n/lSYPZUskjAyaSJEmSJEkvAX3BSA8PD1577TXeeOMNIiMjGTBgAAAtWrQgJSWFW7duAdC+fXtKly6NWq0mKyuLdu3aAaBWq9HpdJw6dQo7Ozvq168P5LR43bt3r3K+7t27A+Du7q60lb158ya9evXC2dmZcePGkZSUlGecNWvW5NSpU3zyyScYGRnRsmVLdu7cCYCRkRG9e/cGoH///kRGRir76Zc/alwvq5L0gPbrr7/Srl076tevj5WVFbGxsXm2mT9/PpaWlhw/fpyPPvoo321OnDhBeHg4+/fvJy4uDmNjY4NCpoUpLFh48uRJ/vjjD6Kiovjwww958OAB0dHRrF27lvj4eLZs2ZJnCs6dO3eIi4tj/vz5hISEFHiO3AG6ddsj+f1qRSo4NKJWuyE4jljAkmN36dt/AJ9++ikJCQmo1WqDwGCZMmWIiYlh6NChdOnShW+//ZbExESWLFlCSkpKka69OLOysiIuLo64uDiDQGZcXBxlypR50cN7LC/L1E+pcLJLjiRJkiRJ0ktAX8OkqExMcqZyGBkZUbp0aVQqlfK6KHVC9PsbGxsr20+dOpXmzZuzfv16dDod/v7+Be7bvn172rdvT5UqVdiwYQMtW7bMs51+TABmZo/OpChVqhTZ2Tl1PjIyMh65fUmjf0Ar7kVew8LCGDNmDAB9+vQhLCwMd3d3g20iIyOVbZydndFoNHmOs3PnTmJjY/H09ARygoL5dXXJT2RkJGvXrgXyBgs7duyIiYkJJiYmVK5cmX/++Yf9+/fTpUsXTE1NMTU1pXPnzgbHCwwMBKBp06bcunWL1NTUQs8B+deduZ2eRmpqKs2aNQNyAn69evVS1gcEBAA5gUsnJyeqVasGgL29PRcvXsTK6uUrKBobG8vbb79Neno61tbWLFmyhGrVqhEbG6sEp9q0afOCRym9qmSGiSRJkiRJ0kvKz89P+UQ+IiICa2trypcvX6R9GzRogE6n4+zZs0DOlAT9Q15Bbt68SY0aNQBYsmRJvtscOXKEv//+G8jpmJOQkEDt2rWV12vWrAHgl19+wdfX97HGZWtrq2Qq6B9kASwsLEhLSyvSdUtP5/r16+zatYvBgwdja2vL7NmzWbVqFU/SmVMIQVBQkJKBcOrUKUJDQ596jPfv36dPnz7UqVMHnU5H//79uXr1qjK1KyYmht27dxvskzt4l99rW1tbJVinl3/dGVWhmQi5A5n67/Wvn6TgcXEnhGDUqFGsWbNGCZC89957AAwaNIh58+YRHx//gkcpvcpkwESSJEmSJOklFRoaSmxsLBqNhkmTJrF06dIi72tqasrixYvp1asXarUaIyMjhg4dWug+EydOZPLkybi6uhb4cHf16lU6d+6sZBWUKlWKkSNHAjlZJFFRUTg7O7Nr1y4++OCDxxrXtGnTGDNmDB4eHhgbGyv7dO7cmfXr15fooq8lxZo1axgwYAB//vknOp2OixcvYmdnl+e++/j4sGrVKgCOHz/OsWPH8hyrZcuWrFmzhqtXrwI5wZg///yzSOMoKFgohGDJkiX4+/tz7tw56tSpw8SJE7G1tSUtLY2MjAwcHBy4ffu2wfHCw8OBnMyVChUqUKFCBYNzZGRkUKlSJcqXL68E6PR1Z8qYmpF17w4mpYyY2t0TG6tKyv0oSiDyZXbv3j0SExNp3bo1Wq2WGTNm8Ndff5GamkpqaipNmzYFUKYWStJ/TgjxUny5u7sLSZIkSZIkqeQyMzN70UN4akZGRsLFxUU4OTmJnj17itu3b4sbN26Ib7/99pH7XrhwQTg5Of0Ho3x+/P39xZYtWwyWff3112Lo0KEG15eeni569OghGjZsKLp16yZcXFzE6dOnhRBC1K5dWyQnJwshhFi5cqVwcXERarVauLm5iYMHD+Y5Z7NmzUTlypVFjRo1RI0aNUTPnj1FSkqK6NKli1Cr1cLb21vEx8cLIYQYOHCgsLOzU/Z1cnISFy5cEBcuXBA2NjaiXr16Qq1Wi6pVq4qFCxeKlJQUYWVlJaysrES5cuVEnTp1xOHDh8W1a9eEv7+/sLCwEJaWlqJMmTIiIiJCXLhwQdjb2wtLS0thYmIi3N09xPI1vwnbuvVFteo1hLOzs6hXr56wtLQUTk5OokuXLuL69evKdURHRwshhNi9e7fo2LGjwTXq170spk2bJqZPny4aNWqUZ92NGzdErVq1lNfx8fEl/nfjVQfEiGIQN3jcL5V4gvS44sjDw0M8z/7rkiRJkiRJ0vNlbm5Oenr6ix7GU8l9Df369cPd3Z3u3bvTqVMnEhMTC91Xp9MVabuXQVZWFg8ePMDU1JRz587RqlUrTp069dwLf86dO5cLFy7w5ZdfGizX6XS0b9+eEydOsHXrVvr06cOuXbtYvHgx1tbWTJs2jV27dvH2228TFxfH6NGjsba25oMPPmDTpk106tSJ5ORk0tPTqVu3LjExMWi1Wl5//XUCAgLo378/KSkpSg2S999/nypVqjBq1Kjner3FWWhoKOXKlWPhwoUsX76cxo0b8+DBA06fPo2TkxMajYb58+fj6+vLu+++y6ZNm16J342XlUqlihVCeLzocTwuOSVHkiRJkiSpGMrOFpxPTufQ+RTOJ6eTnf1yfMhVmJIeLHmYn58fZ8+eZdKkSZw7dw6tVsuECRMQQjBhwgScnZ1Rq9XKdI/csrKymDBhAp6enmg0Gr7//nsgZ3pJs2bN6NKlC/b29kyaNIkVK1bg5eWFWq3m3LlzpKWlYWdnx4MHDwC4deuWwevH9Tzei3fu3MHX1xcXFxe6devG/PnzX3iXlMuXL6PVannzzTepWrUqbm5uBXaa2rt3L/379wdyishaWloqx7Gzs0Or1QKGXaQSExPx8/NDrVazYsWKfLtIvWqMjIxYs2YN7777Li4uLmi1Wg4cOADA4sWLGTFiBFqt9olq4EjSsyC75EiSJEmSJBUz2dmCrUlX+GTzCe5lZmNSyojJHRoW2zayLwuVSsXbb7/N559/DsCcOXNIT08nNDSUBQsWUK5cOYP2tLlFREQwZ84c5XVmZiZbtmyhXbt2tG/fnsTERKWL0dq1a4mLi8PKyoopU6YwZMgQpVaD3k8//USFChWIjo7m3r17+Pj4KJ1C4uPjOXHiBJUqVcLe3p7BgwcTFRXF119/jaurK+fPn8ff359NmzbRtWtXVq5cSffu3SldunSecfv7+3P+/Hn+/PNPpZBp165d2bFjB+np6fz11yX6DHoLVau3n+l70cLCIk/rXsjpuqRWq8nMzKRhw4YsXbqUcuXKPfF59Jo0acKBAwdwcnJSCgs/rGbNmsTFxeX5WR46dIgrV67QpEmTIp0rd7FWY2Nj7t69C0BwcDAbNmzAxcWFJUuWEBER8eQX9BLIXcA3v9bg7u7uBgVfP/vss/9iWJJkQGaYSJIkSZIkFTO6lNtKsATgXmY2n2w+gS7l9iP2lJ6GiYkJ69at49q1a3nWDR06tMBgSW53795Fq9Xi4eHBa6+9xhtvvJFnm8jISAIDA1GpVFhZWdGsWTOio6MNttm2bRvLli1Dq9Xi7e1NSkoKZ86cAcDT05Nq1aphYmJCnTp1lECKPtAAMHjwYBYvXgzkfFI/aNCgAsdcsWJF9u/fD0BqaiqXL19W1t03qaAES+D5vxf17bETExMpU6YMCxYsKNJ+j+ogo89aaNGiBffu3WPhwoXKuoSEBC5evJjvfn5+fvzwww8cOHDAoHhs06ZN+eWXXwDYsmULN27ceOQY09LSqFatGg8ePFCKxb4MXsVsOOnVUWwDJiqVSqdSqY6pVKo4lUoli5NIkiRJkvTKuJp2T3lA1buXmc3VtHsvaESvhlKlSvHmm2/mqW8BOZ+G67MOzp49S6tWrXBxccHNzY1z584BOVOKVCoVGRkZODk5MXfuXMqUKcP+/fs5d+4carWakJAQsrKy8hz/u+++o3Pnzpw9e5Zp06YhhGDevHm0a9eO+/fvY2FhwbZt2wDDDIasrCzefvttnJyc+Pzzz5WpCz4+Phw9ehQHBwfi4+OZN29evucF6NOnDytXrgRg3bp1dO/eXVkXf+IMsV/kBH2uHfmDMyumkfDDBHxcHfnmm2/44osvcHV1pVGjRly/fh3IqRPi6OiIRqOhT58+ZGdnU69ePZKTk4Gc9tF169ZVXhdEP6Xp+vXrdO3aFY1GQ6NGjUhISFB+JgMGDMDHx4cBAwawZMkSunTpgr+/P/Xq1ePDDz9UjmVubg7Anj17MDY2Zvr06ZQpU4YKFSowadIkqlatSlpaGg4ODrz55pskJSXRqVMnQkJCOHjwIJMnT6Zjx46MGTMGnU7H0aNH+fTTTzEzM2PZsmW89tprjBw5ktDQUM6fP4+9vX2eTJaPPvoIb29vfHx8cHBwKPTaSwp9NlzQoihGhx0laFEUW5OuyKCJ9NIotgGT/9dcCKEticVhJEmSJEl6eXz88cdKEUKtVsvhw4eBnE/xjx8/nu8+ha17lMoWJpiUMuLejSvEhHYk8Zu3SPrmLYb37sCpU6eAnCkgnTp1eqLj29ra5ptFIcGIESNYsWIFN2/eLHCbfv36MWLECOLj4zlw4ADVqlUD4OjRo5iYmHD8+HHOnz/P/v37ycjIYMKECVSqVIljx46RmZlJeno64eHhCCG4ceMGe/fu5YsvvuC3336jbt267NmzBycnJ77++mvWrVtHUlISa9asYdy4cXnG8ueff6LVaklKSsLX15eMjAwATpw4gbm5Obdu3eLzzz/H2Ni4wKyGli1bsnfvXrKysli5ciW9e/dW1lmZlUGVa+bN3X90OA78kI3b9/Dee+9Rrlw5jh49SuPGjVm2bBkAs2bN4ujRoyQkJLBgwQKMjIzo37+/cv4dO3bg4uKCjY1NgfdYP6VJrVYzbdo0XF1dSUhIYObMmQaZPsePH2fHjh2EhYUBEBUVxdq1a0lISGD16tX5TvtJSkri0KFDZGRk4OjoyJQpU6hVqxbZ2dls2bKF06dP06hRIwC0Wi2TJk3ik08+4fbt2wQHBzNq1CgGDx5MWloa8+bN4+7du/z555+Ymppy+/Zt0tPT+f3335k0aRLjx49Xpp4MGzaMCxcuEBUVxbx581iyZEmB119SyGw46WVX3AMmkiRJkiRJL9TBgwf5/fffOXLkCAkJCezYsYNatWoB8OOPP+Lo6Jhnn6ysrALXFYWtlRmTOzSkjLERppWq4z72B1Zvi2RIyCBmzpz5VNcjFa58+fIMHDiQuXPn5rs+LS2NS5cu0a1bNwBMTU2VGhteXl6oVCqMjIzQarXodDpOnTpF3bp1adasGc7OzmRkZHDjxg00Gg0xMTEMGzaMzz77jD179tCxY0fOnj1LUlISDg4OaDQaLl68SKVKlejevXu+RVFTU1Np3749AI0bN1bqlOzcuZOUlBSuXLnC/Pnz2blzJ+fPn8/3moyNjfH19WXlypXcvXsXW1tbZV1Ny3LYmOcE8AAq1tEytZs77g1sqVChAp07dwZypgPpi5tqNBr69evHzz//TKlSOSUTQ0JClIDKokWLCpwilN+UpoIKrwIEBARgYmLK+eR0zl1Np5FfcywtK1G2bFm6d+9OZGRknnN4eXlRs2ZNg5/TyZMnsbe3x87ODoDAwMB8xwc5fxP69u0LwIABAwzO0bVrV4yMjHB0dOSff/4p8BgvC5kNJ73sinPARADbVCpVrEqlejO/DVQq1ZsqlSpGpVLFPCqlT5IkSZIk6UlcvnwZa2trZRqEtbU11atXB3IKZuo/wTY3N+edd97BxcWFgwcP5lmnt2bNGoKDgwFYvXo1zs7OuLi4GBT9NDJS0c6pKp+/7kK1CqYsDfGinVNV0tPTDLpx6EVFRdG4cWNcXV1p0qSJkoWSlZXF+PHjcXZ2RqPRMG/ePIP97t69S/v27fnhhx+e0d16OYwdO5affvqJ27cf71NyExMTpdOPsbGxQV2NX375hcTERN566y1UKhWzZ8/G09OTlStX4uXlxZw5c4iMjCQjI4OOHTty//59Zs2aRWpqqtIFp3fv3vj7+/P7778rx61bty4ajQbIeT/q32tCCJo0aUK/fv04duwYp06dMiiy+bA+ffowevRoXn/9dYPlRkYqzE1LsTTEi37etWmjrqkUfDUyMlJ+L4yMjJTr3bRpEyNGjODIkSN4enqSmZlJrVq1qFKlCrt27SIqKor27dtz8eJFtFotWq1WqVWir2ESFxfHvHnzHtk5p1y5csqUkBWH/+TAuWsGU0JUqryFaR8uyvqo+iePI/exX4XOLvpsuNxMShlR2cKkgD0kqWQpzgETXyGEG9AeGKFSqZo+vIEQYqEQwkMI4VFYSp8kSZIkvWpyP6DrLViwgGXLlmFubk5wcHCBnSLyk/vhvyChoaHUqFEDrVaLs7MzGzduzHc7W1tb1Go1VatWpU2bNly5coXU1FTmz5+fZ9u4uDg2b96svI6IiFCKNz4pnU6Hs7Nzkbdv06YNFy9epH79+gwfPpw9e/bku93t27fx9vYmPj4eX1/fIh17+vTp/PHHH8THx+e5X0ZGKl6zMuPvizq6t/alXr26fPHFF7z99tt5juPg4MC+ffs4evQo06dPZ8qUKQAsXLgQnU5HXFwcCQkJ9OvXT9knPT2dzp07ExgYyJAhQ4p6O14JlSpV4vXXX+enn37Ks87CwoKaNWuyYcMGAO7du8edO3cKPFaDBg3Q6XScPXsWgOXLl9OsWTODbW7duoWZmRkVKlTgn3/+YcuWLUDOz+jmzZt06NCBL7/80qBjiF5BxUcPHTrEpk2bGD58OADXr1/nzz//LHCcfn5+TJ48ucDMCnsbc+pUNqd82dKFdsfJzs7m4sWLNG/enE8//ZSbN28qQaTBgwfTv39/evXqhbGxMbVq1VKCI0OHDi10bPrpPLkLrwJcv33fYErIjTOxTF9zmJN/XWPDhg34+PgUeNzcGjRowPnz55Usmdytni0sLEhLS1NeN2nSRKn5smLFCvz8/Ip0jpeRPhtOHzTRd1GytTJ7wSOTpGej2AZMhBCX/v+/V4H1gNeLHZEkSZIklWxF7fLxNMaNG0dcXByrV68mJCSE7OzsfLfbvXs36enpeHh4MHPmzCcKmAghCjx+bk/76bG5uTmxsbEsXLgQGxsbevfunW/tAWNjY3r06PFYx/bx8SE4OJgffvihwIKcderUIS4ujnPnzvHVV1/x5pt5E29v3rxJr169cHZ2Zty4cSQlJQE5tSLeeustZVpEpUqVlH26dOnCoEGDnvt7oqR65513uHbtGkLkdAD568YdUtLvkZ0tWL58OXPnzkWj0dCkSROuXLlS4HFMTU1ZvHgxvXr1Qq1WY2RklCc44OLigqurKw4ODvTt21d5yE9LS6NTp05oNBp8fX354osvlH30dXV27tzJp59+ip2dHevWreO1114Dch7kly9fzrBhw9BoNNSrV08JOuQXAFWpVIwfPx5ra+t8r+PatWsMHjyYxMTEQu9bVlYW/fv3R61W4+rqyujRo6lYsSKQM30mPT290I49evrAqkaj4dixY+zfvx+NRsOkSZNYunSpsl36vUyDKSFmNR1IXDQFl7o16NGjBx4eRSuFWLZsWebPn0+7du1wd3fHwsKCChUqANC5c2fWr1+PVqtl3759zJs3j8WLF6PRaFi+fDlff/11kc7xMtJnwy0N8WJuoKuSDSfbn0svDSFEsfsCzACLXN8fANoVto+7u7uQJEmSJCmHmZlZnmXTpk0Ts2fPFmZmZqJv377C2dlZ1K1bV1hYWIgNGzYIIYRYtmyZMDc3F0FBQaJevXqib9++Yvv27aJ8+fKiVq1a4vDhw0IIIdLT08WgQYOEp6en0Gq1YsOGDWLatGninXfeEZ6ensLFxUWUKlVKHDx4UPzyyy/C2dlZODk5iYkTJ4ratWuLUaNGCSMjI2FnZyeqVasmevbsKYyNjYWpqamoXLmy2LVrl5g5c6YoU6aMMDY2FlWqVBGzZs0S1tbWwtjYWFhaWoratWuL2NhY0b17d+Hh4SE8PDxEZGSkcq39+/cXTZo0EX369DG4DxcuXBBOTk5PfG9Xr14tOnXqJIQQolmzZiI6Ojrfe557nbm5ubJ8+fLlIigoSHl96NAhMXXqVFG7dm1x7dq1Qsd6584dUbZsWSGEELt37xYdO3YUQggRFBQkvv76a2Wf2rVrCyGE6N69u9i2bVuea6hdu7YYNmyY6N+/v8jOzn7se/Bfunz5sujdu7ewt7cXbm5uon379uLUqVPP9ZxBQUFi9erVIisrW7TpFijcxv0kPGdsF76zdopNCX+LrKzHu2cXLlwQpqamwsXFRfm6d+9ekfd/+L114MAB0ahRI5GRkSGEECI5OVlcunSpSNckhOF7s6jmz58vfH19RdOmTR9rv9yio6OFr69vkbatXbu2SE5OFkIIMXnyZDFq1Kh8tzt3NU34ztopPGdsF3bdxwsbr07CY+IKUc+h4WOPLy0tTQghRHZ2thg2bJj44osvHvsYkiTlD4gRxSDW8LhfxTXDpAoQqVKp4oEoYJMQYusLHpMkSZIkvTSMjY2ZMGECp0+fpnLlyowdOxYhBKtXr+bOnTu88847nDx5kpMnT/LLL7+g1WoZM2aMUnD0448/pkWLFkRFRbF7924mTJjA/fv3OXToEGPGjOH777/H2toaa2tr3n33XXbt2kVcXBzR0dHcuXOHDz74gLJly9KhQwcGDBhA/fr1sbCw4O7du+zZs4fevXtz5swZFixYwFtvvYWHhweNGzemX79+ZGVlsXnzZnQ6HXPmzGHcuHFER0ezdu1aBg8erFzjw90zntSpU6c4c+aM8jouLo7atWs/1jGqVKnCiRMnyM7OZv369cryc+fO4e3tzfTp07GxseHixYuFHicyMpI6derkWX7z5k1q1KgBYJD90rp1a77//nsly0bf9hVypgNZWloyYsSIx7qW/5IQgm7duuHv78+5c+eIjY3lk08+KXIxzfv3H3A+OZ1D51M4n5z+2K1OdSm3ueM9GGOrnKyNp+kAos8U0n89qjZHYQqrqzN9+nQ8PT1xdnbmzTffLLSOxqJFixg7dqzy+ocffsi3Ew9AWFgYn3/+OZcuXeKvv/5Slpubm/Pee+/h4uJCo0aNlJ9NcHAwo0ePpkmTJtjb29OvXz969OjBJ598otRv0Wg0TJs27ZHX27RpU86ePUtWVhYTJkxQ9v3++++xtTKjo80NTv04jn8OrOd6wm6GN69LGeOcx5zz58/j6upKdHQ0SUlJeHl5odVq0Wg0Br/X+uvXarU4OTlx8+ZN3nrrrUeOTZKkl1uxDJgIIc4LIVz+/8tJCPHxix6TJEmSJL1sfvnlF1xcXLh9+zZ//fUXp0+f5siRI9jb2ytTB5ycnGjZsiUqlYo6deoo8/u3bdvGrFmz0Gq1+Pv7k5GRwc2bN0lKSuKNN96gT58+fP755yQlJeHv74+NjQ2lSpWiX79+3Lt3j+bNm3P37l1u3brF5MmTiYmJUdLfHRwcKFOmDFu3bmXatGmEh4dz8uRJ5eHG0tJSafm5Y8cORo4ciVarJSAggFu3bin1EgICAihbtuxT36f09HSCgoJwdHREo9Fw/PjxQotn5mfWrFl06tSJJk2aKC1oASZMmIBarcbZ2ZkmTZrg4uKSZ99z586h1WpxcXFhypQp/Pjjj3m2mThxIpMnT8bV1dVgCtLgwYN57bXX0Gg0uLi4KLUu9L7++mvu3r3LxIkTH+t6/iu7d++mdOnSBlNYXFxc8PPzQwjBhAkTcHZ2Rq1WKzUnIiIi8PPzo3PnAOzqO9DlvYW0adkCrxYdqF2nHn379lOCCLGxsTRr1gx3d3fatm3L5cuXDc5/Ne0e8QvGcftSThHd2OmdlQ4gRSne+ygFFQO+cOECjRs3Rq1W8/777yvbZGdnM3z4cCZNmkRERARmZma0bduWPXv2KNeydu1aKlWqxPbt27l7965BgdiHvf766/z22288ePAAgMWLFxMSEpJnu4sXL3L58mW8vLx4/fXXDep73L59m0aNGhEfH0/Tpk0NCghfvnyZyMhIfv/9dw4fPsyff/7JnTt3OHPmDFFRUcTFxREbG8vevXsLvU+///47arWan376iQoVKhAdHU10dDQ//PADf/6pw8u2Eg+unmf5ylWc/t8VmtXPqW146tQpevTowZIlS/D09GTBggWMGTOGuLg4YmJiqFmzpsF59FMKjx8/zooVK5TuR5IkvbpKvegBSJIkSZL03zt//jzZ2dnExsaSnJyMnZ0dq1evpmPHjuzfv1/ZrqAuGEII1q5dS4MGDZRtQ0NDee+99+jWrRubNm1i2rRpBdbH2L17N7a2tkqb0fy88cYb1KlTh5iYGL755hsgp3tJ7k/ms7OzOXToEKampnn2NzN7NkUH3d3dCyw0GxERoXyvD9Tkt65nz5707Nkzz/7r1q0r9Ny2trbcvXs333X+/v74+/sDOe1kT58+raybMWMGAKVKleKLL74wqH0BKIEvyHlILq4SExNxd3fPd926deuIi4sjPj6ea9eu4enpqQQrjhw5wuY9h3l/51WSTx/lzuWz2I/+EXNLG06uncL+/fvx9vZm1KhR/Prrr9jY2BAeHs57773HokWLlHNUtjDJ02VF3wHkr1zL9MV7a9SoQWpqar7j1Qe+IKd2zbffflvgdY8ZM4Zhw4YxcOBAg+3WrVuntMC9fPkyDRo0oHz58vTu3Rtzc3MOHjzI3r17effdd3F0dKRcuXI4OTkprX8fZm5uTosWLfj9999p2LAhDx48QK1W59kuPDxc6Z7Tp08fQkJCeOeddwAoU6YMnTp1AnJ+V7Zv367sl1+L3W3btrFt2zZcXV2BnN+bM2fO5Btoat68OcbGxmg0GmbMmMHgwYNJSEhQClbfvHmTM2fOUKZMGby9vOjezA0A3e1rJCcn06VLF9atW6e0927cuDEff/wxf/31F927d6devXoF/gwkSZKgmGaYSJIkSZL0fN2/f58KFSpQunRpTp06xf3795k3bx69evUq0v5t27Zl3rx5yif1R48eBSAlJQV7e3tGjx5Nly5dEEKwZ88erl27RlZWFmFhYUoApnTp0son276+vly7dg2A06dP8+DBA7Zu3Urp0qVJS0vj0qVLXL16FTMzM4NCr23atDFolRsXF/fU90YqGSIjIwkMDMTY2JgqVarQrFkzoqOjAfDy8sKkUjWlGKhZTQfKVLDhfjbYNnBCp9Nx6tQpEhMTad26NVqtlhkzZhhMNYGcDiC1rcpR2vjffzLn1wHkcYr3xsXFFRosAdi/f7/SrWbAgAEG19yrVy+MjIyoUaMGbdq0oXfv3kycOBGdTkfLli3p06cPxsbGeHp6MmTIEDIyMgo91+DBg1myZAmLFy9WirG+9957SrtfyJmOs2TJEmxtbQkICCAhIUHJ+CpdurQSVHq4RW9+LXaFEEyePFm5F2fPnuWNN97Id2y7d+8mLi6OZcuWUbFiRYQQzJs3T9n3woULtGnTBsgbIK1QoQKvvfYakZGRyrK+ffuyceNGZTrgrl27Cr03kiRJMmAiSZIkSS+hO3fuULNmTeVLn2GQlZWFiYkJ9vb2nDt3DrVazbJly6hevTrVq1enbt26+R4vMzNTyewYPHgwHTp04MGDB2g0GpycnJg6dSoA8fHxODs7o9VqSUxMZOTIkcyaNYvmzZvj4uKCu7u7kub+5ptvotFo6NevHxMmTKBy5cqYmpri5+fHypUr6d+/PzNmzGD16tXUr1+flStX0rJlS27duqV0q5g7dy4xMTFoNBocHR1ZsGBBke/R09S2kP4bTk5OxMbGPvZ+ZmZmVLYwUVqdqkqVBnKyQ8xNy5CZmYkQAicnJ+Xh+9ixY2zbts3gOEZGKiqZlSE0wIm5ga6ULV1K6QCSOxCxYMECZsyYwcWLF3F3dyclJaVI48ydvfJwYOPhzJbcHq6rc/LkSaytrdm7dy+VKlUiLi6OdevWFal1uLe3NxcvXuSXX35RgjQff/yxcl9Onz5Neno6ly5dQqfTodPpmDx58hPXBmrbti2LFi1SMrL0wdCi7vvdd98pgdbTp09z+3b+9WTKlCnD+vXrWbZsmTIV7fz58wYB3YSEhCe6BunpmJub8/fff+ebdVdUoaGhqFQqpV03wFdffYVKpcrTAephW7duxcvLCwcHB7RaLb179+Z///vfI88ZGBiIRqPhyy+/5OTJk2i1WlxdXTl37hxNmjR54muRijc5JUeSJEmSXkIFtduNj49n7dq1rFy50mD5yJEjcXV1xdbW1qBt6JIlS7h37x7jxo2jcePGBut8fX2LNJbAwEDlQQzg008/Vf6r/x5yHmZya968OWPGjMlzvIcfLHPXU9ArrMbIa6/V5rOw7QQtiuJeZjYmpYyY3KGhbIVJToaAWq1GCIGxsTHffPMNTZo0QafT0alTp0Jbyv7999+MHj26SA/pBbl48WKe6SPHjh2jbdu2/PHHHwAkJCRw8+ZN/Pz8+P777wkKCsLOzo7s7Gxmz57NyZMngZzsEJf0aDaciwdQfs6b/pfzz98GDRqQnJzMokWLiIuL4/PPP+f06dM4OTnlGVdNy3J42FtRtWoVTp06SYMGDVi/fj0WFhbAv8V7vb292bJlCxcvXsTKyuqR16svBvzw8Xx8fJSgob4VsH750qVLcXZ2Zvjw4Rw5coTY2FhcXV0pW7YsJ06cYMiQITg7O1O+fHk8PT2LdN9ff/114uLisLS0zLMuLCyMbt26GSzr0aMHvXv35oMPPijS8XNr06YNJ06coHHjxkDOw/PPP/9M5cqVH7nv4MGD0el0uLm5IYTAxsaGDRs2FLi9mZkZv//+O61bt8bc3Jzjx4+zfPlySpcuTdWqVZkyZcpjj196NqpXr/5UfysA1Go1K1euVOr8rF69Ot/f39wSExMZNWoUGzdupGHDhgBs3LgRnU6ntOTOz5UrV4iOjlYCNLNmzaJnz57KuQuatim9BF50m55n9SXbCkuSJElS4b777jvRsGFD8ccffxgsd3NzE35+fkqL0tyio6OFg4ODmDlz5n81zOcudxtS/ZfvrJ3i3NW0Fz20Fy53+9qtW7cqLWSfthXzk0pISBDVqlUTnTt3Fvb29sLR0VF06NBBnD59WmRnZ4vx48cLJycnUbp0abFw4UIhhGG75aysbLFi/WbRpHlrce5qmsjKyhYjRowQixcvFkIIcfToUeHn5yc0Go1wdHRUjlFQC97Vq1cLe3t74e3tLUaMGKG0h+7WrZvSOnv06NF5WjUXdP8KOt758+dFo0aNhLOzs3jvvfeUn0tWVpZ46623RIMGDUSrVq1Ey5YtlbbRBV1LUXTs2FHs2LGjyNtL0tMwMzMz+J1YvHix6NKli2jVqpWoXbu2mDdvnvj888+FVqsV3t7eIiUlJc8xpk2bJqZOnSo8PDyEEEKcPXtWtG/f3uD3dcuWLcLV1VVoNBrRokULIYQQ/fv3F4sWLSpwbLn3T05OVlq0q9VqpTV4aGioqFKliqhevbrw9/dXrkmInL8/zZo1Ez169BANGjQQffv2Lfat2/8rlNC2wjLDRJIkSZJKgOxsgS7lNlfT7lHZwgRbKzMlG6KwdbkNHTrUoNuIXmFTHjw8PDhx4sSzu5Bi4GraPaW2hZ6+84m9jXkBe716bt26lW/GgU6nY8CAAcpUiPyyUJKSkhg0aBD3798nOzubtWvXUq9ePX7++Wfmzp3L/fv38fb2Zv78+RgbG+d7/oyMDPr27cuCBQsICAgAYNiwYURHR9O1a1d69uzJ7NmzmT17Nra2tpw5cwa1Wk3ZsmWVKRjTp3+Iubk5+3dtw9/fH29vb6Kioti2bRt16tTBz8+P6dOnM2fOHINuMrlbMz+r4r35ZecUdDw7OzsOHjyovNYX8TUyMmLOnDmYm5uTkpKCl5eXUqRVq9U+stvMw1JTU/Hy8sLFxYWWLVs+1r6S9CwlJiZy9OhRMjIyqFu3Lp9++ilHjx5l3LhxLFu2zKD9tV758uWpVasWiYmJ/Prrr/Tu3VspYp2cnMyQIUPYu3cvdnZ2Skv1pKQkxo8f/9jj27hxI506dVLqZAkhMDc3z/dYR48eJSkpierVq+Pj48P+/fuLnJEpFT8yYCJJkiRJxVx2tmBr0hU+2XwizxQSoMB1r/r0koLoa1vkDproO5+86u7evYtWqyUjI4PLly/nWxSzcuXKbN++HVNTU86cOUNgYGCemgH69q39+vXj/v37ZGVlceLECcLDw9m3L5JLt+4zYdxovvzuJ94ePiTf9+rEiRPx9fVVgiWQU1ujUqVKZGVl0bJlSxISEtBoNEBOkc9jx44pD1f5tdPNzMwkKiqKzZs38+GHH7Jjx46nvWXPTFEDn506dSI1NZX79+8zdepUqlat+sTnrFixokF3JUl6UZo3b46FhQUWFhZUqFBBmZqnVqsLrTXTp08fVq5cyR9//MHOnTuVgMmhQ4do2rQpdnZ2AFSqVCnPvikpKbRs2ZI7d+7w5ptvPlEgJT9eXl5Ky2qtVotOp5MBkxJMBkwkSZIkqZjTpdxWAiKQkw3xyeYTOFTNqXdQ0DqZLZE/WyszJndomCfI9HDnk1dR2bJllU9QDx48yMCBA/NkRjx48ICRI0cSFxeHsbFxvg/c+bVv3blzJ7GxsTR0ceXqrXtkPbhH9JUsHJt1zhPg27JlCzt27MiT/bRq1SoWLlxIZmYmly9f5vjx40rARF8nJzAwkHHjxuV7fd27dwdy2t/mbq38ohUWFH04aJI740WSXha5OyoV1M4+P506dWLChAl4eHhQvnz5R57HycmJI0eO4OLigpWVFXFxccyZM0cpQlyqVCmlBtijOkwV5Voe7hwllTwyYCJJkiRJxVxhU0j03+e3TgZM8mdkpKKdU1Ucqlo88tP8V1njxo25du0aycnJBsu//PJLqlSpQnx8PNnZ2ZiamubZt2/fvnh7e7Np0yY6dOjA999/jxCCLr0CSazeEetc79mHA3xXr17lrbfe4tdff6Vs2bLKdhcuXGDOnDlER0djaWlJcHCwwQNN7q4yBXWY0T/IFLeHmMKCovL3WJIKVq5cOT799FPq169vsLxRo0YMHz6cCxcuKFNyKlWqxMSJE+nWrRuNGjVSir7euXNH2c/W1pbY2Fi8vLyeuiit9HKQbYUlSZIkqZjL3R5VTz+FpLB1UsGMjFTY25jTyN4KextzGSzJx8mTJ8nKysrT7eXmzZtUq1YNIyMjli9fTlZWVp5982vf2rJlS37/dT3pqTktdzPv3OLejX8Mgn8AISEhjBo1CldXV4Nj3rp1CzMzMypUqMA///zDli1bDNbruyWFh4crHVhKikcFRSXpZZGZmWmQgfEs9OnTBzc3N4NlNjY2LFy4kO7du+Pi4kLv3r2BnCk+X3/9NQMHDqRBgwb4+Phw4sQJ+vbtC8D48eP57rvvcHV15dq1a890nFLJJDNMJEmSJKmYe9QUEjm9RHpW9DVMIKeo4dKlS/MUZR0+fDg9evRg2bJltGvXDjOzvO+1VatW5WnfWqlSJSa8N40p0yaTnZ2NyrgUtTuPpLxNNSXAd/DgQTZt2sTFixcN2um2bt2a2bNn4+rqioODA7Vq1cLHx8fgnDdu3ECj0WBiYkJYWNgzvjPPl6yrI70qkpKSqFOnjkEh5ODgYIKDg5Vtck+Xe3idXkGt43NPWWvfvj3t27fPs03Hjh3p2LFjvvs7ODgY1EzRF1x+uHDzw+fXT+nx9/fH399fWf7NN9/kex6p5FDldPgp+Tw8PMTDBcckSZIk6WXxLLrkSI/H2NgYtVpNZmYmDRs2ZOnSpZQrV+4/H4e/vz9z5szBw8MDW1tbYmJisLa2LvK+ly9fVqa2vP/++/Ts2RNzc3PlH/jPQ0RERJ7OM/B4tTpeJfK+SCVZUf8ftGDBAubOnctXX31FmzZtXsBIpRdJpVLFCiE8XvQ4HpfMMJEkSZKkEkA/hSS/egaFrZOeXO4CqP369WPBggW8/fbbj9wvMzOTUqWKzz+xPv3mB6rWcVIeZF4kWT8mf/K+SCXV4wT7CmptL0nFmaxhIkmSJEmS9Ah+fn6cPXuW27dvExISgpeXF66urvz6668ALFmyhICAAFq0aEHLli0L3a579+60a9eOevXqMXHiROUc27Zto3Hjxri5udGrV69HZoD8/PPPeHl5odVqeeutt/LUEsnOFly/fZ/QjUmMDjtK0KIotiZdITv73+zi9PR0WrZsiZubG2q1WhmnTqfDwcGB4OBg6tevT79+/dixYwc+Pj7Uq1ePqKgogAKvszCyfkz+5H2RSqKCChbrUm6/4JFJ0rMhAyaSJEmSJEmFyMzMZMuWLajVaj7++GNatGhBVFQUu3fvZsKECdy+nfNgcOTIEdasWcOePXsK3S4uLo7w8HCOHTtGeHg4Fy9e5Nq1a8yYMYMdO3Zw5MgRPDw8+OKLLwoc04kTJwgPD2f//v1Ke9/cNT8g50Hmz5Q7nFo5k8Rv3iL2qyFMX33I4EHG1NSU9evXc+TIEXbv3s0777yDfrr22bNneeeddzh58iQnT57kl19+ITIykjlz5jBz5kyAQq9TkqSXnyxYLL3sik++qCRJkiRJUjGSuwCqn58fb7zxBk2aNGHjxo3MmTMHgIyMDP73v/8BOYVJK1WqBORkixS0XcuWLalQoQIAjo6O/Pnnn6SmpnL8+HGlkOn9+/cL7fSyc+dOYmNj8fT0VMZauXJlg22upt1DCIF9r0mY1WgAQPb/L9cTQjBlyhT27t2LkZERly5d4p9//gHAzs4OtVoNgJOTEy1btkSlUqFWq5WijIVdpyRJLz9ZsFh62cmAiSRJkiRJUj5y1zDRE0Kwdu1aGjRoYLD88OHDBt1iCtsud0tNY2NjMjMzEULQunXrInd3EUIQFBTEJ598UuA2lS1MUKkMp3U8/CCzYsUKkpOTiY2NpXTp0tja2pKRkZGzba5xGhkZKa+NjIzIzMws9Dr1QRfp8V25coWxY8cSHR1NxYoVqVKlCpMmTWLu3LmsWbPmRQ9Pkgw8qoubJJV0ckqOJEmSJElSEbVt25Z58+Yp01aOHj36VNvpNWrUiP3793P27FkgpzbI6dOnC9y+ZcuWrFmzhqtXrwJw/fp1/vzzT4NtbK3MqG1VjtLGOf/cy+9B5ubNm1SuXJnSpUuze/fuPMd4lMe9TqlwQgi6deuGv78/586dIzY2lk8++QSVSpVvsEQfuJKkF0VfsHhpiBdzA11ZGuIluztJLxUZMJEkSZIkSSqiqVOn8uDBAzQaDU5OTkydOvWpttOzsbFhyZIlBAYGotFoaNy4MSdPnixwe0dHR2bMmEGbNm3QaDS0bt2ay5cvG2xjZKSiklkZQgOcCnyQ6devHzExMajVapYtW4aDg8Nj3I3Hv87iytzcsMPUkiVLGDly5DM/zwcffMCOHTsKXP/RRx/x4MEDg04iLi4u1KpVC2dnZ2VsuQsMX7hwARsbG8qWLUudOnVYu3YtAKGhoVSqVEkpIhwaGkrdunWV4/72228EBAQ89TU9fO+e1L59+3ByckKr1XLw4EE2b978TI4rPX+yYLH0MlPpPxEo6Tw8PERMTMyLHoYkSZIkSZJUwpibmxt0JVqyZAkxMTF88803/+k4vL29sbGx4ffffzdYrtPp6NSpE4mJiSxZsoT333+fhIQEKlWqREBAAOfPnycxMRGAGzdukJWVRefOnTl//jz//PMPn376KYsXL6ZcuXJs3bqVypUrM3nyZCpUqMCkSZOeaswP37vCFNZye+jQofj6+tK/f/8Xdv8lSXp+VCpVrBDC40WP43HJDBNJkiRJkl4J2dmC88npHDqfwvnkdIP2uiXRs/pk/2mEhoYqBV+fREREBBUqVECr1aLRaGjVqpUyzai4SE5OpkePHnh6euLp6cn+/fuBnGsPCQnB398fe3t75s6dq+zz0Ucf0aBBA3x9fQkMDFTuUXBwsDK1ZtKkSTg6OqLRaBg/fjwHDhzg2LFj7Nu3D61Wy7lz5wzG8eDBA1q0aMHUqVPJysoiPT2duLg4tm7dyt9//41Wq+Xu3btYWlpy6NAhzpw5Q2pqKg0bNmTp0qVcu3aNHj16cODAAQAOHDiAj48POp2OFi1aoNFoaNmypVK0t6DlFy5coHHjxqjVat5//32DMX766aeo1WpcXFyUQIy/vz9jx47Fw8ODr7/+mp07d+Lq6oparSYkJIR79+7x448/smrVKqZOnUpgYCAffPAB4eHhaLVawsPDn/WP9JUihMDX15ctW7Yoy1avXk27du1e4KgkqeSQRV8lSZIkSXrpZWcLtiZdyVOYUM61/2/ll2Hg5+enZFRMnjyZb7/9lg8//PCR+z1LuTsiQU5NGP10lTFjxjBu3Dh8fX353//+R9u2bTlx4gQAJ0+eZPfu3aSlpdGgQQOGDRtGXFwca9euJT4+ngcPHuDm5oa7u7vB+VJSUli/fj0nT55EpVKRmppKxYoV8fPz4+LFi3mKDQNcvnyZKVOmIIRg+fLljB49mg0bNlC9enV8fX35+eeflW31RYRNTU1p3rw53t7eTJs2jUaNGvHHH3/QqVMn4uPj8fT0pFevXgQFBREUFMSiRYuU444aNSrf5WPGjGHYsGEMHDiQb7/9Vjnnli1b+PXXXzl8+DDlypXj+vXryrr79+8TExNDRkYG9erVY+fOndSvX5+BAwfy3XffMXbsWCIjI+nUqRM9e/aUGSbPkEqlYsGCBfTq1YvmzZuTmZnJlClT2Lp164semiSVCDLDRJIkSZKkl54u5bYSLAG4l5nNJ5tPoEu5/YJH9mz99ttveHt74+rqSqtWrfjnn3/Izs7G1taW1NRUZbt69erxzz//PFH2xMcff0z9+vXx9fXl1KlTyvJz587Rrl073N3d8fPzU2qwBAcHM3ToULy9vZk4cWKBYxdCkJaWhqWlpTKGAQMG4OPjw4ABA/LNeMjKysLOzg4hBKmpqRgbG7N3714AmjZtypkzZwq9Fj19RyT91/Tp05V1O3bsYOTIkWi1WgICArh165YyBaVjx46YmJhgbW1N5cqV+eeff9i/fz9dunTB1NQUCwsLOnfunOd8FSpUwNTUlDfeeIN169ZRrlw5AKpWrcqDBw9YuHChsm1CQgIXL17kzp079O3bF4AGDRoQGRkJ5LR8PnbsmLL9jRs3lCLCdevW5cCBA+zevZs6derg5eXF4cOHOXr0KA4ODpiamnLw4EHluAMGDFCOW9Dy/fv3ExgYqCzPfZ8GDRqkXIu+xTZA7969ATh16hR2dnbUr18fgKCgIOXnldugQYPYvn278jozMxMbGxs6deqUZ9vcjh07hlarRavVUqlSJezs7NBqtbRq1YqNGzcya9YswDDTJ7fCatcUh4yuJ+Xs7Eznzp359NNPmT59OgMHDuSHH34wCHjps8WEEEyYMAFnZ2fUarWS4RMREYG/vz89e/bEwcGBfv36KcWebW1tmTZtGm5ubqjVauV3//bt24SEhODl5YWrqyu//vrrf3/xkvSUZIaJJEmSJEkvvatp95Rgid69zGyupt3D3qbkPgg9zNfXl0OHDqFSqfjxxx/57LPP+Pzzz+nSpQvr169n0KBBHD58mNq1a1OlShX69u37WNkTCQkJrFy5kri4ODIzMw2yJ958800WLFhAvXr1OHz4MMOHD2fXrl0A/PXXXxw4cABjY+M8Y9ZPQUlJScHMzIyZM2cq644fP05kZCRly5alc+fO+WY8NGjQgOPHj3PhwgXc3NzYt28f3t7eXLx4kXr16hV4LaVLly7SPc3OzubQoUOYmprmWZdfi+iiKFWqFFFRUezcuZM1a9bwzTffsGvXLlQqFRMmTGDHjh18+umnmJqaYmtry1dffVXgsTp37sxXX32Fs7MzxsbGTJs2je7du7NkyRJGjx7NuXPnWLVqFVOmTMHCwoKMjAwiIiJo0qRJkcaan4fbVT9K7pbbRVGmTBlSUlK4e/cuZcuWZfv27dSoUSPfbXNnH6nVaiU7Jzg4WMlY0XsWRW5LKn1Ao0yZMsTExHD8+HHGjh3LiBEjAFi1ahV//PEH69atIy4ujvj4eK5du4anpydNmzYFcrpgJSUlUb16dXx8fNi/fz++vr4AWFtbc+TIEebPn8+cOXP48ccf+fjjj2nRogWLFi0iNTUVLy8vWrVq9djvB0l6kWSGiSRJkiRJL73KFiaYlDL8Z49JKSMqW5gUsEfJ9Ndff9G2bVvUajWzZ88mKSkJyPmEX/9J8cqVK5VP/B83e2Lfvn1069aNcuXKUb58eeUBND09nQMHDtCrVy+0Wi1vvfWWQdeeXr165RssgZwpOXFxcVy8eJFBgwYZZKEEBARQtmxZoOCMBz8/P/bu3cvevXuZPHkykZGRREdH4+npqRwnv2spqjZt2jBv3jzldX7TZXLz8fHht99+IyMjg/T09DwFXCHnft28eZMOHTrw5ZdfEh8fD4CFhQWlS5dm1apVnDt3jqSkJDZt2kS9evXo0KEDK1euJDg4GC8vL/z8/AAwNTWlVatWJCYmEh8fT/fu3QFo0aIFx44dw8zMjCpVqjBmzBgAtFotCxYswMfHB4AmTZqwcuVKAFasWKEct6DlPj4+Bsv1WrduzeLFi7lz5w6AwZQcvQYNGqDT6ZT22cuXL6dZs2Z5tlOpVFSrVo1NmzYBEBYWpmS1QN7so6J4OHtkx44deHh4UL9+fYOf0cWLF/H396devXp5pobpzZ49G09PTzQaDdOmTQNysik6duyIi4sLzs7Oxa72ipmZGb1792bAgAGYmJjg6urK1atX+fvvv4mPj8fS0pJatWoRGRlJYGAgxsbGVKlShWbNmhEdHQ2Al5cXNWvWxMjICK1Wi06nU46vf9+5u7sry7dt28asWbPQarX4+/uTkZGh1MKRpJJCBkwkSZIkSXrp2VqZMblDQyVooq9hYmv1cn3SOWrUKEaOHMmxY8f4/vvvycjIAKBx48acPXuW5ORkNmzYoDzc6LMn9FNRLl26pEw9eJzsiezsbCpWrGgwrUWfqQJFzzAICAgwmKJRlP2aNm3Kvn37iIqKokOHDqSmphIREaE84D/utTxs7ty5xMTEoNFocHR0ZMGCBYVu7+npSUBAABqNhvbt26NWq6lQoYLBNmlpaXTq1AmNRoOvry9ffPEFAH369GH27Nm4urrmKfo6b948Fi9ejEajYfny5Xz99dePHLtKpcLb2xsrKyslo6Zx48acP39eyTAp6LgFLf/666/59ttvUavVXLp0STlXu3btCAgIwMPDA61Wm28xYFNTUxYvXkyvXr1Qq9UYGRkZtFDWMzY2RgjB4MGDWb58OQkJCXh7extsc/z4cXbs2EFYWNgj70N+dDodUVFRbNq0iaFDhyq/K1FRUaxdu5aEhARWr17Nw104t23bxpkzZ4iKiiIuLo7Y2Fj27t3L1q1bqV69OvHx8SQmJhbLoqpGRkYYGf37+NerVy/WrFlDeHi4EkQtTGG/R/p1+uXNmzfn5s2brF27Vvmb8PbbbzN37lyD6VFFlXsa1eDBgzl+/HiB20ZERCjFjZ/Ghx9+yOTJkw2WxcXF0bBhQ/7++2+D7KXcClvn7++vvKf0f6+k4k1OyZEkSZIk6aVnZKSinVNVHKpacDXtHpUtTLC1MnvpCr7evHlTmbqwdOlSZblKpaJbt268/fbbNGzYECsrK+Df7IkJEyYAOQ8DuYufPqxp06YEBwczefJkMjMz+e2333jrrbcoX748dnZ2rF69ml69eiGEICEhARcXl8caf2RkJHXq1Ml3nT7jYcCAAQYZD15eXgwYMAB7e3tMTU3RarV8//33+WZ2FOThtrjBwcEEBwcDOVMN8ssWCA0NNXitb+sLMH78eEJDQ0lPv01jXz8CqtThfHI6ixYtVt5zUVFReY7p4+NT4INg7dq1lSlOBY01P/osjYK2L+i4BS23s7Pj4MGDyusZM2Yo30+aNClPm+KIiAiD1y1btuTo0aN5jrtkyRLle5VKRWJiIh4eHmRmZtKhQ4c82+fOPnoSr7/+OkZGRtSrVw97e3ul7kbr1q2V34/u3bsTGRmJh8e/nVC3bdvGtm3bcHV1BXLeO2fOnMHPz4933nmHd999l06dOhkE7Iqr3r17M2TIEK5du8aePXuAnIyt77//nqCgIK5fv87evXuZPXu2cn+KKjAwkG+++YZ58+Yxb948VCoVP/30E99++y1NmzZ9qulRP/74Y6HrIyIiMDc3f6ppZ5BzDe3ateOTTz5Rlq1cuZLAwECqV6+ebx2czMzMAtc9bPPmzU81Pum/ITNMJEmSJEl6JRgZqbC3MaeRvRX2NuYlPlhy584datasqXx98cUXhIaG0qtXL9zd3bG2tjbYvnfv3vz8888GnyQ/bvaEm5sbvXv3xsXFhfbt2xtMe1mxYgU//fQTLi4uODk5FbnAo76GiYuLC8uXL+fzzz/Pd7uCMh5MTEyoVasWjRo1AnIe+NLS0lCr1UU6//Pw5ptvotVqaah2Ia2qG98eyyZoURRbk66U+HbW/6WAgADGjx9vMB1H72nrYDxch0X/uqDlekIIJk+erGRNnD17ljfeeIP69etz5MgRpd1y7sLBxZWTkxNpaWnUqFGDatWqAdCtWzc0Gg0uLi60aNGCzz77jKpVqz72sXv27MmVK1fIyMhAo9FQr149zp49i5+fn8H0qODgYEaPHk2TJk2wt7dXAg1CCEaOHEmDBg3ytBvPnaWxdetW3NzccHFxoWXLluh0OhYsWMCXX36JVqtl3759eYr86rPoLl++TNOmTdFqtTg7O7Nv3z6Da6hfvz6WlpYcPnxYWbZq1SoCAwPR6XQ4OzsDOcG+gIAAWrRooYxBv+7u3bv06dOHhg0b0q1bN+7evascy9bWlmvXrgHQtWtX3N3dcXJyMij6bG5uznvvvYeLiwuNGjV6rOmE0jMihHgpvtzd3YUkSZIkSZIkZWVli3NX08TBc9fEuatpYu3adQIQJ06cULa5cOGCcHJyEkIIsXjxYjFixIinOucbb7whkpKSlNfnrqYJ31k7heeM7cqX76yd4tzVNCGEEIcPHxbNmjUTdevWFa6urqJDhw4iISHhqcZQFNHR0WLUqFHP/TxPw8zMTAghxMWLF8XXX38thBBi9+7domPHjkIIIaZNmyZmz55d6DGCgoLE6tWrldeLFy8WgOjXr58ICgoS7du3F/fu3ROWlpbCxMRE3L17VyxevFhUq1ZNpKSkiDt37gi1Wi2io6OFEEKULVtWmJqaCnt7e2FqaipCQkJEVlaW+Ouvv8Q///wjLl26JO7evSuEEOK3334TXbp0eda3pcTp2LGj2LBhgxBCiE8++US88847QgjD37egoCDRs2dPkZWVJZKSkkSdOnWEEEKsXbtWtGrVSmRmZopLly6JChUqKD/PZs2aiejoaHH16lVRs2ZNcf78eSGEECkpKUKIvO+Ph98L+vfXnDlzxIwZM4QQQmRmZopbt27luYbZs2eLsWPHCiGEOHjwoNA/cz7896NGjRrK+XOv+/zzz8WgQYOEEELEx8cLY2Nj5T1Vu3ZtkZycbDD2O3fuCCcnJ3Ht2jUhhBCA2LhxoxBCiAkTJoiPPvqoyPe/uAFiRDGIGzzul5ySI0mSJEmSVExkZwt0Kbdf6mlDz1t2tmBr0hWljbRJKSNUuxfj6+tLWFhYgYU8n0ZWVlaeaQKFdWYyy77N66+/zi+//KJMG4iMjOTcuXN5MmNyd4F5Fjw8PAymmBRnNWvWZPTo0c/seKVKlSIxMRFnZ2dee+01nJycuH37NhqNRumC5OXlRY8ePbh48SIDBgwwuFd16tQhMTGRL774gqlTpyrde37++WfOnj3LhAkTMDIyonTp0nz33XfPbNz5KQl/KwIDA1m5ciVdunRh5cqV/PTTT/lu17VrV4yMjHB0dFQyKPbu3asUn61evTotWrTIs9+hQ4do2rQpdnZ2gGEr66Lw9PQkJCSEBw8e0LVr13ynI/bu3ZsmTZrw+eefK9Nx8tO6det8z793717lPazRaNBoNPnuP3fuXNavXw/kFB4+c+YMVlZWlClTRmmn7e7ubtBuW/pvyCk5kiRJkiRJxYD+QT9oURSjw47KKRxPSJdyWwmWANy5fZvDBw8QOnuu0t0lPwV1R/n555/x8vJSuv9kZWUBOany77zzDi4uLhw8eDDPNIHBXVuS9M1bnFw0QTmWvjPTN998Q1BQkEGNBV9fX7p27QrkTFMYOnQo3t7eTJw4kdDQUIMiqs7Ozuh0OnQ6HQ0bNmTIkCE4OTnRpk0bJeXf39+fd999Fy8vL+rXr69MN4iIiFAewK5fv07Xrl3RaDQ0atSIhIQEIKc+S0hICP7+/tjb2zN37twn+2E8oYdrykDO9ejr0oSGhjJ+/PhCj7FkyRKDwpvBwcGYmJjQoUMHunbtyoIFC2jcuDHTp0+nSpUqQE4hWAsLC+7fv4+np6fSAQcwqC3z9ttvKwWWQ0JC6NOnDxMnTqRevXocOHCAQ4cOKbV8UlNTMTY2VooZN23alDNnzrBnzx60Wi1arRZXV1fS0tKKfH9Kyt+KLl26sHPnTo4cOcKdO3eUFuQPy11MNicR4dkqVaoU2dk5fw+ys7O5f/8+kPOz2Lt3LzVq1CA4OJhly5bl2bdWrVrY2dmxZ88e1q5dW2Bx3KeZIhYREcGOHTs4ePAg8fHxuLq6KkWIS5curUwLe9yC1dKzIQMmkiRJkiRJxcDDD/r3MrP5ZPMJdCm3X/DISpaHMztSTxygfF1PzCq/hpWVFbGxsfnul193lBMnThAeHs7+/fuJi4vD2NhYaaV7+/ZtvL29iY+Px9fXVzlOcnIyQ4YM4df161i9LRLH/jkP3bk7MyUlJeHm5lbodfz1118cOHBA6aBTkDNnzjBixAiSkpKoWLEia9euVdZlZmYSFRXFV199lW9mzbRp03B1dSUhIYGZM2cycOBAZd3Jkyf5448/iIqK4sMPP+TBgweFjqMw2dmC88npHDqfwvnk9Bf6YN+nTx9WrlxJRkbGE3ffuXPnDjt37kStVtO9e3eio6OJj4+nYcOG/PTTTxgbG9OgQQOOHz9OZGQkbm5u7Nu3j3v37nHx4kXq1avHnDlz+Pbbb4mLi2Pfvn2PVcC2pPytMDc3p3nz5oSEhBSYmVGQpk2bEh4eTlZWFpcvX2b37t15tmnUqBF79+7lwoULwL+trC0sLAwCULa2tsrv/caNG5X38p9//kmVKlUYMmQIgwcP5siRI/mOJTAwkHHjxmFvb0/NmjUf+zp++eUXIKcwtD4omdvNmzextLSkXLlynDx5kkOHDj3WOaTnS07JkSRJkiRJKgYKm8Jhb2P+gkZV8lS2MMGklJFyL1OO7aamb3cqW5jQp08fwsLC8v2kO7/uKKVKlSI2NlYpbnv37l0qV64M5Hza26NHjzzH0U8TqFPHHrtsgUPVVo+cNuHt7c2tW7do06aNUsy2V69eGBsbP/J67ezslKkE7u7u6HQ6ZZ2+ffTDy/UiIyOVAEuLFi1ISUnh1q1bAHTs2BETExNMTEyoXLky//zzz2M/LEL+U6Qmd2hIO6eqL2QKiUajQafTERYW9tjdd86dO4dWq0WlUtGlSxfat2/Pnj17eP/990lNTSU9PZ22bdsCOcWH9Q/zkydP5ocffqBZs2bKe8nHx4e3336bfv360b1798e6tyXpb0VgYCDdunUrNLsrP926dWPXrl04Ojry2muv0bhx4zzb2NjYsHDhQrp37052djaVK1dm+/btdO7cmZ49e/Lrr78yb948hgwZQpcuXXBxcaFdu3ZKNkhERASzZ8+mdOnSmJub55thAjm/i6NHj2bevHmPff3Dhg1j0KBBNGzYkIYNG+b7t6ddu3YsWLCAhg0b0qBBA6WAtVQ8yICJJEmSJElSMfDwgz78O4VDKjpbKzMmd2jIJ5tPcPtWKmnn47h66y9a7JhPVlYWKpWK2bNn59kvv+4oQgiCgoIM2orqmZqaPjKgoe/M9PBDrJOTE0eOHKFLly4AHD58mDVr1hi0Qs6d4p97SgGgpOuD4XQGY2Njgy4c+nVPksr/8HGfdCpAQdkQDlUtXtjDvb77TkREBCkpKQbrCptaUadOHeLi4gyWBQcHs2HDBlxcXFiyZInSRrlp06Z89913/P3330yfPp3Zs2cTERGhtBueNGkSHTt2ZPPmzfj4+PDHH3/g4OBQpPGXpL8VXbt2zTPNJndr69ztpOHf6VgqlYpvvvkm32PmblXdvn172rdvb7C+fv36eTI5cmdtfPrppwAEBQURFBT0yGuwtrbOk2Fla2urtBJ/uFV37nVly5YtMFiUO4i5ZcuWfLfJPT2tZ8+eBtPMpP+GnJIjSZIkSZJUDOgf9E1K5fzzLPcUDqnojIxUtHOqytIQL9qU0/F6n75c+esiOp2OixcvYmdnl6d9KMD27du5fv06d+/eZcOGDfj4+NCyZUvWrFmjtDS9fv06f/75Z6HnL2iaQG4jRoxgyZIlHDhwQFl2586dAo9pa2urTBc4cuSIcuyn5efnp0wxioiIwNramvLlyz+TY+sVlg3xooSEhDBt2rRn0no6LS2NatWq8eDBA+VeQk7x2AMHDmBkZISpqSlarZbvv/+epk2bAigFft999108PT05efJkkc8p/1ZI0n9HZphIkiRJkiQVA/oHfYeqFsW680VJoM/sOLzjN959912De9ijRw/CwsJ49913DfbRd0f566+/6N+/v9IdZcaMGbRp04bs7GxKly7Nt99+S+3atQs8d0HTBHKrWrUq4eHhvPvuu1y6dInKlStjbW3NBx98kO8xe/TowbJly3BycsLb25v69es/6a0xoC/uqtFoKFeuHEuXLn0mx82tOGZDPMvuOx999BHe3t7Y2Njg7e2t1M4wMTGhVq1ayvQKPz8/wsLClCDNV199xe7duzEyMsLJySlPlkRhXtTfipLQmUeSnjXV86hE/CJ4eHgIfWVySZIkSZIkSZJevP+yhklKSgotW7YE4MqVKxgbG2NjYwPkFPUtU6aMwfYTJkxg8+bNdOjQQekyVL169Wc6ppdFcatFI5U8KpUqVghRMnqa5yIzTCRJkiRJkqQSQ37KXbI8z2yIvO+FSkqNkdDQUMzNzQttP7xw4UKuX7+OsbEx/v7+ODs7y4BJAYpjLRpJ+i/IGiaSJEmSJElSiaD/lDtoURSjw44StCiKrUlXXmibWunR9FOkGtlbYW9j/syCJUV5LwQHB7NmzRrltbl5zsN9QEAA6enpuLu7Ex4eTkxMDP369UOr1bJp0ya6du2q7LN9+3a6dev21GMuyYpjLRpJ+i/IgIkkSZIkSdIjGBsbo9VqcXZ2plevXoUW6HxacXFxbN68WXm9ceNGZs2alWe7JUuWYGNjg1arxdHRkR9++KHQ43711VcG4+7QoQOpqanAvw+RxV1Bn3LrUm6/4JG92j7++GOcnJzQaDRotVoOHz783M/5tO+FjRs3UrZsWeLi4ujduzceHh6sWLGCuLg4OnTowMmTJ0lOTgZg8eLFhISEPLdrKQn0tWhye9G1aCTpvyADJpIkSZIkSY+gf7BKTEykTJkyLFiwoEj7PUkr1ocDJgEBAUyaNCnfbXv37k1cXBwRERFMmTKFf/75p8DjPhww2bx5MxUrVnzs8b1I8lPu4ufgwYP8/vvvHDlyhISEBHbs2EGtWrWe+3mf53tBpVIxYMAAfv75Z1JTUzl48OBjFWV9GcnOPNKrSgZMJEmSJKmEunLlCn369KFOnTq4u7vToUMHTp8+/VzPmTu9ffDgwRw/fvyZHPerr77C1NSUmzdvPtH+z3Isj+Ln58fZs2f57bff8Pb2xtXVlVatWinBitDQUAYMGICPjw8DBgygUaNGJCUlKfv7+/sTExNDVFQUjRs3xtXVlSZNmnDq1Cnu37/PBx98QHh4OFqtlvDwcJYsWcLIkSMLHVPlypWpU6cOf/75J8OGDcPDwwMnJyemTZsGwNy5c/n7779p3rw5zZs3B3Ja1V67du053aVnR6VS0b9/fyDnU+4yKsHRmT05vfx9oOifcut0OpydnQGIiYl5Zl1SXnWXL1/G2toaE5Ocn4G1tTXVq1fH1taWadOm4ebmhlqtVtrmXr9+na5du6LRaGjUqBEJCQkAqNVqUlNTEUJgZWXFsmXLABg4cCDbt2+nadOmSn0SgJGBnXhw1bC9cn7vhVKlSpGdnRNYyc7O5v79+0W6rkGDBvHzzz8TFhZGr169KFXq1S79mLtd99xAV5aGeMmCr9IrQQZMJEmSJKkEEkLQrVs3/P39OXfuHLGxsXzyySeFZhjk9iSZDw/78ccfcXR0fOrjAISFheHp6cm6desee9+srKxnOpbCZGZmsmXLFtRqNb6+vhw6dIijR4/Sp08fPvvsM2W748ePs2PHDsLCwujduzerVq0Cch4uL1++jIeHBw4ODuzbt4+jR48yffp0pkyZQpkyZZg+fbqSOdK7d+8ijev8+fOcP3+eunXr8vHHHxMTE0NCQgJ79uwhISGB0aNHU716dXbv3s3u3bufy715XszMzEhMTOTu3bvYWpnRpuJVTCpYA0X/lPvh97uHhwdz5859bmN+lbRp04aLFy9Sv359hg8fzp49e5R11tbWHDlyhGHDhjFnzhwApk2bhqurKwkJCcycOZOBAwcC4OPjw/79+0lKSsLe3p59+/YBORksTZo04Y033mDJkiUAOYHhrAd8PLjTIzMebG1tiY2NBXKm4Tx48CDf67CwsFBaAgNUr16d6tWrM2PGDAYNGvQM7lTJ9zxq0UhScScDJpIkSZJUAu3evZvSpUszdOhQZZmLiwt+fn4IIZgwYQLOzs6o1WrCw8MBiIiIwM/Pj4CAABwdHYmIiMDf35+ePXvi4OBAv379ECKnYGJsbCzNmjXD3d2dtm3bcvny5Txj0GdKgGENjDVr1hAcHAzA6tWrcXZ2xsXFhaZNm+Z7LefOnSM9PZ0ZM2YQFhamLL9z5w6vv/46jo6OdOvWDW9vb4PzvfPOO7i4uHDw4ME8Yxk3bhxOTk60bNlSqUPg7+/PmDFjlFokUVFRAPlmejzs7t27aLVaPDw8eO2113jjjTf466+/aNu2LWq1mtmzZxtkkQQEBFC2bFkAXn/9dSUrZ9WqVfTs2ROAmzdv0qtXL5ydnRk3bpzB/kWlz0QJDAzk+++/p1KlSqxatQo3NzdcXV1JSkr6zzJvnqcOHTqwadMmjIxUnDn4ByPeGIhT9fIsDfHCz9aCwYPfwMvLC1dXV3799Vcgp8ZLQEAALVq0UFrN6kVERNCpUycgJyMoJCQEf39/7O3tZSDlMZmbmxMbG8vChQuxsbGhd+/eSmCje/fuALi7u6PT6QCIjIxkwIABALRo0YKUlBRu3bqFn58fe/fuZe/evQwbNoxjx45x6dIlLC0tMTMzo1evXvz+++88ePCARYsWERwcXKSMhyFDhrBnzx7lb4WZWf7BteDgYIYOHYpWq+Xu3bsA9OvXj1q1atGwYcPncOckSSoJXu3cMkmSJEkqoRITE3F3d8933bp164iLiyM+Pp5r167h6empBCuOHDlCYmIidnZ2REREcPToUZKSkqhevbryCa+3tzejRo3i119/xcbGhvDwcN577z0WLVr02OOcPn06f/zxBzVq1FAKjD5s5cqV9OnTBz8/P06dOsU///xDlSpVmD9/PpaWlhw/fpzExES0Wq2yz+3bt/H29ubzzz/Pc7zbt2/j4eHBl19+yfTp0/nwww/55ptvgJwgTFxcHHv37iUkJITExEQl06NUqVLs2LGDKVOmsHbtWoNj6muY5DZq1CjefvttAgICiIiIIDQ0VFmX+6GsRo0aWFlZkZCQQHh4uFL/ZOrUqTRv3pz169ej0+nw9/cv+o39f71791auDeDChQvMmTOH6OhoLC0tCQ4OJiMj47GPW9z06dOH6dOn06lTJ44dS+CNN0JIOhqFvY05U6ZMoUWLFixatIjU1FS8vLxo1aoVgFJXo1KlSsoDe35OnjzJ7t27SUtLo0GDBgwbNozSpUv/R1dX8unb8vr7+6NWq1m6dCmAMk3H2Nj4kVltTZs25dtvv+V///sfH3/8MevXr2fNmjX4+fkBUK5cOVq3bs2vv/7KqlWriI2NVTIe8mtrm/v38dChQ8r3n376qfJ9enq68n2PHj3o0aOHwTEiIyMZMmRIEe+CJEkvI5lhIkmSJEkvmcjISAIDAzE2NqZKlSo0a9aM6OhoALy8vLCzs1O29fLyombNmhgZGaHVatHpdJw6dYrExERat26NVqtlxowZ/PXXX080Fh8fH4KDg/nhhx/IysrKd5uwsDD69OmDkZERPXr0YPXq1cp19OnTBwBnZ2c0Go2yj7GxcZ6HGz0jIyNlKkv//v2JjIxU1gUGBgI5D2e3bt0iNTX1iTM9bt68SY0aNQCUB8SC9O7dm88++4ybN28q15F7f/0n8pB3asDjuHXrFmZmZlSoUIF//vmHLVu2PJPjvmgajQadTkdYWBgdOnQwWLdt2zZmzZqFVqvF39+fjIwM/ve//wHQunVrKlWq9Mjjd+zYERMTE6ytralcuXKRp7ZJcOrUKc6cOaO8jouLo3bt2gVu7+fnx4oVK4CcTB9ra2vKly9PrVq1uHbtGmfOnMHe3h5fX1/mzJmDr68f55PTOXQ+hXY9+jJ69Gg8PT2xtLR8rtfl7u5OQkKCUj9HkqRXk8wwkSRJkqQSyMnJSZnm8TgeTkfXfwIM/34KLITAycmJgwcPFvm4KtW/afC5MxoWLFjA4cOH2bRpE+7u7sTGxmJlZaWsP3bsGGfOnKF169YA3L9/Hzs7u0cWOTU1NcXY2Pixx5b7e/3rJ830CA0NpVevXlhaWtKiRQsuXLhQ4LY9e/ZkzJgxTJ06VVk2ceJEgoKCmDFjBh07dlSWN2/enNGjR2NqakqVKlUQQuDl5VWkMbm4uODq6kr16tWpW7cuPj4+QE5R3M6dO9OuXTullsmTMjc3N/hkfsmSJcTExBhkujwsIiKCMmXK0KRJkyc+b0BAAOPHjyciIoKUlBRluRCCtWvX0qBBA4PtDx8+XOD0i4fl93sgFU16ejqjRo0iNTWVUqVKUbduXRYuXMjvv/+e7/b6KVAajYZy5coZBBu9vb2VwKqfnx+TJ0/mnnU9ghZFcS8zG5NSRhiblCMoKPi5X5e+7okkSa82GTCRJEmSpBKoRYsWTJkyhYULF/Lmm28CkJCQwM2bN/Hz8+P7778nKCiI69evs3fvXmbPnq10qXiUBg0akJyczMGDB2ncuDEPHjzg9OnTODk5FbhPlSpVOHHiBA0aNGD9+vVYWFgAOfVJvL298fb2ZsuWLVy8eNEgYBIWFkZoaCiTJ09WltnZ2fHnn3/i4+PDqlWraN68OcePH+fYsWNFGn92djZr1qyhT58+/PLLL/j6+irrwsPDad68OZGRkVSoUIEKFSoUmOmRW+4AgV6XLl3o0qVLnuW5pwLkvj8PP4Q3btzYoKvRjBkzgJxP7F977TXOnz+PiYkJ165dy7ezR3BwsFIrJreffvqJli1bMmfOHDw8PJRtAWbOnKlsl3uKSn7X9yxFRERgbm7+VAGTkJAQKlasiFqtJiIiQlnetm1b5s2bx7x581CpVBw9ehRXV9dnMGqpKNzd3Tlw4ECe5bnfXx4eHsrPrFKlSmzYsCHfYy1fvlz5vkmTJpz955YSLAFIu36Va+kZ1Hf3eWbjlyRJKoyckiNJkiRJJZBKpWL9+vXs2LGDOnXq4OTkxOTJk6latSrdunVDo9Hg4uJCixYt+Oyzz6hatWqRj12mTBnWrFnDu+++i4uLC1qtNt8HotxmzZpFp06daNKkCdWqVVOWT5gwAbVajbOzM02aNMHFxcVgv5UrV9KtWzeDZd26dWPlypUMHz6c5ORkHB0def/993FycqJChQqPHL+ZmRlRUVE4Ozuza9cuPvjgA2Wdqakprq6uDB06lOlz5nHofAr9hoxk8uTJuLq6FovMgoLatALs3LkTV1dX1Go1ISEh3Lt3D8jpBPLuu+/i5uZGWFgYMTEx9OvXTylg+XBR3Pfeew8XFxcaNWqkTD85d+4cjRo1Qq1W8/777xsU8i2q/Fot63Q6FixYwJdffolWq1W6nzyumjVr5tsKeOrUqTx48ACNRoOTk5NBFo9Usl1Nu6cES64d3c7xBaOp0WoQ127n3+lGkiTpWVPpq+GXdB4eHkL/DwFJkiRJkkq+rKwsHjx4gKmpKefOnaNVq1acOnWKMmXKFLrfw1NG9Pz9/ZkzZw5ubu5sTbrCJ5tPKGn+kzs0zLfDxouQnp6Or68vd+7coVWrVvTu3ZtmzZqRkZFBvXr12LlzJ/Xr12fgwIG4ubkxduxYbG1tGT58OBMnTgT+vVZ9hknu1yqVio0bN9K5c2cmTpxI+fLlef/99+nUqRP9+vUjMDCQBQsWMH78+Hzvo7GxMWq1Wnl9/fp1AgIC+Oabb7hx4wYVK1ZEpVLx448/cuLECT7//HNCQ0MxNzdn/Pjx/81NlJ5KdrZAl3Kbq2n3qGxhgq2V2Qv53TifnG6QYQI57YOXhnjlW+hVKh5UKhX9+vXj559/BnLaelerVg1vb+8Cp2pBTibanDlzCt2mILa2tsTExGBtbf3E45aeL5VKFSuE8HjR43hcMsNEkiRJkoqJ7GyhFDc8n5xOdvbL8aHGk7pz5w6+vr64uLjQrVs35s+f/8hgSVHoUm4rwRKAe5nZfLL5BLqU20997GehoDatp06dws7Ojvr16wMQFBTE3r17lf30hW4fpUyZMkpL3dztXg8ePEivXr0A6Nu3b4H76zsG6b+mT5+urCus1bJUMmRnC7YmXSFoURSjw44StCiKrUlXXsjfI1srMyZ3aIhJqZxHFn1w09aqaLVppBfDzMyMxMREpT3z9u3blWmPklTSyICJJEmSJBUDxekhpbiwsLAgJiaG+Ph4EhISaN++fZH2K6geR0REBB4eHgZp/nr3MrO5mnbvqcf8rOjbtOpbIj/c5jg/RS1wWrp0aaX47bMucDpq1ChGjhzJsWPH+P777/NtaSwDg8VbcQooGhmpaOdUlaUhXswNdGVpiFexyQSTCtehQwc2bdoE5NSq0ncoA4iKiqJx48a4urrSpEkTTp06lWf/9PR0Bg0ahFqtRqPRKH8Dw8LClGme7777bp79dDodDg4OBAcHU79+ffr168eOHTvw8fGhXr16REVFPacrll5WMmAiSZIkScVAcXpIedlVtjBRPrHWMyllRGULkwL2+G8V1Ka1QYMG6HQ6zp49C+QUyGzWrFm+x3iSFsKNGjVSHkpWrlz5RGMvqNWyfjwyMFj8FbeAopGRCnsbcxrZW2FvYy6DJSVEnz59WLlyJRkZGSQkJODt7a2sc3BwYN++fRw9epTp06czZcqUPPt/9NFHVKhQgWPHjpGQkECLFi34+++/effdd9m1axdxcXFER0fnW0D47NmzvPPOO5w8eZKTJ0/yyy+/EBkZyZw5cwwKX0tSUciAiSRJkiQVA8XtIeVlVtzT/NPT0wkKCsLR0RGNRsPx48cJDQ3F1NSUxYsX06tXL9RqNUZGRgwdOjTfYwQHBzN06FCl6GtRfPXVV3zxxRdoNBrOnj1bpAK7D9O3WnZ3dzeoJdC5c2fWr1+Ps8aFSd+Gy8BgMVbcA4pSyaDRaNDpdISFhdGhQweDdTdv3qRXr144Ozszbty4fKfu7dixgxEjRiivLS0tiY6Oxt/fHxsbG0qVKkW/fv0MpiXq2dnZKX8jnZycaNmyJSqVCrVabdC9SZKKQrYVliRJkqRiQP+Q8nBxQ/mQ8uzp0/wdqlq88KKW+SmoTStAy5YtOXr0aJ7lDz8E9OjRgx49eiivc7fhzT1lqWfPnvTs2ROAGjVqcOjQIVQqFStXrsw3Tf7h/cGwvXFBrZbr169PQkICh86nMDrMcPz6wKAs4lk86AOKDxdFLi4BRankCAgIYPz48URERJCSkqIsnzp1Ks2bN2f9+vXodDr8/f2f6Xn1HcYAjIyMlNdGRkbFohOaVLLIgIkkSZIkFQPyIeW/pU/zlw/p/4qNjWXkyJEIIahYsSKLFi165ueQgcHir7gHFKWSIyQkhIoVK6JWqw2Ctrmn7i1ZsiTffVu3bs23337LV199BcCNGzfw8vJi9OjRXLt2DUtLS8LCwhg1atRzvgrpVScDJpIkSZJUDMiHlJdbcWnTWhg/Pz/i4+Of6zlkYLBkkAFF6VmoWbMmo0ePzrN84sSJBAUFMWPGDDp27Jjvvu+//z4jRozA2dkZY2Njpk2bRvfu3Zk1axbNmzdHCEHHjh3zzWiTpGdJJcTLUWTLw8NDxMTEvOhhSJIkSZIkGdAX0sS+mwAA8pJJREFUOn04SPCqdvsoCcEjSZIk6dlSqVSxQgiPFz2OxyUzTCRJkiRJkp6jgjogOVS1eCU/wZfZC5JUssggp/QqkwETSZIkSZKk56iwDkgyaCBJUnEmM+SkV51sKyxJkiRJkvQcyTatkiSVVAVlyMlW4NKrQgZMJEmSJKmYU6lU9O/fX3mdmZmJjY0NnTp1AmDjxo3MmjULgNDQUObMmQPktHtds2YNAIMHD+b48ePPdFwzZ84scJ2trS1qtRqtVotarebXX3995PFyjzc/GzZseOpriIiIUO7bf0Vf6FQfNJGFTiVJKikKy5CTpFeBnJIjSZIkScWcmZkZiYmJ3L17l7Jly7J9+3alJSNAQEAAAQEBhR7jxx9/fObjmjlzJlOmTClw/e7du7G2tubUqVO0adPmqbsZbNiwgU6dOuHo6JhnXWZmJqVKFc9/1sgOSJIklVSyFbj0qpMZJpIkSZJUAnTo0IFNmzYBEBYWRmBgoLJuyZIljBw5stD9/f390XeT27p1K25ubri4uNCyZUsAbt++TUhICF5eXri6uioZIUuWLKF79+60a9eOevXqMXHiRAAmTZrE3bt30Wq19OvXr9Bz37p1C0tLSwB0Oh3Ozs7Kujlz5hAaGppnn0mTJuHo6IhGo2H8+PEcOHCAjRs3MmHCBLRaLefOncPf35+xY8fi4eHB119/zc6dO3F1dUWtVhMSEsK9e/eU63VwcMDNzY1169Yp5yjomp8HfaHTRvZW2NuYy2CJJEklgsyQk151MmAiSZIkSSVAnz59WLlyJRkZGSQkJODt7f1Ex0lOTmbIkCGsXbuW+Ph4Vq9eDcDHH39MixYtiIqKYvfu3UyYMIHbt3PmqMfFxREeHs6xY8cIDw/n4sWLzJo1i7JlyxIXF8eKFSvyPVfz5s1xdnamWbNmjB07li5duuDv78/p06cZM2YM9+/fz3e/lJQU1q9fT1JSEgkJCbz//vs0adKEgIAAZs+eTVxcHHXq1AHg/v37xMTEMGLECIKDg5VxZmZm8t1335GRkcGQIUP47bffiI2N5cqVK8p5Hr7m8ePH07x5c7RaLeHh4QZjWrJkCX///bfy2tbWlmvXrj3Rz0Cn01G2bFm0Wi2Ojo4MHDiQBw8eFLpPQdOuCvKsp2Dld85H3YPU1FTmz59fpOObm8vit5JUHOkz5JaGeDE30JWlIV6y4Kv0SpEBE0mSJEkqATQaDTqdjrCwMDp06PDExzn0f+zdd1xV9f/A8ddliCC4EDS1RMwJXC5TEXEjOHLvramZqaVpamaSWWmamVo5StFyJY6cRaSIWwGviGhONEeKmMgWuOf3Bz/OV2KI5gB7Px8PH3nP+JzPOVy1+77vz/t9+DBNmzalZs2aAFSsWBGA4OBgZs2ahU6no3nz5qSlpXHlyhUAWrVqRbly5ShdujQNGjTg8uXLRbrWnj17iI6OJioqijfeeAN/f39CQ0OpU6cOSUlJTJ06Nd/zcq71+uuvs2nTJiwsLAq8Rq9evQD4448/qFmzJnXq1AFg0KBBhIWFcebMGezs7Khdu3aeWjD/vOfExETS0tLQ6/XquDn+GTD5t2rVqoVer+fkyZNcvXqVn376qdDjO3bsyOTJk4s8/nfffZfv0qVn6VECJkKI4ksy5MR/mQRMhBBCiELk98334sWLWbVq1WOPefLkSXQ6HTqdjooVK1KzZk10Oh2tW7cu9LyOHTsyYcKEXMtx/mn16tWkpqY+8pwURWHjxo3o9Xr0ej1Xrlyhfv36AJiZ/W+turGxMZmZmY809uXLlzEzM8PNzQ0TExMMBgNffvkly5cvJzExkdWrVxMVFQXAxIkT+fTTTzl69Cipqal88cUXNGrUiObNmxMaGsrbb79Nv379UBQFgCtXrtCsWTN69+7NyZMnuXHjBgDjx48nKiqKvn37cu3atVzzycjIoHPnzpw6dQpjY2NWrVpFcHAwlpaWxMTEqEt+cgQFBREeHk6/fv3Q6XTq8124cCGurq44OTlx5swZ4NGX+RgbG+Pp6anOcdu2bTRs2BAXFxdat27NzZs3gfyXXZ05cwZPT0/1dWxsLE5OTkDuJVjBwcF4eXnh6upKjx49SEpK4tixY3Tt2hWAn3/+GXNzc+7fv09aWhr29vZF+rk+aN68eTg6OuLo6Mj8+fOB7GVVFy5cQKfTMXHiRADmzJmDh4cHWq2W6dOnP/J1hBBCiGdJAiZCCCHEIxo5ciQDBw587POdnJzUwMSDy0xCQkIKPW/o0KF88MEH6ofi/PTr1w9zc/MC9zdq1IiwsDAuXboEwJ07dwDw8/Nj4cKFaiDi+PHjD70PU1PThy4lgeyslszMTGrUqEHlypW5desWGRkZVK9enc2bN1OjRg327dvH/fv3MTIyYu/evSQkJPDXX3/x1VdfceHCBY4fP06LFi2YMWMGFy9e5MCBAyiKwpw5cwgKCuL48eMYGxszZswYAG7evEmVKlWIjIwkMzNTDYCsXbuWP/74AxcXF8aNG0fNmjUZMGAAtra2TJo0CR8fn1xLfgC6d++Ou7s7q1evRq/Xq8+3UqVKREZG8uabb6rLVQpb2pSftLQ0jhw5gr+/PwBNmjTh8OHDHD9+nN69e/P5558XeG69evW4f/+++rNcv359nsyY27dvM3PmTEJCQoiMjMTd3Z158+bh4uKCXq8HYN++fTg6OnLs2DGOHDlS4HKvL7/8Ug306XQ6NeMmIiKCFStWcOTIEQ4fPsyyZcs4fvw4s2bNUjNp5syZQ3BwMOfOnePo0aPo9XoiIiIICwsr8P6EEEKI5614lpMXQgghirGAgAAsLS2ZMGECCxYsYPHixZiYmNCgQQPWrVvH0aNHefvtt0lLS8Pc3JwVK1ZQt27dh47bvHlz5s6di7u7O7dv38bd3Z3Y2FgyMjLo2LEjSUlJZGVl4eLiwttvv82NGzeoW7cuVatWVZdfzJ8/n3HjxhEbG8uWLVu4evUq06dP58aNG6SlpWFjY8PSpUvp2rUrBoMBW1tbfvvtN6ZNm8Y777yDVqvFYDBQs2ZNtm/fXuh8R4wYgVarxdXVNd86Ji1atMDY2JibN2/SpEkTKleuDMCHH36Ip6cnN2/epFWrVlhbWxMWFkZ8fDxubm5cunSJdu3aERUVxZAhQ3jzzTeJiIhg2LBhDB8+nFu3bnHkyBFSUlK4cOECvr6+AFhZWREcHIyTkxMajYbp06dTunRpli5dSvv27bGwsMDHx4e///6bAQMG8NJLL/HOO++wY8cO6tevT/ny5bG2ti7y+yAnQ8PNzU0tJhscHMzWrVvVAErO0qacbJ0cOZkXly5don379mi1WgCuXr1Kr169uHHjBvfv31eXThWkZ8+erF+/nsmTJ7N+/fo8tVcOHz5MTEwM3t7eQHbNFy8vL0xMTKhVqxanT5/m6NGjjB8/nrCwMLKysvDx8cn3WuPGjWPChAnqazs7OwD2799Ply5dKFOmjPpc9u3bl6dzU3BwMMHBwbi4uACQlJTEuXPnaNq0aaH3KIQQQjwvEjARQggh/oVZs2Zx6dIlzMzMuHv3LpD9zf++ffswMTEhJCSE999/n40bNz72NZYsWcIHH3xAVFQUFStWJDQ0lD/++IOYmBhq1KiBv78/LVq0AKB8+fK89dZbJCUlkZSUxNy5c9HpdPTs2ZPY2FiaNGlC27Ztadu2ba5rmJubs2TJkjzXHjx4MIMHD1ZfPxhEmT17NrNnz853zrGxservQ0JCmDFjhvp67NixDB48mJo1a7J27VpMTEyoX78+PXv2xNfXl02bNlG7dm3CwsLYuHEjoaGhREdH4+3tTUxMDKNHj8ba2prly5czYsQIDh06lOf6zZs3Vzvz+Pv7q0tmADWrIeeed+7cyZEjR4iMjHxoMdUH5SxVenCZUs7SpocFyHIyL27fvo23tzdbt26lY8eOjBkzhvHjx9OxY0dCQ0Pz7SD0oF69etGjRw+6du2KRqOhdu3aufYrioKvry9r167Nc27Tpk3ZtWsXpqamtG7dmsGDB5OVlcWcOXOK/AwehaIoTJkyhTfeeOOpjC+EEEI8aQ9dkqPRaIr+VcsTpNFo/DUazR8ajea8RqMpepUzIYQQ4hnSarX069ePH3/8EROT7O8hEhIS6NGjB46OjowbN45Tp0796+v4+vqqBVoBPD09sbe3x9jYmD59+rB///485+TURoHsLIgHgxjPUqtWrUhJSVHrvmRlZfHuu+8yePBgLCwsKFWqFC+//DIbNmzAy8sLHx8f5s6d+9DMg7p16xIXF6cGTDIyMor0rH18fNSMmNDQUCpVqkTZsmULPcfKyorExMSHjv2oS5sqVarErFmz+Oyzz4Ds9061atUAWLly5UOvV6tWLYyNjfn444/zLMeB7CVYBw4c4Pz580B2jZWzZ88C2c9h/vz5eHl5YWNjQ3x8PH/88Ueuts9F4ePjw5YtW0hJSSE5OZnNmzfj4+OT55n5+fmxfPlykpKSALh27Rq3bt16pGsJIYQQz1JRapgc1mg0GzQaTTuNRvNMSiJrNBpj4GugLdAA6KPRaJ5vqXchhBAiHzt27OCtt94iMjISDw8PMjMzmTZtGi1atCA6Oppt27aRlpaW5zyDQeFiXBJxiencvJeGwaCoBVGBPOfkLHfI8c9/kvP7J/rfFmt9UjQaDZs3b2bDhg3Url2bOnXqULp0aT799FP1GB8fH2xtbTE3N8fHx4erV68WuDQkR6lSpQgKCmLSpEk4Ozuj0+k4ePDgQ+cTEBBAREQEWq2WyZMnFykwMXjwYEaOHJmr6Gt+pk2bRkZGBlqtFgcHB6ZNm/bQsTt37kxKSgr79u0jICCAHj164ObmRqVKlR56LmRnmfz444/07Nkzzz4bGxsCAwPp06cPWq0WLy8vNdumYcOG3Lx5Uw1MabVadTnTo3B1dWXw4MF4enrSsGFDhg0bhouLC9bW1nh7e+Po6MjEiRNp06YNffv2xcvLCycnJ7p3716kIJQQQgjxvGhyvgEp8IDsfzVbA0MBD+AnIFBRlLNPbVIajRcQoCiK3/+/ngKgKMpnBZ3j7u6u5FSDF0IIUXIZGxvnKmq6ZcsW+vbty8GDB4mNjaVDhw5ER0cTHh7OqlWrWLBgwb+63uDBg9m7dy/lypUDsgurjh07Fjs7O8LDw7Gzs0Or1arXP3jwIGfPnsXS0pLx48dz5coV7OzsyMjIoEaNGsTExDBkyBD69++Pl5cXrVu3JiUlJVd2h8Gg8Mupv/hs52kOftge+9dG89X08Wyc/wHu7u68+eabzJ8/n/nz5xMbG0tgYCDh4eEsWrQIyM6KaNu2rbokp23btowYMYJu3bqp805KSlKfFcDcuXNJSkp66BIPIYQQQognTaPRRCiK4v685/GoHlrDRMmOqPwG/KbRaFoAPwKjNBrNCWCyoih5Fw7/e9WAPx94fRXIv2S7EEKIF4q5ubnavSNHflkD7u7uuLs/mX9358yZQ/fu3fPdl5KSwpUrV6hevTrp6enY2Nio3+RnZWXRv39/EhISUBSFsWPHUr58ed577z0GDRpEmTJl6Nq1Kz/++GOuMWPjk/ls52nSM7OzSTINCp/tPM2Hr4/i3ZFD1CKlhfHw8GD06NGcP3+eFi1a0KVLlyfwJIrOYFCIjU/mVmI6tlZm2FmXwcjomSSiCiGEEEI8E0WqYaLRaN7WaDThwARgDFAJeBdY85Tn97C5jdBoNOEajSY8Li7ueU5FCCHEU2RpaZlnW2hoKB06dACyl1g8WKzT0dGR2NhYkpOTad++Pc7Ozjg6OubpIFIUBoOBu3fvcvXqVWrVqsW1a9fYsmULxsbGdO7cmW+++YaTJ09iamrK/fv3Adi1axcTJ05k8+bNbNmyhdjYWLKyspgwYQKOjo608WnIlX3ZXVVMLMpRvp4XqampfDhlEmPGjOH48ePMnDlTzUoZPHiwml2So2zZsuzYsYM//viDxYsXY2SU/U96bGwslSpVws7OTs0uAZgwYcITyy7JyZAZtPwoY9ceZ9Dyo/xy6i8MhsKzVoUQQgghSpKi1DA5BJQFOiuK0l5RlE2KomQqihIOLH5K87oGvPzA6+r/vy0XRVGWKoririiKu42NzVOaihBCiGcpNTUVnU6HTqf711kTv/zyC1WrVuXEiRNER0fj7++v1g45fDGei3FJKApMnDhRvebJkycLHG/WrFn4+Pig1+sZN24cPj4+7Nu3j4SEBExMTDhw4AAA+/bty1OwdOnSpcTGxqLX6wned4SX3Fqr+wz3Uzm/+kO69ejJ8OHD/9U9Pwv/zJBJzzTw2c7TxMYnP+eZCSGEEEI8OUUJmNRVFOVjRVGu/nOHoiizNRrNwqcwr2NAbY1GU1Oj0ZQCegNbn8J1hBBCFDM5S3L0ej2bN2/+V2M5OTnx22+/MWnSJPbt24eVVdk8mRHX7qYye/bn6jUfrJ/yMD4+PoSFhXHgwAHat29PUlISKSkpXLp0KU9b2ZCQEN544w1MTEywsy7Dh90bYmaS/c/w+dXTGf76UMaPKlqwpHnz5rna+z5rtxLT1WBJjvRMA7cS05/4tfLLLnqYLVu2EBMTo77+8MMPCQkJKfL5oaGhlCtXTg2itW7dmvDwcMaOHfvIc4HsDKGgoKCHHhcQEEC1atXU606enN0ksHnz5jysTtv8+fNJSUl56PgFtU1+nOcshBBCvOiKWsOkMN5PaC4PXjNTo9GMBn4FjIHliqL8+56MQgghXkgPdpeB/3WYqVOnDpGRkezcuZMPPvgA10Y+hFdsmSsz4uzVu8QlPd4HfQ8PD8LDw7G3t8fX15fbt2+zbNky3NzcCj3PyEiDv0MV6lWxwnthKVr5tuRG9GE0mlGPNY9nzdbKDDMTo1xBEzMTI2ytzAo569nZsmULHTp0oEGD7AZ7M2bMeOQxfHx88gSlnlTNnMKMGzeOCRMmPPJ58+fPp3///lhYWDyFWQkhhBD/TUXJMHkuFEXZqShKHUVRaimK8snzno8QQojiy87OjsjISAAiIyO5dOkSANevX8fCwoL+/fszceJEIiMj82RGZCkKCakZRbqOlZVVrjaopUqV4uWXX2bDhg14eXnh4+PD3Llz8yzHAfD19WXJkiVqa9+7d//G3sYSMxMj5s/5jIoVK/DWW2891v0/a3bWZZjSrr6aIWNmYsSUdvWxsy7zkDMfz4P1agBGjx5NYGAgAJMnT6ZBgwZotVomTJjAwYMH2bp1q7rM6sKFC7kyPOzs7Jg+fTqurq44OTmpLXYfZQ4BAQEMHTqU5s2bY29vn6tT06pVq9BqtTg7OzNgwAB1e1hYGI0bN8be3r5I2SYFCQ4OxsvLC1dXV3r06EFSUhILFizg+vXrtGjRghYtWgDZy9FcXV1xdnamVatW6vkxMTH5zvtBc+bMwcPDA61Wy/Tp04HsLJ358+erx0ydOpWvvvrqse9DCCGEKAkemmEihBBCFHfdunVj1apVODg40LBhQ+rUqQPAyZMnmThxIkZGRpiamjL10y/4IjIzV9DEWKOhnLlpka6j1WoxNjbG2dmZwYMHq3VMfv/9d8zNzfHx8eHq1av4+PjkOXfYsGGcPXsWrVaLqakpw4cPZ/To0er+r776iqFDh/Lee+/x+eef/8sn8nQ9mCHzPLvkxMfHs3nzZs6cOYNGo+Hu3buUL1+ejh070qFDhwI7H1WqVInIyEi++eYb5s6dy3fffZfnmH379qHT6QDo0aMH3t65E2rPnDnDnj17SExMpG7durz55pucPXuWmTNncvDgQSpVqsSdO3fU42/cuMH+/fs5c+YMHTt2LHBuX375pdpVafbs2fj5+an7bt++zcyZMwkJCaFMmTLMnj2befPm8eGHHzJv3jz27NlDpUqViIuLY/jw4YSFhVGzZs1c88hv3qam/3v/BwcHc+7cOY4ePYqiKHTs2JGwsDCGDh1K165deeeddzAYDKxbt46jR48+5CckhBBClGxPImAiPQSFEEI8MUlJSQVue7DzS/PmzWnevDmQXfckODg4z3l2dna5PnAaDAqlqvylFiw1MzFiRWAg/g5V8pyb06Hmweubmpqye/fuXMd9/PHHfPzxxwBUrVqVB1eyPjhfExMT5s2bx7x58wq8zooVK/LMo7gyMtJgb2OJvc3zq31Rrlw5Spcuzeuvv06HDh1yZaEUpmvXrgC4ubmxadOmfI/555Kc0NDQXPvbt2+PmZkZZmZm2NracvPmTXbv3k2PHj2oVKkSABUrVlSP79y5M0ZGRjRo0ICbN28WOLfCluQcPnyYmJgYNXhz//59vLy88j2uadOm1KxZM8888pt39erV1f3BwcEEBwfj4uICZL/3z507R9OmTbG2tub48ePcvHkTFxcXrK2tC7wPIYQQ4kVQ5ICJRqOxUBQlv2piko8phBCiUAaDQmx88nPNRoDikxkhHk1BNWpMTEw4evQov//+O0FBQSxatChPQCs/ZmbZtVaMjY3VJVKPKmeMoo7z4PE5QbWpU6eyY8cOAPR6/UOvqSgKvr6+rF279jFmnHce+c1bURSmTJnCG2+8kefcYcOGERgYyF9//cXQoUMfew5CCCFESfHQGiYajaaxRqOJAc78/2tnjUbzTc5+RVECn970hBBClHQGg5KnM80vp/7CYHhYTfGnIyczopG9NfY2lhIsKQFq1KhBTEwM6enp3L17l99//x3Izn5ISEigXbt2fPnll5w4cQLIW2vmWWnZsiUbNmwgPj4eINdSmPx88sknanemomjUqBEHDhzg/PnzACQnJ3P27Fkg9z03atSIsLAwtZbPw+bxID8/P5YvX65mVV27do1bt24B0KVLF3755ReOHTuWK3NLCCGEeFEVJcPkS8CP/2/rqyjKCY1Gk7eanRBCCJGP2PhkdQkMZHem+WznaepVsXquyzn+yzQaDf369VNrZWRmZvLSSy/RsGFDtm/fztatW4mJiVHb2j4vmZmZpKen4+3tTa9evXB0dKRmzZqkp6czcuRI/Pz86NSpE2lpaSiKoi536t27N8OHD+eDDz6gdOnS3Llzh9DQUA4ePMjDm/89PgcHB6ZOnUqzZs0wNjbGxcVFLU77oJSUFG7fvk2lSpWwtLTMdxlafmxsbAgMDKRPnz6kp2d3dpo5cyZ16tRhxIgR+Pv7U7VqVfbs2cPSpUvp2rUrBoMBW1tbfvvttyJdo02bNpw+fVpd6mNpacmPP/6Ira0tpUqVokWLFpQvXx5jY+OiPRQhhBCiBNM87H8cNBrNEUVRGmo0muOKorj8/7YTiqI4P5MZFpG7u7sSHh7+vKchhBDiHw5fjGfs2uN5ti/o40Ije6mB8DxYWlry6quvcujQIczNzdm1axdTpkyhevXqeVrp/huKoqAoCkZGj9eU78SJE/j4+GBnZ8c333xDkyZNuHv3Ln5+fpw6darQQMPixYvZsmUL69ato3z58ty/f5958+YxatQoypYt+7i39ETY2dkRHh7+yAGT581gMODq6sqGDRuoXbv2856OEEKIEkSj0UQoiuL+vOfxqIryfzB/ajSaxoCi0WhMNRrNBOD0U56XEEKIF4StlZnafjaHmYkRtlZmBZwhnoV27dqp9TPWrl1Lnz591H2BgYFqB5/BgwczduzYfFvi5td+NjY2lrp16zJw4EAcHR35+OOPmThxonrO8uUrGPj6Gxy+GI9v2w64ubnh4ODA0qVLc81v8eLF9OnTh5o1a9K7d2/WrVsHwKZNm9SirTlmz56Nk5MTzs7OalbMJ598wrfffkv58uWB7BbQkydPVoMla9euxcnJCUdHRyZNmqSOZWlpydSpU3F2dqZRo0ZqgdZt27bRsGFDXFxcaN26tbo9Li4OX19fHBwcGDZsGDVq1OD27dtAdqHXgu6vpImJieHVV1+lVatWEiwRQgjxn1GUgMlI4C2gGnAN0P3/ayGEEOKh7KzLMKVdfTVoYmZixJR29bGzLvOcZ1a8GBsbo9PpcHZ2xtXVlYMHDz7V6+UEIdLS0oiKiqJhw4YFHpvTEnf79u1qQCI4OJhNmzYRGhqKXq8nIiKCsLAwAM6dO8eoUaPw8vKiVatWbN68GciuZ/PN8h/Ql2rA2LXHuWrTiD7vTOfo0WMsWLBArf0BMHLkSGJiYqhQoQKtWrUiLCyMrKws1q1bR69evdTjdu3axc8//8yRI0c4ceIE7733Hvfu3ePevXscOnQo3/s5cuQIY8aMYffu3ej1erZu3Uq7du2A7LogjRo14sSJEzRt2pRly5YB0KRJEw4fPszx48fp3bu32vo5ICCA6OhotYPSlStXqFOnDr169WL58uVEREQQHh6e5/5KmgYNGnDx4kW++OKL5z0VIYQQ4pl5aA0TRVFuA/2ewVyEEEK8gKQzTdGYm5urxT9//fVXpkyZwt69e5/a9bRaLbGxsaxdu1YNFhQkv5a4wcHBHDt2jIYNG2JiYqK2n33llVeoUaMGHh4eNGrUCAB7e3sOHz6MaYWXiI45jZP/FACu7tvA+1u+5PtZVbl+9U/OnTuXb6taY2NjmjRpwrp160hJScHOzk7dFxISwpAhQ7CwsACyW+jeu3cPg8HAmjVr6Nu3L7/++iuTJk3i7t27rFmzht27d1O6dGlsbGwA8PLyIjIyEsjORMlpT+zm5qbW/rh69Sq9evXixo0b3L9/X23Ze+DAAQ4ePKi+rlChAqVLl2batGksWLBADRb9+WfB9yeEEEKI4qkoXXJsNBrN+xqNZqlGo1me8+tZTE4IIcSLQTrTPJp79+5RoUIFILsOyMSJE3F0dMTJyYn169cD2R1iWrVqhaurK05OTvz888/5jvXLL7/g6uqKs7MzrVq1Urd37tyZP//8kxEjRuDm5gbA2bNnGTp0KLNmzWLVqlUsWLBAnUP79u1xdnYmJSWF9evXExERgaIoaDQaKlSowPnz53n77beZOXMmN27c4NChQzRv3pzw8HA1I6NdC28y01P5Y8V7xEftIenKKRQFspTsoEpsbCwtW7ZEq9XSqlUrrly5AmRncVy9epVBgwZhamqa6/4SEhL4/PPPcXV1VTNzypYty/3799m7dy86nY6YmBj0ej2Ojo7cv3+fVatWcevWLXQ6HV9++aX6PP39/cnIyFCX6BgbG3PlyhW8vLxo3LgxycnJHDp0iCVLlqitjR+kKApJSUmMHj2a27dvExISwqeffoqRkRGZmZl89NFHarHWsLAwXFxcSE1NZejQoep2IYQQQhQfRVmS8zNQDggBdjzwSwghhMjD0vLJdr4JDQ1Vv/F/XHZ2dmpdieIqNTUVnU5HvXr1GDZsGNOmTQOya3bo9XpOnDhBSEgIEydO5MaNG5QuXZrNmzcTGRnJnj17ePfdd/N0gImLi2P48OFs3LiREydOsGHDBgDu37+Pi4sLERERvPHGG3z88cfqOWfOnOHdd9+lR48efPTRRxgMBvR6PVWrVuXEiROYm5vj7+/PlClTMDExYdu2bezZs4dr166RnJyMTqfj1VdfpUmTJuqYPj4+bN26lapVq+I45FNe7T0NI1MzzCpUoXrTHnz9XSCnT5/mq6++YtCgQURFRdGvXz/Gjh2rjpGVlcWnn36q3kOODh06YG1tzf79+1m/fj2jRo0C4M0338Tc3JzQ0FDGjRuHoihqkOOzzz7DxMSEkJAQxo4dy5EjR0hMTGT9+vVYWFiwfv16/vzzT+7du6c+91dffRVXV1fmzZvHypUr1et7e3vz008/AdnLiDIzMxk+fDgJCQmUK1eOkSNH8umnn5KVlUVWVhbffvstiqIwevRo1q9fj7m5OZmZmXz77bf/+j0khBBCiCerKAETC0VRJimK8pOiKBtzfj31mQkhxH9AfHw8Op0OnU5HlSpVqFatmvr6/v37z3t6qoCAAObOnZtr24NBiMaNGz+PaeUrMzPzeU/hseQsyTlz5gy//PILAwcORFEU9u/fT58+fTA2NqZy5co0a9aMY8eOoSgK77//PlqtltatW3Pt2jV1uUyOw4cP07RpU3W5SMWKFYHs4MOAAQOoXr06ixYtIj4+nuTkZADat2+Pqakp5ubm2NrakpqayiuvvMJvv/3GpEmTMBgMlCtXjjZt2lCmTBnatWuHk5MT3bt3x8jIiLZt2+a5tzNnzlC5cmUS7tzm0ze6UKZsecrVdkeDwt+Hg1g0+2MaNWpETEwMffv2BWDAgAHs379fHaNnz5689957VKpUKdfYLVq0ID09nYoVK6LVajl16hQAnTp1wtramoYNG6LVavH29sbFxQUXFxesra2pW7cuLVq0wNnZmRo1atCxY0fKlSsHZNfruHz5MufOnSMhIQFvb2/u3r3LkiVLWLBgQa45TJ8+neDgYF599VVWr16Nra0tZcuWxd/fn4SEBOLj41myZAmNGjXCz8+PsLAwMjIyqFGjBnXq1AFg0KBBav0XIYQQQhQfRQmYbNdoNIUvbhZCCPFYrK2t0ev16PV6Ro4cybhx49TXpUqVKvC84hYUeFiB0gsXLuDv74+bmxs+Pj6cOXMGyM6A6NatGx4eHnh4eHDgwIFCx7lz5w6dO3dGq9XSqFEjoqKigOyAzoABA/D29mbAgAHEx8fTpk0btXPJg5kXBXUuKag7yvPg5eXF7du3iYuLK/CY1atXExcXR0REBHq9nsqVK+e7TCQ/Wq02zzYfHx/69u2LmZkZgwcPZtGiRRgbGzNnzhzGjh1LZGQkTk5OeHh4MGPGDADKli1LWFgYJ0+eVFsU16pVi+jo6DzjN2/enIsXL+LvUIWVQz1ZNKAhI4YMYurkSfz88xZCQ0PzLLeB7AyjSpUqUaZM7iLBOa14v/zyS1q1akVKSgqJiYnqz1qj0VCrVi3++OMPoqKiOHjwIHPmzFGDItWqVePkyZNER0fTs2dPzMzM1HGNjY3JzMykcePGdOnSBb1ez6VLl7h//z63b99mzpw5hIaGAlCuXDm2bNlC6dKlCQgI4KWXXsLMzAwzMzO+/vpr3N3d2bIl+/50Oh2QXag2515LSkthIYQQ4r+oKAGTt8kOmqRqNJp7Go0mUaPR3HvaExNCiP+qiIgImjVrhpubG35+fty4cQPI/sD5zjvv4O7uzldffVXocZMmTcLT05M6deqwb98+IDurYMKECTg6OqLValm4cGGh13sUOctwDAYD6enp1KtXD19fX9q1a0dQUBAjRoygW7duJCcnExcXR+vWrenQoQNvv/02zZs3JyMjg5SUFFq1akViYmKB15k+fTouLi5ERUXx6aefMnDgQHVfTEwMISEhrF27lo8++ogmTZpw6tQpunTpotbCAArsXFJQd5Tn4cyZM2RlZWFtbY2Pjw/r168nKyuLuLg4wsLC8PT0JCEhAVtbW0xNTfn9991cvnyZ41f+5mJcEgZDdtCgUaNGhIWFcenSJSA74ATZwZHVq1cD/wtI5LTbzc/169exsLCgf//+TJw4US2QamVlVejPK8eD8zAy0lDe+D6N7K15pYp1roBB48aN1fbBq1evxsfH56FjJyQk8NJLL2FkZMQPP/xAVlbWQ+f2KPM+cOAA58+fB7LfI2fPns11zJUrV7C3t+evv/5i/fr1ud43devWJTY2Vj3/hx9+oFmzZgVuF0IIIUTxUpQuOVbPYiJCCCGyi0aOGTOGn3/+GRsbG9avX8/UqVNZvjy71vb9+/cJDw8nIyODZs2aFXhcZmYmR48eZefOnXz00UeEhISwdOlSYmNj0ev1mJiYcOfOHTIyMgq93oO+/PJLfvzxR/X19evX8xyzadMmFEUhJiaGW7duUb9+ffr27cuBAwfYt28ftWrVwszMTD03JCSEHTt2YGtrS5kyZahQoYL6gTc/+/fvZ+PG7FWhLVu2JD4+nnv3smP4HTt2xNzcHMguqLlp0yYge4lJTgFVoMDOJQV1R3lWcmqYQPb7YOXKlRgbG9OlSxcOHTqEs7MzGo2Gzz//nCpVqtCvXz9ee+01nJycqFKrAeY2rxCw9RRlD/3NlHb18Xeogo2NDUuXLqVr164YDAZsbW357bffCAgIYOjQoWi1WiwsLHLV5MjPyZMnmThxIkZGRpiamqr1NkaMGIG/vz9Vq1Zlz549BZ5f0Dxee+01unfvzs8//8zChQtZuHAhQ4YMYc6cOdjY2LBixYqHPrdRo0bRrVs3Vq1ahb+/v5qJotVqMTY2xtnZmcGDBzNu3Dj1nH/ue/D98c95BwYG0qdPH7Uo68yZM9WlNABlypTh9u3b1KtXj4yMDIYPHw6Ag4MDq1evZsWKFfTo0YPMzEw8PDwYOXIkZmZm+W4XQgghRPHy0ICJRqPxBvSKoiRrNJr+gCswX1GUKw85VQghxCNKT08nOjoaX19fIDsr5KWXXlL39+rVC4A//vij0OO6du0KZH/wj42NBbKDEyNHjsTEJPuv/ooVKxIdHV3oOA8aN24cEyZMUF8/2No1x/79+zE2NsbIyIgqVarQokULDAYDlpaWODg4qG1yt27dytKlSzEYDEyYMIHt27fTr18/unbtSvny5R/1sQHkWbKRn9DQUEJCQjh06BAWFhY0b95cXcZiamqKRpPdvSdnScazVFCgSKPRMGfOHObMmZNre6VKlTh06BAX45IYtPwojh7ZH9TTMw18tvM09apYYW9jSdu2bfPUFalYsSJbtmzJc62AgIBcr3OW1tjZ2eHn55fn+DFjxjBmzBj19T+Xl+QsWwHynUedOnXUZVU5du/enec6gYGBebblqF27dq4xZs+eDWT/PPMbq6B9gwcPVn+/fft29fctW7bk2LFjBV6/atWqeYrtPqhVq1YcP368yNuFEEIIUXw8NGACfAs4azQaZ+Bd4DvgB0ByR4UQ4glTFAUHBwcOHTqU7/6coMDDjsupx/CwD/4PG+dJsLCwoFq1amo9DkVR1CUibdq0oXTp0nz33Xfs3LkTDw8P9uzZQ7169fIdK2cpybRp0wpdStK0aVPWrFnDBx98wK5du/j777+B7OUbFSpUwMLCgjNnznD48OGndNfPzq3EdNIzDbm2pWcauJWYjr3Nk+1YJIQQQgjxX1KUGiZZSvZXJ52ARYqifA3IMh0hhHgKzMzMiIuLUwMYGRkZatePB9WtW7dIxz3I19eXJUuWqAGUO3fuPNY4hfH29ub+/ftUq1aNl156iS1btrBt2zbWrVvHpUuXqF+/Pg4ODnz//fdA9vKY0NBQ+vXrx8qVKzE3N1cLwubIzMxUA0ABAQFERESg1WqZPHlygUtJpk+fTlhYGA4ODmzatIlXXnkFAH9/fzIzM6lfvz6TJ0+mUaNGj32vD2MwKFyMS+LwxfhcdUWeNFsrM8xMcv9zbmZihK2V2VO5nhBCCCHEf0VRMkzuaTSaKUB/oKlGozEq4nlCCCEekZGREUFBQYwdO5aEhAQyMzN55513cHBwyHVcqVKlinTcg4YNG8bZs2fRarWYmpoyfPhwRo8e/cjjFKZbt2688cYbhIaG8vLLL+Pg4ED//v2pX78+P/30ExMnTsTCwgIPDw8SExOpVKkS9vb2XL58GRMTExo2bJhn2capU6eoVasWUPSlJNbW1gQHB+c7x127duW7/cHlJN27d6d79+6PcOe5GQwKv5z6i892niY904CZiZFaV8TISPPY4+bHzroMU9rVz3MtO+uHL1ESQgghhBAF0xS27hZAo9EsBc4AxxRF2afRaF4B9iiKUutZTLCo3N3dlfDw8Oc9DSGEeOEYDAqx8cncSkzH1soMO+syhX7oT0pKwtLSkvj4eDw9PTlw4ABVqlRRtyuKwltvvUXt2rVzFeLMz+uvv050dDQ//fQTNWrUeNK39tTk1BV5cKmMmYkRK4d6PpVlMo/6MxJCCCGEeJY0Gk2Eoijuz3sej6oomSLuiqKMyHmhKMoVjUaT8hTnJIQQoph4nEyJDh06cPfuXe7fv8+0adOoUqUKAMuWLWPlypXcv38fFxcX3njjjYdeP2fpTknzrOuKGBlpsLexlJolQgghhBBPUIEBE41G8yYwCrDXaDQPlrC3Ag487YkJIURJ9qJ84x8bn6wGSyBvB5b8PNgZ5UHjxo17aEbJiyKnrsg/M0ykrogQQgghRMlRWIbJGmAX8Bkw+YHtiYqi3HmqsxJCiBLsWdaveNqkA8vjkboiQgghhBAlX4FdchRFSVAUJVZRlD6Kolx+4JcES4QQohAFZWXExic/55k9upLYgcXS8n+BnJ07d1KnTh0uX778TOdgZKTB36EKK4d6sqCPCyuHehYYMJs4cSIODg5MnDgx1/bQ0FAOHjyovh48eDBBQUFPfe4FCQwM5Pr16+rrYcOGERMTA4CdnR23b98u8liPerwQQgghxPMg3W6EEOIJe5GyMkpypsTvv//O2LFj+fXXX595wdjMzExMTEyKVFdk6dKl3LlzB2Nj41zbQ0NDsbS0pHHjxk98fllZWXmu9zCBgYE4OjpStWpVAL777rsnPi8hhBBCiOKkwAwTIUTxY2xsjE6nw9HRkR49epCSkkJ4eDhjx4594tdq3rw5devWxdnZGW9vb/74448Cj42NjcXR0RHI/lA1evToPMcsXryYVatWPfF5FkclMSujII+SKVGchIWFMXz4cLZv3662JP7xxx/x9PREp9PxxhtvkJWVBUBwcDBeXl64urrSo0cPtb2wnZ0d7733Hk5OTnh6enL+/HkA4uLi6NatGx4eHnh4eHDgQHZZr4CAAAYMGIC3tzcDBgzINR9FUZg4cSKOjo44OTmxfv16ADp27EhSUhJubm7qNsj+M7V48WK+/PJLdDod+/btU++rcePG2Nvb58o2mTNnDh4eHmi1WqZPn57vM7G0tOTdd9/F2dmZQ4cOFfg8LC0tGTduHA4ODrRq1Yq4uDiCgoIIDw+nX79+6HQ6UlNTad68Ofl1pyto3H9auHAhrq6uODk5cebMGQDu3LlD586d0Wq1NGrUiKioKPXZzp07Vz3X0dGR2NhYkpOTad++Pc7Ozjg6OqrPMCIigmbNmuHm5oafnx83btzIdw5CCCGEEIWRgIkQJYi5uTl6vZ7o6GhKlSrF4sWLcXd3Z8GCBUUeIzMzs8jHrl69mhMnTjBo0KA8ywUe1ciRIxk4cOC/GqOkyMnKyAmalKSsjPzkdGBpZG+NvY1lsQ+WpKen07lzZ7Zs2UK9evUAOH36NOvXr+fAgQPo9XqMjY1ZvXo1t2/fZubMmYSEhBAZGYm7uzvz5s1TxypXrhwnT55k9OjRvPPOOwC8/fbbjBs3jmPHjrFx40aGDRumHh8TE0NISAhr167NNadNmzah1+s5ceIEISEhTJw4kRs3brB161b1z3WvXr3U4+3s7Bg5ciTjxo1Dr9fj4+MDwI0bN9i/fz/bt29n8uTs8mLBwcGcO3eOo0ePotfriYiIICwsLM9zSU5OpmHDhpw4cQJra+t8n0fOce7u7pw6dYpmzZrx0Ucf0b17d9zd3Vm9ejV6vR5zc/N8n31Bzzk/lSpVIjIykjfffFMNhkyfPh0XFxeioqL49NNPH/p3xi+//ELVqlU5ceIE0dHR+Pv7k5GRwZgxYwgKCiIiIoKhQ4cyderUQscRQgghhMiPLMkRooTy8fEhKiqK0NBQ5s6dy/bt20lOTmbMmDFER0eTkZFBQEAAnTp1IjAwkE2bNpGUlERWVhbr1q2jV69e3Lt3j8zMTL799lv1A1l+mjZtyvz581EUhffee49du3ah0Wj44IMPcn3I+6cdO3Ywc+ZMtm3bxqJFi7C0tGTChAksWLCAxYsXY2JiQoMGDVi3bh179+7l7bffBkCj0RAWFoaVldUTf27PQk5WRr0qViW+S05JZGpqSuPGjfn+++/56quvgOzlOREREXh4eACQmpqKra0thw8fJiYmBm9vbwDu37+Pl5eXOlafPn3U/+Z0+AkJCVFrdwDcu3dPzUrp2LFjvsGE/fv306dPH4yNjalcuTLNmjXj2LFjdOzY8ZHurXPnzhgZGdGgQQNu3rwJZAdMgoODcXFxASApKYlz587RtGnTXOcaGxvTrVu3Qp8HgJGRkfrnun///nTt2rXI8yts3H/KGdfNzY1NmzYB2c9p48aNALRs2ZL4+Hju3btX4PWcnJx49913mTRpEh06dMDHx4fo6Giio6Px9fUFspcfvfTSS0W+ByGEEEKIHBIwEaIEyszMZNeuXfj7++fa/sknn9CyZUuWL1/O3bt38fT0pHXr1gBERkYSFRVFxYoV+eKLL/Dz82Pq1KlkZWWRkpJS6PW2bduGk5NTrm/Jb9++jYeHR54PZTk2b97MvHnz2LlzJxUqVMi1b9asWVy6dAkzMzPu3r0LwNy5c/n666/x9vYmKSmJ0qVLP+bTKR5ysjJKWs2SF4GRkRE//fQTrVq14tNPP+X9999HURQGDRrEZ599luvYbdu24evrmycjJIdGo8nze4PBwOHDh/N9j5Yp83SziMzM/resS1EU9b9TpkzhjTfeKPTc0qVLq3VLCnoe+XnwGTzMo4ybcy/GxsYPzXwzMTHBYPhfXaC0tDQA6tSpQ2RkJDt37uSDDz6gVatWdOnSBQcHBw4dOlTkeQshhBBC5EeW5AhRgqSmpqLT6XB3d+eVV17h9ddfz7U/ODiYWbNmodPpaN68OWlpaVy5cgUAX19fKlasCICHhwcrVqwgICCAkydPFpjJkVOv4MCBA8ydO7fAb8n/affu3cyePZsdO3bkCZYAaLVa+vXrx48//oiJSXbc1tvbm/Hjx7NgwQLu3r2rbhficVhYWLBjxw5Wr17N999/T6tWrQgKCuLWrVtAdq2My5cv06hRIw4cOKDWJ0lOTubs2bPqODk1MdavX69mnrRp04aFCxeqx+j1+ofOx8fHh/Xr15OVlUVcXBxhYWF4enoWeo6VlRWJiYkPHdvPz4/ly5erWS7Xrl1T77MgBT0PyA4I5dRHWbNmDU2aNCnyfAobtyh8fHzUJTyhoaFUqlSJsmXLYmdnR2RkJJAd/L106RIA169fx8LCgv79+zNx4kQiIyOpW7cucXFxasAkIyODU6dOFXkOQgghhBA5JGAiRAmSU+tAr9ezcOFCSpUqlWu/oihs3LhRPebKlSvUr18fyP3Nd9OmTQkLC6NatWoMHjy4wGKsOfUKtmzZwssvv1zkedaqVYvExMRcHzwftGPHDt566y0iIyPx8PAgMzOTyZMn891335Gamoq3t7daBFI8Xw8WGn7ttdfUjKCCPMnWtwUVFS3qtStWrEhsbCwzZ87k/PnzzJw5kzZt2qDVavH19eXGjRvY2NgQGBhInz590Gq1eHl55Xrv/f3332i1Wr766iu+/PJLmjdvztChQwkPD0er1dKgQQMWL1780Ll16dIFrVaLs7MzLVu25PPPP6dKlSqFnvPaa6+xefPmXEVf89OmTRv69u2Ll5cXTk5OdO/e/aGBjQYNGuT7PCD774qjR4/i6OjI7t27+fDDD9XnO3LkSLXo66OOWxQBAQFERESg1WqZPHkyK1euBKBbt27cuXMHBwcHFi1aRJ06dQA4efKkWmD2o48+4oMPPqBUqVIEBQUxadIknJ2d0el0udozCyGEEEIUlSYnpbekc3d3Vx7lf6yFKIksLS3Vb5FzPFjD5P333+fevXssXLgQjUbD8ePHcXFxITAwkPDwcBYtWgTA5cuXqV69OsbGxixatIjz588zf/78XOM2b96cuXPn4u7urm7btGkTS5YsYefOndy5cwd3d3eOHDlCWloaHTp0IDo6Wr3W6NGj6dq1Kxs2bMDBwYGAgAAsLS0ZP348V65cwc7OjoyMDGrUqEFMTAzx8fFqN5Pu3bvTv39/Onfu/FSfZ3Gm0WjULBzIXob10ksv0bBhQ7Zv3/7M5vHge27QoEHY2Njw9ddfU7duXfWYo0ePsmbNGsLDw0lKSqJUqVI0adKk0IKder2e69ev065duwKPye89WJjBgwfToUMHunfvnu/8H5WdnR3h4eFUqlTpsedUEv2bZyaEEEIIkR+NRhOhKEqJ+x8oyTAR4gUybdo0MjIy0Gq1ODg4MG3atHyPCw0NxdnZGRcXF9avX68WW32YR/mWvF69eqxevZoePXpw4cIFdXtWVhb9+/fHyckJFxcXxo4dS/ny5Zk/fz6Ojo5otVpMTU1p27btoz+AF0iZMmWIjo5Wv8n/7bffqFat2iON8SgdkYrCy8uLv/76i1q1ahEYGEjp0qUxGAz06tWL5ORk9bg2bdowcOBAZsyYgYeHB46OjowYMUKtudG8eXPef/99hgwZQp06ddTsidTUVHr37k39+vXp0qVLriyGN998E3d3dxwcHApsm1uYgtr6FrQdICEhgaZNm+Ls7Kx2pAHYsGEDnp6eueYuhBBCCCFePJJhIoQQxZClpSVjx47F1dWV7t27M3DgQBwcHNi3bx/bt2/n6NGjvP3226SlpWFubs6KFSuoW7duno5IO3bsYMyYMYSHh6PRaJg+fTrdunXLlUUQFBTE9u3bCQwMZMOGDXz00UcYGxtTrlw5IiMj1bF69+5Nhw4dmDNnDkZGRixcuJBmzZrx4YcfcvjwYerUqUNSUhIpKSl4enoydOhQunbtSsOGDfn+++8xMzNj3bp1TJ06Fb1ej5mZGVZWVpQpU4aTJ08yb948oqOjWb58OVFRUbi6unL48GFcXd3Qn/+T+yZlsLYwYXjvTixYsACtVpvrmQ0ePJi9e/dSrlw5ddv58+dJSkpi48aNLF68mF9++UUtWHzkyBEOHjyY73a9Xs/HH39MSEgIFhYW3Llzh4oVK9K8eXPc3Nz44osv2LlzJ/PmzSMkJOSZvjeEEEIIIUqakpphIlUVhXjODAaF2PhkaT8r8ujduzczZsygQ4cOREVFMXToUDWjoV69euzbtw8TExNCQkJ4//331XasD3ZEmjRpEuXKlePkyZNAdk2OwsyYMYNff/2VatWqcffuXaytrdHpdFy7do369evTpEkTRo4cSVZWFm+//bZarHflypVqXYkce/bsITIykujoaMzMzPD19eWjjz7CyMiIMWPGkJCQwLRp09SWvmFhYYwdOxbILgys1WoxGBR+OfUXYz/8khtHtoOShUl6AtHRp/IETADmzJmTZ0kOFNzWt6Dte/fuZciQIVhYWACoBZMhdzvc2NjYov0whRBCCCFEiSMBEyGeo5wPg5/tPE16pgEzEyOmtKuPv0MVCZoItFotsbGxrF27Nk+tj4SEBAYNGsS5c+fQaDRkZGSo+x7siBQSEsK6devUffl1LXqQt7c3gwcPpmfPnnTt2lUtNJySkoKfnx+rVq2iZs2aJCUlqd1hHlxylSMjI4NRo0bh4ODA3Llz+e2330hKSmL//v1Ur15d7YL0sJay1xNS+WTjbq6G/USDNxdhYm7F5U1zuBqfUPjDe4oepR2uEEIIIYQouaSGiRDPUWx8shosAUjPNPDZztPExic/5EzxX9GxY0cmTJhAnz59cm2fNm0aLVq0IDo6mm3btpGWlqbue7AjUkE0mv8F5B48d/HixcycOZM///wTNzc3te6IhYUFCxYs4LvvvsPIyIgKFSqo2S4//PBDriKw8L/6KaampmRlZREUFISRkVGhAYamTZuyZs0aAKKjo4mKiuLv5PukJidhVKo0xmZlyEj6mzt/HCUx9dECFQW19S1ou6+vLytWrCAlJQXIbo8rhBBCCCH+WyRgIsRzdCsxXQ2W5EjPNHArMf05zUgUN0OHDmX69Ok4OTnl2p6QkKAWgQ0MDCzwfF9fX77++mv1dc6SnMqVK3P69GkMBgObN29W91+4cIGGDRsyY8YMbGxsMBj+9/50cXGhXr163L17l5UrVzJx4kS0Wi16vZ5OnTrluq65uTnDhw/n2LFjjBkzBg8Pj1z7y5Qpk6f17ZtvvklSUhL169fnww8/xM3NjQplSlHh5dpYvFSLk18N5cJPn1LOzhEr80dLkCyoYHFB2/39/enYsSPu7u7odDrmzp37SNcTQgghhBAlnxR9FeI5uhiXxKDlR3MFTcxMjFg51BN7G8sij7Nlyxa6dOnC6dOnqVev3iPP41HbiOa0CJ4wYUK+rVwfdu6yZcuwsbEBwN/fHzs7OywsLAptQ/tf87AW0ocOHWLQoEGUKVOG9u3b8+OPPxIbG5unhXRSUhJvvfUWERERGBsbM336dLp27UpQUBCTJk3CxsYGd3d3kpKSCAwMpGvXrpw7dw5FUWjVqhXz58/PlY0SGxurtpB+0IPXffD98WAb3tu3b+Pu7k5sbCx37tzBz8+PjIwMpkyZQq9evfJ9DrJsTQghhBCi5CupRV8lYCLEc/SkPgz26tWL69ev07JlSz766KM8+zMzM9WaEfl51gGTnHPFs1cSiwyXxDkLIYQQQoj/KakBE1mSI8RzZGSkwd+hCiuHerKgjwsrh3o+crAkp5Dm999/n6u4Z2hoKD4+PnTs2JEGDRoA0LlzZ9zc3HBwcGDp0qW5xhk3bhwODg60atWKuLg4IHt5hr+/P25ubvj4+HDmzJlC5zJjxgw8PDxwdHRkxIgRFDUgGxAQoC55OHbsGFqtFp1Ox8SJE3F0dAQgJSWFnj170qBBA7p06ULDhg2RIOmjyQnQDVp+lLFrjzNo+VF+OfUXBkPxDpwbGWmwt7Gkkb019jaWEiwRQgghhBDPhARMhHjO/u2HwZ9//hl/f3/q1KmDtbU1ERER6r7IyEi++uorzp49C8Dy5cuJiIggPDycBQsWEB8fD0BycjLu7u6cOnWKZs2aqVkqI0aMYOHChURERDB37lxGjRpV6FxGjx7NsWPHiI6OJjU1le3bt+d73JdffolOp0On0/Hrr7/m2jdkyBCWLFmCXq/H2NhY3f7NN99QoUIFYmJi+Pjjj3PdZ0lgMChcjEvi8MV4LsYlPZcghRQZFkIIIYQQougkYCJECbd27Vp69+4NQO/evVm7dq26z9PTk5o1a6qvFyxYgLOzM40aNeLPP//k3LlzABgZGak1JPr378/+/ftJSkri4MGD9OjRA51OxxtvvMGNGzcKncuePXto2LAhTk5O7N69m1OnTuV73Lhx49Dr9ej1evz8/NTtd+/eJTExES8vLwD69u2r7tu/f796n46Ojmi12iI/o+etuGR2SJHhF9Nff/1F7969qVWrFm5ubrRr104NkhZk/vz5agcgyF6Wl5/BgwcTFBT02HO7e/cu33zzTYH7jY2N0el0ODs74+rqysGDBwG4fv16kZf5CSGEEEI8LY/WZkAIUazcuXOH3bt3c/LkSTQaDVlZWWg0GubMmQPkbi8bGhpKSEgIhw4dwsLCgubNm+dqJ/sgjUaDwWCgfPny6PX6Is0lLS2NUaNGER4ezssvv0xAQECB4//XFJTZUa+K1SMV9/23bK3MMDMxylNk2NbK7JnNQTxZiqLQpUsXBg0apC7JO3HiBDdv3qROnToFnjd//nz69++PhYXFU5tbZmamGjApKDvN3Nxc/Tvm119/ZcqUKezdu5eqVav+q0CNEEIIIcSTIBkmQpRgQUFBDBgwgMuXLxMbG8uff/5JzZo12bdvX55jExISqFChAhYWFpw5c4bDhw+r+wwGg/rhZM2aNTRp0oSyZctSs2ZNNmzYAGR/MDtx4kSBc8kJjlSqVImkpKTH+rBTvnx5rKysOHLkCECumize3t789NNPAMTExHDy5MlHHv95KS6ZHXbWZZjSrj5mJtl/9ecUGbazLvOQM0VxtWfPHkxNTRk5cqS6zdnZGR8fH0JDQ+nQoYO6ffTo0QQGBrJgwQKuX79OixYtaNGihbp/6tSpagbazZs31e0hISG4u7tTp04ddZldVlYWEydOxMPDA61Wy5IlS4C8tZMmT57MhQsX1JpEhbl37x4VKlQAsrsx5dQvyune5O/vT+3atXnvvffUcywtLfOd94YNG3B0dMTZ2ZmmTZs+1rMVQgghhJAMEyFKsLVr1zJp0qRc27p168batWvztGn19/dn8eLF1K9fn7p169KoUSN1X5kyZTh69CgzZ87E1taW9evXA7B69WrefPNNZs6cSUZGBr1798bZ2TnfuZQvX57hw4fj6OhIlSpV8PDweKx7+v777xk+fDhGRkY0a9aMcuXKATBq1CgGDRpEgwYNqFevHg4ODuq+4q64ZHbkFBmuV8VKOs68IKKjo3Fzc3ukc8aOHcu8efPYs2cPlSpVArLrGDVq1IhPPvmE9957j2XLlvHBBx8A2cGLo0ePcuHCBVq0aMH58+dZtWoV5cqV49ixY6Snp+Pt7U2bNm2A7NpJ0dHR1KxZk9jYWKKjowvMVEtNTUWn05GWlsaNGzfYvXt3vsfp9XqOHz+OmZkZdevWZcyYMbz88ssFznvGjBn8+uuvVKtWjbt37z7S8xFCCCGEyCEBEyFKsD179uTZNnbsWPX3zZs3V39vZmbGrl278h2noJbCNWvW5JdffsmzPSAgQP19YGCg+vuZM2cyc+bMQuf84Ln5bXNwcCAqKgqAWbNm4e6e3X2sdOnS/Pjjj5QuXZoLFy7QunVratSoUei1iouczI5/to9+HpkdOUWGn+VSIFH8lSpVSs1GcXNz47ffflP39ezZEyMjI2rXro29vT1nzpwhODiYqKgoNZMsISGBc+fOUapUqTy1kwrz4JKcQ4cOMXDgQKKjo/Mc16pVKzVA2qBBAy5fvszLL79c4Ly9vb0ZPHgwPXv2pGvXro/3UIQQQgjxnycBEyFEsbJjxw4+++wzMjMzqVGjhhqQSUlJoUWLFmRkZKAoCt988w2lSpV6vpMtIsnsEE+Lg4NDgcvfTExMMBj+l9VUWE0hU1NTNJrs96OxsTGZmZnqvpztD75WFIWFCxfmKtoM2UtyHqyd9Ci8vLy4ffu22tb8QWZm/8vGenB+Bc178eLFHDlyhB07duDm5kZERATW1taPNS8hhBBC/HdJDRMhipni0H72eerVqxd6vZ7o6Gh27NiBjY0NAFZWVoSHh3PixAmioqJo27btc57po/m37aOFyE/Lli1JT09n6dKl6raoqCj27dtHjRo1iImJIT09nbt37/L777+rx1hZWZGYmFika2zYsAGDwcCFCxe4ePEidevWxc/Pj2+//ZaMjAwAzp49S3Jy3vbUj3KdM2fOkJWV9UQCGxcuXKBhw4bMmDEDGxsb/vzzz389phBCCCH+eyTDRIhiJKf97D+Xbvg7VJEP2EKIPDQaDZs3b+add95h9uzZlC5dGjs7O+bPn8/LL79Mz549cXR0pGbNmri4uKjnjRgxAn9/f6pWrZrv0r4HvfLKK3h6enLv3j0WL15M6dKlGTZsGLGxsbi6uqIoCjY2NmzZsiXPudbW1nh7e+Po6Ejbtm3VDl45cmqYQHZh6ZUrV2JsbPyvn8vEiRM5d+4ciqLQqlWrAmsvCSGEEEIURqMoL8a31+7u7kp4ePjznoYQ/8rFuCQGLT+apzjoyqGeUnPiXzI2NsbJyYmMjAxMTEwYOHAg48aNw8io6Il2169fZ+zYsUXuAJSUlMS7775LSEiI2gFo9uzZNGzY8HFvA8iuTTN37ly1vkuODRs28OGHH1KlSpWHfgh+1LGFEEIIIYR4XBqNJkJRlBL3P5iSYSJEMVJY+1kJmPw7DxaXvHXrFn379uXevXt89NFHRTo/MzOTqlWrPlK75GHDhlGzZk3OnTuHkZERly5dIiYmJtcxiqKgKMojBW4K8v3337Ns2TKaNGlSpOMzMzMxMZF/Boobg0EhNj5Z6t0IIYQQQjxnUsNEiGIkp/3sg55H+9kXna2tLUuXLmXRokUoikJaWhpDhgzByckJFxcXNTsjMDCQjh070rJlS1q1akVsbCyOjo4AnDp1Ck9PT3Q6HVqtlnPnzuW6xoULFzhy5AgzZ85UgyE1a9akffv2xMbGUrduXQYOHIijoyN//vknEydOxNHREScnJ7WtM8Ds2bNxcnLC2dmZyZMn57qGwWBg8ODBahvV/fv38/rrrzNx4sQi31Nqaiq9e/emfv36dOnShdTU1Kf23MXD5SzLG7T8KGPXHmfQ8qP8cuqv/1wtIyGEEEKI4kC+WhSiGClO7WdfdPb29mRlZXHr1i1+/PFHNBoNJ0+e5MyZM7Rp04azZ88CEBkZSVRUFBUrViQ2NlY9f/Hixbz99tv069eP+/fvk5WVlWv8U6dOodPpCqzHcO7cOVauXEmjRo3YuHEjer2eEydOcPv2bTw8PGjatCl6vZ6ff/6ZI0eOYGFhwZ07d9TzMzMz6devH46OjkydOhWA3bt3q8tpvvjiiyLd07x587CwsOD06dNERUXh6ur6JB+zeESx8cnqn3+Agx+25zN2UK+K1VPLMgsNDaVTp07UrFmT9PR0evfuzfTp01m8eDEWFhYMHDjwqVxXCCGEEKK4k4CJEMWItJ99Pvbv38+YMWMAqFevHjVq1FCDC76+vlSsWDHPOV5eXnzyySdcvXqVrl27Urt27Ue6Zo0aNWjUqJF6/T59+mBsbEzlypVp1qwZx44dY+/evQwZMgQLCwuAXPN444036Nmzpxosedx7CgsLY+zYsQBotVq0Wu0j3Yd4soqyLO9pLKXy8fFh+/btJCcno9PpeO211xg5cuQTvYYQQgghREkjS3KEKGak/eyzcfHiRYyNjbG1tS30uDJl8s/u6du3L1u3bsXc3Jx27dqxe/fuXPsdHBw4ceJEnsyTh41bVI0bN2bPnj2kpaUV6fj9+/erAZZt27bxxRdfYDAYHn7iY/rkk0/Q6XRqlk3O7xcsWMDgwYMfqRbMf0lBy/IuRh3Fx8eHjh070qBBA0JDQ2nWrBmdOnXC3t6eyZMns3r1ajw9PXFycuLChQsAbNu2jYYNG+Li4kLr1q25efNmodcvU6YMbm5unD9/noCAAObOnQtkFwOeNGkSnp6e1KlTh3379gGQlZXFhAkTcHR0RKvVsnDhQgAiIiJo1qwZbm5u+Pn5cePGjSf9qIQQQgghnjoJmAgh/nPi4uIYOXIko0ePRqPR4OPjw+rVqwE4e/YsV65coW7duoWOcfHiRezt7Rk7diydOnUiKioq1/5atWrh7u7O9OnTyelGFhsby44dO/KM5ePjw/r168nKyiIuLo6wsDA8PT3x9fVlxYoVpKSkAORakvP666/Trl07evbsSWZmZr5jPnhPGo2GEydO8Mknn9CxY0d27drFRx99RNOmTVmzZg0A0dHRee7jcU2dOhW9Xo9er1cL7ur1ejWbReQvZ1neg0GTKe3qU6VsaSIjI/nqq6/UTKETJ06wePFiTp8+zQ8//MDZs2c5evQow4YNUwMXTZo04fDhwxw/fpzevXvz+eefF3r9+Ph4Dh8+jIODQ559mZmZHD16lPnz56vFkpcuXUpsbCx6vZ6oqCj69etHRkYGY8aMISgoiIiICIYOHVpgJpQQQgghRHEmARMhxH9CamoqOp0OBwcHWrduTZs2bZg+fToAo0aNwmAw4OTkRK9evQgMDMTMrPBCuz/99BOOjo7odDqio6PzrfPw3XffcfPmTV599VUcHR0ZPHhwvhktXbp0QavV4uzsTMuWLfn888+pUqUK/v7+dOzYEXd3d3Q6nfptf47x48fj4uLCgAED8mSL/POezMzM1HuysLBQi96OHDmSe/fuYW1tjY+PD6VKlWLTpk1AdlvkVq1a4erqipOTEz///DOQHfipX78+w4cPx8HBgTZt2jxysdiwsDAaN26Mvb29mm2iKEq+xW//bTbF3r171QwXFxcXEhMTH2muz1LOsryVQz1Z0MeF0ibG+DtUwchIg6enJzVr1lSP9fDw4KWXXsLMzIxatWrRpk0bAJycnNR6O1evXsXPzw8nJyfmzJnDqVOn8r3uvn37cHFxoU2bNkyePDnfgEnXrl0BcHNzU8cPCQnhjTfeUJcIVaxYkT/++IPo6Gh8fX3R6XTMnDmTq1evPqlHJIQQQgjx7OS0tCzpv9zc3BQhhBD5K1OmTJ5t5cqVU/766y9lyZIlyscff6woiqKkpaUpbm5uysWLF5WMjAwlISFBURRFiYuLU2rVqqUYDAbl0qVLirGxsXL8+HFFURSlR48eyg8//FDkaw8aNEjp3r27kpWVpZw6dUqpVauWoiiKEhQUpLRu3VrJzMxU/vrrL+Xll19Wrl+/ruzZs0cpV66ccv36dSUtLU2pWrWq8uGHHyqKoijz589X3n77bUVRFOXOnTuKwWBQFEVRli1bpowfP15RFEXp0KGDsn//fkVRFCUxMVHJyMh4nEf4XOQ8uz179ijt27dXt//zdbNmzZRjx47l2desWTPl559/Vrc3a9YszzX+OVaO6dOnK3PmzMkzflxcnFKjRg1FURSla9euSnBwcK7zoqKilEaNGj3O7QohhBDiBQWEK8UgbvCovyTDRAhRIhkMChfjkjh8MZ6LcUnSdvVfCA4OZtWqVeh0Oho2bEh8fDznzp1DURTef/99tFotrVu35tq1a2rWRs2aNdHpdEDujIOi6ty5M0ZGRjRo0EAds6Dit/Dvsim8vb0ZP348CxYs4O7du0+8YGpxlpCQQLVq1QBYuXLlEx/f19eXJUuWqMvC7ty5Q926dYmLi+PQoUMAZGRkFJjZIoQQQghRnEnARAhR4hgMCr+c+otBy48ydu1xBi0/yi+n/pKgySN4sOitoigsXLhQrTNy6dIl2rRpw+rVq4mLiyMiIgK9Xk/lypXVIrMPLlkyNjbOt45KYR48X1Ee/nN78HgjIyP1tZGRkXrtMWPGMHr0aE6ePMmSJUvUuU6ePJnvvvuO1NRUvL29OXPmzCPNtSQLCAigR48euLm5UalSpSc+/rBhw3jllVfUJWVr1qyhVKlSBAUFMWnSJJydndHpdBw8ePCJX1sIIYQQ4mn773zNJoR4YcTGJ/PZztNq+9X0TAOf7TxNvSpWautVUbB/Fr318/Pj22+/pWXLlpiamnL27FmqVatGQkICtra2mJqasmfPHi5fvvxU5+Xj48OSJUsYNGgQd+7cISwsjDlz5hQ5wFFQNsWFCxdwcnLCycmJY8eOcebMGerVq/dU7uFJS0pKArK71DRv3lzd/s/XoaGh+e7r1KkTnTp1KvQa/xwrR0BAQL7jV6pUSc3qMTExYd68ecybNy/XuTqdjrCwsEKvK4QQQghR3EnARAhR4txKTFeDJTnSMw3cSkyXgEkBcoreZmRkYGJiwoABAxg/fjyQnSUQGxuLq6sriqJgY2PDli1b6NevH6+99hpOTk64u7s/9SBDly5dOHToEM7Ozmg0GrX4bVEDJjnZFBUqVKBly5ZcunQJgPnz57Nnzx6MjIxwcHCgbdu2T/M2hBBCCCHEC0JTlFToksDd3V0JDw9/3tMQQjwDF+OSGLT8aK6giZmJESuHekrARBRrBoNCbHwytxLTsbUyw866DEZGmuc9LSGEEEKIp0qj0UQoiuL+vOfxqCTDRAhR4thZl2FKu/rqshwzEyOmtKuPnXWZ5z21Z0Y+eJc8ObV3/vm+zWkbLIQQQgghihcJmAghShwjIw3+DlWoV8XqPxkwkA/eJZPU3hFCCCGEKFmkS44QokQyMtJgb2NJI3tr7G0s/1OBgoI+eMfGJz/nmYnCFFZ7RwghhBBCFD8SMBFCiBJGPniXTLZWZpiZ5P5n18zECFsrswLOEEIIIYQQz5METIT4j7p58yZ9+/bF3t4eNzc3vLy82Lx5c57jrl+/Tvfu3QsdKzY2FkdHxwL3Gxsbo9PpcHBwwNnZmS+++AKDwZDvsc2bNye/As6DBw8mKCio0HkU5ZiiKGy+4eHhjB079rHHfhJzlA/eJVNO7Z2cn91/sfaOEEIIIURJIjVMhPgPUhSFzp07M2jQINasWQPA5cuX2bp1a67jMjMzqVq16r/+gG9ubo5erwfg1q1b9O3bl3v37vHRRx/9q3GflsLm6+7ujrv78y3wLUVvS6b/eu0dIYQQQoiSpthlmGg0mgCNRnNNo9Ho//9Xu+c9JyFy5GQeODo68tprr3H37t3nPaXHsnv3bkqVKsXIkSPVbTVq1GDMmDEEBgbSsWNHWrZsSatWrXJljwQGBtKpUyeaN29O7dq1cwU8srKyGD58OA4ODrRp04bU1FQA9Ho9qampaLVaunTpgqmpKUuXLmX+/Pk0atQIrVZL7dq1cXFxQavVcv36dXW8+vXrY21tTevWrbl165Z6rRkzZuDh4YGjoyMjRowgv/bodnZ23L59G8jOCmnevDkAe/fuRafTodPpcHFxITExsdBnZWtry9KlS1m0aBGKohAaGkqHDh0AiIuLw9fXFwcHB4YNG0aNGjXUa3788cfUrVuXJk2a0KdPH+bOnZtn7IiICJo1a4abmxt+fn7cuHGj8B/c/8v54L1yqCcRH/oR/8M7vD+gLa6uLsTGxuZ7zt27d/nmm28KHNPS8vGLjj74rEXh/su1d4QQQgghSppiFzD5f18qiqL7/187n/dkhMiRk3kQHR1NxYoV+frrr5/3lB7LqVOncHV1LXB/ZGQkQUFB7N27N8++o0ePsnHjRqKiotiwYYO6fObcuXO89dZbnDp1ivLly7Nx40YABg4cSKlSpYiKisLJyYmPPvoIe3t7kpKSmDRpEqNHj6Z69eo0a9aMY8eOcePGDa5cuUKzZs3IyMjg1q1brFq1ioMHD6pzGD16NMeOHSM6OprU1FS2b99e5HufO3cuX3/9NXq9nn379mFubv7Qc+zt7cnKysoVtAH46KOPaNmyJadOnaJ79+5cuXIFgGPHjrFx40ZOnDjBrl278l1ilJGRwZgxYwgKCiIiIoKhQ4cyderUIt9Hzgdvc3NzYqKj0Ov16PV67Ozs8j3+YQETIYQQQgghRG7FNWAiRLHn5eXFtWvXgOwsipxsiS5duvD3338D2fU4Jk2ahKenJ3Xq1GHfvn1Ads0PHx8fXF1dcXV1VYMBoaGhNG/enO7du1OvXj369euXb/bEk/bWW2/h7OyMh4cHAL6+vlSsWDHfY319fbG2tsbc3JyuXbuyf/9+AGrWrIlOpwPAzc2N2NhYEhISuHv3LsbGxgAMGjSIsLAwEhISUBSFxo0bExwczKVLl1i6dCkNGzYkIyODCRMmYDAYeP/99zE2NqZq1aq0bNlSncOePXto2LAhTk5O7N69m1OnThX5Xr29vRk/fjwLFizg7t27mJg8/srE/fv307t3bwD8/f2pUKECAAcOHKBTp06ULl0aKysrXnvttTzn/vHHH0RHR+Pr64tOp2PmzJlcvXr1seeSIykpiVatWuHq6oqTkxM///wzAJMnT+bChQvodDomTpxYpLG2bdtGw4YNcXFxoXXr1ty8eROA+Ph42rRpo2bW5LxHP/zwQ+bPn6+eP3XqVL766qt/fU9CCCGEEEI8D8U1YDJao9FEaTSa5RqNpsLznowQ/5SVlcXvv/9Ox44dgewsitmzZ+fKosiRmZnJ0aNHmT9/vrrd1taW3377jcjISNavX5+riOjx48eZP38+MTExXLx4kQMHDjzx+Ts4OBAZGam+/vrrr/n999+Ji4sDoEyZgmthaDSafF+bmf2v4KixsTGZmZkFjhEbG4tGo8HW1hZFUZg+fTr16tVTA09+fn5cvXqVjIyMPOempaUxatQogoKCOHnyJMOHDyctLS3PcSYmJmqh1gf3T548me+++47U1FS8vb05c+ZMgfPMcfHiRYyNjbG1tX3osUWlKAoODg5qZsjJkycJDg5+5HFSU1PVJUZdunShdOnSbN68mcjISPbs2cO7776LoijMmjWLWrVqodfrmTNnTpHGbtKkCYcPH+b48eP07t2bzz//HMjOrGnSpAmnTp2iS5cuambN0KFDWbVqFQAGg4F169bRv3//R74nIYQQQgghioPnEjDRaDQhGo0mOp9fnYBvgVqADrgBfFHIOCM0Gk24RqMJz/mgJ8TTlPPhtEqVKty8eRNfX181i6JZs2bA/7IocnTt2hX4X9YFZC/HGD58OE5OTvTo0YOYmBj1eE9PT6pXr46RkRE6na7AmhT/RsuWLUlLS+Pbb79Vt6WkpBTp3N9++407d+6QmprKli1b8Pb2LvDYcuXKUaFCBbKysgD44Ycf8PT0ZOLEidjY2LB//378/PyYPXs2Pj4+QPYz7tu3Ly1btmTatGmkp6dz48YN9uzZA/wv+FGpUiWSkpIKLEhrZ2dHREQEgLo8CODChQs4OTkxadIkPDw8cHBwUOvS9OjRI89ziIuLY+TIkYwePTpPsMjb25uffvoJgODgYDWzyNvbm23btpGWlkZSUlK+S4bq1q1LXFwchw4dArLfE4+SKZMjZ5mYXq9n8+bNKIrC+++/j1arpXXr1ly7dk3NDHlUV69exc/PDycnJ+bMmaPOLywsTA2EtG/fXs2ssbOzw9ramuPHjxMcHIyLiwvW1taPdW0hhBBCCCGet+fSJUdRlNZFOU6j0SwDCixOoCjKUmApgLu7+9NftyD+83I+nKakpODn58fXX3/NoEGDCj0nJ/PiwayLL7/8ksqVK3PixAkMBgOlS5fOc/w/z3mSNBoNW7ZsYdy4cXz++efY2NhQpkwZZs+erRZrLYinpyfdunXj6tWr9O/fH3d390KDOitXrsTFxQVzc3NMTU15+eWXGTJkCLNmzWLUqFGkpKRgMBj47bffcHR05OrVq2RlZbFixQo8PT2xsbHB09MTLy8vAMqXL8/w4cNxdHSkSpUq6jKif5o+fTqvv/4606ZNUwu+AsyfP589e/ZgZGSEg4NDro44/fr1Y/HixWpgLCMjAxMTEwYMGMD48ePzvUafPn344Ycf8PLyokqVKlhZWeHh4UHHjh3RarVUrlwZJycnypUrl+vcUqVKERQUxNixY0lISCAzM5N33nkHBweHQp//w6xevZq4uDgiIiIwNTXFzs4u3wycohgzZgzjx4+nY8eOhIaGEhAQ8NBzhg0bRmBgIH/99RdDhw59rOsKIYQQQghRHBS7tsIajeYlRVFyWkV0AaKf53yEyI+FhQULFiygc+fOjBo1igoVKrBv3z58fHz44Ycf1GyTgiQkJKhZJCtXrlQzMJ6ll156iXXr1uW7b/Dgwerv7ezsiI7+3x/D6tWrs2XLllzH//OYCRMmqL/X6XQF1mE5fPhwoXM8duxYvttnzpzJzJkz82wPDAxUf+/j48PZs2fzHLNw4cJcrx/sDuPj40NUVBT37t1jzJgxREdHk5GRQe3atTEyMiIrK4sdO3Zw8+ZNtFotI0aM4Ndff6V///7UrVuXY8eOYWZmxuDBg2ndujWnT5/m3XffZdmyZURFRWEwGAgMDOTGjRs0bdqUe/fukZmZybfffqtm2PxbCQkJ2NraYmpqyp49e7h8+TIAVlZWD+0IlN9Y1apVA7IDXzmaNm3KmjVr+OCDD9i1a5eaWQPQpUsXPvzwQzIyMtSW1UIIIYQQQpRExS5gAnyu0Wh0gALEAm8819kIUYCcNrhr165l5cqVjBw5kpSUFOzt7VmxYkWh544aNYpu3bqxatUq/P39C60ZUhQGg0JsfDK3EtOxtTLDzrqMtCt9RJmZmezatQt/f38++eQTWrZsyfLly7l79y6enp60bt2a1atXU65cOY4dO0Z6ejru7u588803pKSkEBISwq5du7h//z6///47KSkpTJkyhbS0ND744APGjx+Pt7c3bdq0YdOmTfj5+TF16lSysrKKvByqKPr168drr72Gk5MT7u7u1KtXDwBra2u8vb1xdHSkbdu2eeqYpKSkUL16dfX1+PHjCQgIoEePHlSoUIGWLVty6dIl4H+ZNQ4ODjRu3JhXXnlFPa9UqVK0aNGC8uXLq8V+hRBCCCGEKIk0z6IDx7Pg7u6u5Ne6U4gXncGg8Mupv/hs52nSMw2YmRgxpV19/B2qPLWgyYsUoDE2NsbJyQnIzjD54osvaNy4MWlpaWoHnTt37vDrr78ybdo0oqKisLCwALIzMJYsWULTpk2pU6cO586d45dffuGnn35i9erVdO/ePd/jS5cuzdChQ+nfvz+dO3dWuwu9CAwGA66urmzYsIHatWs/7+kIIYQQQohiQKPRRCiK4v685/GoimOGiRDiEcTGJ6vBEoD0TAOf7TxNvSpW2NtYPuTsR/c8AjRP04M1THIoisLGjRupW7dunu0LFy7Ez88vzzjNmzfn119/Zf369Wqr4cKODwsLY8eOHQwePJjx48czcODAJ3dTz0lMTAwdOnSgS5cuEiwRQgghhBAlXnFtKyzEM2EwKFyMS+LwxXguxiVhMJS8jKtbielqsCRHeqaBW4npT+V6BQVoYuOTn8r1ngc/Pz8WLlyo1l45fvy4uv3bb79V2x2fPXuW5OTs++7VqxcrVqxg3759+Pv7F3r85cuXqVy5MsOHD2fYsGG5WjyX5PdkgwYNuHjxIl98UWBzMyGEEEIIIUoMyTAR/1kvSqaErZUZZiZGuYImZiZG2FqZFXLW4yssQPM0Mlqeh2nTpvHOO++g1WoxGAzUrFmT7du3M2zYMGJjY3F1dUVRFGxsbNQCuG3atGHAgAF06tSJUqVKARR4fGhoKHPmzMHU1BRLS0tWrVoFvDjvSSGEEEIIIV4EUsNE/GddjEti0PKjeQINK4d6lqgP/s/6Q/aL8tyKI3m2QgghhBDiRSQ1TIQoYV6UTAkjIw3+DlWoV8XqmRRhtbMuw5R29fMEaOys/12nH/HivCeFEEIIIYR4EUjARPxnPeulLE+TkZEGexvLZ/Kh+lkHaB5VSe7g8yK9J4UQQgghhCjppOir+M/KyZQwM8n+YyCZEkWXE6BpZG+NvY1lsQlI5CxPGrT8KGPXHmfQ8qP8cuqvElM4Vd6TQgghhBBCFB+SYSL+s4p7poR4dM+6xfKTJu9JIYQQQgghig8JmIj/tGe5lEU8fS9CDRB5TwohhBBCCFE8yJIcIcQLI6cGyIOkBogQQgghhBDicUjARAiRr08++QQHBwe0Wi06nY4jR448s2trNBr69++vvs7MzMTGxoYOHTrkOTY2NhZzc3N0Oh1dfZtwbcUYlKQ4zq+dkasGiJ2dHd26dVPPCwoKYvDgwflef/Hixaxateqh8wwPD2fs2LGPfoNCCCGEEEKIYk+W5Agh8jh06BDbt28nMjISMzMzbt++zf3795/Z9cuUKUN0dDSpqamYm5vz22+/Ua1atXyPzczMpFatWuj1euCBLjnD2+SpARIREUFMTAwNGjQo9PojR47M9zomJia5Xru7u+PuXuLayQshhBBCCCGKQAImQhRDN2/eZNy4cRw+fJgKFSpQqlQp3nvvPbp06ZLn2OvXrzN27FiCgoKe2PVv3LhBZmYmFy5coEGDBlSqVInAwEDatGnDjRs3GD9+PElJSer2l156iWXLlrF06VLu37/Pq6++Sps2bTh58iRJSUmYm5tz/PhxTpw4wfz58zly5AiHDh2iYcOGBAYGAmBpaUlSUhKQHYwwGAzs2LEDRVEYPnw45ubm/PnnnwC88847BAYG4uDggLW1NWlpaXh6enL//n3S0tIoX748kZGRODk5kZycjK2tLTdv3sTS0pLu3bsTExMDwOrVq6lWrRrLli0jKSkJOzs7ypYti4uLC7Vq1eLq1at8//33GAwGjIyMsLS0JDU1Vb3upUuXuHLlCrVq1eL1119Xx7l58yYtW7bkjz/+wM3NjR9//BGNRgq3CiGEEEIIUZLIkhwhihlFUejcuTNNmzbl4sWLREREsG7dOq5evZrn2MzMTKpWrfpEgyUAbdq04cKFC7Ru3ZpRo0axd+9eAgMDuXLlCmPGjCEoKIiIiAiGDh3K1KlTAejatSvHjh3jxIkT1K9fn3379qnj/f333xw6dIhatWrx7rvvMm7cOE6dOsXJkyfVzJB/srOzY926dQQEBFCtWjXWrl2bK5sjPT2dkJAQFixYQGxsLDdv3kRRFG7cuMGAAQOoU6cOERER9O/fnzNnzmBjY0N4eDjnzp1T55aZmUmjRo2ws7PD1taWvn378umnn7J582b1OsnJyezYsYPExERq1aqlXnfdunV88cUX+Pj4sH79eqZOncrXX3/Nd999h0aj4auvviImJoaLFy9y4MCBJ/rzEUIIIYQQQjx9kmEiRDGze/duSpUqlWtZSI0aNRgzZgwAgYGBbNq0iaSkJLKysli5ciUdOnQgOjqawMBAtm7dSkpKChcuXKBLly58/vnnAHz//ffMnj2b8uXL4+zsjJmZGYsWLSI2NpahQ4dy+/ZtbGxsWLFiBVevXkVRFAwGA5s2beKHH37g/v379O7dmz///JNWrVpx8+ZNEhISMDU1pWLFirz22mt88MEH3L17V83WKF++PACvvfYaGo2GMmXKULFiRZycnAgODubKlSt07doVNzc39V5nzJjB/fv32bdvHyYmJjg4OHD58mW+//57Dh48iLOzM2XKlMHKygpzc3MAqlSpgqWlJbVr18be3p727dvz7bffAlC9enU6derEb7/9xv379zE3N6d9+/ZUrlwZjUZDhw4dGDFiBNWrV2fBggWsXLmShIQE0tLSSE9PR6PR0Lx5c0JDQ/nzzz+xsrJi9uzZnD9/nh07dpCQkIBeryc5OZnx48fj6emJs7MzdnZ2AOh0OmJjY2nSpMnTfusIIYQQQgghniDJMBGimDl16hSurq6FHhMZGUlQUBB79+7Ns0+v17N+/XpOnjzJ+vXr+fPPP7l+/Toff/wxhw8f5sCBA5w5c0Y9fsyYMQwaNIioqCj69evH2LFjady4MZ06dWLRokX89ddfrFixAktLS2bNmoWnpyd79uyhfPnypKamkpiYyAcffMDgwYNZtGgRJ0+eZPr06WRkZLB+/Xq2bt3K1KlT0el0nDx5ElNTU27fvs3MmTPx8/Pj888/x93dnYyMDABGjx5NqVKl6NSpE1WrViUyMpKZM2eyfft2MjIy2L17NwBGRv/766t8+fJs3bqV+Ph49u/fz8GDB3M9EzOz7C45s2fPpnLlypQtWxZfX18URVGXyly/fh0/Pz8OHTpEeno6iYmJ+T77nOvu3buXVq1a0apVK1JSUlAUhe+++4779+8TERGhPmNjY2MyMzML/XkKIYQQQgghih/JMBGimHvrrbfYv38/pUqV4tixYwD4+vpSsWLFfI9v1aoV5cqVA6BBgwZcvnyZ27dv06xZM/WcHj16cPbsWSC7wOumTZsAGDBgAO+99x5//PEH9+7dU8fU6/WULl2aGjVqEBcXR0xMDKVLl2bIkCHodDpGjRpFYmIiL730EhkZGaxevRqAXr16kZSURIcOHejevTuNGjUiLi6Ow4cPExMTQ3R0NPv378fCwgIzMzNOnz5NdHQ06enp/Pzzz5iZmeHh4UH79u0ZN24ciqLw559/4uzszMWLF9X53b9/H3t7e1xcXNBoNGqwokuXLhw9epTSpUsDcOTIEV5++WW0Wq16z/fu3eOVV14hKSkJY2NjoqOjMTMz4+bNm5QvXx6NRqN2CEpMTKRUqVIAvPLKK9jY2JCWloaZmRlZWVk4OTnRp08ftm7dypkzZ6hXr96//fELIYQQQgghnhMJmAhRzDg4OLBx40b19ddff83t27dz1e8oU6ZMgefnZFPA42c3JCUlsX//fo4ePcqMGTN49dVXsbOzw9TUlKCgIMaOHYuiKOzZs4dz586xdetWPv74Yxo2bIiNjQ0NGzbk+PHjBY6vKAq+vr6YmZmpwZSgoCDat2/Pn3/+iYmJCZ06dcLOzo7169fTuHFj4uPjeeWVV3B2ds4zXkJCAo6OjiQmJpKVlcW8efPYtGkTmzdvZvr06Xz33XeYmpqqx7dr146ffvpJfd28eXN+/PFHNdDx8ssvq5kn5cqVY/jw4aSkpGAwGNTgS5MmTdiwYQO3b9+mVKlSmJiY4OjoSGpqKkZGRrRt2/aRn7sQQgghhBCi+JCAiRDFTMuWLXn//ff59ttvefPNNwFISUn5V2N6eHjwzjvv8Pfff2NlZcXGjRtxcnICoHHjxqxbt44BAwawevVqfHx8cHNzo1evXri6ujJkyBAguw5JYmIiLVq0YOfOnaSkpGBra0tCQgL29vbs3r1bnS9k11oJDw9Xu+AAlC5dmvXr11OjRg3eeustdu/ezauvvkpycjJarZbIyEjq1q1LbGwsWVlZNGrUiF69ehEQEIBWq+Wbb75Bo9FQtmxZKlWqBGQXh7158yYAqampODk5ceXKFaKjo4HsjJu9e/cSGhrK2LFjsbGxoU2bNqxZs4Zx48ZRtmxZzM3NsbGx4fDhwyQnJ+Pi4sInn3zC/fv3+eqrr3j55ZdRFEXtxgNgY2OjZrk4OjoSHh6u1i150KJFi/7Vz04IIYQQQgjxfEjARIhiRqPRsGXLFsaNG8fnn3+OjY0NZcqUYfbs2Y89ZrVq1Xj//ffx9PSkYsWK1KtXT122s3DhQoYMGcKcOXPUoq8AvXv3Zvjw4SxYsICgoCAGDx7MyJEjMTc3Z9euXXTq1Im0tDQURWHevHmFXt9gUIiNT+ZeWgZX/07B1TW7HXGfPn1IT08HYObMmdSpU4fhw4fj6OhIlSpV8PDwUMdYsWIFQ4cORaPR0KZNm3yvY25uzvbt2xk/fjzvvPMOlStXxsrKig8++ACAgIAAhg4dilarxcLCgpUrV6rnarVaWrRowe3bt5k2bRpVq1YlNjZWzTTJyS65evUqDRo0eMyfhBBCCCGEEKKk0CiK8rzn8ES4u7sr4eHhz3sa4hkyNjZWsyQAtmzZku83/CLbvXuJ3E7XcP3vZKaPGcyoEcPp1q3rU7+uwaDwy6m/+GznadIzDZiZGDGlXX38HapgZKR56tf/tywtLUlKSgJgw4YNrF69mi1btpCUlESnTp34+++/ycjIYObMmXTq1InY2Fjatm1LkyZNOHjwINWqVePnn3/G3NycCxcu8NZbbxEXF4eFhQXLli2TOidCCCGEEOKFp9FoIhRFcX/4kcWLZJiIEsvc3By9Xv+8p1EkORkWtxLTsbUyw866zDMNFhgMCoPHTCT4txCyMu5ToY47pWs3wmBQnvo8YuOT1WAJQHqmgc92nqZeFSvsbSyf6rWfhNTUVHQ6HWlpady4cUPt0lO6dGk2b95M2bJluX37No0aNaJjx44AnDt3jrVr17Js2TJ69uzJxo0b6d+/PyNGjGDx4sXUrl2bI0eOMGrUKHU8IYQQQgghRPEiARPxwnicb/yPHTvG66+/jpGREb6+vuzatUutffGkFIcMi9j4ZOIa9KRBne7qtlm7zlD/pbJPPWhxKzFdDZbkSM80cCsxvUQETB4MzB06dIiBAwcSHR2Noii8//77hIWFYWRkxLVr19RaKjVr1kSn0wHg5uZGbGwsSUlJHDx4kB49eqhj5yxHEkIIIYQQQhQ/Rs97AkI8rpxv/nU6HV26dFG/8Y+MjGTPnj28++675Cw5O3fuHG+99RanTp2ifPnyaheaIUOGsGTJEvR6PcbGxk9lngVlWMTGJz+V6+WnsKDF02ZrZYaZSe6/asxMjLC1MivgjOLLy8uL27dvExcXx+rVq4mLiyMiIgK9Xk/lypVJS0sD8u9UZDAYKF++PHq9Xv11+vTp53UrQgghhBBCiIeQgIkosXK++dfr9WzevFn9xl+r1dK6deuHfuN/9+5dEhMT8fLyAqBv375PbG7GxsZqMMe/mRf34q5z7+IJzv6QXXy0sGDFggULqF+/Pv369SM9PZ3WrVuj0+lYv379Y8/neQYt7KzLMKVdffX6ORk2dtYFt0Yurs6cOUNWVhbW1tYkJCRga2uLqakpe/bs4fLly4WeW7ZsWWrWrMmGDRuA7NbKJ06ceBbTFkIIIYQQQjwGWZIjXhgPfuNvamqKnZ1dgd/4p6amPtW5PLiM42JcEoOWHyXu75vq/sKCFd988w0hISFUr16dw4cPA/zrWi05QYt/Lgt6FkELIyMN/g5VqFfF6rnVcPk3cjKZIDvIsXLlSoyNjenXrx+vvfYaTk5OuLu7F6l46+rVq3nzzTeZOXMmGRkZ9O7dG2dn56d8B0IIIYQQQojHIQET8cJ41G/8y5cvj5WVFUeOHKFhw4asW7fuqcwrJ1gx6YIeyA6WvBK7g42BEUycOBEAR0dHtm/fzqxZs7h48SJt27alf//+LFu2jLi4OHQ6HWPGjOHkyZPMnz8fgGXLlhETE8OXX3750Dk876CFkZEGexvLElGz5J+ysrLy3V6pUiUOHTqU774H6+BMmDBB/X3NmjX55ZdfnuwEhRBCCCGEEE+FLMkRL4x+/foRHh6Ok5MTq1atKtI3/t9//z3Dhw9Hp9ORnJxMuXLlnshcHqyv0q1bV/wdqjClXX0cqpZl5VBPXrW1RKPJG6xYvHgxVatWZc+ePUyaNInvvvsOHx8f9Ho9vXr1Ytu2bWRkZACwYsUKhg4dWuQ55QQtGtlbY29jWWIyPIQQQgghhBDieZAME1FiJSUl5Xr9ON/4Ozg4EBUVBcCsWbNwd38yrcHza3lctbw5FSxKYW+Tf7DkYSwtLWnZsiXbt2+nfv36ZGRk4OTk9ETm+1/yvFs8CyGEEEIIIUoGCZiIYuVZf5jdsWMHn332GZmZmdSoUYPAwMCndq0HmZiYYDD8r2tNTq2Vhxk2bBiffvop9erVY8iQIU9rei+s4tDiWQghhBBCCFEySMBEFBvP48Nsr1696NWr11MZuzB2dnZs374dgMjISC5dulSk8xo2bMiff/5JZGSkmhnzojA2NsbJyYnMzEzq16/PypUrsbCweKLX+GeL58thQQzfdpN9m1dib2PJG2+8wYULFwgJCQFg4cKFnDt3jgULFvz7a8fG0qFDh1zZTkIIIYQQQojiS2qYiGLjnx9m0zMNfLbzNLHxyc95Zk9et27duHPnDg4ODixatIg6deoU+dyePXvi7e1NhQoVnsrccloiOzo60qNHD1JSUp7Kdf4pZxlTdHQ0O3fupFatWmi1Wtq0acNff/1V4HmZmZlFGv/MmTP4N/Mi8qsRpMVfB8CqhgMJsafUFs8nTpwgISFBLfR68OBBGjdu/NCxH2wjrdPpiI2NLdJ5QgghhBBCiOJLAiai2LiVmK4GS3KkZxrUD7MlyT/rqwA0b95czSoxNzcnODiYU6dOsXz5ck6fPo2dnR2QnYlQqVKlPOfk2L9/P8OHD39qc38wcFGqVCkWL1781K5VkNKlS9O2bVsOHTrEzZs3cXZ2xsXFhZ9//hmAwMBAOnbsSMuWLWnVqhVJSUkMGTIEJycntFotGzduZPny5bzzzjvqmO+//z6WZcrg+vZSSltXBcCiyqukxV/F0iiThIQEzM3N0el0nDx5EsgOmHh7e3PhwgX8/f1xc3PDx8eHM2fOALBt2zYaNmwIZNfQ+fXXX9Hr9Vy+fJmUlBR0Oh0uLi4kJiYC2W2JIbvzzsSJE/Hw8ECr1bJkyRIABg4cyJYtW9Q59+vXT71nIYQQQgghxLMlS3JEsWFrZYaZiVGuoImZiRG2VmbPcVbZikOh0Lt37+Lp6YmzszOtWrV6Jtf08fEhKiqKO3fuMHToUC5evIiFhQVLly5Fq9USEBDAhQsXOH/+PLdv3+a9995j+PDhhIaG8uGHH2JlZcX58+dp0aIF33zzDYGBgURFRRXaGjkzM5PU1FTq16/PJ598gp+fH9HR0Sxfvpy6detSvXp1EhMTSU1N5Y8//mDr1q24uLiQnp6OkZEREyZM4PTp0/z000+cPXuWKVOmEBERwfbt2ylfvjxVNk7DrMVbRC+fhNXL9THBwKkjocz/7TfOnDnDuXPnuHbtGsuWLePu3bts3LiRbdu2sXjxYgIDA0lJSWHUqFHs3r2bJk2acPjwYaysrOjduzeff/45X3zxBXPnzuXs2bOkpKSwa9cu2rZtS+nSpTl//jxZWVm0bduWmJgYKlasyIgRI1i2bBlly5YlKiqKkJAQJk+ejFar5ejRo4wZMwadTgdkB1qio6NRFIULFy7w1ltvERcXh4WFBcuWLStSZyghhBBCCCFE0UjARBQbdtZlmNKufp4aJnbWZZ7rvIpLodDy5ctz9uzZZ3a9zMxMdu3ahb+/P9OnT8fFxYUtW7awe/duBg4cqHYBioqK4vDhwyQnJ+Pi4kL79u0BOHr0KDExMdSoUQN/f382bdpEz549+eSTT5gzZw6mpqasWLFCza7IacUM2UVx+/XrR8eOHbl06RImJia4ubmRlZVFUFAQW7ZsYebMmWqNkytXrnD48GGqV6/Oq6++yuzZs4mKisLJyYkpU6bw3nvvYWNjw7hx4xg//l32H4+h+Zxr/LhqJRH7QggODkav1/Ptt9/y6quv4ufnx3fffUfTpk1ZsWIFZ8+epUePHpw+fZo6deqoy4CuXr1Kr169SE5OZvTo0ZQqVYqLFy/i7e3Nzp07WbBgAS+99BLHjx/nl19+4c033+T777/n2rVr6tzfe+89KlasyNWrV7l06RKVK1dm7969eHl50ahRIxo1aqQ+64kTJ+Lv7w/AiBEjWLx4MbVr1+bIkSNqEEcIIYQQQgjxZEjARBQbRkYa/B2qUK+KVbFq+VpQbZV6Vaywt7F8rnN7Gh4MXPj4+PD666/TsGFDNm7cCEDLli2Jj4/n3r17AHTq1Alzc3PMzc1p0aIFR48epXz58nh6emJvbw9Anz592L9/P927dy+wNfKDrZjt7Ozw8/PjwoUL+Pr6snLlSoYMGcKYMWOoX78+R44coVy5cmoAycrKCktLS2xsbChXrhyvvfaaOre1a9diY2Oj3pORkYZXrMtQo0YNurVtibmSxpgxY7h+/TpTp07FxMSE27dvs3//fl577TU2b96MpaUls2bN4rvvviMoKEh9VmPGjGH8+PEcPHiQ7du3ExAQwObNmwGYMWMGqampjB49GkdHR15++WUAgoODuXLlCra2thgZGVG5cmWWLFlCqVKl8PT0pHXr1qxZs0YNQOVYv349kZGRBAcHk5SUxMGDB+nRo4e6Pz295C1dE0IIIYQQojiTgIkoVoyMNNjbWBarQERhtVWK0zyflAcDF0Wh0WjyfV3Q9qK2Rt6zZw/z5s3j3r17lCtXDoBz587RsmXLPMfWqFGDr7/+mvnz52NkZERqaioAr776Kvfu3WPNmjX07ds31zllymRnLnl5eXHjxg1sbGw4deoUAH5+fpw7dw5vb28qV67MO++8w4wZM/jggw9QFIWoqCicnZ1JSEigWrVqAKxcuVId+8KFCxgZGTFp0iR27txJcvL/ChcrisLQoUO5fPkyGzZswNTUlLNnz3LhwgXMzMwYPHgwnp6eAFSuXBmA6OhoAgICCAsLw9jYGIPBQPny5R/p5ySEEEIIIYR4NFL0VYiHyKmt8qDiUlvlWfHx8WH16tUAhIaGUqlSJcqWLQvAzz//TFpaGvHx8YSGhuLh4QFkL8m5dOkSBoOB9evX06RJE+B/rZHXrFlDnz59Cr3utGnTyMjIQKvVcujQIT755BMA/vrrLxITE6lbty4Abm5u/P333zg6OnL9+nX279+vjvHqq6/i7e2Nubl5vteoUKECNjY2pKSkqMV6HRwc1GKzXbp0UYNIU6ZMwcHBQS3EGhAQQI8ePUhNTVUL9QLMnz+f1NRUtFotxsbG2Nraqvv8/PyIjY2lbt26uLq6Urt2bYYNG6Z25qlcuTL169enfv36QHbtmj59+rBq1SpsbGwAKFu2LDVr1mTDhg1AdhDmxIkThT5LIYQQQgghxKORDBMhHqK41lZ5lgICAhg6dCharRYLC4tc2RRarZYWLVpw+/Ztpk2bRtWqVTl79iweHh6MHj1aLfrapUsX9ZyePXui1+tztUbOr7OQubm5WuMkLS2NN998EycnJ0xMTNi6dStmZtlBq1KlSrF06VIgezlPhw4d1DFu3LjBzJkz2bdvX4H3d/nyZb766iu8vLwAsLS0JCoqChOT7L8i27RpQ/ny5Zk1a1au8zp16kSnTp2wtLRkzpw56vaFCxeyYsUKoqKiCA0NZe7cudjZ2REdHY3BYCA2NpZt27ahKArVq1dny5YtHD9+HICUlBTOnTunFvb9+eefuXz5cq7OSHq9ntWrV/Pmm28yc+ZMMjIy6N27N87OzgXeoxBCCCGEEOLRaHLaXJZ07u7uSnh4+POehnhBFYcuOcVRQEAAlpaWTJgwIdf2nCDBP1si5+jQoQPjxo17qt1+HuwqlJOJ8TgMBgOurq5s2LCB2rVrP8EZ5hUSEsLrr7/OuHHjcrVEFkIIIYQQoiTTaDQRiqK4P+95PCpZkiNEEeTUVmlkb429jeVTDZZYWuauixIYGMjo0aMfaQw7Oztu374NZAd7LsYlcfhiPBfjkjAYcgdJ27Vrx927d//VnAvyz2vfufM3derUwdzc/Km3Rs7pKvRvgiUxMTG8+uqrtGrV6qkHSwBat27N5cuXJVgihBBCCCFEMSBLcoR4gRWlJfLOnTsfe/yAgIB8tzdv3pymTZvle+0zZ/4o9tk5ORlF90pXJuRI1H9q+ZUQQgghhBAimwRMhChB4uLiGDlyJFeuXAGyi4t6e3sTHx9Pnz59uHbtGl5eXuQstXv/o0/YcPwvrBt25srOb0m5cZHP+II75yLZtXENq1evxs7OjvDwcCpVqsTHH3/Mjz/+iI2NDS+//DJubm55ltsUVUltx1yUIJMQQgghhBDixSdLcsQjadGiBb/++muubfPnz+fNN99k69ateYpiPi2xsbGsWbOmwP1nz56lXbt21K5dG1dXV3r27MnNmzcfaXxHR8d89z243OVpSE1NRafTqb8+/PBDdd/bb7/NuHHjOHbsGBs3bmTYsGEAfPTRRzRp0oRTp07RpUsXNaDyqtaDvy9GAZB87SyG+6mkpt9nb1gYTZs2zXXdnDFPnDjBrl27+Lc1gQprx1ycFRToiY1PfsiZQgghhBBCiBeJZJiIR9KnTx/WrVuHn5+fum3dunV8/vnnNG3alI4dOz6TeeQETPr27ZtnX1paGu3bt2fevHm89tprQHYR0ri4OCpXrqwel5mZqXZBKU5yWtjmCAwMVIMXISEhxMTEqPvu3btHUlISYWFhbNq0CYD27dur3Wd8vDxJuXGerLRkjIxNKV31VTL+OkdM9FHGjRiU67oHDhygU6dOlC5dmtKlS6vP7nHltGN+MGhSEtoxFxboKc6ZMUIIIYQQQognSzJMxCPp/n/t3XlUVWX3wPHvARQVHBJBy1SgHJgvoyKhoDm8Ziqa84RoTjlkZg6lUmllWRpl2dsvRdPQ1JzKTEkRZwS8KOKAEs4paiqzwD2/P5DzioBiDojuz1qsONNz9j3cWNzt8+z92mv89ttv3LhxA8hPXJw7dw5fX99CxUkDAwMZM2YMzZs3x9bWlpUrV2pjzJo1CycnJ1xcXJg0aRIAJ06coH379ri7u+Pr68uRI0fuOM6kSZPYvn07Op2OOXPmFIrxp59+wtvbu9AHfj8/PxwdHQkNDaVTp060atWK1q1bk5aWRuvWrXFzc8PJyYm1a9dq1+Tm5tK3b1/s7Ox47bXXyMjI0I59+umnODk54eXlxfHjx4H85TLdunXD09MTT09Pdu7c+cCeewGDwcCePXvQ6/Xo9XrOnj1bpEjsrRrWqUGTF1/gatxmzOvbU9PWGZ3JOc6e+gs7O7sHHt+tCtoxm5rk/5opL+2YCxI9tyoPiR4hhBBCCCHEgyUJE3FPatasiZeXF7///juQP7ukR48eKErR2g7nz59nx44d/Prrr1pi5Pfff2ft2rXs3buXuLg43nnnHQCGDh3KV199RUxMDLNnz2bkyJF3HOeTTz7B19cXvV7PuHHjCt03Pj4ed3f3El9DbGwsK1euZNu2bVSqVInVq1cTGxvL1q1bGT9+vFb/4+jRo4wcOZLDhw9TrVo1vvnmG22M6tWrc/DgQUaNGqV1NClpucyD1LZtW7766ittu2AmSosWLbQlSr///jv//PMPkN/dp3P7VmTGrmViUFcWTR7I1jVLcXV1LfIz8/HxYf369WRlZZGWllZiS+DSMjJSaO9Qh0VBXoT0dmVRkFep6oAYGxuj0+lwcXHBzc2NXbt2AXdeJnWv/Pz8SlxyVFyi51jIQDq38kan0xVJrAkhhBBCCCGeTI/fegTx2CtYltO5c2eWLVvGDz/8UOx5Xbp0wcjICHt7e61+SHh4OIMGDaJKlSpAfgImLS2NXbt20b17d+3a7OzsO45zP9q0aUPNmjUBUFWVKVOmEBkZiZGREWfPntXuUa9ePXx8fADo168fISEhWgHU3r17a/8tSNiUtFzmTjNA7lVISAhvvPEGzs7O5Obm0qJFC+bPn8/06dPp3bs3Dg4ONG/enPr162vXtGjRgo8++ojBXdthZmZGpUqV8PX1LTK2p6cnnTp1wtnZmdq1a+Pk5ET16tXvK96Cdsz3spTl1iVJf/zxB5MnT2bbtm33Fce9KEj0NKlTlYup2VhVNaXVt8Zs3bqVWrVqcfToUdq2bUvnzp1LPWZeXh7GxsYPMWohhBBCCCHEgyYJE3HPOnfuzLhx44iNjSUjI6PE2Rympv9bwlAwa6M4BoOBGjVqFKrb8W/GKeDg4HDHD9hmZv9bErJ06VJSUlKIiYmhQoUKWFtbk5WVBVBkBsat28V9X7BcplKlSneN8U7S0tIKbQcGBhIYGAhArVq1WL58eZFrLCws2LRpU7HjtW7dmpycHG372LFjhY4nJydr37/99tsEBweTkZFBixYt7jhT51G4fv26Vo/lVllZWYwYMYLo6GhMTEz44osv8Pf3L3F/ZmYmgwYNIi4ujiZNmpCZmQnAggULOHDgAHPnzgXg+++/JyEhgTlz5pSY6Lk9pi5dunD69GmysrIYO3YsQ4cOBcDc3Jxhw4YRHh7OvHnziIqKYsGCBQAMGTKEN998k+TkZP7zn//w0ksvsWvXLurWrcvatWupXLnyg36UQgghhBBCiHskS3LEPTM3N8ff35+goCBtpkVptWnThoULF2r1QK5cuUK1atWwsbFhxYoVQH5SJC4u7o7jVK1aldTU1GKP9enTh127dvHbb79p+yIjI4mPjy9y7rVr17CysqJChQps3bqVkydPasdOnTrF7t27gfy6KC+99JJ2rCBpsXz5cry9vYGSl8tAfqvapJQ09iRdJiklDYPh7omfsjB06FB0Oh1ubm5069YNNze3Rx5DQZegJk2aMGTIEKZOnVrknHnz5qEoCgcPHiQsLIyBAweSlZVV4v5vv/2WKlWqcPjwYd5//31iYmIA6NGjB+vXr9cSSgsXLiQoKKjYuPz9/XF0dKRly5bMmDFD279gwQJiYmKIjo4mJCSEy5cvA5Cenk7Tpk2Ji4ujcuXKLFy4kL1797Jnzx6+//579u/fD0BiYiJvvPEGhw4dokaNGqxateqBPk8hhBBCCCHEvyMJE/Gv9O7dm7i4uHtOmLRv355OnTrh4eGBTqdj9uzZQP5Mjx9++AEXFxccHBzuWiPC2dkZY2NjXFxcihR9rVy5Mr/++itfffUVDRs2xN7enm+++QZLS8si4/Tt25fo6GicnJxYvHgxTZo00Y41btyYefPmYWdnxz///MOIESO0Y//88w/Ozs58+eWX2v1DQkKIjo7G2dkZe3t75s+fD+QnSzYe+puBC6IYE7afgQui2Hjo78cmaaIoCuPHjwfyE0P9+vWjV69eTJ48mfnz57N48eJ7HvN+6o0ULMk5cuQItra2NG/eHBcXFzp06MD169cBmDhxIv369QOgSZMmNGjQgGPHjrFjx45i90dGRmr7nZ2dcXZ2BvKTf61ateLXX3/lyJEj5OTk4OTkREREBB07diwU19atW4mPj9dq1xTMBAoJCcHFxYVmzZpx+vRpEhMTgfxaLN26dQNgx44dBAQEYGZmhrm5OV27dmX79u0A2NjYoNPpAHB3dy8040cIIYQQQghRdmRJjvhXunTpUmR5zK1LR0JDQwsdu3WZyaRJk7TirQVsbGzYuHFjkfuUNE6FChXYsmVLifE1adKk2PFujRHyl7gUzCK5XUGnntsVfKCdNWtWof0lLZdJvpzOxxsOa61qs3MNfLzhME3qVH0s2tSampryyy+/MHnyZGrVqlXo2PDhw8soqnzVq1fH3NyczZs3k5GRUSSJ8SAMGTKEjz76iCZNmjBo0KC7nv/CCy9Qu3ZtEhISyMjIIDw8nN27d1OlShX8/Py0JV2VKlUqVd2SW5ecGRsba8uFhBBCCCGEEGVLZpiIcrNcpLy6mJqtJUsKZOcauJiaXcIVj5aJiQlDhw4tMlMHIDg4WJsFdPz4cV5++WWte82JEydQVZUJEybg6OiIk5NT8Qmj5GR8fX1xc3Mr1PXm/PnztGjRAp1Oh6Ojozbj4lYZGRnk5eVhYWFRaL+xsTFLly4lLS0Nb29v9u7dS+/evXnmmWdYunQpycnJ2Nrasn//frp27cqpU6f47LPP8PHxoX79+hw4cADIXzbz3XffER4ezpw5c0pV5PbixYv89ddfNGjQgGvXrvHMM89QpUoVjhw5wp49e4q9xtfXlzVr1pCRkUF6ejqrV68utvCuEEIIIYQQ4vEhM0yecgXLRQpmQJiaGDG5g12p2r+K0rGqaoqpiVGhpImpiRFWVU3vcNWjVdB5p6DNc3H69u3LpEmTCAgIICsrC4PBwC+//IJerycuLo5Lly7h6elJixYtCl1nZWXF5s2bqVSpEomJifTu3Zvo6Gh++ukn2rVrx7vvvkteXp5W16aghgnkJ2mqV6+Ou7s7N27c0GY1mZiYYDAYaNasGUZGRvzxxx84OTnh5eVFy5Ytad++PX/99Rf/93//x6BBg3B3d+fo0aOYmppSt25drf7NzJkzadWqFY0aNSIqKor333+fLl26FPv6/f39MTY2Jicnh08++YTatWvTvn175s+fj52dHY0bN6ZZs2bFXuvm5kZgYCBeXl5A/qwWV1dXWX4jhBBCCCHEY0wSJk+5x325yJPA2sKMyR3siiSlrC3M7n7xI1KtWjUGDBhASEhIsR1aUlNTOXv2LAEBAQBaJ6AdO3bQu3dvjI2NqV27Ni1btmTfvn1ajRCAnJwcRo0ahV6vx9jYWOvS4+npSVBQEDk5OXTp0kVLkuTl5WnX+vn5MXv2bDw8PArFoygKCxcuJCcnh3HjxjF27FiMjIw4f/48H3/8MVlZWbRp04bBgwcD4OTkRLt27ejbty9JSUl07doVDw8Phg8fzrp16zh16hSWlpbk5ORw6tSpIq+/pMSGqakpv//+e7HHbu929NZbb/HWW28V2mdtbV2oGHFB22ohhBBCCCFE2ZOEyVPuTstFJGHyYBgZKbR3qEOTOlW5mJqNVVVTrC3MHrsZPG+++SZubm6lquNxL+bMmYOVlRWrw3fy97VM/OzrYjCotGjRgsjISH777TcCAwN56623GDBgwD2Nfae20LfWBjEyMtK2jYyMyM3NBfKTOWlpabRr107r0gRw4cKF+33ZQgghhBBCiHJOapg8pS5cuECfPn3o4e9BwrcjSfhuDP8k7AAev+Uiubm5TJkyhYYNG6LT6dDpdMycOfNfjVVS95Y1a9agKEqJhV7vl5GRgq2lOc1sLbC1NC+ULDE2NtZel06nIzk5mebNm98x3ltZW1tz6dKl+46xZs2a9OjRgx9++KHIsapVq/L888+zZs0aALKzs8nIyMDX15fly5eTl5dHSkoKkZGR2rKTAlevXuWaYs6g0Gj6T/qMvLw8Nh76m7/+SqZ27dq8/vrrDBkyhNjY2HuO+U5toUvjlVdeoWPHjvz8888AWqtfIYQQQgghhJCEyVNIVVW6dOlCixYtSP4riZ9/34Zdn6ncuHapyHKRgn+JfxhuXXpxJ++99x7nzp3j4MGD6PV6tm/fTk5OzgONJSwsjJdeeomwsLBijz/M51DQRrfgy9raWiuM+qiNHz++xOTLjz/+SEhICM7OzjRv3py///6bgIAAnJ2dcXFxoVWrVnz66afUqVOn0HWv9g4kbOmPxMx9naxLpzGqWImPNxxm5a9/4OLigqurK8uXL2fs2LH3HO+d2kKXxtSpU8nJycHZ2RkHBwemTp16zzEIIYQQQgghnkzK7a1hyysPDw81Ojq6rMMoF/78808++OADtm3bBuQXfk2+nK4tF4lYv4I1a1aTlpZGXl4eGzZsYPTo0cTHx5OTk0NwcDCdO3cmIyODwMBA4uPjady4MefOnWPevHl4eHgQFhbGRx99hKqqvPLKK1oLXnNzc4YNG0Z4eDjdunUjNjZWm7WwefNmvvnmG1avXq3FmpGRQb169UhOTqZq1arFvp4vvviCBQsWAPnFNN98802mTZtGzZo1efPNNwF49913sbKyonPnznTs2JH4+Hjy8vKYNGkSf/75JwcPHmTq1KksXbqUo0ePAhAREcHUqVN55plnOHLkCEeOHGHUqFFs2bKFevXqUaFCBYKCgnjttdewtrYmOjqaWrVqER0dzdtvv01ERATbtm3TEgGKohAZGVnkdZibmxepd1GwLzk5uVC8EydOZOPGjRgZGfH6668zevRorK2tGThwIOvXrycnJ4cVK1bcc+LgYdqTdJkxYUVnboT0dqWZrUUxVwghhBBCCCGeJIqixKiq6nH3Mx8vUsPkKXTo0CHc3Ny07YLlIgU1SyKNFGJjYzlw4AA1a9ZkypQptGrVigULFnD16lW8vLx4+eWX+fbbb3nmmWdISEggPj5eK9p57tw5Jk6cSExMDM888wxt27ZlzZo1dOnShfT0dJo2bcrnn3+OqqrY2dmRkpKCpaUlCxcuJCgoqFCsx48fp379+iUmS2JiYli4cCF79+5FVVWaNm1Ky5YtCQoKomvXrrz55psYDAaWLVtGVFSU1h0F4IcffqB69eqMHz+ezZs3s27dOszNzYmJicHd3R2A2NhY4uPjsbGxYeXKlSQnJ5OQkMDFixexs7MrEu/tZs+ezbx58/Dx8SEtLU0rlnqrW7vC2NjYFEoY3eq///0vycnJ6PV6TExMuHLlinasVq1axMbG8s033zB79mz++9/vCyXByrJmSnnoEiSEEEIIIYQQt5MlOYI33ngDFxcXPD09tX1t2rShZs2aAGzatIlPPvkEnU6Hn58fWVlZnDp1ih07dtCrVy8AHB0dtc4o+/btw8/PD0tLS0xMTOjbty+RkZFAfr2Obt26AfkzLvr378+SJUu4evUqu3fv5j//+c8dY124cCE6nY569epx+vRpduzYQUBAAGZmZpibm9O1a1e2b9+OtbU1FhYW7N+/n02bNuHq6oqFReHZDJs2bWLx4sWMGDGC7du3c/nyZZo2bVpoWY6Xlxc2NjZAfkeY7t27Y2RkRJ06dfD397/rs/Xx8eGtt94iJCSEq1evYmJSNEd565KckpIlAOHh4QwbNkwbo+DnA9C1a1cA3N3dSU5OZuOhvxm4IIoxYfsZuCCKjYf+xmAom9lkBV2CTE3yf908jl2ChBBCCCGEEOJ2MsPkKeTg4MCqVau07Xnz5nHp0qVCrVvNzP73YVZVVVatWkXjxo3v+96VKlXC2NhY2x40aBCvvvoqlSpVonv37kUSCi+++CKnTp0iNTWVqlWrMmjQIAYNGoSjo+Nda6AMGTKE0NBQ/v7772JngqiqykcffcSAAQPIzc1FURTWr1+Poih89tlnQOHncCcmJiYYDPkzKAq6tABMmjSJV155hQ0bNuDj48Mff/zxUJbLFHSAMTY2Ji0z+7FqFV1eugQJIYQQQgghxK1khslTqFWrVmRlZfHtt99q+zIyMko8v127dnz11VcU1Lsp6CTi4+OjdRdJSEjg4MGDQP6sjG3btnHp0iXy8vIICwujZcuWxY793HPP8dxzzzFjxoxi29lWqVKFwYMHM2rUKC0RkZeXx40bNwDw9fVlzZo1ZGRkkJ6ezurVq/H19QUgICCAjRs3sm/fPtq1a1fs65oxYwZ9+/bl5MmTbNq0iSNHjmBjY8P27duLnO/j48OqVaswGAxcuHCBiIgI7Zi1tTUxMTEAhZJRJ06cwMnJiYkTJ+Lp6XlfXXjatGnDd999pxWgvXVJzq1u5BlKbBVdVu7UJUgIIYQQQgghHkeSMHkKKYrCmjVr2LZtGzY2Nnh5eTFw4ECtMOvtSuokMnLkSFJSUrC3t+e9997DwcGB6tWr8+yzz/LJJ5/g7++Pi4sL7u7udO7cucR4+vbtS7169bCzsyv2+MyZM3n22WdxdHTE1dUVX19fBg4cyHPPPYebmxuBgYF4eXnRtGlThgwZgqurKwAVK1bE39+fHj16FJrVUmDIkCH8888/bN68GUdHR4YNG0Zubi7dunUrtltOt27deP7557G3t6dfv364ublRvXp1AKZPn87YsWPx8PAodK+5c+dqy5UqVKhw1yVHdzJkyBDq16+vdaX56aefij2vorGRtvylgNQMEUIIIYQQQoh7I11yxL+Wl5dHTk4OlSpV4sSJE7z88sscPXqUihUr3tM4o0aNwtXVlcGDBz/Q+AwGA25ubqxYsYKGDRs+kDHT0tIwNzfn8uXLeHl5sXPnziJtdMuawaCy8dDf2rKcgpoh7R3qyMwOIYQQQgghxCMnXXJEmbq9NfCjqBGRkZGBv78/OTk5qKrKN998c8/JEnd3d8zMzPj8888fWFwGg8rmXTEE9XmN/7zyKi+88OIDG7tjx45cvXqVGzduMHXq1McuWQJSM0QIIYQQQgghHgSZYfIEkBkF/yPPQjwIFy5cYNy4cezZs4dnnnmGihUr8s477xAQEFCmcV29epUXXniBS5cuoSgKu3fvpnnz5pw+fZrnn3+ea9euYWNjw6VLlzAyuv8Vl35+fsyePbtQQWghhBBCCCHuVXmdYSI1TJ4AyZfTi+2Kknw5vYwje/TkWYj7paoqXbp0oUWLFiQlJRETE8OyZcs4c+bMfY9dULD336pRowbPPvsshw8fBmDXrl24urqya9cuAPbs2YOXl9cDSZYIIYQQQgjxtJO/qp8AF1OzH7uuKGWlPDyLCxcu0KdPH2xtbXF3d8fb25vVq1ff97jNmze/43E/Pz/uNgvrxo0bvPnmm7z44os0bNiQzp07F0oUmJvntyVOTk7G0dERgOjoaMaMGXOf0d9ZcHAws2fPfqj3KLBlyxYqVqzI8OHDtX0NGjRg9OjRQH7tngkTJuDp6YmzszPfffcdkJ9omTBhAo6Ojjg5ObF8+XIAIiIi8PX1pVOnTtjb22MwGBg5ciRNmjShTZs2dOjQgZUrVwIQExNDy5YtcXd3p127dpw/f75IfM2bN9cSJLt27WLcuHGFtn18fEqMMS0tjdatW+Pm5oaTkxNr164FID09nVdeeQUXFxccHR212G+1adMmvL29cXNzo3v37qSlpbFlyxa6dOminbN58+Yyn4UjhBBCCCHEgyIJkyeAVVVT6Ypy0+P+LB7E7IXbZykUbBd8aL4fU6ZMITU1laNHj5KYmEiXLl3o2rUrd1q65+HhQUhIyH3f+0G6n5kchw4dws3NrcTjP/zwA9WrV2ffvn3s27eP77//nr/++otffvkFvV5PXFwc4eHhTJgwQUt4xMbG8uWXX3Ls2DF++eUXkpOTSUhI4Mcff2T37t0A5OTkMHr0aFauXElMTAxBQUG8++67Re7v4+Oj/ayTkpLo3r27lgjbtWsXzZs3LzHGSpUqsXr1amJjY9m6dSvjx49HVVU2btzIc889R1xcHPHx8bRv377QPS9dusSMGTMIDw8nNjYWDw8PvvjiC/z9/Tly5AgpKSkALFy4kKCgoH/97IUQQgghhHicSMLkCWBtYcbkDnZaoqCgboe1hVkZR/boPe7P4m6zF5KTk/H19cXNzQ03Nzftg/HtsxRu34b/zf4AmDVrFk5OTri4uDBp0qRCMRgMBgIDA3nvvfcK7c/IyGDhwoXMmTNHa408aNAgTE1N2bJlS4mvKSIigo4dO2IwGLC2tubq1avasYYNG3LhwgXWr19P06ZNcXV15eWXX+bChQtA/syRoKAg/Pz8sLW1LZR4mTlzJo0aNeKll17i6NGj2v4TJ07Qvn173N3d8fX15ciRIwAEBgYyfPhwmjZtyjvvvHOXn0TpvfHGG7i4uODp6Qnkz7RYvHgxOp2Opk2bcvnyZRITE9mxYwe9e/fG2NiY2rVr07JlS/bt2weAl5cXNjY2AOzYsYPu3btjZGREnTp18Pf3B+Do0aPEx8fTpk0bdDodM2bMKDaRVjDD5K+//sLa2ppKlSqhqippaWnExMTQtGnTEmNUVZUpU6bg7OzMyy+/zNmzZ7lw4QJOTk5s3ryZiRMnsn37dq1ddoE9e/aQkJCAj48POp2ORYsWcfLkSRRFoX///ixZsoSrV6+ye/fu+2qdLYQQQgghxOOkzLrkKIrSHQgG7AAvVVWjbzk2GRgM5AFjVFX9o0yCLCekK8r/PO7P4m6zF6ysrNi8eTOVKlUiMTGR3r17a7MHYmNjiY+Px8bGhoiIiELbt/r9999Zu3Yte/fupUqVKly5ckU7lpubS9++fXF0dCwye+H48ePUr1+fatWqFdrv4eHBoUOHaN269R1fm5GREZ07d2b16tUMGjSIvXv30qBBA2rXrs1LL73Enj17UBSF//u//+PTTz/VOiMdOXKErVu3kpqaSuPGjRkxYgQHDhxg2bJl6PV6cnNzcXNzw93dHYChQ4cyf/58GjZsyN69exk5cqSW0Dlz5gy7du3SEj7/hoODA6tWrdK2582bx6VLl7TCp6qq8tVXX9GuXbtC1/3+++8ljmlmdveEnaqqODg4aDNOStKwYUOuXr3K+vXr8fb2BvK7TS1cuBBra2vMzc1LjDE0NJSUlBRiYmKoUKEC1tbWZGVl0ahRI2JjY9mwYQPvvfcerVu3Ztq0aYVia9OmDWFhYUXiGTRoEK+++iqVKlWie/fumJhI8zUhhBBCCPFkKMsZJvFAVyDy1p2KotgDvQAHoD3wjaIo//7Tz1PCyEjB1tKcZrYW2FqaPzYJgrJQnp7F7bMXcnJyeP3113FycqJ79+4kJCRo5946S6G47QLh4eEMGjSIKlWqAFCzZk3t2LBhw4pNljwoPXv21OpfLFu2jJ49ewL5iYx27drh5OTEZ599xqFDh7RrXnnlFUxNTalVqxZWVlZcuHCB7du3ExAQQJUqVahWrRqdOnUC8mtw7Nq1i+7du6PT6Rg2bFihOh/du3e/r2QJQKtWrcjKyuLbb7/V9mVkZGjft2vXjm+//ZacnBwAjh07Rnp6Or6+vixfvpy8vDxSUlKIjIzEy8uryPg+Pj6sWrUKg8HAhQsXiIiIAKBx48akpKQUWqJz63O6VbNmzfjyyy+1hIm3tzdz587Fx8fnjjFeu3YNKysrKlSowNatWzl58iQA586do0qVKvTr148JEyYQGxtb5H47d+7k+PHjQH7Nk2PHjgHw3HPP8dxzzzFjxgwGDRp0D09aCCGEEEKIx1uZJUxUVT2squrRYg51BpapqpqtqupfwHGg6KcOIcohBweHQh9G582bx59//qnVgJgzZw61a9cmLi6O6Ohobty4oZ17+yyF0sxauF3z5s3ZunUrWVlZRY698MILnDp1itTU1EL7Y2JicHBwKNX43t7eHD9+nJSUFNasWUPXrl0BGD16NKNGjeLgwYPa8hWdTsf8+fNJT/9fByNjY+M71h8xGAzUqFEDvV5Ply5d6Nevn9YxpoCFhYVWc2X37t0oiqItbbl27Ro1a9bEYDAUGbuAoiisWbOGbdu2YWNjg5eXFwMHDmTWrFkADBkyBHt7e9zc3DAzM6NPnz7k5uYSEBCAs7MzLi4utGrVik8//ZQ6deoUGb9bt248//zz2Nvb069fP9zc3KhevToVK1Zk5cqVTJw4ERcXF3Q6XYl1aXx8fDh9+rQ268Xb25ukpCSt8O+tMTo6OjJs2DBtdlF0dDROTk4sXryYJk2aAHDw4EG8vLzQ6XS8//77RZZrWVpaEhoaSu/evXF2dsbb21tbCgXQt29f6tWrh52dXYnPVQghhBBCiPLmcZw7XRfYc8v2mZv7ilAUZSgwFKB+/foPPzIh7lOrVq2YMmUK3377LSNGjAAKz164du0azz//PEZGRixatIi8vLx7vkebNm344IMP6Nu3r7Ykp2CWyeDBg4mMjKRHjx788ssvhZZPmJmZMXDgQN566y3mz5+PsbExixcvJiMjg1atWpXq3oqiEBAQwFtvvYWdnR0WFhba66pbN/9/Y2NjYzw8PIiIiCA4OLhQ7RXIT4q0aNGCwMBAJk+eTG5uLuvXr2fYsGFUq1YNGxsbVqxYAeQvFYmLi8PFxUV7DQVtd+3t7Qu13e3Ro0ep2+4+++yzLFu2rNhjRkZGfPTRR3z00Uf4+fkxe/ZsrebHZ599xmeffVbofD8/P/z8/ApdP3v2bMzNzbl8+TJeXl44OTkBoNPpiIwsNOmuWBMmTGDChAnatrW1daHCvLfGeLvilvxYW1sXWb4DaLNfIP+9W1CT5XY7duzg9ddfv2vcQgghhBBClCcPdYaJoijhiqLEF/PV+UGMr6rqf1VV9VBV1cPS0vJBDCnEQ3W32QsjR45k0aJFuLi4cOTIkX81i6R9+/Z06tQJDw8PdDpdkXa8b731Fq6urvTv37/ITIuPP/6YSpUq0ahRIxo2bMiKFStYvXo1ilL6ZU09e/ZkyZIl2nIcyC/u2r17d9zd3YuMdeXKFRo3bsyAAQM4fvw4586d488//+Ty5cvUqFEDBwcHbcnSzJkzOX/+PEOHDuXLL79k9uzZWmvcAuWh7W7Hjh3R6XT4+voyderUYmeilBfu7u4cOHCAfv36lXUoQgghhBBCPFDKndqFPpIAFCUCeLug6OvNgq+oqvrxze0/gGBVVe9YCdHDw0MtKI4phHh8GRsbazMqbGxsmDNnDra2tuzatYtmzZqxadMmVq5cyXfffYeqqnTq1Il33nkHMzMzAgMD2bt3r1YIdvjw4bz99tuFxl+0aBHbtm1jwYIFuLq6snv3bl5++WUWr95Ir4COjB73NukpZ7l0KYX33nuP7OxsfHx8WLFiBfXq1SMjI4Nq1apx6dIlmjVrRmJiIr/88gsbN27k+++/B/JnzFSvXl2bYWJtbU3Xrl35/fffMTMzY9asWWRnZzN16lTs7OzYvn07lpaW9OnTh969e/Pqq68+8ucuhBBCCCFEWVEUJUZVVY+yjuNePY5LctYBPymK8gXwHNAQiCrbkIQomcGgknw5/bHsyvM4qly5Mnq9XttOTk6mQYMGNGvWDMifqbFp0yZcXV2B/FkfiYmJpKamaoVgAa0Q7O2aN2/Oxx9/rLXdrVjRlCvp2fT7dhuxsbF8e0jBaPt6Lp48xsqVK4H8BEhiYiLPP/88U6ZMITIyEiMjo0Jtd8ePH8/EiRPp2LEjvr6+he55a9tdgBs3buDt7V2o7e6gQYPYvXs3ixcvfqDPUwghhBBCCPFwlGVb4QDgK8AS+E1RFL2qqu1UVT2kKMrPQAKQC7yhquq9F3IQ4hEwGFQ2HvqbjzccJjvXgKmJEZM72NHeoY4kTe7BrUuPVFVl8uTJDBs2rNA5c+fOLdVYt7fdTb6cztUq9UiP+h3TGrXJNTYl6fx1Zn/4KYE9uxS6VtruCiGEEEIIIQqUZZec1aqqPq+qqqmqqrVVVW13y7GZqqq+oKpqY1VVfy+rGIW4m+TL6VqyBCA718DHGw6TfDn9LleKkrRr144FCxaQlpYGwNmzZ7l48SItWrRgzZo1ZGZmkpqayvr160sc49a2uxdTs6lctwkXdv2CeYP8bj/mL7qz8P/+K213hRBCCCGEECWSf+oU4j5cTM3WkiUFsnMNXEzNxtbSvISrxJ20bduWw4cP4+3tDYC5uTlLlizBzc2Nnj174uLigpWVlVYItjg+Pj5s2LABDw8PzqflUdPGkaR/zmNezx6A55u+gsMFY9zc3FBVFUtLS9asWUPfvn159dVXcXJywsPDo1Db3QkTJmBkZESFChX49ttvC93v1ra72dnZAMyYMYNGjRoB+W13U1JSpO2uEEIIIYQQ5UiZF319UKToqygLSSlpDFwQVShpYmpixKIgL0mYPCYeh2VTo0aNwtXVlcGDBz+S+wkhhBBCCPE4kaKvQjyFrC3MmNzBrsiHcWuLe28HXF497kVvjYwU2jvUoUmdqmUSo7u7O2ZmZnz++eeP5H5CCCGEEEKIB6PMapiIp5uiKIwfP17bnj17NsHBwf9qrPnz52udRwIDA7XOJ35+ftzLrKNbry2tgg/ji4K8COntyqIgrxJnLtzr+Hq9ng0bNmjbERER7Nq1657ie9gKZm8MXBDFmLD9DFwQxcZDf2MwPF4z14yMFGwtzWlma4GtpfkjTejExMQQGRmJqanpI7unEEIIIYQQ4v5JwkSUCVNTU3755RcuXbp032MNHz6cAQMGPICo/p2H9WG8PCRMpOitEEIIIYQQ4kklCRNRJkxMTBg6dChz5swpciwlJYVu3brh6emJp6cnO3fuxGAwYG1tzdWrV7XzGjZsyIULFwgODmb27Nl3vN+mTZvw9vbGzc2N7t27ax1Y7iYrK4tBgwbh5OSEq6srW7duBfLbz3bt2pX27dvTsGFD3nnnHe2aH374gUaNGuHl5cXrr7/OqFGjtGPh4eF4eHjQqFEjfv311xLvcePGDaZNm8by5cvR6XTMmjWL+fPnM2fOHHQ6Hdu3byc5OZlWrVrh7OxM69atOXXqFJA/k2XEiBE0a9YMW1tbIiIiCAoKws7OjsDAwFK97tK6U9FbIYQQQgghhCjPpIaJKDNvvPEGzs7OhZINAGPHjmXcuHG89NJLnDp1inbt2nH48GE6d+7M6tWrGTRoEHv37qVBgwbUrl37rve5dOkSM2bMIDw8HDMzM2bNmsUXX3zBtGnT7nrtvHnzUBSFgwcPcuTIEdq2bau1i9Xr9ezfvx9TU1MaN27M6NGjMTY25sMPPyQ2NpaqVavSqlUrXFxctPGSk5OJiorixIkT+Pv7c/z48RLv8cEHHxAdHc3XX38NQGZmJubm5rz99tsAvPrqqwwcOJCBAweyYMECxowZw5o1awD4559/2L17N+vWraNTp07s3LmT//u//8PT0xO9Xo9OpyvNj+iurKqaYmpiVKTorVVVWX4ihBBCCCGEKN9khokoM9WqVWPAgAGEhIQU2h8eHs6oUaPQ6XR06tSJ69evk5aWRs+ePVm+fDkAy5Yto2fPnqW6z549e0hISMDHxwedTseiRYs4efJkqa7dsWMH/fr1A6BJkyY0aNBAS5i0bt2a6tWrU6lSJezt7Tl58iRRUVG0bNmSmjVrUqFCBbp3715ovB49emBkZETDhg2xtbXlyJEjd7zHnezevZs+ffoA0L9/f3bs2KEde/XVV1EUBScnJ2rXro2TkxNGRkY4ODiQnJxcqtdeGgVFb01N8n+VPI1Fb4UQQgghhBBPJplhIsrUm2++iZubG4MGDdL2GQwG9uzZQ6VKlQqd6+3tzfHjx0lJSWHNmjW89957pbqHqqq0adOGsLCwBxr7rUU8jY2Nyc3Nves1iqLccftBKYjNyMioUJxGRkalirO0yroDjRBCCCGEEEI8LDLDRJSpmjVr0qNHD3744QdtX9u2bfnqq6+0bb1eD+QnFwICAnjrrbews7PDwsKiVPdo1qwZO3fu5Pjx4wCkp6eXagYHgK+vL0uXLgXg2LFjnDp1isaNG5d4vqenJ9u2beOff/4hNzeXVatWFTq+YsUKDAYDJ06cICkpicaNG5d4j6pVq5Kamqpde/t28+bNWbZsGQBLly7F19e3VK/pQSvLDjRCCCGEEEII8bBIwkSUufHjxxfqlhMSEkJ0dDTOzs7Y29szf/587VjPnj1ZsmRJqZfjAFhaWhIaGkrv3r1xdnbG29ubI0eOALBmzRoURdG2hw0bxrPPPkuFChXw9vamatWq7Nq1CycnJ3r27EloaOgd28PWrVuXKVOm4OXlhY+PD9bW1lSvXl07Xr9+fezs7GjUqBEVK1bExcWFX375hZMnTxa5h7+/PwkJCeh0OpYvX86rr77K6tWrtaKvX331FQsXLsTZ2Zkff/yRL7/8EshfRrR79+4isUVERPDnn3+W+rnBvbdmFkIIIYQQQognhaKqalnH8EB4eHio8sFO3KuePXty7tw5WrVqxfvvvw/kF2bt2LEj8fHxhIaGFiq8WhppaWmYm5uTm5tLQEAAQUFBBAQEaMcjIiKYPXu21iVHr9fTpUsXfvjhB1q3bn3frykwMJCOHTvy2muvFdp/+31Lw8/Pj9mzZ+Ph4VGq8/Py8jA2Nr6neIUQQgghhBBPNkVRYlRVLd2HiseIzDARD4TBoJKUksaepMskpaRhMDz+ibi0tDR27NjBDz/8oC1tKc7p06fx8/OjYcOGhZIqjo6O2jmzZ88mODgYgE6dOlGpUiXMzc05evQoXbp0uWMcOp2OadOmaUmZwMBAVq5cqR03NzcH8hMeLVu2pHPnztja2jJp0iSWLl2Kl5cXTk5OnDhxQrumuPbFt0pPTycoKAgvLy9cXV1Zu3YtkN+Jp1evXtjZ2REQEEBmZqZ2TVhYGE5OTjg6OjJx4sRC8Y0fPx4XFxd2797NkiVL8PLyQqfTMWzYMPLy8u74+oUQQgghhBDicSQJE6ExNjZGp9Ph4OCAi4sLn3/+OQaD4a7XGQwqGw/9zcAFUYwJ28/ABVFsPPT3PSdNQkNDURSF8PBwbV/BkplbEwjFuTXJsH37dhwcHNDpdIU+8N9u7dq1tG/fnkaNGmFhYUFMTEyx50VFRbFq1SoOHDjAihUr7rpE5ciRI1y7do2srCyioqJKVdjVzc1NWxZ0J3FxccyfP5/Dhw/z448/cuzYMaKiohgyZEihui8F7Yt/++03hg8fTlZWVqFxZs6cSatWrYiKimLr1q1MmDCB9PR0vv32W6pUqcLhw4d5//33tWdy7tw5Jk6cyJYtW9Dr9ezbt09rYZyenk7Tpk2Ji4vDwsKC5cuXs3PnTvR6PcbGxlp9FiGEEEIIIYQoT6RLjtBUrlxZK7B68eJF+vTpw/Xr17VZFQVyc3MxMfnfWyf5cjofbzhMdm5+ciU718DHGw7TpE5VbC3N7ykGJycnli1bxssvvwzkz2pwcXG5pzGWLl3K5MmTtVa9JQkLC2Ps2LEA9OrVi7CwMNzd3Yuc16ZNG63AbNeuXdmxY8cdZ404OzvTt29funTpctfZJQVKuzTO09OTZ599FoAXXngBnU5H586diYmJ4Z9//kFVVfLy8ujRoweRkZHMnj0bW1tb5s+fT0JCgjbOpk2bWLduHbNnzwYgKyuLU6dOERkZyZgxY7TX4ezsDMC+ffvw8/PD0tISgL59+xIZGcn777+PkZER3bp1Izc3F51OR+XKlfH09ATyk0d5eXkMGDCgVK+vOMHBwZibm/P222//6zGEEEIIIYQQ4l7JDBNRLCsrK/773//y9ddfo6oqoaGhdOrUiVatWtG6dWvS0tJo3bo1bm5utHnJi78P7tCuvbR/MzFzhtCuRTP69+8P5M94aNWqFc7OzrRu3ZpTp04Ve19fX1+ioqLIyckhLS2N48ePo9PptOMffPABnp6eODo6MnTo0CKJhv/7v//j559/ZurUqfTt2xdVVZkwYQKOjo44OTmxfPlyIL92yebNmxkyZAjW1tZMmjSJRYsWFZu4KK4VsImJSaHZN7fO4Pjtt9944403iI2NxdPTs1RtfPfv34+dnR1AobENBgM3btzQzru14KyiKLz33nt06dKFJUuW4OfnR1paGvv37y8Ss7+/P3369NG2VVVl1apV6PV69Ho9p06d0u5/J7e/Fh8fH0xMTDA2NiYuLg4rKytsbW3R6/Xs3LmTSpUq8c0339x1XCGEEEIIIYR43EjCRJTI1taWvLw8Ll68CEBsbCwrV65k27ZtVKpUidWrVxMbG8vytRs4s/E7VFUl80Iy5yKW4jz0c/6I3KN1bhk9ejQDBw7kwIED9O3bV5vFcDtFUXj55Zf5448/WLt2LZ06dSp0fNSoUezbt4/4+HgyMzOL1OcYMmQInTp14rPPPmPp0qX88ssv6PV64uLiCA8PZ8KECZw/f5569erx7LPPcvLkSeLi4qhduzZ2dnZs3769SEybN2/mypUrZGZmsmbNGnx8fKhduzYXL17k8uXLZGdna3EYDAZOnz6Nv78/s2bN4tq1a6Slpd3xOR84cIAPP/yQN954AwBra2ttKcy6devIyckp9rqrV69iamrKoEGDtGc3Z84cjh8/zrJlyzAYDGRkZJCUlERUVBRffvklOTk5NGjQQGvdnJaWRr169YiKiuLEiRMcOXKEHj164Ovry7p16zhw4ADBwcGsWrWK5cuXM3r0aPLy8ggLC6Nly5Y0b95cq1Gya9cuBg8ezOHDh7l48SJRUVE4Oztz5swZvvjiCxwdHXF0dGTu3Lnaayhp/8yZM2nUqBEvvfQSR48evePzE0IIIYQQQoiHQZbkiFJr06YNNWvWBPJnKEyZMoXIyEiMjIwwpF3BKOsa15P0WDq3ZFr3ZlhbmGFklL8kZ/fu3fzyyy8A9O/fn3feeafE+/Tq1YuQkBCuXbvG559/zkcffaQd27p1K59++ikZGRlcuXIFBwcHXn311RLH2rFjB71798bY2JjatWvTsmVL9u3bR0xMDKqqkpKSwqpVq+jWrRv169cnLCysUEFTAC8vL7p168aZM2fo16+f1jFm2rRpeHl5UbduXZo0aQLkd4np168f165dQ1VVxowZQ40aNYrEtX37dlxdXcnIyMDKyoqQkBCtQ87rr79O586dcXFxoX379piZmRX72tLT0/Hy8iq0r1q1apiZmVGtWjVGjBjBmTNnWL58uda2uUKFCuh0Olq2bMnq1auxt7cnLS2NDz74gMzMTFasWMHMmTPZs2cPgwcP1pYoXblyhQULFvDJJ5/g4uLCK6+8QufOnTl58qQ2G2bXrl1Mnz6dFStW0Lp1a1JSUlAUha1bt7Jw4UL27t2Lqqo0bdqUli1bYjAYSty/bNky9Ho9ubm5uLm5FbtUSgghhBBCCCEeJkmYiBIlJSVhbGyMlZUVQKEP7kuXLiUlJYWYmBgqVKiAtbU1nwXYsdb4OJnXK9PeoQ5GRncvdlocLy8vDh48SJUqVWjUqJG2Pysri5EjRxIdHU29evUIDg4uUsy0tLZu3cqsWbNYsmQJy5YtY+HChdjb22vH4+PjgfxisoGBgcWOMWbMmGJnyuzYsaOYs//Hz8+Pa9eulXi8du3a7NmzR9ueNWuWdp2fn1+h+//1119FjtWvX5+pU6dy5coVZs+eTceOHQkNDaVu3bp8/fXX/PTTT6xZs4bvvvuOgIAARo4cibe3N5aWltoSqho1alC5cmX27t1LYGAg/v7+9O3bl759+xaKtUGDBjz33HP8/fffHDlyhMaNG/PKK6/Qtm1b5syZw+jRozl69CgBAQHa+6dr165s374dVVWL3W8wGAgICKBKlSoARWYZCSGEEEIIIcSjIEtyRLFSUlIYPnw4o0aNKrbLy7Vr17CysqJChQps3bqVkydPUt/CjKAerxL+21r++ecKkD8zAaB58+Za696lS5fi6+t7x/t/8sknhWaWwP/qhNSqVYu0tLQinXMKWhunpGZz4XoWBoOKr68vy5cvJy8vj5SUFCIjI7VZGYGBgdoykFuTJeWFvb19kc4+169f59SpU7z44oslXtepUyc2btzIlStXiImJoVWrVhgMBmrUqKHVNNHr9Rw+fFi7pqRZLpD/s12xYgXPPvssiqLQrFkzdu7cSVRUFN7e3vf/QoUQQgghhBCiDEjCRGgyMzO1tsIvv/wybdu2Zfr06cWe27dvX6Kjo3FycmLx4sXakhQHBwfeffddWrZsiYuLC2+99RYAX331FQsXLsTZ2Zkff/xRq21Skv/85z/4+/sX2lejRg1ef/11HB0dadeundaJBUBVQX/6KgMXRLH3r8t8vSWRjYf+pnPnLjg7O+Pi4kKrVq349NNPqVOnDoBWt6SgBkh507p1azIyMli8eDGQvxxo/PjxBAYGarMzimNubo6npydjx46lY8eOGBsbU61aNWxsbFixYgWQv+QqLi6uVHE0b96cuXPnaskRb29vFi9eTJ06dahevTq+vr6sWbOGjIwM0tPTWb16Nb6+viXub9GiBWvWrCEzM5PU1FTWr19/n09KCCGEEEIIIe6dUtp2po87Dw8PNTo6uqzDEGUkKSWNgQuitNbGAKYmRiwK8iqxtXFGRgZOTk7ExsZSvXr1RxXqA3X69GlGjhzJkSNHMBgMdOjQgdmzZ2NqakpERASzZ8/m119/JTQ0lOjoaL7++msAVq5cSffu3YmIiKBly5YA/PXXX4wYMYLz58+Tk5NDr169mDZtGoGBgXTs2JHXXnut2Bj27duHl5cXmzdv1tpBW1tb065dO7777jsgv7jrggULgPzCvG+++eYd98+cOZNFixZhZWVF/fr1cXNzk7bCQgghhBBClFOKosSoqupR1nHcK0mYPOEMBpXky+lcTM3GqqrpzUKs/662yONsT9JlxoTtL7I/pLcrzWwtiuwPDw9n8ODBjBs3TvuQLoQQQgghhBDiwSuvCRMp+voEMxhUNh76m483HCY714CpiRGTO9jdV0HWx5VVVVNMTYyKzDCxqmpa7Pkvv/wyJ0+efFThCSGEEEIIIYQoZ6SGyRMs+XK6liwByM418PGGwyRfTi/jyB48awszJneww9Qk/y1dkByytii5WOnjqKBw7Z6kyySlpGEwPBkzwIQQQgghhBCivJEZJk+wi6nZhWZcQH7S5GJqdol1PcorIyOF9g51aFKnarldfvQ0zQgSQgghhBBCiMedJEyeYPe6TKW8MzJSsLU0L7fJoJJmBDWpU7XcviYhhBBCCCGEKK9kSc4T7ElZpvK0uNOMICGEEEIIIYQQj5bMMHmCPQnLVJ4mT9uMICGEEEIIIYR4nMkMkydcwTKVZrYW2FqaS7LkMSYzgoQQQgghhBDi8SEJE1HunTlzhs6dO9OwYUNsbW0ZNWoU2dl3X8bSoUMHrl69es/HHoRr164xYMAAXnzxRV544QX69u3LtWtXae9Qh0VBXoT0dmVRkFeRgq9DhgwhISHhvu5tbW3NpUuXADA3l9ooQgghhBBCCFEcSZiIck1VVbp27UqXLl1ITEwkMTGRzMxM3nnnnbteu2HDBmrUqFFkPIPBUOyxB2nw4MHY2tpy/PhxTpw4wYsvvkhgYOBdZwT93//9H/b29kXGy8vLu+O2EEIIIYQQQoh7IwkTUa5t2bKFSpUqMWjQIACMjY2ZM2cOixcvJi0tjdDQUEaNGqWd37FjRyIiIoD/zbRITk6mcePGDBgwAEdHR06fPl3omJ2dHa+//joODg60bduWzMxMAPz8/IiOjgbg0qVLWFtbA3Do0CG8vLzQ6XQ4OzuTmJhYKObjx48TExPD1KlTtX3Tpk0jLi6Oo0ePEhERQceOHbVjo0aNIjQ0tMg9zc3NGT9+PC4uLuzevbvI9pIlS7Q4hg0bJkkUIYQQQgghhLgHkjAR5dqhQ4dwd3cvtK9atWpYW1tz/PjxUo+TmJjIyJEjOXToEA0aNChy7I033uDQoUPUqFGDVatW3XGs+fPnM3bsWPR6PdHR0Tz//POFjickJKDT6TA2Ntb2GRsb4+rqyuHDh0sdc3p6Ok2bNiUuLo6XXnqp0LaFhQXLly9n586d6PV6jI2NWbp0aanHFkIIIYQQQoinnXTJEfdk5syZ/PTTTxgbG2NkZMR3331H06ZNyzqsYkVGRvL555+Tnp7Oli1bGDt2bInnNmjQgGbNmhV7zMbGBp1OB4C7uzvJycl3vK+3tzczZ87kzJkzdO3alYYNG/7bl3BHxsbGdOvWrdjtP//8k5iYGDw9PQHIzMzEysrqocQhhBBCCCGEEE8imWEiSm337t38+uuvxMbGcuDAAcLDw6lXr95Du19ubu5dz7G3tycmJqbQvuvXr3P+/Hk+/vhjxo8fT48ePdi/fz9+fn5kZWUVO46ZWcmdaExN/9fW19jYWIvLxMQEgyG/BfCt4/bp04d169ZRuXJlOnTowJYtW4rErNfrtWsBDAYDcXFxuLm5FRr39rFvValSpUKzVG7dVlWVgQMHotfr0ev1HD16lODg4BJfoxBCCCGEEEKIwiRhIkrt/Pnz1KpVS0sg1KpVi+eeew6AmJgYWrZsibu7O+3ateP8+fMcOXIELy8v7frk5GScnJxKPB/ya3S8+eabeHh48OWXXxIYGMjKlSu1MQq6upw/f54WLVrw9ttvs2/fPt59910gv9jp+PHjGTx4MHl5eTg4OKDX66lQoQJVqlQhKiqKTz75hDFjxvD333/j4eHBhg0bAEhLS6N169a4ublx7tw5fv/9dwBu3LhBkyZN6Nu3L5999hk///wzGRkZWFtbs3r1alq2bIm3tzcXLlzg/PnzJCUlYWtry5gxY+jcuTMHDhwo9BxffPFFXF1dmTFjhrZvxowZtG7dmvr169OgQQMSEhLIzs7m6tWr/Pnnn/f8s2rdujUrV67k4sWLAFy5coWTJ0/e8zhCCCGEEEII8bSShIkotbZt23L69GkaNWrEyJEj2bZtGwA5OTmMHj2alStXEhMTQ1BQEO+++y5NmjThxo0b/PXXXwAsX76cnj17lnh+gRs3bhAdHc348eNLjOWnn36iXbt26PV6Dh8+zP79+2nYsCEWFhYYGRkxc+ZMOnXqRO/evTl37hzPP/88o0ePxs3NDchPuNSuXZulS5fy6aefAvkzNFavXk1sbCy1a9dm2rRpqKoKwNGjRxk5ciQTJkzA1NSUb775hrFjxxISEsKVK1cYOHAg5ubmvPvuu/z88884Ojqi0+mIj49nwIABReJfsGABiYmJvPDCC1haWrJnzx7mz58PQL169ejRoweOjo706NEDV1fXe/5Z2dvbM2PGDNq2bYuzszNt2rTRklJCCCGEEEIIIe5OKfhAWN55eHioBd1DxMOTl5fH9u3b2bp1K9999x2ffPIJHh4eNG/eHFtbW+2cZ599lk2bNvHRRx9hZGTEpEmTcHNzY/ny5WRnZ5d4vp+fH++//z4tW7YEIDAwkI4dO/Laa68B+TNM0tLSiIyMJCgoiH79+tGlSxetxsiuXbvo3bs3q1evxs3NjYMHDxIeHs7ixYtxcXEhNDSUwMBA2rRpQ9++fQGoWrUqqamp5OTkMG7cOCIjIzEyMuLo0aP89ddfZGVl0aJFC06dOgXkd+YJCQlhxowZJb6Oe3H06FFeeeUVQkJC6NChw/39gIQQQgghhBDiMaMoSoyqqh5lHce9kqKv4p4YGxvj5+eHn58fTk5OLFq0CHd3dxwcHNi9e3eR83v27En37t3p2rUriqLQsGFDDh48WOL5AJUrVyEpJY2Lqdlk5qrk5ua3wzUYDNy4cQOAFi1aEBkZyW+//UZgYCBvvfUWAwYMoHnz5oWWnjg5OeHk5ET//v2xsbHR2vPeWpekIGm4dOlSUlJSiImJoUKFClhbW2v1QxRFKRSjoiioqnrH11FajRs3vqeOPkIIIYQQQgghHj5ZkiNK7ejRoyQmJmrber2eBg0a0LhxY1JSUrTEQU5ODocOHQLghRdewNjYmA8//JCePXsC3PF8gN1Jlxm4IIoxYfvZc9GYlZsiMRhU1q1bR05ODgAnT56kdu3avP766wwZMoTY2NhCsaalpREREVEk1ju5du0aVlZWVKhQga1btxZKvJw6dUqL96effuKll1666+sQQgghhBBCCFF+ScKkHCgodFogNDSUUaNGPZR7DRkyhISEhGKPpaWlMXDgQOzt7XF2diYhIYHg4GAqVqzIypUrmThxIi4uLuh0Onbt2qVd17NnT5YsWUKPHj2A/ORFjRo1aNWqFZUrV6ZmzZr8/PPPAGTl5LFw519k5+Z3ianp/h82hW/FwcmZ3bt3a91sIiIicHFxwdXVleXLlxdpGayqKp9++imNGzdGp9Mxffp0bXZJSfr27Ut0dDROTk4sXryYJk2aaMcaN27MvHnzsLOz459//mHEiBF3fd1CCCGEEEIIIcovqWFSDhTU7SgQGhpKdHQ0X3/9damuz83NxcTk8Vh9deHCBZo2bcpPP/1E8+bNAdixYweXLl2iS5cu7Em6zJiw/QCoeXkoN9vkhvR2pZmtxUOPr7hnlZycTMeOHYmPj3/o9xdCCCGEEEKIJ43UMBFlIiUlheHDh2sFSefOnYuPjw/BwcGcOHGCpKQk6tevT+PGjfnrr79ISkri1KlTzJkzhz179vD777/z3HN1CVkYxj9ZBt7s34WQOV/g5eVJWFgYH330Eaqq8sorrzBr1iwgP4EzduxYfv31VypXrszatWupXbt2ibHc6uuvv2bgwIFasgTgpZde0r7/bMoYTidfJ/XscczrO1DT2Y8zG75h8LIKVK9qxsKFC2ncuDGhoaGsW7eOjIwMTpw4QUBAgNbt5ocffmDWrFnUqFEDFxcXTE1N+frrr0v9rMLCwh7eD0wIIYQQQgghRLkgS3LKgczMTHQ6nfY1bdo07djYsWMZN24c+/btY9WqVQwZMkQ7lpCQQHh4uJYAOHHiBFu2bGHdunX069cPf39/4uIOkJqrEDDpK8aE7efw+VR2J13mzJmzTJw4kS1btqDX69m3bx9r1qwBID09nWbNmhEXF0eLFi34/vvv7xpLgUOHDmmtfYtjblqBeqZZ6EaGUL/DcKrXacDSNX9wME7PBx98wJQpU7Rz9Xo9y5cv5+DBgyxfvpzTp09z7tw5PvzwQ/bs2cPOnTs5cuTIv3pWt7K2tpbZJUIIIYQQQgjxlJEZJuVA5cqV0ev12nbBkhyA8PDwQjVHrl+/ri3f6dSpE5UrV9aO/ec//6FChQo4OTmRl5dH+/bt+etSOmeoBZf/xpz82h8Ld/5FpRtX8fPzw9LSEsiv7xEZGUmXLl2oWLEiHTt2BMDd3Z3NmzffMZbba7DcqmnTply/fp22bdvy5ZdfoigwIrAvLTt6czE1m9zrKcwOHsPk44koiqIVfQVo3bo11atXB8De3p6TJ09y6dIlWrZsSc2aNQHo3r07x44du+dnJYQQQgghhBDi6SYJk3LOYDCwZ88eKlWqVORYQYHUAgWtdI2MjKhQoQKKonAxNZs8VcHIkKedl5Nn4FpmDiUpuBby2wzn5ubeNZYCDg4OxMbG0rlzZwD27t3LypUr+fXXX7VzqlY1x9Yy/yswcDytWvmzZs1qkpOT8fPzK/J6bo+jJPfyrIQQQgghhBBCPN1kSU4517ZtW7766itt+9aZKKVhVdUUYyOl0L4Kxka08PFm27ZtXLp0iby8PMLCwmjZsuV9x/LGG28QGhpaqJtMRkZGiWNeu3aNunXrAty1yw2Ap6cn27Zt459//iE3N5dVq1bdU3xCCCGEEEIIIQRIwqTcCwkJITo6GmdnZ+zt7Zk/f/49XW9tYYZvw1qY3EyaKIrCIB8bvOxf4JNPPsHf3x8XFxfc3d21WSH3E0udOnVYvnw5kydP5sUXX6R58+asXLmyxDbJ77zzDpMnT8bV1fWuM0gA6taty5QpU/Dy8sLHxwdra2tt2c79PishhBBCCCGEEE8PaSssMBhUki+nczE1G6uqplhbmGF026yTB8nY2BgnJydyc3OxsbHhxx9/pEaNGiWef69tlAvqpuTm5hIQEEBQUBABAQGlura4FsLBwcGYm5vz9ttvl2qMu7WBbt68eaEZNgUCAwPp2LEjr732Wqnuc7uIiAg6d+6MjY0N2dnZ9OrVi+nTp5d4fmhoKG3btuW5554D8rsGDR06lCpVqvyr+wshhBBCCCFEccprW2GZYVIGDAaVpJQ09iRdJiklDYOhbJNWRkYKtpbmNLO1wNbS/KEmS+B/RWzj4+OpWbMm8+bNe6DjBwcHo9PpcHR0xMbGhi5dujzQ8f+tghkyxSVLijuvpO078fX1Ra/XEx0dzZIlS4iNjS3x3NDQUM6dO6dtz507947Lo4qTl5d395OEEEIIIYQQohyShMkjZjCobDz0NwMXRDEmbD8DF0Sx8dDfZZ40KSve3t6cPXsWAD8/P637z6VLl7C2ttbOO336NH5+fjRs2JD3339f279kyRK8vLzQ6XQMGzaMvLw8Zs+ezfHjxzly5AghISGsWrWKwMBAAFasWIGjoyMuLi60aNHinuP9/vvv8fT0xMXFhW7dumkJhhMnTtCsWTOcnJy4ceOG1hkoIiKCjz76iN9++w17e3vWr1+PsbExrq6utG7dmqCgIBo3boytrS2bN2/m3XffpX///gQHB9O/f398fHzo378/LVq0KFRz5aWXXiIuLq7EOM3MzHB3d+f48ePo9XqaNWuGs7MzAQEB/PPPP6xcuZLo6Gj69u2LTqfjyy+/5Ny5c/j7++Pv7w/Apk2b8Pb2xs3Nje7du2uzZqytrZk4cSJubm6sWLHinp+hEEIIIYQQQpQHkjB5xJIvp/PxhsNk5xoAyM418PGGwyRfTi/jyB69vLw8/vzzTzp16nTXc6Oioli1ahUHDhxgxYoVREdHc/jwYZYvX87OnTvR6/UYGxuzdOnSO47zwQcf8McffxAXF8e6deuKPefEiRPodDrt69ZaJ127dmXfvn3ExcVhZ2fHDz/8AMDYsWMZO3YsBw8eJDc3l8zMTHQ6HUOGDOH48eP4+vpy7NgxXnrpJSpXrsz+/ftp3Lgxf/75JwkJCQQEBHDhwgWmT59OWFgYAAkJCYSHhxMWFsbgwYO1orfHjh0jKysLFxeXEl/n5cuX2bNnDw4ODgwYMIBZs2Zx4MABnJyceP/993nttdfw8PBg6dKl6PV6xo4dy3PPPcfWrVvZunUrly5dYsaMGYSHhxMbG4uHhwdffPGFNr6FhQWxsbH06tXrrj87IYQQQgghhCiPpK3wI3YxNVtLlhTIzjVwMTUbW0vzMorq0SpIJpw9exY7OzvatGlz12vatGmDhYUFkJ+02LFjByYmJsTExODp6amNa2VldcdxfHx8CAwMpEePHnTt2rXYc1544YVCszmCg4O17+Pj43nvvfe4evUqaWlptGvXDoDdu3ezZs0aIH/JkaIo6PV6IiIiGDFiBNWqVQPgzJkzZGVl4eTkxJkzZ6hbty7GxsZUrVqVhg0bUrFiRe1enTp1onLlygB0796dDz/8kM8++4wFCxZoM2Zut337dlxdXTEyMmLSpEk8//zzXL16VetwNHDgQLp3737HZwSwZ88eEhIS8PHxAeDGjRt4e3trx3v27HnXMYQQQgghhBCiPJOEySNmVdUUUxOjQkkTUxMjrKqalmFUj1ZBDZOMjAzatWvHvHnzGDNmDCYmJhgM+c8lKyur0DWKohTZVlWVgQMH8vHHHxe5x63n3zrW/Pnz2bt3L7/99hvu7u7ExMRoiZjSCAwMZM2aNbi4uBAaGkpERMRdrzE1/d/PdvTo0VSoUIGDBw/y2muvcfDgQe2YiUnh/x3NzMy076tUqUKbNm1Yu3YtP//8MzExMcXey9fXl19//VXbvnbtWmlfWiGqqtKmTRtttsvtbo1NCCGEEEIIIZ5EsiTnEbO2MGNyBztMTfIfvamJEZM72GFt8fR9AK1SpQohISF8/vnn5ObmYm1trSUCVq5cWejczZs3c+XKFTIzM1mzZg0+Pj60bt2alStXcvHiRQCuXLnCyZMnAahduzaHDx/GYDCwevVqbZwTJ07QtGlTPvjgAywtLTl9+vQ9xZyamsqzzz5LTk5OoeU/zZo1Y9WqVcCdi7Reu3ZNS+ZcuXKFlJQU8vLySE1N5cSJE3e895AhQxgzZgyenp4888wzpYq3evXqPPPMM2zfvh2AH3/8UZttUrVqVVJTU7Vzb91u1qwZO3fu5Pjx4wCkp6dz7NixUt1TCCGEEEIIIZ4EMsPkETMyUmjvUIcmdao+sja+jzNXV1ecnZ0JCwvj7bffpkePHvz3v//llVdeKXSel5cX3bp148yZM/Tr1w8Pj/yOVDNmzKBt27YYDAYqVKjAvHnzaNCgAZ988gkdO3bE0tISDw8PrWDphAkTSExMRFVVWrdufcc6IMX58MMPadq0KZaWljRt2lRLMMydO5d+/foxc+ZMVFWlevXqxV4fHBxMQEAA7u7u+Pv7c/ToUezt7cnNzaVBgwZ3vLe7uzvVqlVj0KBB9xTzokWLGD58OBkZGdja2rJw4UIgf7bM8OHDqVy5Mrt372bo0KG0b99eq2USGhpK7969yc7OBvKfdaNGje7p3kIIIYQQQghRXimq+mR0Z/Hw8FALOqyIkhkbG+Pk5ERubi42Njb8+OOP1KhR44GNn5ycTMeOHYmPjy9yzM/Pj9mzZ2vJDoC1a9eycOFCrf7Hxx9/zA8//KDNbFi/fj3ff/99iQVa75W5ubmWPHmQMjIytNoly5YtIywsjLVr1z7Qe5w7dw4/Pz+OHDmCkZFMDhNCCCGEEEKUD4qixKiq6nH3Mx8v8qnrKVNQPyQ+Pp6aNWsyb968+x7TYFBJSkljT9JlTt1jt5/mzZuzZ88ebXv37t1Uq1ZNW2aza9cumjdvft8xPmwxMTHodDqcnZ355ptv+Pzzzx/o+IsXL6Zp06bMnDlTkiVCCCGEEEII8QjIJ6+nmLe3N2fPngVAr9fTrFkznJ2dCQgI4J9//gHyZ4VMnDgRLy8vGjVqpNXCSE5OxtfXFzc3Nxo5OBMwfSFjwvYz/uc40rJyMRhUMjMz6dWrF3Z2dgQEBJCZmVkkBktLS6pVq6bNKDl79izdunVj165dQH7CxMfHh5SUFLp164anpyeenp7s3LkTyG837O3tjaurK82bN+fo0aMAHDp0CC8vLy2JkZiYWOTen332GZ6enjg7OzN9+nQApk2bxty5c7Vz3n33XebOnaslhJJS0jAYis7K8vX1JS4ujgMHDhAZGcmLL774r34mJRkwYACnT58uVYcbIYQQQgghhBD3TxImT6m8vDz+/PNPOnXqBOR/IJ81axYHDhzAycmJ999/Xzs3NzeXqKgo5s6dq+23srJi8+bNrPwjkhodJ3B87VcA3MgzkJKWTfLldL799luqVKnC4cOHef/990vs7OLj48OuXbs4evQoDRs2pFmzZuzatYvc3Fzi4uLw9PRk7NixjBs3jn379rFq1SqGDBkCQJMmTdi+fTv79+/ngw8+YMqUKUB+N5yxY8ei1+uJjo7m+eefL3TPTZs2kZiYSFRUFHq9npiYGCIjIwkKCmLx4sUAGAwGli1bRh33NgxcEMWYsP0MXBDFxkN/F5s0EUIIIYQQQgjx5JCir0+ZzMxMdDodZ8+exc7OjjZt2nDt2jWuXr2qdU8ZOHBgoZkMXbt2BfKLjiYnJwOQk5PDqFGj2BUVw/nr2WRfPqudr6pwMTWbyMhIxowZA4CzszPOzs7FxtS8eXN27dpFXl4e3t7eeHl58cEHH7B//36aNGlCpUqVCA8PJyEhQbvm+vXrpKWlce3aNQYOHEhiYiKKopCTkwPkz56ZOXMmZ86coWvXrjRs2LDQPTdt2sSmTZtwdXUFIC0tjcTERFq0aIGFhQX79+/nwoULNLJ3Yt6uC1ob6OxcAx9vOEyTOlWxtTT/1z8HIYQQQgghhBCPN5lh8pQpqGFy8uRJVFUtVQ0TU1NTIL9gbEHL3Dlz5lC7dm3+iNyD2+j5GPJytPMVBayqmpY6poIZJrt27cLb25uqVauSlZVFRESEVr/EYDCwZ88e9Ho9er2es2fPYm5uztSpU/H39yc+Pp7169eTlZUFQJ8+fVi3bh2VK1emQ4cObNmypdA9VVVl8uTJ2njHjx9n8ODBQH773tDQUBYuXEibLr20ZEmB7FwDF1OzS/36hBBCCCGEEEKUP5IweUpVqVKFkJAQPv/8c8zMzHjmmWe0+iQ//vijNtukJNeuXePZZ5/F1rIqnnnxYMhPKlQ0NsLSPL9VcosWLfjpp58AiI+P58CBA8WOZWdnx7lz59ixY4c240On0zF//nx8fHwAaNu2LV999ZV2jV6v1+KoW7cuAKGhodrxpKQkbG1tGTNmDJ07dy5y73bt2rFgwQKtY87Zs2e1QrMBAQFs3LiRffv28eor/8HUpPD/JqYmRveUEBJCCCGEEEIIUf5IwuQp5urqirOzM2FhYSxatIgJEybg7OyMXq9n2rRpd7x25MiRLFq0CFdXHRVSz1OlihkhvV35vIcL5pVMMDJSGDFiBGlpadjZ2TFt2jTc3d2LHUtRFJo2bYqFhQUVKlQA8pfUJCUlaTNMQkJCiI6OxtnZGXt7e+bPnw/AO++8w+TJk3F1ddVmvwD8/PPPODo6otPpiI+PZ8CAAYXu2bZtW/r06YO3tzdOTk689tprpKamAlCxYkX8/f3p0aMHL1hVY3IHOy1pYmpixOQOdlhbmP2LJy6EEEIIIYQQorxQVPXJKF7p4eGhRkdHl3UY4glgMBhwc3NjxYoVNGzYEINBJflyOhdTs7Gqmj97xshIKeswhRBCCCGEEKJcUBQlRlVVj7KO417JDJNyzmBQ79ryVpReQkICL774Iq1bt9YKxRoZKdhamtPM1gJbS3NJlgghhBBCCCHEU0C65JRjBoPKxkN/8/GGw2TnGrTlIu0d6siH+n/J3t6epKSksg5DCCGEEEIIIUQZkxkm5Vjy5XQtWQL/a3mbfDm9jCMre8bGxuh0OhwcHHBxceHzzz/HYDDc/cJbhIaGMmrUKACCg4OZPXv2fccVHBxM3bp10el0NGzYkK5duxZql3y/zM2l1bEQQgghhBBCPAiSMCnHLqZmS8vbEhS0Tz506BCbN2/m999/5/333y/rsAAYN24cer2exMREevbsSatWrUhJSSn19bcWtxVCCCGEEEII8XCUWcJEUZTuiqIcUhTFoCiKxy37rRVFyVQURX/za35Zxfi4s6pqKi1vS8HKyor//ve/fP3116iqWmjmCEDHjh2JiIgAYOHChTRq1AgvLy927txZ7HgnTpygffv2uLu74+vry5EjR0hNTcXGxoacnBwArl+/Xmi7JD179qRt27Za+2Vra2suXboEQHR0NH5+fkD+zJT+/fvj4+ND//79OXToEF5eXuh0OpydnUlMTCwy9meffYanpyfOzs5Mnz4dgGnTpjF37lztnHfffZcvv/zy7g9RCCGEEEIIIZ4yZTnDJB7oCkQWc+yEqqq6m1/DH3Fc5Ya1hZm0vC0lW1tb8vLyuHjxYonnnD9/nunTp7Nz50527NhR4lKZoUOH8tVXXxETE8Ps2bMZOXIkVatWxc/Pj99++w2AZcuW0bVrV61N8p24ublx5MiRu56XkJBAeHg4YWFhzJ8/n7Fjx6LX64mOjub5558vdO6mTZtITEwkKioKvV5PTEwMkZGRBAUFsXjxYiC/G9CyZcvo16/fXe8thBBCCCGEEE+bMiv6qqrqYQBFkeKk/5aRkUJ7hzo0qVNVWt4+AHv37sXPzw9LS0sgf/bHsWPHCp2TlpbGrl276N69u7YvOzt/CdSQIUP49NNP6dKlCwsXLuT7778v1X1L29q7U6dOVK5cGQBvb29mzpzJmTNn6Nq1q9bRp8CmTZvYtGkTrq6uWtyJiYm0aNECCwsL9u/fz4ULF3B1dcXCwqJU9xdCCCGEEEKIp8nj2iXHRlGU/cB14D1VVbcXd5KiKEOBoQD169d/hOE9Pgpa3tpaSrHPO0lKSsLY2BgrKytMTEwKFYDNysoq9TgGg4EaNWqg1+uLHPPx8SE5OZmIiAjy8vJwdHQs1Zj79+/HwyN/Vdqtsd0el5nZ/2YO9enTh6ZNm/Lbb7/RoUMHvvvuO1q1aqUdV1WVyZMnM2zYsCL3GzJkCKGhofz9998EBQWVKkYhhBBCCCGEeNo81CU5iqKEK4oSX8xX5ztcdh6or6qqK/AW8JOiKNWKO1FV1f+qquqhqqpHwawAIW6XkpLC8OHDGTVqFIqiYG1tjV6vx2AwcPr0aaKiogBo2rQp27Zt4/Lly+Tk5LBixYoiY1WrVg0bGxvtmKqqxMXFaccHDBhAnz59GDRoUKliW7VqFZs2baJ3795Afg2TmJgY7VhJkpKSsLW1ZcyYMXTu3JkDBw4UOt6uXTsWLFhAWloaAGfPntWWIwUEBLBx40b27dtHu3btShWnEEIIIYQQQjxtHuoME1VVX/4X12QD2Te/j1EU5QTQCIh+wOGJJ1hmZiY6nY6cnBxMTEzo378/b731FpA/E8TGxgZ7e3vs7Oxwc3MD4NlnnyU4OBhvb29q1KiBTqcrduylS5cyYsQIZsyYQU5ODr169cLFxQWAvn378t5772kJkOLMmTOHJUuWkJ6ejqOjI1u2bNGWAU2fPp3BgwczdepUreBrcX7++Wd+/PFHKlSoQJ06dZgyZUqh423btuXw4cN4e3sD+e2GlyxZgpWVFRUrVsTf358aNWpgbGxcqucphBBCCCGEEE8bpbT1Ex5aAIoSAbytqmr0zW1L4IqqqnmKotgC2wEnVVWv3GkcDw8PNTpaciqibK1cuZK1a9fy448/lnUoJTIYDLi5ubFixYoitU+EEEIIIYQQ4kFTFCVGVVWPu5/5eCmzGiaKogQAXwGWwG+KouhVVW0HtAA+UBQlBzAAw++WLBFPPoNBJfly+mNd3Hb06NH8/vvvbNiwoaxDKVFCQgIdO3YkICBAkiVCCCGEEEIIcQdlPsPkQZEZJk8ug0Fl46G/+XjDYbJzDVr75PYOdR67pIkQQgghhBBCiMLK6wyTh1r0VYgHIflyupYsAcjONfDxhsMkX04v48iEEEIIIYQQQjypJGEiypy/vz9//PFHoX1z585lxIgRAFxMzdaSJQWycw1cTM1+6LFZW1vj5OSEk5MT9vb2vPfee/fUhvhOQkNDGTVq1AMZSwghhBBCCCHEgyUJE1HmevfuzbJlywrtW7ZsmdZpxqqqKaYmhd+qpiZGWFU1BSAvL++hxrd161YSEhIwNjbm66+/pkmTJmRkZJR4vl6vL1TH5N/EN23aNMLDw0t9fnBwMHXr1kWn09GwYUO6du1KQkLCPd+3JObm5g9sLCGEEEIIIYQoDyRhIsrca6+9xm+//caNGzcASE5O5ty5c/j6+rJp0yb6dmrD+dCxJC3/kLzsTExNjDgWMpD5n32gdXuxtrZm+vTpuLm54eTkxJEjRwC4cuUKXbp0wdnZmWbNmnHgwAEgP8EQFBSEn58ftra2hISE3DHGypUrc/DgQU6dOsW5c+f44osviIiIoGPHjto5o0aNIjQ0FL1eT69evZg4caIWX0hICPb29jg7O9OrV68i46ekpNCtWzc8PT3x9PSkXbt2tGrVioYNG5KSkgLkd7d58cUXte3bjRs3Dr1eT2JiIj179qRVq1Ylnluc3NzcUp8rhBBCCCGEEE86SZiIMlezZk28vLz4/fffgfzZJT169ODy5cvMmDGD8PBwjh06wODOrXFL3cmiIC8qVzCmVq1axMbGagmIgu0RI0Ywe/ZsAKZPn46rqysHDhzgo48+YsCAAdp9jxw5wh9//EFUVBTvv/8+OTk5d421WrVq1K5dm/3795OZmUlcXBxeXl64urry119/kZuby7Rp00hPT+fHH39k4sSJHDlyhKlTp7J//34OHDhAXFwcycnJXLp0iaVLl/L666/z4osvcurUKSIjI1m1ahWvvPIKv/zyC/369WPAgAF4enpia2tLXl4etWrVumucPXv2pG3btvz0009A/tKiS5cuARAdHY2fnx+Qnzjq378/Pj4+9O/fn0OHDuHl5YVOp8PZ2ZnExMQiY3/22Wd4enri7OzM9OnTgfwZMXPnztXOeffdd/nyyy/vGqcQQgghhBBCPK4kYSIeC7cuyylYjrNnzx4SEhLw8fHBzc2V9auWYbiegq1l/vKQnj17Fhqja9euALi7u5OcnAzAjh076N+/PwCtWrXi8uXLXL9+HYBXXnkFU1NTatWqhZWVFRcuXLhrnLm5uVy/fp0XXniBJUuWUKtWLaKioti6dSs7d+4kLy+PDz74ADMzM3bv3q3FWKdOHfr27cuSJUsKjXft2jXeeOMNTE1NSUxMpEmTJnTq1IkbN26QmZlJUFAQ586dY9++fTRr1gxra2t+/fXXUj1TNzc3babNnSQkJBAeHk5YWBjz589n7Nix6PV6oqOjef755wudu2nTJhITE4mKikKv1xMTE0NkZCRBQUEsXrwYyJ8Js2zZMvr161eqOIUQQgghhBDicWRS1gEIAdC5c2fGjRtHbGwsGRkZuLu7s379etq0aUNYWFix15iZmRXaNjXNr2libGxcquUlBeeX5prMzEx0Oh15eXlkZWUxfvx4WrZsydmzZ9HpdEB+MuXy5cs899xzReIbPHgwnp6erF+/nqSkJO1e1apVQ6fTYTAYePvttwF47733CAwMpHLlytSrVw8jIyPs7Ow4ceIEtWrV4tChQ7z66qt3fX2lbRneqVMnKleuDIC3tzczZ87kzJkzdO3alYYNGxY6d9OmTWzatAlXV1cA0tLSSExMpEWLFlhYWLB//34uXLiAq6srFhYWpbq/EEIIIYQQQjyOZIaJeCyYm5vj7+9PUFCQVuy1WbNm7Ny5k+PHjwOQnp7OsWPH7mlcX19fli5dCkBERAS1atWiWrVq9xxf5cqV2bFjBzqdjl69elG7dm0qVKhAtWrV2Lt3LxEREVhaWmrJklsZGRlx5coV/P39mTVrFnl5eVrRWGNjYwDatm3Lnj17tETKlStXAMjKyiIpKYkrV64wbtw4hg4dWuouPfv378fOzg4AExMTDAaDNuatbk3s9OnTh3Xr1lG5cmU6dOjAli1bCp2rqiqTJ09Gr9ej1+s5fvw4gwcPBmDIkCGEhoaycOFCgoKCShWjEEIIIYQQQjyuJGEiHhu9e/cmLi5OS5hYWloSGhpK7969cXZ2xtvbu1RLTG4VHBxMTEwMzs7OTJo0iUWLFt1zXP7+/mRkZODl5UX9+vX57rvvAHj11VepXbs2jo6O9OjRAxsbGwCqVq2qJScA6tevzw8//ICTkxN2dnYYDIYiSZuQkBDOnDnDt99+i729PUePHgXykxumpqZkZmbSo0cPVq5cWaqYV61axaZNm7RnaW1tTUxMjHasJElJSdja2jJmzBg6d+6sFckt0K5dOxYsWEBaWhoAZ8+e5eLFiwAEBASwceNG9u3bR7t27UoVpxBCCCGEEEI8rmRJjnhsdOnSpcgyklatWrFv374i5xbUKClu28PDg4iICCC/oOyaNWuKXB8cHFxoOz4+vtiYCsY1Nzcv0qZ36tSpXL58mV27dnH27FlsbGwIDAzkypUr2NnZ8fLLLzN58mR69uzJTz/9xNmzZ2nRogUVKlQA8rsDhYaGAvkFa/v160daWhrBwcEEBgYCUKNGDTp27EhYWBhjxozB09Oz2DgB5syZw5IlS0hPT8fR0ZEtW7ZgaWkJ5Be/HTx4MFOnTtUKvhbn559/5scff6RChQrUqVOHKVOmFDretm1bDh8+jLe3t/ZclixZgpWVFRUrVsTf358aNWpoM2eEEEIIIYQQorxSSlvn4HHn4eGhRkdHl3UYQjxQn3zyCd9++y1Lly7lpZdeKutw7shgMGhtlG+vfSKEEEIIIYR4eimKEqOqqkdZx3GvZEmOeGgMBpWklDT2JF0mKSUNg+HJSM49SpMmTeLkyZOPfbIkISGBF198kdatW0uyRAghhBBCCPFEkCU54qEwGFQ2HvqbjzccJjvXgKmJEZM72NHeoQ5GRkpZhwfkx5h8OZ2LqdlYVTXF2sLssYmtvLG3tycpKamswxBCCCGEEEKIB0YSJuKhSL6criVLALJzDXy84TBN6lTF1tK8jKMrHwkdIYQQQgghhBBlR5bkiIfiYmq2liwpkJ1r4GJqdhlFVFhJCZ3ky+llHJkQQgghhBBCiMeBJEzEQ2FV1RRTk8JvL1MTI6yqmpZRRIU97gkdIYQQQgghhBBlSxIm4qGwtjBjcgc7LWlSsOTF2sKsjCPL97gndIQQQgghhBBClC2pYSIeCiMjhfYOdWhSp+pjWVS1IKFzew2TxyWhI4QQQgghhBCibEnCRDw0RkYKtpbmj0WR19s97gkdIYQQQgghhBBlSxIm4qn1OCd0hBBCCCGEEEKULalhIoQQQgghhBBCCHEbSZgIIYQQQgghhBBC3EYSJkIIIYQQQgghhBC3kYSJEEIIIYQQQgghxG0kYSKEEEIIIYQQQghxG0mYCCGEEEIIIYQQQtxGEiZCCCGEEEIIIYQQt5GEiRBCCCGEEEIIIcRtJGEihBBCCCGEEEIIcRtJmAghhBBCCCGEEELcRhImQgghhBBCCCGEELeRhIkQQgghhBBCCCHEbSRhIoQQQgghhBBCCHEbSZgIIYQQQgghhBBC3EYSJkIIIYQQQgghhBC3kYSJEEIIIYQQQgghxG0kYSKEEEIIIYQQQghxG0mYCCGEEEIIIYQQQtxGEiZCCCGEEEIIIYQQt1FUVS3rGB4IRVFSgJNlHYe4o1rApbIOQjwx5P0kHhR5L4kHRd5L4kGS95N4UOS9JB6kf/t+aqCqquWDDuZhe2ISJuLxpyhKtKqqHmUdh3gyyPtJPCjyXhIPiryXxIMk7yfxoMh7STxIT9v7SZbkCCGEEEIIIYQQQtxGEiZCCCGEEEIIIYQQt5GEiXiU/lvWAYgniryfxIMi7yXxoMh7STxI8n4SD4q8l8SD9FS9n6SGiRBCCCGEEEIIIcRtZIaJEEIIIYQQQgghxG0kYSKEEEIIIYQQQghxG0mYiIdOUZTuiqIcUhTFoCiKxy37rRVFyVQURX/za35ZxikefyW9l24em6woynFFUY4qitKurGIU5ZOiKMGKopy95fdRh7KOSZQviqK0v/n757iiKJPKOh5RvimKkqwoysGbv4+iyzoeUX4oirJAUZSLiqLE37KvpqIomxVFSbz532fKMkZRPpTwXnrq/l6ShIl4FOKBrkBkMcdOqKqqu/k1/BHHJcqfYt9LiqLYA70AB6A98I2iKMaPPjxRzs255ffRhrIORpQfN3/fzAP+A9gDvW/+XhLifvjf/H3kcfdThdCEkv+30K0mAX+qqtoQ+PPmthB3E0rR9xI8ZX8vScJEPHSqqh5WVfVoWcchyr87vJc6A8tUVc1WVfUv4Djg9WijE0I8xbyA46qqJqmqegNYRv7vJSGEeKRUVY0Erty2uzOw6Ob3i4AujzImUT6V8F566kjCRJQ1G0VR9iuKsk1RFN+yDkaUW3WB07dsn7m5T4h7MUpRlAM3p6DKdGVxL+R3kHjQVGCToigxiqIMLetgRLlXW1XV8ze//xuoXZbBiHLvqfp7SRIm4oFQFCVcUZT4Yr7u9C9s54H6qqq6Am8BPymKUu3RRCweV//yvSTEXd3lvfUt8AKgI/930+dlGasQ4qn3kqqqbuQv83pDUZQWZR2QeDKoqqqSn5AT4t946v5eMinrAMSTQVXVl//FNdlA9s3vYxRFOQE0AqS42VPs37yXgLNAvVu2n7+5TwhNad9biqJ8D/z6kMMRTxb5HSQeKFVVz97870VFUVaTv+yruFpwQpTGBUVRnlVV9byiKM8CF8s6IFE+qap6oeD7p+XvJZlhIsqMoiiWBYU5FUWxBRoCSWUblSin1gG9FEUxVRTFhvz3UlQZxyTKkZt/QBYIIL/AsBCltQ9oqCiKjaIoFckvQr2ujGMS5ZSiKGaKolQt+B5oi/xOEvdnHTDw5vcDgbVlGIsox57Gv5dkhol46BRFCQC+AiyB3xRF0auq2g5oAXygKEoOYACGq6r61BcWEiUr6b2kquohRVF+BhKAXOANVVXzyjJWUe58qiiKjvxpysnAsDKNRpQrqqrmKooyCvgDMAYWqKp6qIzDEuVXbWC1oiiQ/7f6T6qqbizbkER5oShKGOAH1FIU5QwwHfgE+FlRlMHASaBH2UUoyosS3kt+T9vfS0r+MjYhhBBCCCGEEEIIUUCW5AghhBBCCCGEEELcRhImQgghhBBCCCGEELeRhIkQQgghhBBCCCHEbSRhIoQQQgghhBBCCHEbSZgIIYQQ4oFTFKWGoigjyzoOIYQQQoh/SxImQgghhHgYagCSMBFCCCFEuSUJEyGEEEI8DJ8ALyiKolcU5XtFUSJvfh+vKIovgKIoaYqizFQUJU5RlD2KotS+ud9SUZRViqLsu/nlU9JNFEX5UlGUaTe/b3fzPvL3jRBCCCHum6KqalnHIIQQQognjKIo1sCvqqo6KooyHqikqupMRVGMgSqqqqYqiqICnVRVXa8oyqfAdVVVZyiK8hPwjaqqOxRFqQ/8oaqqXQn3qQLsA0YB84EOqqqeeBSvUQghhBBPNpOyDkAIIYQQT7x9wAJFUSoAa1RV1d/cfwP49eb3MUCbm9+/DNgrilJwfTVFUcxVVU27fWBVVTMURXkdiATGSbJECCGEEA+KTFkVQgghxEOlqmok0AI4C4QqijLg5qEc9X9TXfP43z/kGAHNVFXV3fyqW1yy5BZOwGXguYcQvhBCCCGeUpIwEUIIIcTDkApUBVAUpQFwQVXV74H/A9zucu0mYHTBhqIoupJOvDn2eMAV+I+iKE3vL2whhBBCiHyyJEcIIYQQD5yqqpcVRdmpKEo8YAakK4qSA6QBA+58NWOAeYqiHCD/b5VIYPjtJyn5a3Z+AN5WVfWcoiiDyZ/B4qmqataDfD1CCCGEePpI0VchhBBCCCGEEEKI28iSHCGEEEIIIYQQQojbyJIcIYQQQjz2FEUZBIy9bfdOVVXfKIt4hBBCCPHkkyU5QgghhBBCCCGEELeRJTlCCCGEEEIIIYQQt5GEiRBCCCGEEEIIIcRtJGEihBBCCCGEEEIIcRtJmAghhBBCCCGEEELcRhImQgghhBBCCCGEELeRhIkQQgghhBBCCCHEbf4fSVtPcatlIzUAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from karateclub.node_embedding.neighbourhood import NetMF\n",
+ "\n",
+ "\"\"\"\n",
+ "dimensions (int): Number of embedding dimension. Default is 32.\n",
+ "iteration (int): Number of SVD iterations. Default is 10.\n",
+ "order (int): Number of PMI matrix powers. Default is 2.\n",
+ "negative_samples (in): Number of negative samples. Default is 1.\n",
+ "seed (int): SVD random seed. Default is 42.\n",
+ "\"\"\"\n",
+ "\n",
+ "model = NetMF(dimensions=64)\n",
+ "model.fit(G)\n",
+ "embedding = model.get_embedding()\n",
+ "\n",
+ "results = []\n",
+ "for name,embedding in zip(character_mapping['character'].to_list(), embedding):\n",
+ " results.append({'character': name, 'embedding': embedding}) \n",
+ "df = pd.DataFrame.from_dict(results)\n",
+ "tsne(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "AvPxkrdGd8hG"
+ },
+ "source": [
+ "The KC library also features the NEU algorithm. The procedure uses an arbitrary embedding and augments it by higher order proximities with a recursive meta learning algorithm."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 606
},
+ "id": "m-bOrtHMmhVd",
+ "outputId": "56128b10-1d2b-447e-d395-c968c7257776"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 606
- },
- "id": "m-bOrtHMmhVd",
- "outputId": "56128b10-1d2b-447e-d395-c968c7257776"
- },
- "source": [
- "from karateclub.node_embedding.meta import NEU\n",
- "\n",
- "\"\"\"\n",
- "L1 (float): Weight of lower order proximities. Defauls is 0.5\n",
- "L2 (float): Weight of higer order proximities. Default is 0.25.\n",
- "T (int): Number of iterations. Default is 1.\n",
- "seed (int): Random seed value. Default is 42.\n",
- "\"\"\"\n",
- "\n",
- "model = NetMF()\n",
- "meta_model = NEU(T=3)\n",
- "meta_model.fit(G, model)\n",
- "\n",
- "embedding = meta_model.get_embedding()\n",
- "results = []\n",
- "for name,embedding in zip(character_mapping['character'].to_list(), embedding):\n",
- " results.append({'character': name, 'embedding': embedding}) \n",
- "df = pd.DataFrame.from_dict(results)\n",
- "tsne(df)"
- ],
- "execution_count": null,
- "outputs": [
- {
- "output_type": "display_data",
- "data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABFYAAAJNCAYAAAAbAfEEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxVdf7H8de9oKiApoJrKmiucPGigCYuqLlkRq6hWS6UM2hq2ZhLTYkzOdXkTGabWe6Za6M2af7MFFFbFPSqoBQuV50yRRQFBATu+f3hcEdyRwzR9/Px8BHnnO/3ez7nQHX5+P1+vibDMBARERERERERkZtnLukARERERERERERKKyVWRERERERERESKSIkVEREREREREZEiUmJFRERERERERKSIlFgRERERERERESkiJVZERERERERERIrItaQDKC5eXl6Gj49PSYchIiIiIiIiIpeIj48/ZRiGd0nHcbvcNYkVHx8f4uLiSjoMEREREREREbmEyWQ6UtIx3E5aCiQiIiIiIiIiUkRKrIiIiIiIiIiIFJESKyIiIiIiIiIiRaTEioiIiIiIiIhIESmxIiIiIiIiIiJSREqsiIiIiIiIiIgUkRIrIiIiIiIiIiJFpMSKiIiIiIiIiEgRKbEiIiIiRTJ16lT8/PwICAjAarXyww8/lHRIIiIiIr8715IOQEREREqf7777ji+//JKdO3fi5ubGqVOnuHDhQkmHJSIiIvK704wVERERuWnHjx/Hy8sLNzc3ALy8vKhVqxY+Pj5MnjyZFi1aYLFYSEpKAuD06dP06tWLgIAAWrduzZ49ewCwWCykpaVhGAZVq1ZlwYIFAAwePJivv/6a9u3bY7PZnPdt27Ytu3fv/p2fVkREROTqlFgRERGRm9a1a1eOHTtGo0aNGDlyJJs3b3Ze8/LyYufOnYwYMYJp06YBMHnyZAIDA9mzZw9/+9vfGDx4MAChoaFs27aNxMRE6tevz5YtW4CLM2LatGnD008/zbx58wD46aefyM7Opnnz5r/vw4qIiIhcgxIrIiIictM8PDyIj49n1qxZeHt7ExER4UyA9OnTB4CWLVtit9sB2Lp1K0899RQAnTp1IjU1lXPnztGuXTtiY2OJjY1lxIgR7N27l59//pnKlSvj7u5O//79+fLLL8nNzWXOnDkMHTq0BJ5WRERE5OpUY0VERESKxMXFhbCwMMLCwrBYLMyfPx/AuTzIxcWFvLy8a47Rvn173n//fY4ePcrUqVNZuXIlK1asoF27dgBUqFCBLl26sHr1apYtW0Z8fPztfSgRERGRm6QZKyIiInLTfvzxR5KTk53HNpuNevXqXbV9u3btWLRoEQAxMTF4eXlRsWJF6tSpw6lTp0hOTqZ+/fq0bduWadOm0b59e2ffZ555hjFjxhAcHEzlypVv30OJiIiIFIFmrIiIiMhNy8jIYPTo0aSlpeHq6soDDzzArFmz+PLLL6/YPjo6msjISAICAqhQoYJzdgtAq1atyM/PBy4mYCZNmkTbtm2d11u2bEnFihUZNmzY7X0oERERkSIwGYZR0jEUi6CgICMuLq6kwxAREZFi9ssvvxAWFkZSUhJmsybbioiIlDYmkyneMIygko7jdtGnExERESkyk8nEk08+6TzOy8vD29ubnj17Xrev3W6nfPnyWK1WmjVrRlRUFA6Ho1CbBQsW0KpVK6ZOnaqkioiIiNyR9AlFRETkDlfU5MXevXuxWq1YrVaqVKmCr68vVquVhx56iC+++II33ngDgAEDBuDj44PVaqVGjRrUrl0bq9VK3bp1GTFixGXjvvjii5jNZl588UXKli3Lrl27yMrKAuDrr7+mdu3aV4znSoVsGzRogM1mY8+ePezbt49Vq1YVuj548GCOHTtG//79r/2SREREREqIEisiIiJ3OHd3dxISEm46eWGxWLDZbNhsNsLDw3nrrbew2Wxs2LCB8PBwJk6cCEC5cuWYNm0aNpuNqKgoxo4di81m4y9/+QsuLi6X3WPWrFmUL1+et956i7y8PEJCQlizZg0AixcvZuDAgc620dHRPPXUU4SGhjq3W74SV1dX2rRpw4EDB/j4448JDg6mefPm9O3bl/Pnz5Ofn4+vry+GYZCWloaLiwuxsbHAxZ2FkpOT2bx5szORFBgYSHp6+k2+aREREZGbp8SKiIhIKdCjR49bTl5cat68eYwaNQoAw4B//fsrmlqsTH9nBomJ+xg6dCg7duzg2LFjhIWFYTabmTJlCuHh4WRkZJCdnc3SpUtxOBysXr2aAQMGUK9ePZYtW+YsRhsSEsLrr7/OihUriIqKYvHixVeN5/z583zzzTdYLBb69OnDjh072L17N02bNmX27Nm4uLjQuHFj9u3bx9atW2nRogVbtmwhJyeHY8eO0bBhQ6ZNm8b777+PzWZjy5YtlC9f/hbeuIiIiMiNUWJFRESkFBgwYABLliwhOzubPXv20KpVq0LX9+3bx4YNG66ZvLgSh8Pg57Qsvvp+Lx6P/50KTTuwbMUK8vIu7tKzfft2Pv/8cypUqMDy5ct59dVXKV++POXLlyciIgKTyUSHDh2wWq288sorOBwOtm3bxsmTJzl9+jR9+vRh4sSJhIeHX/H+Bw8exGq1EhoayiOPPMLDDz9MQkIC7dq1w2KxsGjRIhITE4GLOwbFxsYSGxvLpEmT2Lp1Kzt27CA4OBiA0NBQXnjhBWbMmOHcrUhERETkdlNiRUREpBQICAjAbrezePFievTocdn18PDwIs3QsKdmsvc/adzn1x6T2YypnCf5Zdw5npIKQJcuXahatSoAffr0YevWrZeN8f333/Of//yHqKgoypcvz4YNGyhfvjx2u50jR45w4sQJKlWqdMX7F9RY2bVrF9HR0QAMHTqU9957j7179zJ58mSys7OBi0t+tmzZwvbt2+nRowdpaWnExMTQrl07ACZOnMgnn3xCVlYWoaGhJCUl3fT7EBEREblZSqyIiIiUEuHh4YwbN67QMqAC7u7uRRrzZHoO+YZR6JxhQD4mDMPAZDLhcDi4cOECcLGQ7m8NGzaMuLg4/vnPf7J//35+/vlnzp49y8iRI6lRowbr1q3jL3/5yw3HlJ6eTs2aNcnNzWXRokXO8yEhIXz77beYzWbKlSuH1Wrlo48+on379sDF2S8Wi4UJEyYQHBysxIqIiIj8LpRYERG5x7i4uDgLfFqtVufOMMWtYEbBjYiJieHbb791Hg8dOpQVK1YU+d4+Pj5YLBbnM44ZM+aa7Z955hn27dvn7Hvq1Kki3/t2ioyMZPLkyVgslmIbs5qnGy4mE2cSYzEcDvKy0snPOkfz/86Q+frrr1m0aBG5ubmsWrWK0NDQQv1NJhMrV67kvvvuY8yYMRiGQaVKlUhOTiYyMpKAgADCwsLYuXPnDcf017/+lVatWhEaGkqTJk2c593c3KhTpw6tW7cGLi4NSk9Pd76P6dOn4+/vT0BAAGXKlOHhhx8uhjckIiIicm1afCwico8pX748Npvtto1vGAaGYbB27dob7hMTE4OHhwdt2rQptjg2bdqEl5fXDbX95JNPiu2+t9P9999/3STRzfKp6o7l/vtIPFGWfTNHkXPmVzo9/CgTX3iOtm1DyczM5OWXX8ZkMtG3b1+CgoIK9V+2bBkjRozA29ub+vXrU7FiRZ588klmzpzJ4MGDMZvNlClThg8//PDye/v4kJCQcNn5ESNGXHGbZ4AtW7Y4v37iiSd44oknnMfvvvtuUV+DiIiISJGZjN9M/y2tgoKCjLi4uJIOQ0Tkjufh4UFGRsZl5318fBg4cCBfffUVrq6uzJo1i0mTJnHgwAFefPFFoqKiAHjrrbdYtmwZOTk59O7dmylTpmC32+nWrRutWrUiPj6etWvX0qFDB+Li4vDy8mLBggVMmzYNk8lEQEAACxcudN7XbrfTunVrXFxc8Pb25t1332X27NlUrFiRuLg4fv31V/7+97/Tr1+/q97/Ss9ScO8CSUlJDB48mO3btzvv++ijj7J3717CwsKYNm0aQUFBV+x7t3M4DOypmZxMz6Gapxs+Vd0xmy9f8nOjRo0aRWBgIE8//XQxRikiIiKllclkijcMI+j6LUsnzVgREbnHZGVlYbVanceTJk0iIiICgLp162Kz2Rg7dixDhw5l27ZtZGdn4+/vT1RUFOvXryc5OZnt27djGAbh4eHExsZSt25dkpOTmT9/vnOZRoHExERee+01vv32W7y8vDh9+nSh6z4+PkRFReHh4cG4ceMAmD17NsePH2fr1q0kJSURHh5Ov379rnr/ghobl+rYsSMuLi4ADBkyhLFjx3LhwgUOHz6Mr68vS5cudT73vc5sNlHf24P63h63PFbLli1xd3fnH//4RzFEJiIiInLnU40VEZF7iN1uxzAMbDab88/+/fuZNm0agHNLXIvFQqtWrVi0aBFfffUVbm5upKWlsX79etavX09gYCAtWrQgKSmJ5ORk4OIylUvraGRnZ/PEE0+wceNG+vfv75wBUqVKlRuKtVevXnzyySf06dOHQ4cOERISwpw5c654/5iYGHr27Fmo/6ZNm7DZbKSlpfHUU09ht9s5fvw4S5cuBbihxMqltV7CwsK422dGOhwGh1Iy+P5QKodSMnA4bn5Wa3x8PLGxsbi5ud2GCEVERETuPJqxIiIiTgW/DBfUxShY/vPqq6+Sl5eHYRhMmjSJP/7xj4X62e12ypUrxwcffMDIkSOLJZaEhATWr1/P1q1b8fHxYebMmYSFhfHnP/+Z8ePHF2obExNzQ2NWqlSJZcuW0adPH0wmEw0bNiyWWG9UcS+5Kc77OBwG6xJ/5fW1+8nJc+DmamZSj6Z096txW2IUERERuVsosSIiIk6PPfYYwcHBrF69mlq1ahEdHY2Hx8XlIYcOHWLjxo18+OGHfPjhh3z++eeUK1eOMmXKAHDixAkuXLiA1WqlS5cuAGRmZvLvf/+bmJgYfvzxR5YvX86ZM2c4fPgwL7zwAhkZGXh5edG6dWvS09MLxbJq1Sref/9950yXFi1a8Oijj/LOO+8wcuRItm7dyqhRo6hQoQJhYWHOfqmpqZw4cYK2bdvStm1bLq0lZjabOXLkCMHBwdStW5fz589ToUIF7Ha7s9Bqamoqt6P+2O+VuCjqfeypmc4+ADl5Dl5fu58mNTyLZYmQiIiIyN1KS4FERO4xhmEU2m55w4YNha5fuHCByZMnExgYWOj8iBEjePXVV3n99dfJzc111j0pSIhUr16dBg0aYLPZeOuttwDYu3cvc+bM4aOPPmLt2rU0bNiQ559/ntGjR7NixQri4+OJjIwkISGBlStXYrVanbu+HDt2jJYtWxaK4fHHH8fLy4tWrVrx6KOP4uHhwb/+9S9+/fVXZ5spU6bg5uZGmTJl2LhxI0ePHnXOovnxxx8ZMGAA586do2nTpnzwwQcA1K5dmwULFpCQkIBhGKxfv74Y3/hFV0tc2FMz74j7nEzPcfYpkJPn4GR6TrHGJyIiInK3UWJFROQeYjKZ8PPzK1Rj5aGHHsJkMmG32ylTpgwREREMHTqU9957z9lv7969nDhxgt69e/Pcc8+RmJhIYmIi3333HQ0aNMDHx+eyZMSSJUto1aoV999/P8OGDWPIkCFER0czfvx4EhIS6NKlC1arlddee4309HT27NmDzWajXbt2zJs3j7JlyzrHunQXowYNGrBo0SIefPBBbDYbDzzwAE8++aTzemxsLDt37mTv3r0cOnSIypUrOxModerU4f3338cwDKKioti6dSsAL7zwAs8++ywWi4VKlSpx7NixYn/3v1fioqj3qebphptr4Y8Fbq5mqnmqVoqIiIjItWgpkIjIPaRq1aqcOXOm0LnTp0/j6+vrPHZ3dy+2+11awNTFxcVZp8XPz4/vvvvumn2bNWtGfHw8nTp1cp6Lj4/Hz8+vyPGYTKbLjrOzsxk5ciRxcXHUqVOH6OhosrOzi3yPqylIXFya9LgdiYui3senqjuTejS9bAmRT9Xi+3kQERERuRtpxoqIyD3Ew8ODmjVrsnHjRuBiUmXdunW0bdv2mv08PT25//77WbVqFQA5OTmcP3/+sja/rZNyJY0bNyYlJcWZWMnNzSUxMfGyduPHj2fChAmkpqYCYLPZmDdvHiNHjqRJkybY7XYOHjwIwOLFi5392rdvz2effQbAV199VSiRdPToUed9P/vsM9q2betMonh5eZGRkeHcBai4FSQuCmaF3K7ERVHvYzab6O5Xg/mRIcwYGMj8yBAVrhURERG5AZqxIiJSShV1h5kFCxbw7LPP8sILLwAwefJkGjRocN1+Cxcu5I9//COvvvoqZcqUYfny5dSvX995vWrVqoSGhuLv78/DDz/MI488csVxypYty4oVKxgzZgxnz54lLy+P559//rKZKOHh4fz888+0adMGk8mEp6cnn376KTVr1gRg1qxZPPLII1SoUIF27do5kzqTJ09m4MCB+Pn50aZNG+rWrescs3Hjxrz//vtERkbSrFkzRowYQYUKFRg+fDj+/v7UqFGD4ODg676LoihIXDSp4XlbdwW6lfuYzSbqe3uoWK2IiIjITTDdjp0PSkJQUJARFxdX0mGIiPwutDWuiNzLXFxcsFgszuNVq1bh4+NzWbu0tDQ+++yzq24DfyPj9OjRg88++4z77ruvWGIXEbkXmUymeMMwgko6jttFiRURkVLoUEoGQ+Zsv6yOxvzIEM02EJG7noeHR6Gi1ldjt9vp2bMnCQkJNz2OYRgYhoHZfHMr5/Pz83FxcbmpPiIid7u7PbGiGisiIqWQtsYVEfmfjIwMOnfuTIsWLbBYLKxevRqAiRMncvDgQaxWKy+++OJ1x7Hb7TRu3JjBgwfj7+/PsWPH8PHx4dSpUwD06tWLli1b4ufnx6xZs5z9PDw8+NOf/kTz5s2vW5hbRETuPqqxIiJSClXzdKNmJTdCH/DGYRi4mExsPZCirXFF5J6QlZWF1WoFwNfXl+XLl7Ny5UoqVqzIqVOnaN26NeHh4bzxxhskJCRgs9luaJy3336b5ORk5s+fT+vWrS9rP2fOHKpUqUJWVhbBwcH07duXqlWrkpmZSatWrfjHP/5x+x5aRETuWEqsiIiUQnUrV2BgSD2m/DvRWWNl8qN+1K1coaRDExG57cqXL18oWZKbm8tLL71EbGwsZrOZn3/+mRMnTtz0OHa7nXr16l0xqQIwY8YMVq5cCcCxY8dITk6matWquLi40Ldv31t8KhERKa20FEhEpBQ6euY87286QIWyrlQqX4YKZV15f9MBjp45f/3OInJNqampWK1WrFYrNWrUoHbt2s7jCxcuFOu9PDw8iI6Odt6jZs2a+Pv743A4rt/5CubNm8cvv/xyw+2HDh16w1uMr1q1CpPJRFJSkvNcTEwMPXv2vGJ7D4+bq/f029inT59+2bbuV7No0SJSUlKIj4/HZrNRvXp151bqN8vd/cpbk8fExLBhwwa+++47du/eTWBgoPMe5cqVU10VEZF7mBIrIiKlUEGNFReziTIuZlzMJtVYESkmVatWxWazYbPZiIqKYuzYsc7jsmXLXrVfXl7eNY+vpeAeU6dO5fTp02zevLlIsd9sYuVmLF68mLZt27J48eLbMv6tJFbOnj1LtWrVKFOmDJs2beLIkSMAeHp6Ordiv1Vnz56lcuXKVKhQgaSkJL7//vtiGVdEREo/JVZEREqhap5uuLkW/k+4m6tZNVZEbpP4+Hg6dOhAy5Yt6datG8ePHwcgLCyM559/nqCgIN55551Cx1OnTsXX15fc3FwAzp07V+j4SvLz88nLy6Ny5cr8+9//xt/fH3d3dzw9PenRowdnzpwhOjqaxx57jIoVK1K2bFkCAgI4c+YMH3zwAbGxsTz00EOUK1eOzp07k5WVBcDHH39McHAwzZs3p2/fvoUSFrGxsbRp04b69etfdfZKRkYGW7duZfbs2SxZsqTQtXPnzvHII4/QuHFjoqKiCs22GTt2LH5+fnTu3JmUlBQAbDYbrVu3JiAggN69e3PmzBlWrFhBXFwcgwYNwmq18s477/DLL7/QsWNHOnbseN3vz6BBg4iLi8NisbBgwQKaNGkCXEyShYaG4u/vf0PFa6+le/fu5OXl0bRpUyZOnHjV5UIiInIPKthKrrT/admypSEicq/Iz3cYa/b8YrR94xsj+LWvjbZvfGOs2fOLkZ/vKOnQRO4qkydPNv7+978bDz74oHHy5EnDMAxjyZIlxrBhwwzDMIwOHToYI0aMcLb/7fHQoUONlStXGoZhGB999JHxwgsvFBrfbDYb1atXN1xdXY1y5coZJpPJaNiwoWEYhnH69GnDYrEYMTExxscff2y0atXKeO6554zJkycbFSpUMNavX2+kpKQY5cqVM0aPHm0cPnzYAIxPP/3UMAzD6N+/v7Fw4ULDMAzj1KlTznu+/PLLxowZMwzDMIwhQ4YY/fr1M/Lz843ExESjQYMGV3wPn376qREZGWkYhmE8+OCDRlxcnGEYhrFp0ybDzc3NOHjwoJGXl2c89NBDxvLlyw3DMArFMmXKFOPZZ581DMNwPpNhGMYrr7xiPPfcc853t2PHDuc969WrZ6SkpFz7GyQiIqUCEGfcAXmD2/VHM1ZEREohs9lEd78azI8MYcbAQOZHhtDdrwZms6mkQxO56+Tk5JCQkECXLl2wWq289tpr/Oc//3Fej4iIKNT+0uNnnnmGuXPnAjB37lyGDRtWqG358uWJiori9ddfJysri1mzZpGbm8uSJUvYv38/ycnJjBo1irfeeouyZcsSGxtLdnY2ZcqUoUuXLnh5eVGrVi02bdoEXKz10bhxYwBatmyJ3W4HICEhgXbt2mGxWFi0aBGJiYnOGHr16oXZbKZZs2ZXLfi6ePFiBgwYAMCAAQMKLQcKCQmhfv36uLi4MHDgQLZu3QqA2Wx2vosnn3ySrVu3cvbsWdLS0ujQoQMAQ4YMITY29ka+DSIiIncs7QokIlJKmc0m6nt7UN/75gpEisjNMQwDPz8/vvvuuyte/22x00uPQ0NDsdvtxMTEkJ+fj7+//zXv5erqSr169YiNjWXPnj14eHiwd+9eYmJimDBhgrOdyfS/JKqLiwsX/zLwYjLj0vMFS4GGDh3KqlWraN68OfPmzSMmJsbZzs3tf0sIC8a51OnTp9m4cSN79+7FZDKRn5+PyWTirbfeuiyWKx1f77yIiEhppxkrIiIiItfg5uZGSkqKM7GSm5tbaMbH9QwePJgnnnjistkqV2IYBsePH6dBgwZkZmZSuXJltmzZwvz58zlx4gQdOnSgXLlylC9fni1btgCQlpZGq1atgIuJlSsVa01PT6dmzZrk5uayaNGiG44dYMWKFTz11FMcOXIEu93OsWPH8PX1dd5/+/btHD58GIfDwdKlS2nbti0ADofDWbPls88+o23btlSqVMn5TAALFy6kffv2HErJIM/FjR+PncThuJjcKc7CsyIiIreTEisiIiIi12A2m1mxYgUTJkygefPmWK1Wvv322xvuP2jQIM6cOcPAgQOv2ubtt9/GarXy5z//GcMwGDlyJNHR0WRmZtK9e3e+/PJLMjIyePXVV4GLy41efPFFAgICyM7OZsyYMQBUrlyZqKgorFZroSK5f/3rX2nVqhWhoaHOwq43avHixfTu3bvQub59+zqXAwUHBzNq1CiaNm2Kr6+vs627uzvbt2/H39+fjRs3OmOfP3++M/Zdu2w82P+PDJmznV+rt2b4H/7IA838ycw8zx/+8Ae6d+9+Q8VrRURESpLpSlM+S6OgoCAjLi6upMMQERERKWTFihWsXr2ahQsXlnQod5xDKRkMmbOdnLz/7STk5mpmfmSIljmKiNxFTCZTvGEYQSUdx+2iGisiIiIit8no0aP56quvWLt2bUmHckc6mZ5TKKkCkJPn4GR6jhIrIiJSaiixIiIiInKbvPvuuyUdwh2tmqcbbq7my2asVPN0u0YvERGRO4tqrIiIiIjcIofD4FBKBt8fSuVQSoazAKtcm09Vdyb1aIqb68WPpG6uZib1aIpPVffr9BQREblzKLEiIiIipZLJZOLJJ590Hufl5eHt7U3Pnj2d524l4TFv3jxGjRp13XYOh8G6xF8JG/gs7a2NCWhupV6DhkRFReFwOK7bv6hxREdHM23atGv2HTp0qHNnnuIUExNzUwV8r8ZsNtHdrwbzI0OYMTCQ+ZEhdPergdmsrZlFRKT00FIgERERKZXc3d1JSEggKyuL8uXL8/XXX1O7dm3n9YKEx+tr95OT53DOhijuX9ztqZm8vnY/+Q6D6qF9qdm2P2XNELfqFTZv3nzZrjZ5eXm4upaOj2D5+fm4uLhcdj4mJgYPDw/atGlzy/cwm03U9/ZQTRURESm1NGNFRERESq0ePXqwZs0a4OK2wJduabz6680M6NmZne/8gX0fPUfa8SO8vnY/097/iD59+tC9e3caNmzI+PHjnX3mzp1Lo0aNCAkJYdu2bQCkp6fj6+vr3L743LlzhY6vVIA1O+cCmeezqFy5MgBhYWE8//zzBAUF8c477/DNN98QGBiIxWIhMjKSnJwcAHbs2EGbNm1o3rw5ISEhpKenFxp3zZo1PPjgg5w6darQ+YMHD9K9e3datmxJu3btSEpKcl6LjY2lTZs21K9f3zl7JSYmptDMnlGjRjFv3jwAfHx8mDBhAi1atGD58uXMmDGDZs2aERAQwIABA7Db7cycOdO5RfSWLVtu5lsmIiJy1ykdf10iIiIicgUDBgzgL3/5Cz179mTPnj1ERkY6f9GvWMOHxk+/jcnFhbMHdvLz13Mo/8Rk0rPysNls7Nq1Czc3Nxo3bszo0aNxdXVl8uTJxMfHU6lSJTp27EhgYCCenp6EhYWxZs0aevXqxZIlS+jTpw9lypQB/leAFeDEts9JtW3gQtpJevR4GKvV6oz1woULxMXFkZ2dTcOGDfnmm29o1KgRgwcP5sMPP2TkyJFERESwdOlSgoODOXfuHOXLl3f2X7lyJf/85z9Zu3atM2FT4A9/+AMzZ86kYcOG/PDDD4wcOZKNGzcCcPz4cbZu3UpSUhLh4eH069fvuu+1ahWyu6EAACAASURBVNWq7Ny5E4BatWpx+PBh3NzcSEtL47777iMqKgoPDw/GjRt3C989ERGRu4NmrIiIiEipFRAQgN1uZ/HixfTo0aPQNTcjm0NL/0rCjOEc++pDsk4ewc3VjGd5Vzp37kylSpUoV64czZo148iRI/zwww+EhYXh7e1N2bJliYiIcI71zDPPMHfuXODirJZhw4Y5rxUUYHUxm6ge2peWz3/Mv7YlQm4OS5YscbYrGO/HH3/E19eXRo0aATBkyBBiY2P58ccfqVmzJsHBwQBUrFjRuWRo48aNvPnmm6xZs+aypEpGRgbffvst/fv3x2q18sc//pHjx487r/fq1Quz2UyzZs04ceLEDb3XS589ICCAQYMG8emnn5aaJUwiIiK/JyVWREREpFQLDw9n3LhxhZYBAXz89hv0f7QbLV+YTcMn/4qRd4FJPZri5e6Gm9v/tvN1cXEhLy/vmvcIDQ3FbrcTExNDfn4+/v7+zmsFBVh7B9aml7UW8yND6Gmtw8MPdyc2NtbZzt296DvdNGjQgPT0dH766afLrjkcDu677z5sNpvzz/79+53XL31Ww7hYvNfV1bVQYd3s7OxCY14a65o1a3j22WfZuXMnwcHB131XIiIi9xolVkRERKRUi4yMZPLkyVgslkLnz507S+eWTZkfGUJw7h68PN2uWbi2VatWbN68mdTUVHJzc1m+fHmh64MHD+aJJ54oNFulgNlsorJ7WepVdae+twcmE2zbto0GDRpc1rZx48bY7XYOHDgAwMKFC+nQoQONGzfm+PHj7NixA7hY26UgiVGvXj0+//xzBg8eTGJiYqHxKlasiK+vrzNewzDYvXv3Nd9ZvXr12LdvHzk5OaSlpfHNN99csZ3D4eDYsWN07NiRN998k7Nnz5KRkYGnp+dl9V9ERETuVUqsiIiISKl2//33M2bMmMvOjx8/npdffom+XdtRw7MsrmbTNXcDqlmzJtHR0Tz44IOEhobStGnTQtcHDRrEmTNnLpsZc6mCgq7+/v7k5+czcuTIy9qUK1eOuXPn0r9/fywWC2azmaioKMqWLcvSpUsZPXo0zZs3p0uXLoVmkjRp0oRFixbRv39/Dh48WGjMRYsWMXv2bJo3b46fnx+rV6++aowAderU4fHHH8ff35/HH3+cwMDAK7bLz8/nySefxGKxEBgYyJgxY7jvvvt49NFHWblypYrXioiIAKaCKaGlXVBQkBEXF1fSYYiIiMhdasWKFaxevZqFCxeWdCgiIiKlislkijcMI6ik47hdVIFMRERE5DpGjx7NV199xdq1a0s6FBEREbnDKLEiIiIich3vvvtuSYcgIiIidyglVkRERKTEORwG9tRMTqbnUM3TDZ+q7teshyIiIiJyp1BiRUREREqUw2GwLvFXXl+7n5w8B26uZib1aHrNHXxERERE7hTaFUhERERKlD0105lUAcjJc/D62v3YUzNLODIRERGR61NiRURERErUyfQcZ1KlQE6eg5PpOSUUkdzrpk6dip+fHwEBAVitVn744YffPYbo6Ghq166N1WqlSZMmjBgxAofDcf2OIiLyu1NiRUREREpUNU833FwLfyRxczVTzdOthCKSe9l3333Hl19+yc6dO9mzZw8bNmygTp06JRLL2LFjsdls7Nu3j71797J58+YSiUNERK5NiRUREREpUT5V3ZnUo6kzuVJQY8WnqnsJRyb3ouPHj+Pl5YWb28XEnpeXF7Vq1QLAx8eHU6dOARAXF0dYWBgAmzdvxmq1YrVaCQwMJD09nYyMDDp37kyLFi2wWCysXr0aALvdTtOmTRk+fDh+fn507dqVrKysa8Z04cIFsrOzqVy5MgA2m43WrVsTEBBA7969OXPmDABhYWFMmDCBkJAQGjVqxJYtWwDIz8/nxRdfJDg4mICAAD766CPns7Zv3x6r1Yq/v7+zvYiI3BwlVkRERKREmc0muvvVYH5kCDMGBjI/MkSFa6XEdO3alWPHjtGoUSNGjhx5Q7NEpk2bxvvvv4/NZmPLli2UL1+ecuXKsXLlSnbu3MmmTZv405/+hGEYACQnJ/Pss8+SmJjIfffdx+eff37Fcd9++22sVis1a9akUaNGWK1WAAYPHsybb77Jnj17sFgsTJkyxdknLy+P7du3M336dOf52bNnU6lSJXbs2MGOHTv4+OOPOXz4MJ999hndunXDZrOxe/du5/giInJzlFgRERGREmc2m6jv7UHr+lWp7+2hpIqUGA8PD+Lj45k1axbe3t5EREQwb968a/YJDQ3lhRdeYMaMGaSlpeHq6ophGLz00ksEBATw0EMP8fPPP3PixAkAfH19nUmMli1bYrfbrzhuwVKgkydPkpmZyZIlSzh79ixpaWl06NABgCFDhhAbG+vs06dPn8vGXb9+PQsWLMBqtdKqVStSU1NJTk4mODiYuXPnEh0dzd69e/H09LyFNycicu9SYkVERERE5BIuLi6EhYUxZcoU3nvvPeeMEldXV2cB2ezsbGf7iRMn8sknn5CVlUVoaChJSUksWrSIlJQU4uPjsdlsVK9e3dmnYJlRwb3y8vKuGU+ZMmXo3r17oQTK1RSMfem4hmHw7rvvYrPZsNlsHD58mK5du9K+fXtiY2OpXbs2Q4cOZcGCBTfxlkREpIASKyIiIiIi//Xjjz+SnJzsPLbZbNSrVw+4WGMlPj4eoNDynYMHD2KxWJgwYQLBwcEkJSVx9uxZqlWrRpkyZdi0aRNHjhwpckyGYbBt2zYaNGhApUqVqFy5srMeysKFC52zV66mW7dufPjhh+Tm5gLw008/kZmZyZEjR6hevTrDhw/nmWeeYefOnUWOUUTkXuZa0gGIiIiIiNwpMjIyGD16tHNJzwMPPMCsWbMAmDx5Mk8//TSvvPKKs3AtwPTp09m0aRNmsxk/Pz8efvhh0tPTefTRR7FYLAQFBdGkSZObjuXtt9/m008/JTc3l4CAAEaOHAnA/PnziYqK4vz589SvX5+5c+dec5xnnnkGu91OixYtMAwDb29vVq1aRUxMDG+99RZlypTBw8NDM1ZERIrIVFBEq7QLCgoy4uLiSjoMEREREREREbmEyWSKNwwjqKTjuF20FEhEREREREREpIiUWBERERERERERKSLVWBERERGRu5bDYWBPzeRkeg7VPN3wqequ7bxFRKRYKbEiIiIiInclh8NgXeKvvL52Pzl5DtxczUzq0ZTufjWUXBERkWKjpUAiIiIicleyp2Y6kyoAOXkOXl+7H3tqZglHJiIidxMlVkRERETkrnQyPceZVCmQk+fgZHpOCUUkIiJ3IyVWREREROSuVM3TDTfXwh933VzNVPN0K6GIRETkbqTEioiIiIjclXyqujOpR1NncqWgxopPVfcSjkxERO4mKl4rIiIiIncls9lEd78aNKnhqV2BRETktlFiRURERETuWmazifreHtT39ijpUERE5C6lpUAiIiIiIiIiIkWkxIqIiIiIiIiISBEpsSIiIiIicofz8PDgl19+oV+/fkUeIzo6GpPJxIEDB5znpk+fjslkIi4u7pp9161bR0hICE2aNMFqtRIREcHRo0eve8+BAwcSEBDA22+/TVJSElarlcDAQA4ePEibNm2K/CwiIncSJVZEREREREqBWrVqsWLFilsaw2KxsGTJEufx8uXL8fPzu2afhIQERo8ezfz580lKSsJmszFo0CDsdvs1+/3666/s2LGDPXv2MHbsWFatWkW/fv3YtWsXDRo04Ntvv72lZxERuVMosSIiIiIiUgrY7Xb8/f0BmDdvHr169aJLly74+Pjw3nvv8c9//pPAwEBat27N6dOnrzhGr169WL16NQAHDx6kUqVKeHl5Oa+vW7eOFi1a0Lx5czp37gzAm2++yUsvvUTTpk2d7cLDw2nfvj0AYWFhzhkvp06dwsfHB4CuXbvy888/Y7VamTJlCtOnT+fDDz+kY8eOwMVZOAAxMTGEhYXRr18/mjRpwqBBgzAMo7hem4jIbaddgURERERESqGEhAR27dpFdnY2DzzwAG+++Sa7du1i7NixLFiwgOeff/6yPhUrVqROnTokJCSwevVqIiIimDt3LgApKSkMHz6c2NhYfH19ncmZxMRExo0bd9PxffHFF/Ts2RObzQaAYRh4eHhccaxdu3aRmJhIrVq1CA0NZdu2bbRt2/am7ykiUhI0Y0VEREREpBTq2LEjnp6eeHt7U6lSJR599FHg4nKfay3TGTBgAEuWLGHVqlX07t3bef7777+nffv2+Pr6AlClSpXL+qampmK1WmnUqBHTpk0rtmcJCQnh/vvvx2w2Y7Var7vMSETkTqLEioiIiIhIKeTm5ub82mw2O4/NZjN5eXlX7dezZ08WLlxI3bp1qVix4nXv4+fnx86dOwGoWrUqNpuNP/zhD2RkZADg6uqKw+EAIDs7+5afxcXF5Zrxi4jcaZRYERERERG5h1SoUIE333yTl19+udD51q1bExsby+HDhwGcS4HGjx/P1KlT2b9/v7Pt+fPnnV/7+PgQHx8PcMvFdUVESiPVWBERERERuYPl5eUVmtFRHAYMGHDZOW9vb2bNmkWfPn1wOBxUq1aNr7/+GovFwjvvvMPgwYM5d+4cXl5e1K1blylTpgAwbtw4Hn/8cWbNmsUjjzxSrHGKiJQGprul4nZQUJBRUI1cRERE5GoMw6Bdu3a8/PLLPPzww8DFLWdnz57NunXrSjg6kcvt3r2b4cOHs3379pIORUSkSEwmU7xhGEElHcftohkrIiIick8xmUzMnDmT/v3707FjR/Ly8njppZeUVJE70syZM5kxYwbTp08v6VBEROQqNGNFRERE7knjx4/H3d2dzMxMPD09yczMpE6dOjz77LMAREdH4+HhwZ/+9CfGjx/PV199hclk4s9//jMRERHExMQQHR2Nl5cXCQkJtGzZkk8//RSTyYSPjw9Dhgzh3//+N7m5uSxfvpwmTZqQmZnJ6NGjSUhIIDc3l+joaB577LESfhMiIiK3l2as3EYmk2kO0BM4aRiG/3/PVQGWAj6AHXjcMIwzJRWjiIiI3J0mT55MixYtKFu2LHFxcezbt4/nn3/emVhZtmwZ//d//8e//vUvbDYbu3fv5tSpUwQHB9O+fXsAdu3aRWJiIrVq1SI0NJRt27bRtm1bALy8vNi5cycffPAB06ZN45NPPmHq1Kl06tSJOXPmkJaWRkhICA899BDu7u4l9h7k9+VwGNhTMzmZnkM1Tzd8qrpjNptKOiwREbkFJb0r0Dyg+2/OTQS+MQyjIfDNf49FREREipW7uzsRERE89dRTuLm5ERgYyMmTJ/nll1/YvXs3lStXpk6dOmzdupWBAwfi4uJC9erV6dChAzt27AAgJCSE+++/H7PZjNVqxW63O8fv06cPAC1btnSeX79+PW+88QZWq5WwsDCys7M5evTo7/3oUkIcDoN1ib8yZM52xizexZA521mX+CsOx90xg1xE5F5VojNWDMOINZlMPr85/RgQ9t+v5wMxwITfLSgRERG5Z5jNZszm//09U//+/VmxYgW//vorERER1+1/6U4tLi4u5OXlXXbt0vOGYfD555/TuHHj4noEKUXsqZm8vnY/OXkOAHLyHLy+dj9NanhS39ujhKMTEZGiKukZK1dS3TCM4//9+legekkGIyIiIveOiIgIlixZwooVK+jfvz8A7dq1Y+nSpeTn55OSkkJsbCwhISFFGr9bt268++67FNS427VrV7HFLne+k+k5zqRKgZw8ByfTc0ooIhERKQ53YmLFybj4qeOqcyNNJtMfTCZTnMlkiktJSfkdIxMREZG7kZ+fH+np6dSuXZuaNWsC0Lt3bwICAmjevDmdOnXi73//OzVq1CjS+K+88gq5ubkEBATg5+fHK6+8Upzhyx2umqcbbq6FP367uZqp5ul2lR4iIlIalPiuQP9dCvTlJcVrfwTCDMM4bjKZagIxhmFcd76sdgUSERERkTtZQY2VguVAbq5mJvVoSne/GipgKyJ3Ne0K9Pv7AhgCvPHff64u2XBERERERG6d2Wyiu18NmtTw1K5AIiJ3kZLebnkxFwvVeplMpv8Ak7mYUFlmMpmeBo4Aj5dchCIiIiIixcdsNlHf20PFakVE7iIlvSvQwKtc6vy7BiIiIiIiIiIiUgR34lIgERERkRvmcBjYUzO1tEJERERKhBIrIiIiUmqpGKiIiIiUtDt6u2URERGRa7GnZjqTKgA5eQ5eX7sfe2pmCUcmIiIi9wolVkRERKTUOpme40yqFMjJc3AyPaeEIhIREQEPj5ItUO3j44PFYiEgIICuXbvy66+/XrWtzWZj7dq1zuOYmBi+/fbbW7q/3W7H39//lsYoTZRYERERkVKrmqcbbq6FP864uZqp5ulWQhGJiIjcGTZt2sSePXsICgrib3/721XbFUdiJS8vr8hx3g2UWBEREZFSy6eqO5N6NHUmVwpqrPhUdS/hyERE5F6XkZFB586dadGiBRaLhdWrVwMXZ3M0adKEoUOH0qhRIwYNGsSGDRsIDQ2lYcOGbN++HYDMzEwiIyMJCQkhMDDQ2T8xMZGQkBCsVisBAQEkJydfM4727dtz4MABsrOzGTZsGBaLhcDAQDZt2sSFCxd49dVXWbp0KVarlTfffJOZM2fy9ttvY7Va2bJlCykpKfTt25fg4GCCg4PZtm0bANHR0Tz11FOEhoby1FNP3cY3eedT8VoREREptcxmE939atCkhqd2BRIRkTtKuXLlWLlyJRUrVuTUqVO0bt2a8PBwAA4cOMDy5cuZM2cOwcHBfPbZZ2zdupUvvviCv/3tb6xatYqpU6fSqVMn5syZQ1paGiEhITz00EPMnDmT5557jkGDBnHhwgXy8/OvGceXX36JxWLh/fffx2QysXfvXpKSkujatSs//fQTf/nLX4iLi+O9994DICsrCw8PD8aNGwfAE088wdixY2nbti1Hjx6lW7du7N+/H4B9+/axdetWypcvfxvf5J1PiRUREREp1cxmE/W9PajvXbLr2UVERC5lGAYvvfQSsbGxmM1mfv75Z06cOAGAr68vFosFAD8/Pzp37ozJZMJisWC32wFYv349X3zxBdOmTQMgOzubo0eP8uCDDzJ16lT+85//0KdPHxo2bHjF+3fs2BEXFxcCAgJ47bXXGDZsGKNHjwagSZMm1KtXj59++um6z7Fhwwb27dvnPD537hwZGRkAhIeH3/NJFVBiRURERERERKTYLVq0iJSUFOLj4ylTpgw+Pj5kZ2cD4Ob2v1pgZrPZeWw2m531SgzD4PPPP6dx48aFxm3atCmtWrVizZo19OjRg48++ohOnTpddv9Nmzbh5eV1y8/hcDj4/vvvKVeu3GXX3N219BZUY0VERERERESk2J09e5Zq1apRpkwZNm3axJEjR26qf7du3Xj33XcxDAOAXbt2AXDo0CHq16/PmDFjeOyxx9izZ88NjdeuXTsWLVoEwE8//cTRo0dp3Lgxnp6epKenO9v99rhr1668++67zmObzXZTz3EvUGJFREREREREpJjk5eXh5ubGoEGDiIuLw2KxsGDBApo0aXJT47zyyivk5uYSEBCAn58fr7zyCgDLli3D398fq9VKQkICgwcPvqHxRo4cicPhwGKxEBERwbx583Bzc6Njx47s27cPq9XK0qVLefTRR1m5cqWzeO2MGTOIi4sjICCAZs2aMXPmzJt+J3c7U0H2q7QLCgoy4uLiSjoMERERERERuYft3r2b4cOHO3f3ETCZTPGGYQSVdBy3i2asiIiISLHr2LEj//d//1fo3PTp0xkxYgRffPEFb7zxxk2NN3ToUFasWAHAM888U6iI3m/FxMTw7bff3nzQvzFlyhQmTZpU6JzNZqNp06b88ssv9OvX74r9rnUtLCyMgr8I6tGjB2lpabccp9w4D4/LCxzPnDmTBQsWAIV/zm7Epd/Pq4mOjqZ27dpYrVb8/f354osvrtn+b3/7m/PrtLQ0PvjggxuOR0RK3syZMxk4cCCvvfZaSYcivyMlVkRERKTYDRw4kCVLlhQ6t2TJEgYOHEh4eDgTJ04s8tiffPIJzZo1u+r14kqsDBw4kKVLlxY6V/AMtWrVuuIv4Hl5eVe99ltr167lvvvuu+U45dZERUXd8DT6oho7diw2m43ly5cTGRmJw+G4attbTawYhnHN8UXk9oqKimLfvn107dq1pEOR35ESKyIiIlLs+vXrx5o1a7hw4QIAdrudX375hXbt2jFv3jxGjRoFXJwhMGbMGNq0aUP9+vWdCQnDMBg1ahSNGzfmoYce4uTJk86xL50lsG7dOlq0aEHz5s3p3LkzdrudmTNn8vbbbzvXhv92FkLBrIXjx4/Tvn1750yCLVu2FHqGRo0aUblyZX744QfnuWXLljFw4EDsdjv+/v4AzJs3j/DwcDp16uSMoeBaVlYWAwYMoGnTpvTu3ZusrCznWD4+Ppw6dQqAXr160bJlS/z8/Jg1a1ahWF9++WWaN29O69atndt0SvGJjo52bmVaYOPGjfTq1ct5/PXXX9O7d+9bvlfTpk1xdXXl1KlTLF68GIvFgr+/PxMmTABg4sSJZGVlYbVaGTRoEBMnTuTgwYNYrVZefPFFAN566y2Cg4MJCAhg8uTJwMV/vxo3bszgwYPx9/fn2LFjtxyriFzkcBgcSsng+0OpHErJwOG4O0ppSPHSdssiIiJS7KpUqUJISAhfffUVjz32GEuWLOHxxx/HZDJd1vb48eNs3bqVpKQkwsPD6devHytXruTHH39k3759nDhxgmbNmhEZGVmoX0pKCsOHDyc2NhZfX19Onz5NlSpViIqKwsPDg3HjxgEwe/bsK8b42Wef0a1bN15++WXy8/M5f/78ZW0KZt60atWK77//nipVqtCwYUPsdnuhdjt37mTPnj1UqVKl0LUPP/yQChUqsH//fvbs2UOLFi2uGMucOXOoUqUKWVlZBAcH07dvX6pWrUpmZiatW7dm6tSpjB8/no8//pg///nP13r1Ugw6duzIyJEjSUlJwdvbm7lz517281cUP/zwA2azmdzcXCZMmEB8fDyVK1ema9eurFq1ijfeeIP33nvPueOG3W4nISHBebx+/XqSk5PZvn07hmEQHh5ObGwsdevWJTk5mfnz59O6detbjlNELnI4DNYl/srra/eTk+fAzdXMpB5N6e5XA7P58v+fyb1LM1ZERETktrh0OVDBEpor6dWrF2azmWbNmjlnZMTGxjJw4EBcXFyoVasWnTp1uqzf999/T/v27fH19QUuJnNuRnBwMHPnziU6Opq9e/fi6el5WZuIiAhWrFiBw+G45jN06dLlivePjY3lySefBCAgIICAgIAr9p8xY4ZzVsqxY8dITk4GoGzZsvTs2ROAli1bXpbQkdvDZDLx1FNP8emnn5KWlsZ3333Hww8/XOTxCmZQjRs3jqVLlxIXF0dYWBje3t64uroyaNAgYmNjrzvO+vXrWb9+PYGBgbRo0YKkpCTnz0q9evWUVBEpZvbUTGdSBSAnz8Hra/djT80s4cjkTqPEioiIiNwWjz32GN988w07d+7k/PnztGzZ8ort3NzcnF/fjt0KXV1dnTUnHA6Hc3lS+/btiY2NpXbt2gwdOtRZwPRSderUwdfXl82bN/P5558TERFxxXu4u7sXOb6YmBg2bNjAd999x+7duwkMDCQ7OxuAMmXKOGf5uLi4kJeXV+T7yM0ZNmwYn376KYsXL6Z///64uhZ9ondBjZUtW7bQrl27Io9jGAaTJk3CZrNhs9k4cOAATz/9NHBrP4MicmUn03OcSZUCOXkOTqbnlFBEcqdSYkVE5DZJTU3FarVitVqpUaOGc1cIq9Xq/MXuSi6tzyBSmnl4eNCxY0ciIyOvOtPjatq3b8/SpUvJz8/n+PHjbNq06bI2rVu3JjY2lsOHDwNw+vRpADw9PUlPT3e28/HxIT4+HoAvvviC3NxcAI4cOUL16tUZPnw4zzzzDDt37rxiLAMHDuT/2bv3uJzv//Hjj6uiUiHRNLHKMVd1XR0VSpph5DSH5hibDyOHsZkxH2L2m43Nxnxms1mz+TiP4YOP2UQ5jFAIw5KZoZzSQXHV6/dH394frRwXZZ73260b1/V+v17v5/t9vem6ntfr9XyNGTMGNzc3nJ2d7/s8/v3vfwNw+PBhDh48WGKfjIwM7O3tqVKlCseOHWP37t33dQzxcDz99NM8/fTTTJ8+nUGDBpVp3wEBAWzbto2LFy+Sn5/PkiVLaNWqFVCYTCu6R/98L7dr146FCxeSlZUFwNmzZ4vVHxJClC1HO0ssLYp/ZLa0MMPRzvI2LcSTShIrQgjxkDg4OGjfKr7yyivaN5aJiYlUrly5vMMT4pHo3bs3SUlJ951Y6datGw0bNqRp06YMGDCAoKCgEvvUqlWLzz//nBdeeAGDwaCNJunUqROrV6/Witf+4x//YNu2bRgMBnbt2qV9sx8bG4vBYMDb25tly5YxevToUmPp2bMnycnJ930OAMOGDSMrKwt3d3cmT55c6qid9u3bYzKZcHd3580335TpHA9RTk4Ozs7O2s+HH354x/379u1L3bp1cXd3L3W7yWTSRlwNHjz4rksvF3FycmLGjBm0bt0ag8GAr68vXbp0AWDIkCF4eXnRt29fHBwcaNGiBR4eHowbN462bdvSp08fgoKC8PT0pEePHsUSL0KIsuXiYMOEDu5acqWoxoqLg4wQE8XpHsaQ2/Lg5+en7vWXmRBCPGrR0dHat/djx44lKyuLmjVrEhMTg5OTE/v27dMKI7Zt25aNGzdy+PDhco5aCCGebCNGjMDb21ubbnOrvLw8GjRowOHDh6lWrVo5RCeEeBQKChSpl7JJy8zD0c4SFwcbKVz7AHQ63T6llF95x/GwyIgVIYR4RJRSjBw5kpUrV2qJlLfeegsoa1oCVAAAIABJREFUnMs/d+5ckpKSyjlKIYQQUFgs+ODBg1rx4VslJCRgNBoZPny4JFWE+JszM9PhVsuWQDcH3GrZSlJFlEqWWxZCiEckLy+Pw4cP89xzzwGQn5+Pk5MTV69e5erVq4SEhADQv39/Nm7cWJ6hCiHEE6+oLk9p/Pz8OHr06COMRgghREUmiRUhhHhElFLo9Xp27dpV7PmrV6+WU0RC3DsZCi0qErkfhRBCVCSSWBFCiEfE0tKS9PR0du3aRVBQEDdv3uT48ePo9XqqV69OfHw8LVu2ZPHixeUdqhDFFBQoNiWf590NR8kzFWjF+9rra8uHWfHIyf0ohBCiopEaK0II8YiYmZmxcuVKxo8fj8FgwGg0snPnTgC++uoroqKiMBqN/F2Kiou/j9RL2dqHWIA8UwHvbjhK6qXsco5MPInkfhRCCFHRyIgVIYR4BKKjo7W/b9++vcR2X1/fYoVr33///UcRlhD3JC0zT/sQWyTPVEBaZh5utWzLKSrxpJL7UQghREUjI1aEEEIIcUeOdpZYWhR/y2BpYYajnWU5RSSeZHI/CiGEqGgksSKEEEKIO3JxsGFCB3ftw2xRTQsXB5tyjkw8ieR+FEIIUdHIVCAhhLhHsgqFeFKZmelor69Nk9p2cv+Lcif3oxBCiIpGEitCCHEPZBUK8aQzM9PhVstWaliICkHuRyGEEBWJTAUSQoh7IKtQCCGEEEIIIUojiRUhhLgHd1qFQgghhBBCCPHkksSKEELcA1mFQgghhBBCCFEaSawIIcQ9kFUohBBCCCGEEKWR4rVCCHEPZBUKIYQQQgghRGkksSKEEPdIVqEQQgghhBBC/JlMBRJCCCGeQObm5hiNRu1nxowZd9x/7dq1t93H1rb0ZOP169dp1aoV+fn5JbYNHDiQlStXAjB48GCOHDlyn2dw724X3+TJk9myZUuZH+///b//V+xx8+bNH7ivF198kRMnTvzVkIQQQgjxEOmUUuUdQ5nw8/NTCQkJ5R2GEEII8ViwtbUlKyvrofY1b948TCYTo0ePLrFt4MCBhIeH06NHjzKJ4UHiexyOt23bNr799lsWLFhQJv0JIYQQ5UGn0+1TSvmVdxwPi4xYEUIIIYTGxcWFKVOm4OPjg6enJ8eOHQMgJiaGESNGAHDq1CmCgoLw9PRk0qRJt+1r8eLFdOnSBQClFCNGjKBx48a0adOGtLQ0bb/Q0FASEhLIz89n4MCBeHh44OnpyezZswFYsGAB/v7+GAwGunfvTk5ODlCYnBk2bBiBgYG4ubkRGxvLSy+9hLu7OwMHDiwWy5gxY9Dr9Tz77LOkp6dr7YtGzWzYsIEmTZrg6+vLqFGjCA8PByA6OppZs2Zp/Xh4eJCamgpA165d8fX1Ra/X8/nnnwPw5ptvcv36dYxGI3379gX+N2JGKcW4ceO081u2bBkAsbGxhIaG0qNHD5o0aULfvn0p+uIrODiYLVu2YDKZ7u0FFEIIIcQjJ4kVIYQQ4glU9OG/6KfoQz5AzZo12b9/P8OGDSuWVCgyevRohg0bxqFDh3Byciq1/xs3bpCSkoKLiwsAq1ev5pdffuHIkSMsWrSInTt3lmiTmJjI2bNnOXz4MIcOHWLQoEEAvPDCC+zdu5ekpCTc3d358ssvtTZXrlxh165dzJ49m86dOzNmzBiSk5M5dOgQiYmJAGRnZ+Pn50dycjKtWrVi6tSpxY6bm5vL0KFD2bhxI/v27dMSL3ezcOFC9u3bR0JCAnPmzOHSpUvMmDEDa2trEhMTWbx4cbH9v/vuOxITE0lKSmLLli2MGzeOc+fOAXDgwAE++ugjjhw5QkpKCjt27ADAzMyMBg0akJSUdE8xCSGEEOLRk8SKEEII8QQq+vBf9BMREaFte+GFFwDw9fXVRmfcaseOHfTu3RuA/v37l9r/xYsXqV69uvZ4+/bt9O7dG3Nzc55++mnCwsJKtHFzcyMlJYWRI0eyadMmqlatCsDhw4cJDg7G09OTxYsXk5ycrLXp1KkTOp0OT09PnnrqKTw9PTEzM0Ov12uxm5mZaefXr18/4uPjix332LFjuLm54erqCqCd293MmTMHg8FAYGAgZ86cuWstlPj4eO0aPPXUU7Rq1Yq9e/cCEBAQgLOzM2ZmZhiNxmLX3dHRkT/++OOeYhJCCCHEoyeJFSGEEEIUY2lpCRQWuL3dFBSd7s5LjVtbW5Obm3tfx7W3tycpKYnQ0FDmz5/P4MGDgcIpO5988gmHDh1iypQpxfotitXMzEz7e9HjB439VhYWFhQUFGiPi44dGxvLli1b2LVrF0lJSXh7e9/3+d7q1tj/fN1zc3OxtrZ+4L6FEEII8XBJYkUIIYQQ96VFixYsXboUoMR0lyL29vbk5+dryYaQkBCWLVtGfn4+586dY+vWrSXaXLx4kYKCArp378706dPZv38/AJmZmTg5OXHz5s3bHu9OCgoKtFoq//73v2nZsmWx7Y0bNyYlJUUbJXLrtCgXFxctjv3793Pq1CkAMjIysLe3p0qVKhw7dozdu3drbSpVqsTNmzdLxBEcHKxdg/T0dLZv305AQMBd4z9+/DgeHh73d9JCCCGEeGQksSKEEEI8gf5cY+XNN9+857Yff/wx8+bNw9PTk7Nnz952v7Zt22rTbrp160bDhg1p2rQpAwYMICgoqMT+Z8+eJTQ0FKPRSL9+/Xj33XcBePvtt2nWrBktWrSgSZMm93mmYGNjw549e/Dw8OCnn35i8uTJxbZbW1vzr3/9i/bt2+Pr64udnR3VqlUDoHv37ly+fBm9Xs8nn3xCo0aNAGjfvj0mkwl3d3fefPNNAgMDtf6GDBmCl5eXVry2SLdu3fDy8sJgMBAWFsb7779P7dq17xj7hQsXsLa2vut+QgghhCg/styyEEIIIR6K/fv3M3v2bL755pvyDuWusrKysLW1RSlFVFQUDRs2ZMyYMeUdFrNnz6Zq1aq8/PLL5R2KEEII8cBkuWUhhBBCiAfg4+ND69atyc/PL+9Q7mrBggUYjUb0ej0ZGRkMHTq0vEMCoHr16kRGRpZ3GEIIIYS4AxmxIoQQQgghxN+Era0tWVlZ2uOYmBgSEhL45JNPbtvmXvb5q0JDQzl37hxWVlZUrlxZS2aWl9TUVMLDwzl8+HC5xSDEk0RGrAghhBCiQisoUKSkZ7E75RIp6VkUFPw9vjQRQvy9LF68mKSkJIYPH864cePKOxwhhCgzklgRQgghHmMFBYpNyeeJXLiHUUsOELlwD5uSz0tyRQhRQnp6Ot27d8ff3x9/f3927Nhxz/tER0fz0ksvERoaipubG3PmzNHadO3aFV9fX/R6PZ9//vld4wgKCtIKX2dlZfHss8/i4+ODp6cn33//PQBvvvkm8+bN09pER0cza9YsAGbOnIm/vz9eXl5MmTIFKByB4u7uzj/+8Q/0ej1t27bl+vXrAJw8eZI2bdpgMBjw8fHh119/LRZPamoqwcHB+Pj44OPjw86dOwGIiopi7dq1QGHx6ZdeegmAhQsX8tZbb931PIUQTw5JrAghhBCPsdRL2by74Sh5pgIA8kwFvLvhKKmXsss5MiFEefjzil+3roI1evRoxowZw969e1m1ahWDBw8u0f5O+xw7doz//ve/7Nmzh6lTp2rLii9cuJB9+/aRkJDAnDlzuHTp0h1j3LRpE127dgXAysqK1atXs3//frZu3cprr72GUoqIiAiWL1+utVm+fDkRERFs3ryZEydOsGfPHhITE9m3bx/bt28H4MSJE0RFRZGcnEz16tVZtWoVAH379iUqKoqkpCR27tyJk5NTsXgcHR354Ycf2L9/P8uWLWPUqFFA4RLpcXFxQOGqZUeOHAEgLi6OkJCQe3g1hBBPCovyDkAIIYQQDy4tM09LqhTJMxWQlpmHWy3bcopKCFFerK2tSUxM1B4X1U8B2LJli5YcALh27Vqxeix326djx45YWlpiaWmJo6MjFy5cwNnZmTlz5rB69WoAzpw5w4kTJ3BwcCgRW9++fblx4wZZWVlajEopJk6cyPbt2zEzM+Ps2bNcuHABb29v0tLS+OOPP0hPT8fe3p66devy8ccfs3nzZry9vYHCES8nTpygXr16uLq6anVbfH19SU1NJTMzk7Nnz9KtWzegMJHzZzdv3mTEiBEkJiZibm7O8ePHgcLEykcffcSRI0do2rQpV65c4dy5c+zatavYiB0hhJDEihBCCPEYc7SzxNLCrFhyxdLCDEc7y3KMSghRERUUFLB79+5Skws5OTn06dOHS5cu4ezsjKWlJW+88YaWkACwtPzf/yvm5ubaFJo6derw3nvv8cknn2Bvb09ubm6px1+8eDG+vr6MGzeOkSNH8uGHH/Luu+9y9epV9u3bR6VKlXBxcdHah4WF8dxzz/HHH39ga2tL69atcXR0ZMKECSVW7lq7di2XL18uFl/RVKDbSUtLY9asWWRlZfHUU0+RlJREQUGBdn3q1KnDyZMnGT9+PN26dePy5cssX74cW1tb7Ozs7nK1/+dOxYH/XGxYCPF4kqlAQgghxGPMxcGGCR3csbQo/JVuaWHGhA7uuDjYlHNkQoiKpm3btsydO1d7fOuokQ0bNhASEkJERAS9e/dm6dKl/P7778VGv5SmoKAAe3t7rKysyMrKYvfu3XfcX6fT8fbbb7Nr1y62b99OfHw8jo6OVKpUia1bt3L69GkAcnNz+c9//kN+fj61atViz549zJ07l7p167Jw4UItGXH27Fn++OMPvLy8SkzxAbCzs8PZ2Zk1a9YAkJeXR05OTrF9MjIycHJywszMjG+++abYEvHOzs7a1J/g4GBmzZpFcHDwHc9RCPHkkRErQgghxGPMzExHe31tmtS2Iy0zD0c7S1wcbDAz05V3aEKICmbOnDlERUXh5eWFyWQiJCSE+fPnc/ToUczNzXnllVfo0aMHUVFRfPPNN5hMJpKTk5k3bx6bN2/mzJkzLFq0iKioKK1PW1tbTCYTAwYM4MaNGwQGBnL9+nVeeuklDh8+zM2bN4mOjgZg3bp1TJs2jaysLKpUqcLrr79Obm4uCxcuZOXKlbRv354mTZoAhaNbWrVqxf79+6lZsyZOTk44OTkxa9YsPv74Y9zc3Lhx4wb5+fmEhobSt29fLSkTHR3Nhg0bSEtLY9GiRfTt25c5c+YwefJkLl68iKWlJTVr1iQvLw+A4cOHEx4eTnR0NDY2NpiZmXHs2DGaNGlCvXr1SElJoWrVqvTq1YvLly9Tt25ddDodp0+fpl69etSvX59Dhw7x448/Mn36dG7cuIGDgwOLFy/mqaeeKvYanDp1ij59+pCVlUWXLl0ewasuhHgUJLEihBBCPObMzHS41bKVmipCiBLTSgYOHMjAgQMBqFmzJsuWLSvRxtnZmV69et12n88//5wOHTowadIk8vLyaNGiBevWrUOn06HT6di4cSOxsbHMmjWL9evXM3HiRMLCwli4cCFXr14lICCAAwcOsGLFCr788ksOHjxIjRo1irX5s+TkZHx8fPj6669LbBs9ejRXrlxh3bp1xMfHY21tTWxsLK1atdL2sbCw4JdffiEzM5PGjRtz/vx5Dh48yMCBA/n5558xmUz4+PgA0LBhQ5ydnVm/fj0NGzbk559/Zvjw4fz000/4+PgQEhKCo6MjeXl5nDt3jkWLFuHn50dcXBwtW7bE0dGRKlWq0LJlS3bv3o1Op+OLL77g/fff54MPPigR+7BhwxgwYECxVY+EEI83SawIIYQQQgghNFFRUcTHx1O5cmX27t3L5s2bOXjwICtXrgQKp86cOHGCRo0aldp+8+bNrF27VlseOTc3l99++w2A5557jho1atx3TN26ddOO+d133wHQuXNnrK2tS92/tEK7cXFxdOvWjSpVqmjtoTAZtXPnTnr27Km1LxrNcqvmzZuzY8cOtm/fzsSJE9m0aRNKKW1q0O+//05ERATnzp3jxo0buLq6luhjx44d2mpF/fv3Z/z48fd9LYQQFY8kVoQQQgghhHiC6fV67cM+wLx587h48SJ+fn5AYQ2WuXPn0q5du2LtUlNTS+1PKcWqVato3Lhxsed//vlnbGzurf6TXq/XllEGWL16NQkJCbz++uvac3fq68+Fdk0m0233LSgooHr16netJxMSEkJcXBynT5+mS5cuvPfee+h0Ojp27AjAyJEjGTt2LJ07dyY2NlabAvVnOp1M1RTi70aK1wohhBBCCFHBFBQoUtKz2J1yiZT0LAoK1EM7VlhYGLm5uXz66afac7cWeG3Xrh2ffvopN2/eBOD48eNkZ2fftr927doxd+5clCqM+cCBA6XuZ2dnR2ZmZqnb+vTpw44dO1i7dm2pMT2IkJAQ1qxZw/Xr18nMzGTdunUAVK1aFVdXV1asWAEUJoaSkpJKtA8ODubbb7+lYcOGmJmZUaNGDTZs2EDLli2BwpE8derUASh1ChNAixYtWLp0KVBYR0YI8fcgiRUhhBBCCCEqkIICxabk80Qu3MOoJQeIXLiHTcnnH1pyRafTsWbNGrZt24arqysBAQFERkby3nvvATB48GCaNm2Kj48PHh4eDB069I4jQP75z39y8+ZNvLy80Ov1/POf/yx1Py8vL8zNzTEYDMyePbvYNmtra9avX8/8+fNxc3MjKCiI6dOnM2nSpAc+Tx8fHyIiIjAYDDz//PP4+/tr2xYvXsyXX36JwWBAr9fz/fffl2jv4uKCUoqQkBAAWrZsSfXq1bG3twcKi+b27NkTX19fatasWWoMH3/8MfPmzcPT05OzZ88+8LkIISoWXVEm+XHn5+enEhISyjsMIYQQQggh/pKU9CwiF+4hz1SgPWdpYcbXLwVIkWohxGNJp9PtU0r5lXccD4uMWBFCCCGEEKICScvMK5ZUAcgzFZCWWbKgqhBCiPIniRUhhBBCCCEqEEc7Sywtir9Nt7Qww9HO8jYthBBClCdJrAghhBBCCFGBuDjYMKGDu5ZcsbQwY0IHd1wc7m1FnUdZ+FYIIYQstyyEEEIIIUSFYmamo72+Nk1q25GWmYejnSUuDjaYmd19md6iwrfvbjhKnqlAS8q019e+p/YPIjU1lfDwcA4fPqw9Fx0dja2tbbHlkW+VkJDAokWLmDNnzkOJSQghHiVJrAghhBBCCFHBmJnpcKtle9/FalMvZWtJFSiszfLuhqM0qW1XoQrf+vn54ef31+tY5ufnY25uXgYRCSHEg5OpQEIIIYQQQvxNVLTCt6GhoYwfP56AgAAaNWpEXFwcALGxsYSHhwOQlZXFoEGD8PT0xMvLi1WrVgGwZMkSPD098fDwYPz48Vqftra2vPbaaxgMBnbt2oWtrS1vvfUWBoOBwMBALly48OhPVAjxRJPEihBCiHJ36dIljEYjRqOR2rVrU6dOHe3xjRs3yjs8IYR4bFTEwrcmk4k9e/bw0UcfMXXq1BLb3377bapVq8ahQ4c4ePAgYWFh/PHHH4wfP56ffvqJxMRE9u7dy5o1awDIzs6mWbNmJCUl0bJlS7KzswkMDCQpKYmQkBAWLFjwqE9RCPGEk8SKEEKIcufg4EBiYiKJiYm88sorjBkzRntcuXJlTCbTQznuw+pXCCHKy18tfPsgdLrSa7cUPf/CCy8A4OvrS2pqaon9tmzZQlRUlPbY3t6evXv3EhoaSq1atbCwsKBv375s374dAHNzc7p3767tX7lyZW30y+2OIYQQD5PUWBFCCFEhDRw4ECsrKw4cOECLFi2IiooiKiqK9PR0qlSpwoIFC3BycsLLy4tTp05hZmZGdnY2TZo0ISUlheTkZF555RVycnKoX78+CxcuxN7entDQUIxGI/Hx8fTu3ZvXXnutvE9VCCHKzF8pfPugHBwcuHLlSrHnLl++jKurKwCWloWjZczNzcskoW1lZVWsrkqlSpW0JE5ZHUMIIe6HjFgRQghRYf3+++/s3LmTDz/8kCFDhjB37lz27dvHrFmzGD58ONWqVcNoNLJt2zYA1q9fT7t27ahUqRIDBgzgvffe4+DBg3h6ehYbfn7jxg0SEhIkqSKE+FsqKnwb6OaAWy3bh5pUgcKaJ05OTvz0009AYVJl06ZNtGzZ8p7aP/fcc8ybN097fOXKFQICAti2bRsXL14kPz+fJUuW0KpVq4cSvxBC/FWSWBFCCFFh9ezZE3Nzc7Kysti5cyc9e/bEaDQydOhQzp07B0BERATLli0DYOnSpURERJCRkcHVq1e1N+GRkZHaEPKiNn93trblv/pHdHQ0s2bNeuD2sbGxWvLMy8uLNm3akJaWVoYRViw6na5Ysm/WrFlER0cDMH/+fBYtWnTbtrcWAj1//jwvvvgi9evXx9fXlw4dOnD8+PESbUJDQ0lISCiT2AcOHMjKlStxcXGhX79+HDly5J7ahYaGUq9ePZRS2nNdu3bFxsYGa2tr9Ho91atXv+96Sw96/5ubm2M0GvHw8KBnz57k5OQ8UD9/1rx58wduGxsby86dO8skjodp0aJFvP322xiNRsLCwpgyZQr169e/p7aTJk3iypUreHh4YDAY2Lp1K05OTsyYMYPWrVtjMBjw9fWlS5cuD/kshBDiwchUICGEEBWWjU1hTYCCggKqV69OYmJiiX06d+7MxIkTuXz5Mvv27SMsLIysrKx76ldULCaTCQuL4m9NgoODWb9+PQATJkxg3rx5JYpfltbucWRpacl3333HhAkTqFmzZrFtr7zyyj31oZSiW7duREZGsnTpUgCSkpK4cOECjRo1umv7sriWH330UYn476R69ers2LGDli1bcvXqVS1pWr9+fQ4fPvyXYrlf1tbW2v8zffv2Zf78+YwdO/au7e523f5KYiQ2NhZbW9u/lJx5FJo2bcrWrVtLPB8bG6v9vWbNmlr9k9DQUEJDQ4HCRNjXX39dom3v3r3p3bt3ief//H/8rY979OhBjx49HuAMhBDiwcmIFSGEEBVe1apVcXV1ZcWKFUDhh8ekpCSg8A25v78/o0ePJjw8HHNzc6pVq4a9vb22rOc333wjQ8iBdevW0axZM7y9vWnTpg0XLlygoKAAFxcXrl69qu3XsGFDLly4QHp6Ot27d8ff3x9/f3927NgBFI5EeemllwgNDcXNzY05c+Zobd955x0aNWpEy5Yt+eWXX7Tnf/31V9q3b4+vry/BwcEcO3YMKBzp8Morr9CsWTPeeOON28aulCIzMxN7e3sthv79+9OiRQv69+9PamoqYWFheHl58eyzz/Lbb7+Rn5+Pq6srSimuXr2Kubm5NnIpJCSEEydO3PFcHjULCwuGDBnC7NmzS2y7dfTPyZMnadOmDQaDAR8fH3799Veg8MNlq1atSEpKIi4uThsFcvHiRUaNGoWnpyeenp40bdoUT09PbfRPbGwsTk5OVK9eHRsbGyIjIwkNDaVHjx44ODhQrVo1vLy8eP3119m3bx+tWrXC19eXdu3akZycTNu2bVmzZg2ffvopSim6dOlCQkIC3377rTYCZOjQoSxbtoyBAwcCsGLFCjw8PEhISODatWtaEui7777TCp0CpKam4uHhAUBMTAwWFhY899xzuLi48PLLL+Pv74+3tzfe3t74+/vj6elJu3btyMnJwcvLi4iICIYNG0blypVp1aoVHTp0YPny5TRo0IAtW7YUO5eihE6R4OBgTp48yeXLl+natSteXl4EBgZy8OBB7TW59R6MiYmhS5cuhIaG0rBhw2IJwKIRNLGxsdq1bdKkCX379tVepw0bNtCkSRN8fX0ZNWoU4eHhpKamMn/+fGbPno3RaCQuLq7Uex0K/y2NGjWK5s2b4+bmxsqVKx/0VhRCCHG/lFJ/ix9fX18lhBDi8TdlyhQ1c+ZMFRkZqVasWKE9n5KSotq1a6e8vLyUu7u7mjp1qrZtxYoVClCxsbHacwcOHFDNmjVTnp6eqkuXLury5ctKKaVatWql9u7d++hOqJzY2NiUeO7y5cuqoKBAKaXUggUL1NixY5VSSo0aNUotXLhQKaXU7t271bPPPquUUqp3794qLi5OKaXU6dOnVZMmTZRSha9RUFCQys3NVenp6apGjRrqxo0bKiEhQXl4eKjs7GyVkZGh6tevr2bOnKmUUiosLEwdP35cO0br1q2VUkpFRkaqjh07KpPJVCLerVu3qqpVqyqDwaCcnZ1V48aNVUZGhhaDj4+PysnJUUopFR4ermJiYpRSSn355ZeqS5cuSiml2rVrpw4fPqzWrVun/Pz81PTp01Vubq5ycXG547mUBxsbG5WRkaGeeeYZdfXqVTVz5kw1ZcoULc6iaxkQEKC+++47pZRS169fV9nZ2dq1mjp1qho9erQKDAxUcXFx6vr168rZ2Vn98ssvauXKlap27drqgw8+UOfPn1eWlpZq48aNauvWrcra2lqlpKQok8mkDAaDsrGxUQcPHlSNGjVSzZo1U3FxcSotLU0FBQWptLQ0pZRSS5cu1f4tRkZGqjfffFMBqnnz5mr58uUqPDxcValSRSml1LBhw9SIESNUZGSkUkopDw8P9fvvv6tWrVqpH374QXl6eiqTyaSee+45derUKVWlShVlZWWl3N3dlZWVlRo+fLj66quvlE6nU9euXVNpaWnK2tpaBQYGKqWUcnV1VX369FFKKVW1alXtuDExMer5559XU6ZMUVOnTlXVq1dXkyZNUl27di1xLoMGDdL+3dy8eVN17txZ/etf/1IjRoxQ0dHRSimlfvzxR2UwGLTX5NZ78KuvvlK1a9dWFy9eVDk5OUqv12v/1xT1W/Q6nTlzRuXn55d4nVJSUpRSSr344ouqY8eOJV57pW5/r0dGRqoePXqo/Px8lZycrOrXr/+X7kchhChLQIKqAHmDh/Xz+I+bFUII8bdSVFPiz1xdXdm0aVOp23r06FGsRgOA0Whk9+7dJfa9dVj6k+b3338nIiKCc+fOcePGDW3FjoiICKZNm8ZPLKdwAAAgAElEQVSgQYO0OjVQuATqrbUyrl27pg2579ixI5aWllhaWuLo6MiFCxeIi4ujW7duVKlSBSicpgUUq5FTJC8vT/t7US2d0tw6Fei9997jjTfeYP78+Vr/1tbWAOzatYvvvvsOgP79+2ujX4KDg9m+fTunTp1iwoQJLFiwgFatWuHv768do7RzcXZ2fqBr/FdVrVqVAQMGMGfOHO3cbpWZmcnZs2fp1q0bULg6SpGAgACqV6/OlStXMBqNpKamYmdnh6urK40aNeLTTz+lb9++xMfHM3bsWKpVq0ZycjK+vr44OzvTvXt3TCYTv/32G66urri7u2NlZcXVq1dZsWIFAwcO5PDhwzz33HMA5Ofnc+bMGfr168e0adPw9fXVRhTt3buXffv2kZubi9Fo5Pr16xgMBu3eaNGiBQMHDtRGibRs2ZKlS5dy/fp1XFxcgMKpQOvXryc8PJx58+YRExODubk5dnZ22NnZUaVKFe11SktLw8HBAQB/f39iY2P59ttv+fnnn+nZsydt2rShS5cutG7dmp9++ok+ffowYcKEYufi5OTE9evXMRqNQOG98/LLL9OsWTNWrVoFQFhYGJcuXeLatWtA8XsQCouwFsXxwgsvEB8fj5+fX7HXMCAgQIu76HWytbXFzc1N+zfZu3dvPv/881Lvkdvd61BYn8bMzIymTZty4cKFUtvfSUGBIvVS9iNbTUgIIf4uZCqQEEII8YQYOXIkI0aM4NChQ3z22Wfk5uYCEBQUxMmTJ0lPT2fNmjXaVIyCggJ2795NYmIiiYmJnD17VpvSULR8Ktx9edNba+QU/Rw9elTbfq81bzp37lysCPG9tAsJCSEuLo49e/bQoUMHrl69SmxsLMHBwdo+93Muj8Krr77Kl19+SXZ29n21s7S0RK/Xs2/fvvs6j3PnznH27Fl+/PFHDh48SGBgIGZmZlhYWLBnzx4aNGjA/v37GTp0KHq9XnsNDx06dNvipEopIiMjqVKlComJifzyyy9aog0Ki/FOnz6dvLw8+vfvz/PPP8+oUaPo1avXHWMtWlK36O+3JuSKznfFihVUqlSJ/fv3s3TpUvLz86lbty5PPfUU6enpnDx5khYtWtCgQQOtbVRUFJs3b9ZqrCQmJjJ37lwqV658x3j+fA/eGl9pj+Hh3m+39v3nZPPdFBQoNiWfJ3LhHkYtOUDkwj1sSj5PQcH99SOEEE8iSawIIYQQT4iMjAzq1KkDUKxQpE6no1u3bowdOxZ3d3ftG/e2bdsyd+5cbb/SigffKiQkhDVr1nD9+nUyMzNZt24dcOcaOfcjPj7+th/kmzdvrtXpWLx4sZY4CQgIYOfOnZiZmWFlZYXRaOSzzz4jJCTkvo//qNSoUYNevXrx5ZdflthmZ2eHs7Mza9asAQpH/ty6ck1YWBh5eXkkJycD0LhxY06cOMGSJUsIDg7W/kxPTycjIwO9Xk92drZWm+jChQvs2bMHKBxplJGRgYuLC7179+bXX38lPT2dXbt2AXDz5k30ej3//ve/AThw4ABXrlwBCkeNrFy5EgcHB44ePcrFixdZvHixFuevv/5Ks2bNcHFxwd7eHmdnZyZMmFBqodJbWVtbc/ToUQoKCoqdd8OGDTlx4gQFBQXMmzcPc3Nz3nvvPaAw0VJQUECPHj3YsWMHQUFBNG3alGvXrvHpp5+SmJjIyy+/rF2zPwsODtZij42NpWbNmlStWrXUfX/44QcuX77M9evXWbNmDS1atLjj+RRp3LgxKSkpWmHXopXOoPA1z8zM1B7f7l7/q1IvZfPuhqPkmQoAyDMV8O6Go6Reur8EnxBCPIlkKpAQQogyJUPJK4acnJxi01nGjh1LdHQ0PXv2xN7enrCwME6dOqVtj4iIwN/fn5iYGO25OXPmEBUVhZeXFyaTiZCQEG0aTml8fHyIiIjAYDDg6OhYbLrN4sWLGTZsGNOnT+fmzZu8+OKLGAyGu55HXFwcRqMRpRTVqlXjiy++KHW/uXPnMmjQIGbOnEmtWrX46quvgMJv8OvWrUtgYCCAllzw9PS867HL02uvvcYnn3xS6rZvvvmGoUOHMnnyZCpVqqQlrKAwSbZ69WpCQkJ44403mDlzJvXq1ePtt9/G3NycGjVqsGDBAhYuXIibmxs1a9bEysqKatWq0aRJE+rWrYuHhwcZGRlkZmbSpUsXUlJSsLKy4sMPP8RgMDBq1CgyMjIwmUwMHjyYjRs3smfPHvz8/KhXrx4Abm5uTJ8+nfHjx2M0GrGwsOD555/X4hw3bhwnTpwgJSWFTp06YTQa8fb2vut1CQoKIjw8nFq1ahUbrdKnTx8++OADvLy8yMjIICcnB29vb8aNG8fp06dp2rQpderUwczMjE6dOlG5cmVWrlxZ7FxeffXVUo9ZVODYy8uLKlWqlLp6TZGAgAC6d+/O77//Tr9+/UpMA7oda2tr/vWvf9G+fXtsbGyK/dvp1KkTPXr04Pvvv2fu3Lm3vdf/qrTMPC2pUiTPVEBaZh5utcp/+XYhhKjIdPc7TLCi8vPzUwkJCeUdhhBCPNGKhpIXfetpaWHGhA7utNfXluSKEKJcZGVlYWtry5YtW+jUqROnTp2idu3aZX6cmJgYEhISbpsQu5uiOJVSREVF0bBhQ8aMGVPGUd5eSnoWkQv3FEuuWFqY8fVLAZJYEUL8ZTqdbp9S6t6yzY8hmQokhBCizMhQciFERRMeHo6TkxPPP/88Y8aMeShJlbKwYMECjEYjer2ejIwMhg4d+kiP7+Jgw4QO7lhaFH48KEqMuzjcWw0kIYR4ksmIFSGEEGVmd8olRi05UOL5Ob29CXRzKIeIhBBC3CuZyimEeFj+7iNWpMaKEEKIMuNoZ4mlhVmJoeSOdpZ3aCXE30tZfTiVD7niUTMz0+FWy1am/gghxH2SxIoQQogyUzSU/M81VmQo+YOTD9ePl7KqMyT1ioQQQojHhyRWhBBClBkzMx3t9bVpUttOEgFlQD5cP35uV2eoSW27+xoFUFb9CCGEEOLhk+K1QgghylTRUPJANwfcatk+cQkAc3NzjEYjHh4e9OzZk5ycnAfu627FgBMTE9mwYYO2/9q1a5kxY0aJfmJiYqhVqxZGo5GmTZuyYMGCOx73o48+KhZ3hw4duHr1KgC2tvKh/k7utGRtefQjhBBCiIdPEitCCCFEGbK2tiYxMZHDhw9TuXJl5s+ff0/tTCZTiefu9uH6z4mVzp078+abb5baf0REBImJicTGxjJx4kQuXLhw21j+nFjZsGED1atXv6fzeNIV1Rm61YPUGSqrfoQQQgjx8EliRQghhHhIgoODOXnyJOvWraNZs2Z4e3vTpk0bLakRHR1N//79adGiBf379ycwMJDk5GSt/av9u3Lj/Amyfj/Gkc9GkTzvFY59PpqsC6e5ceMGkydPZtmyZRiNRpYtW0ZMTAwjRoy4Y0yOjo7Ur1+f06dPM2zYMPz8/NDr9UyZMgWAOXPm8Mcff9C6dWtat24NgIuLCxcvXnxIV+nvpayWrJWlb4UQQojHh9RYEUIIIR4Ck8nExo0bad++PS1btmT37t3odDq++OIL3n//fT744AMAjhw5Qnx8PNbW1syePZvly5czdepUzp07x5WLacwe0pW3v0vAffBsrCwr0b5GOv+a+Q5tvlvFtGnTSEhI4JNPPgEKp/zcTUpKCikpKTRo0IB33nmHGjVqkJ+fz7PPPsvBgwcZNWoUH374IVu3bqVmzZoP8xL9LZVVnSGpVySEEEI8PiSxIoQQQpSh69evYzQagcIRKy+//DK//PILERERnDt3jhs3buDq6qrt37lzZ6ytrQHo1asXbdu2ZerUqSxfvpwePXrQXl+bqvkNeeuN1zh35hRLLcy5efPmfce1bNky4uPjsbS05LPPPqNGjRrMnz+fzz//HJPJxLlz5zhy5AheXl5lcyGeYGW1ZK0sfSuEEEI8HiSxIoQQQpShohortxo5ciRjx46lc+fOxMbGEh0drW2zsfnf1I46derg4ODAwYMHWbZsGfPnz8fMTMcXH82ge3g7Ro0aRWpqKqGhofcdV0REhDayBeDUqVPMmjWLvXv3Ym9vz8CBA8nNzb3vfoUQQgghnnRSY0UIIYR4yDIyMqhTpw4AX3/99R33jYiI4P333ycjI0MbPXJr+1un+9jZ2ZGZmflAMV27dg0bGxuqVavGhQsX2LhxY5n0K4QQQgjxpJHEihBCCPGQRUdH07NnT3x9fe9at6RHjx4sXbqUXr16ac+98cYbTJgwAW9v72KrB7Vu3ZojR45oxWvvh8FgwNvbmyZNmtCnTx9atGihbRsyZAjt27fXitcKIYQQQojb0ymlyjuGMuHn56cSEhLKOwwhhBBCCCGEEELcQqfT7VNK+ZV3HA+LjFgRQgghhBBCCCGEeECSWBFCCCGEEEIIIYR4QLIqkBBCCHEbBQWK1EvZpGXm4WhniYuDDWZmuvIOSwghhBBCVCCSWBFCCCFKUVCg2JR8nnc3HCXPVIClhRkTOrjTXl9bkitCCCGEEEIjU4GEEEKIUqReytaSKgB5pgLe3XCU1EvZ5RyZEEIIIYSoSCSxIoQQQpQiLTNPS6oUyTMVkJaZV04RCSGEEEKIiqjCTgXS6XSpQCaQD5j+zkszCSGEqHgc7SyxtDArllyxtDDD0c6yHKMSQgghhBAVTUUfsdJaKWWUpIoQQohHzcXBhgkd3LG0KPxVWVRjxcXBppwjE0IIIYQQFUmFHbEihBBClCczMx3t9bVpUttOVgUSQgghhBC3VZETKwrYrNPpFPCZUurz8g5ICCHEk8XMTIdbLVvcatmWdyhCCCGEEKKCqsiJlZZKqbM6nc4R+EGn0x1TSm2/dQedTjcEGAJQr1698ohRCCGEEEIIIYQQT7AKW2NFKXX2//5MA1YDAaXs87lSyk8p5VerVq1HHaIQQgghhBBCCCGecBUysaLT6Wx0Op1d0d+BtsDh8o1KCCGEEEIIIYQQorgKmVgBngLidTpdErAH+I9SalM5xySEEOIxcOHCBfr06YObmxu+vr4EBQWxevXq8g6rVCaTiYkTJ9KwYUOMRiNGo5F33nnngfpKTU3Fw8OjjCMszta2bGvNxMbGEh4e/pf6cHFx4eLFi2UUkRBCCCHE/auQiRWlVIpSyvB/P3ql1IO9yxRCCFGm3nnnHfR6PV5eXhiNRn7++ef7ah8TE8Mff/yhPR48eDBHjhwpk9hsbW1RStG1a1dCQkKYPHkyQUFBLF26lN9//73E/iaTidjYWHbu3Fkmx79Vfn7+Pe03adIk/vjjDw4dOkRiYiJxcXHcvHmzzOP5uzCZTOUdghBCiCfIn79QiImJYcSIEWV+nMmTJ7Nly5bbbl+zZs19v19KT0+nWbNmeHt7ExcXpz3//fff07VrV+3xu+++S4MGDbTH69ato3Pnzvd1rNKU1ZcxOp0uWKfTJet0ukSdThek0+k6lEnHZaxCJlaEEEJUPLt27WL9+vXs37+fgwcPsmXLFurWrXvP7fPz80skVr744guaNm1aZjH+9NNPVK5cmVdeeUV77plnnmHkyJFA4Ruizp07ExYWxrPPPsvmzZsZPXo0AQEBeHt78/333wOQk5NDr169aNq0Kd26daNZs2YkJCQAsGTJEjw9PfHw8GD8+PHacWxtbXnttdcwGAy88847xd60/PDDD3Tr1q1YrDk5OSxYsIC5c+diZWUFgJ2dHdHR0do+H374IR4eHnh4ePDRRx8BhW++iv4O8NZbb/Hxxx8X6zs/P59x48bh7++Pl5cXn3322QNf07v59ddfad++Pb6+vgQHB3Ps2DGg8A1d9+7d8ff3x9/fnx07dtyxn8uXL9O1a1e8vLwIDAzk4MGDAERHR9O/f39atGhB//79uXTpEm3btkWv1zN48GCUUlofXbt2xdfXF71ez+ef/28xQVtbW9566y0MBgOBgYFcuHDhIVwJcTvm5uYYjUYMBgM+Pj4PJZkphBCPs2nTptGmTZvbbn+QxMqPP/6Ip6cnBw4cIDg4WHu+efPm7N69W3u8a9cuqlatSlpaGgA7d+6kefPm93kGf41Op7vTojp9gXeVUkagMVAhEysopf4WP76+vkoIIcTDs2rVKhUeHl7qti1btiij0ag8PDzUoEGDVG5urlJKqWeeeUa98cYbytvbW33zzTfKxsZGNWrUSBkMBpWTk6NatWql9u7dq5RSysbGRk2cOFF5eXmpZs2aqfPnzyullDp58qRq1qyZ8vDwUG+99ZaysbEpNQYbGxv18ccfq1dffVUppdRXX32loqKilFJKrV27VgUEBKh69eopS0tLdfToUXXq1CllY2Oj7O3tlcFgUP/5z39Uw4YNVVZWlpo5c6YaMmSIUkqpQ4cOKXNzc7V371519uxZVbduXZWWlqZu3rypWrdurVavXq2UUgpQy5YtU0opVVBQoBo3bqzS0tKUUkr17t1brV27tli8SUlJymg03vZ6JyQkKA8PD5WVlaUyMzNV06ZN1f79+9WpU6eUt7e3Ukqp/Px85ebmpi5evKhOnTql9Hq9Ukqpzz77TL399ttKKaVyc3OVr6+vSklJue2x7lVp1z4sLEwdP35cKaXU7t27VevWrbVzjouLU0opdfr0adWkSZMSbbdu3ao6duyolFJqxIgRKjo6Wiml1I8//qgMBoNSSqkpU6YoHx8flZOTo5RSauTIkWrq1KlKKaXWr1+vAJWenq6UUurSpUtKKaVycnKUXq9XFy9eVEoVvjZF13/cuHHatRGPxq33zaZNm1RISEg5RiOEEPfuz7/3bn1vkZaWpl544QXl5+en/Pz8VHx8vFKq8PfWoEGDVKtWrZSrq6v6+OOPtfbTpk1TjRo1Ui1atFAvvviimjlzplJKqcjISLVixQqllFLjx49X7u7uytPTU7322mtqx44dyt7eXrm4uCiDwaBOnjxZLKZTp06p1q1bK09PTxUWFqZOnz6tDhw4oOrWratq1qypvee6VcOGDdWJEyeUUkr5+Pio6dOna+9nQkJC1Pbt20vt93bHU0qplJQUFRgYWOr7tRkzZiggB0gCZqjCL0VigY+ABOA14FngAHAIWAhYAoOBy8ApYAnwG5AOJAIRqgLkIYp+ZMSKEEKIe9K2bVvOnDlDo0aNGD58ONu2bQMgNzeXgQMHsmzZMg4dOoTJZOLTTz/V2jk4OLB//3769euHn58fixcvJjExEWtr62L9Z2dnExgYSFJSEiEhISxYsACA0aNHM3r0aA4dOoSzs/Nt47t+/Trvv/8+3377LUajkcmTJ7Nt2zYMBgOTJ09m9+7dTJ06FV9fXxYsWICLiwtVq1alcuXKAEycOJHc3Fx+++034uPjefHFFwHw8PDAy8sLgL179xIaGkqtWrWwsLCgb9++bN++HSj8Vr579+4A6HQ6+vfvz7fffsvVq1fZtWsXzz///B2v71dffYXRaKRu3bqcOXOG+Ph4unXrho2NDba2trzwwgvExcXh4uKCg4MDBw4cYPPmzXh7e+Pg4FCsr82bN7No0SKMRiPNmjXj0qVLnDhx4s4v8APIyspi586d9OzZE6PRyNChQzl37hwAW7ZsYcSIERiNRjp37sy1a9fIysq6bV/x8fH0798fgLCwMC5dusS1a9cA6Ny5s3a/bN++nX79+gHQsWNH7O3ttT7mzJmjjUo5c+aMds6VK1fWarn4+vqSmppathdC3LNr165pr1lWVhbPPvssPj4+eHp6aiPGUlNTcXd35x//+Ad6vZ62bdty/fp14PYjpIQQ4mG4fv26VgOt6L1FkdGjRzNmzBj27t3LqlWrGDx4sLbt2LFj/Pe//2XPnj1MnTqVmzdvavslJSWxceNGbSTsrS5dusTq1atJTk7m4MGDTJo0iebNm9O5c2dmzpxJYmIi9evXL9Zm5MiRREZGcvDgQfr27cuoUaMwGo1MmzaNiIiIUt9ztWjRgp07d/LLL7/QsGFDAgMD2blzJyaTiaSkJPz9/Uvt93bHK7oew4YN49ChQzg5OWnH2rhxY9H/78eUUgbg/VtCqayU8gPmATEUJks8AQtgmFLqC2AtME4p1RuYDCxTShmVUsvu57V82O405EYIIYTQ2Nrasm/fPuLi4ti6dSsRERHMmDEDb29vXF1dadSoEQCRkZHMmzePV199FYCIiIh76v/PH35/+OEHoHCI6po1awDo06cPr7/+eqntra2t+frrr5k2bRrbtm0jJiaGhIQEoqOj8fLyol27dhw5coTs7Gzs7OyAwlGbAwYM4P333y+1z/thZWWFubm59njQoEF06tQJKysrevbsiYVF8V+5DRo04LfffiMzMxM7OzsGDRrEoEGD8PDwuGuNlsGDBxMTE8P58+d56aWXSmxXSjF37lzatWv3l8/rTgoKCqhevTqJiYmlbtu9e7c2zemvsLGxues+sbGxbNmyhV27dlGlShVCQ0PJzc0FoFKlSuh0OqAwASa1Wh6tog8mubm5nDt3jp9++gko/DezevVqqlatysWLFwkMDNTm9Z84cYIlS5awYMECevXqxapVq+jXrx9Dhgxh/vz5NGzYkJ9//pnhw4dr/QkhRFmztrYu9juu6L0FFH6BcOv0nFu/QOjYsSOWlpZYWlri6OjIhQsX2LFjB126dMHKygorKys6depU4njVqlXDysqKl19+mfDw8Hsq8L5r1y6+++47APr3788bb7xx1zbNmzdn586d5OfnExQUREBAANOmTePAgQM0adIEKyur2/Z7u+d37NjBqlWrtOeLpktv2bKFQYMGsWvXrgIApdTlW0IpSo40Bk4ppY7/3+OvgSgKR7Q8FmTEihBCiHtmbm5OaGgoU6dO5ZNPPtF+gd7JvXwohrL58BsWFkZubm6xETM5OTlcvnyZESNGMH369GIfuBs0aMCOHTu0Oh0HDhwACr/JWb58OQBHjhzh0KFDAAQEBLBt2zYuXrxIfn4+S5YsoVWrVqXG8vTTT/P0008zffp0Bg0aVGJ7lSpVePnllxkxYoQWT35+Pjdu3AAgODiYNWvWkJOTQ3Z2NqtXr9bmSHfr1o1Nmzaxd+/eUpMn7dq149NPP9UK4R4/fpzs7Oz7vJp3V7VqVVxdXVmxYgVQmNBJSkoCCkc4zZ07V9u3tOTLrYKDg1m8eDFQmCSpWbMmVatWLbFfSEgI//73v4HCb8GuXLkCQEZGBvb29lSpUoVjx44Vmz8uylfRB5Njx46xadMmBgwYoA2dnjhxIl5eXrRp04azZ89q9W9cXV0xGo3A/0YZ3WmElBBCPGpFXyAkJiaSmJjI2bNntYKtlpaW2n73857GwsKCPXv20KNHD9avX0/79u0fSuxFI1Z27txJUFAQdnZ25ObmEhsb+5fqqxS9j7sPZf/mpJxIYkUIIcQ9+eWXX4pNJ0lMTOSZZ56hcePGpKamcvLkSQC++eab2yYb7OzsyMzMvK/jBgYGagmcpUuX3nFfnU7HmjVr2LZtG6+//jorVqwgMjISJycn6tSpA1Bs6kDHjh3Jzc3Fy8sLvV7PP//5TwCGDx9Oeno6TZs2ZdKkSej1eqpVq4aTkxMzZsygdevWGAwGfH196dKly23j6du3L3Xr1sXd3b3U7e+88w5OTk54eHjg7e1NcHAwkZGRPP300/j4+DBw4EACAgJo1qwZgwcPxtvbGygc3dO6dWt69epVbJRMkcGDB9O0aVN8fHzw8PBg6NChZTJKIycnB2dnZ+3nww8/ZPHixXz55ZcYDAb0er02nWPOnDkkJCTg5eVF06ZNmT9/fon+TCaT9uYzOjqaffv24fX/2TvvsCqurQ+/A6JgD9ZYIhAL9VBFEBEsqFiwdw1oNJqoiSUmahLFBEuMX4yYYmxBr717o8YoCioRRUBE7A2NHRuKIlL298fxzKWDioq63+c5j5yZPXuvGWFm9tpr/ZZGw7hx41i8eHGuNkyaNIk9e/ZgZWXF+vXree+99wBo06YNaWlpWFhYMG7cOFxcXJ77fCVFj6urKzdv3iQhIYFly5aRkJBAVFQUMTExVKtWTXUy5jYpyRwhpfscP378VZ2KRCJ5y3naBQQ3Nzf+/PNPHj16RFJSEps3b87RJikpicTERNq2bcusWbPUxYr83p8aN26svh8tW7Ysi1BtXlhYWHDlyhXCwsLUdws7Ozvmzp2Lm5tbvv3mtd3NzS3Ldh1eXl788ccf8MT3oCiKcS4mnQRMFEXRlSfqD+zOpd19oFyBJ/gqeNUiL0X1keK1EolE8mKJjIwUrq6uqqBa586dVdHQ/MRrdW2EEGLt2rX5itfqWLNmjfD19RVCCHHq1Cnh7OwsbGxsxNixY0WNGjWEEEJ4enqKbdu2qceUKVNGzJo1SwwdOlRs2rRJdOvWTRWY27hxozA1NRUODg7i888/Fx4eHkIIIU6ePClsbGyEra2t2LNnj9pXWlqaSE5OFkJoxXNNTExESkpKrtfl/PnzYtmyZbnuGzZsmAgICBDe3t6ibt26wt7eXnTv3l0V5i0MmUVpdaSnpwtbW1tRs2bNLNf3deOnn34SY8eOfdVmSF4wmf+2jx8/LipVqiTS0tLETz/9JIYPHy6EEGLXrl0CEOfPn8/xO//DDz+ISZMmCSGEcHV1FatXrxZCaEWiY2JiXt6JSCSSt478xGsTEhJEjx49hI2NjbCwsBBDhgwRQmjFa3WitEIIYWVlJc6fP6/uq1evnmjSpIno0qWLmDdvnhDif+K1V65cEQ0bNhQ2NjbC2tpaBAUFCSGECAsLExYWFsLOzi6HeG18fHyuYrKZbc2Ntm3bCjc3tyznBogrV67k229e2/MTr502bZoAktGKzk4V/xOvdRJP5vPkIl77ZHsQ0O3Jz8bAQYqheK3yxMDXHicnJ5GbAJBEIpFIXm8ePnyIkZERiqKwcuVKVqxYwaZNm5g3bx7h4eG6VRBAG90yY8YMmjO/GSwAACAASURBVDZt+lxj3r9/n2bNmpGamooQgu+//z5P8dnQ0FBmzpyZY+XJ0dERIyMjrl27xqxZs9Rcal2ai7W1tdo2LS0thwaLjvj4eNq3b09cXBygTU1q3749nTt3Zt26dURGRlK5cuXnOt9XwYcffkhcXByrV6+mTp06r9ocyQtEX18fGxsbQLugN3XqVNq1a8fNmzfp0KEDSUlJODk5sX//fv766y+ALL/zM2fOJCkpCX9/f86fP8/HH3/M1atXSU1NpVevXlnEJCUSiaQ4k5SURNmyZXn48CFNmzZl3rx5ODg4vGqzXgqKokQJrVDtG4l0rEgkEomkWLN3716GDx+OEIKKFSuyaNEi6taty+3btzE3N+fSpUuULFmS+Ph4mjZtyoULF1i8eDGRkZH8/PPP+Pn5Ub58eSIjI7l27RozZsygW7duAHz//fcsXboUPT09vL29mT59OmfPnmXYsGEkJCRQunRp5s+fj7m5eZ79uLi4cPz4cUxNTfH19WXUqFGq7YsWLSI0NJQlS5bkOK+goCDWr19PUlIS6enpbNmyhY4dO3Lnzh1SU1MJCAigY8eOxMfHq1VQoqOjsbKyYsmSJZQuXRoTExN69OjBX3/9hZGREcuXL6du3bokJCQwdOhQLl68CMBPP/2khvZKJBKJRCJ5NfTp04djx47x6NEjfH19GT9+/Ks26aXxpjtWZFUgiUQikRRLMjIE8bceYFDTkg3B/2BSqQx6ev8TRTM2NsbZ2Zm//vqLjh07snLlSnr06JGrcNrVq1cJCwvjxIkT+Pj40K1bN7X834EDByhdujS3b2tF6vOrOpJbP9OnT881YgUgLi4OR0fHPM8xOjqa2NhYjI2NSUtLy7NCysmTJ1m4cCFubm4MHDiQX3/9Va2OVKFCBY4cOcKSJUsYOXIkmzdvVktANmnShIsXL9K6descWhS663vjfgpVy5XKcX0lEolEIpEULTrxdcmbh3SsSCQSyVtIcZ9UZ2QIth29xrStx0lJy6BUCT3Gt7WgjVX1LHb27t2blStXqo6VhQsX5tpfp06d0NPTw9LSUq06oiv/V7p0aUDrqMlcdURHSkpKvv08D15eXhgbazXcxJMKKXv27EFPTy9LhZTatWurESf9+vUjMDBQdaz07t1b/VcXLZNXCUhdtYLCXl+JRCKRSN42rl27xsiRIzl48CAVK1akWrVqjBs3jsDAQNauXfuqzZMUU6RjRSKRSN4yXodJdfytB6p9AClpGUzbehzz6uUwq1JWbdexY0dGjRpFdHQ0Dx8+zDM6JHOFkfxSYDNXHXmefnRYWVmxe3duovZaMpeizlwhxcDAABMTE7VCSvYonMzfc/tZVwLS0NAw13ELe30lkuwUd6esRCKR5EVh7l9CCDp37oyvr69a4ebw4cPcu3cvV6dKfhppkrcLWW5ZIpFI3jLymlTH33rwii37Hzfup6j26UhJy+DG/ZQs28qWLUuzZs0YOHCgGrlRWHTl/x4+fAjA7du3KV++PKampqxZswbQvmDpSh3mRX4lEPv06cO+ffvYsmWLum3Pnj2qKGdmEhMTqVq1KgYGBoSEhHDhwgV138WLFwkPDwe0YcRNmjRR961atUr919XVFSi4BGRhr69EkhmdU9Z3UQSfrjiE76IIth29RkbGm6HXJ5FI3lwKe/8KCQnBwMCAoUOHqttsbW2pXbu2KjofFBSEj48PzZs3p0WLFiQlJTFgwABsbGzQaDSsW7cOgO3bt+Pq6oqDgwPdu3cnKSnp5Z2w5KUjHSsSiUTylvE6TKqrlitFqRJZH1GlSuhRtVypHG179+7N4cOHn9qx0qZNG3x8fHBycsLOzo6ZM2cC2siRhQsXYmtri5WVFZs2bcq3H41Gg76+Pra2tsyaNSvLPiMjIzZv3sycOXOoV68elpaW/Prrr1SpUiVHP3379iUyMhIbGxuWLFmCubm5uq9Bgwb88ssvWFhYcOfOHT7++GN13507d9BoNMyePVsdPzAwkMjISDQaDZaWlsydOzfLWE9zfSUSHa+DU1YikUhyo7D3r4K00XRER0ezdu1adu/ezXfffafqncXGxtK8eXNu3rxJQEAAwcHBREdH4+TkxI8//vhCzk1SPJBVgSQSieQt41xCEr6LIrI4V0qV0GPxQOdikwbyOqQrvc687ddXV/43NTWVEiVK8MEHHzBq1Cj09F7OelNQUBADBgxgx44dtGzZEoCNGzfSuXNn1qxZo1atyg0/Pz/at29Pt27d2Lt3L0OHDsXAwIDw8HCMjIxeqN37z93i0xWHcmwP7G2Pi1mlFzq2RCKRPA+FvX8FBgZy/vz5HAsl8fHxahn4oKAgdu/ezR9//AGAo6MjK1eupF69emr7zZs34+fnR61atQB4/Pgxrq6ueWrBvQ3IqkASiUQieaMwqVSG8W0tckyqTSqVKfjgl4SenkIbq+qYVy8ntRxeAG/79TUyMlLTo27cuEGfPn24d+8ekydPztLuRebO29jYsHLlStWxsmLFCmxtbZ+qj2XLljF+/Hj69ev3IkzMgS7SKbtTVkY6SSSS4k5h719WVlaFEqjNrJGWG0IIvLy8WLFixbMZLHntkKlAEolE8pahm1QvHuhMYG97Fg90LpaRCnp6CmZVyuJiVgmzKmWLnX2vO/L6aqlatSrz5s3j559/RgiRa+58ixYtcHBwwMbGJktq2JIlS9BoNNja2tK/f39Au6rZvHlzNBoNLVq04OLFi7mO6+7uTkREBKmpqSQlJXHmzBns7OzU/d9++y0NGzbE2tqajz76KIdY8oIFC1i9ejXffPMNffv2RQjB2LFjsba2xsbGRtXe+eCDD9i4caN6XN++fQtMb8sLnVNWl0ZWHJ2yEolEkhuFvX81b96clJQU5s2bp26LjY3l33//zbNvLy8vfvnlF/X7nTt3cHFx4Z9//uHMmTMAPHjwgFOnThXlKUmKGTJiRSKRSN5CdJPq4pL6A7LaiOTVYWZmRnp6Ojdu3AC0ufOxsbEYGxuTlpbGhg0bKF++PDdv3sTFxQUfHx+OHTtGQEAA+/bto3Llyty+fRuAESNG4Ovri6+vL4sWLeLTTz/N4tjQoSgKLVu25O+//yYxMREfHx/Onz+v7h8+fDgTJ04EoH///mzevJkOHTqo+wcNGkRYWJiaFrRu3TpiYmI4fPgwN2/epGHDhjRt2pQPP/yQWbNm0alTJxITE9m3bx+LFy9+puv0tkc6SSSS15fC3r8URWHDhg2MHDmS77//HkNDQ0xMTPjpp5/y7Pvrr79m2LBhWFtbo6+vz6RJk+jSpQtBQUH07t2blBSthl1AQAD169d/oecpeXVIx4pEIpFIXjlvu+aHpHjh5eWFsbExoA3nnjBhAnv27EFPT4/Lly9z/fp1du3aRffu3alcuTKA2j48PJz169cDWofIF198kec4vXr1IjAwkMTERP7v//6PqVOnqvtCQkKYMWMGDx8+5Pbt21hZWWVxrGQnLCyM3r17o6+vT7Vq1fDw8ODgwYP4+PjwySefkJCQwLp16+jatetzpTcVR6fsi6Js2bIvvIpHaGgoHTt2xNTUlJSUFHr16sWkSZOYO3cupUuX5oMPPnih40skbxOFvX/VqFGD1atX59iuq+jn5+eHn5+fur1s2bK5OqybN2/OwYMHn89oyWuDdKxIJBKJ5JWTl1q/efVyb8UETvJqOXfuHPr6+lStWhXImju/bNkyEhISiIqKwsDAABMTEx49elQk4zo7O3PkyBFKly6dZRXz0aNHfPLJJ0RGRlK7dm38/f2fa8wPPviApUuXsnLlSlVsUfJsvAjdHXd3dzZv3syDBw+ws7OjQ4cOWUq9SiQSiaT4IzVWJBKJRPLKeR1KQEveTBISEhg6dCjDhw9HUXJGRyUmJlK1alUMDAwICQnhwoULgHYlcs2aNdy6dQtATQVq3LgxK1euBLROGXd393zHnz59epZIFUB1olSuXJmkpKRCCSm6u7uzatUq0tPTSUhIYM+ePTg7OwPa1VVdGLulpWWBfUmyEhoairu7Oz4+PlhaWhIaGoqHhwcdO3bEzMyMcePGsWzZMpydnbGxseHs2bMA/PnnnzRq1Ah7e3tatmzJ9evX8x2nTJkyODo6cubMGfz9/dUS8J6ennz55Zc4OztTv3599u7dC0B6ejqff/451tbWaDQa5syZA0BUVBQeHh44OjrSunVrrl69+gKvjkQikUhARqxIJBKJpBggq41IXibJycnY2dmp5Zb79+/P6NGjc23bt29fOnTogI2NDU5OTpibmwPayhFfffUVHh4e6OvrY29vT1BQEHPmzGHAgAH88MMPVKlSpcAIEW9v7xzbKlasyODBg7G2tqZ69eo0bNiwwHPq3Lkz4eHh2NraoigKM2bMoHr16gBUq1YNCwsLOnXqVGA/ktyJjo4mLi4OU1NTQkNDOXz4MMePH8fY2BgzMzMGDRpEREQEs2fPZs6cOfz00080adKE/fv3oygKCxYsYMaMGfzf//1fnmPcunWL/fv3880333Ds2LEs+9LS0oiIiGDr1q1MnjyZ4OBg5s2bR3x8PDExMZQoUYLbt2+TmprKiBEj2LRpE1WqVGHVqlV89dVXLFq06EVfIomk2CG12yQvEyW7yvzripOTk4iMjHzVZkgkEonkGZAaKxLJi+Phw4fY2NgQHR1NhQoVXrU5rw06jZXQ0FAmT55MSEgIoI1gmTJlCjt27ACgadOmTJs2DTc3N3bt2kVgYCAbN27kyJEjjBkzhqtXr/L48WNMTU3Ztm1bljF0GitmZmbo6ekxePBghg4dir+/P2XLluXzzz/H09OTKVOm4ObmxvXr13Fzc+PMmTN07dqVoUOH4uXlpfYXFxdH48aNMTMzA7RRLe+++y7bt29/SVdNIikeyPeK4oeiKFFCCKdXbceLQkasSCQSieSVI6uNSCQvhuDgYD788ENGjRolnSrPQWbdHYBSpf4XTaenp6d+19PTIy0tDdBWiBo9ejQ+Pj6Ehobi7++fa986jZX80PWvr6+v9p8bQgisrKwIDw8v8JwkkjcZqd0medlIjRWJRCKRFAt0av0uZpUwq1JWOlUkkiKgZcuWXLhwgZEjR75qU946EhMTqVmzJsAzl7jODy8vL37//XfV0XL79m0aNGhAQkKC6lhJTU3l6NGjRT62RFLckdptkpeNdKxIJBKJRCJ5LcnIEJxLSGL/uVucS0giI+PNSG+WvBn4+/vTvXt3HB0d1bLcRcmgQYN477330Gg02Nrasnz5ckqWLMnatWv58ssvsbW1xc7Ojn379hX52BJJcUen3ZYZqd0meZFIjRWJRCKRSCSvHcUtf15fXx8bGxv1+8aNGzExMXnpdkgkEomk+D0jJFJjRSKRSCQSiaTYUdzy542MjIiJiXnp40okEokkJ1K7TfKykalAEolEIpFIXjuKe/58UlISLVq0wMHBARsbGzZt2gRAfHw8FhYWDB48GCsrK1q1akVycjIABw8eRKPRYGdnx9ixY7G2tn6VpyCRSCSvNVK7TfIykY4ViUQikUgkrx3FLX8+OTkZOzs77Ozs6Ny5M4aGhmzYsIHo6GhCQkIYM2YMuvTr06dPM2zYMI4ePUrFihVZt24dAAMGDOD3338nJiYGfX39V3IebypSj6do0dfXV3/f7ezsiI+Pp3HjxoDWeahzCkZGRvLpp58+93h+fn6Ympqq4wUGBgJgYmLCzZs3AbKMv3z58kL3feXKFbp165Zvm8zjSCQSSW7IVCCJRCKRSCSvHSaVyjC+rUWO/HmTSmUKPvgFkD0VKDU1lQkTJrBnzx709PS4fPky169fB1AniACOjo7Ex8dz9+5d7t+/j6urKwB9+vQpsASvpHBIrYWiJ7fUt9xEcp2cnHByKhpJhR9++CFfB4hufJ1jpU+fPoXqt0aNGqxdu7ZIbJRIJG8vMmJFIpFIJBLJa4cuf37xQGcCe9uzeKBzsZooL1u2jISEBKKiooiJiaFatWo8evQIgFKl/hdVo6+vr5bLlbwY8tLjib/14BVb9mZRtmxObaPQ0FDat28PaKskzZw5U91nbW1NfHw8Dx48oF27dtja2mJtbc2qVauea/xx48axd+9e7OzsmDVrFu3atSM2NhYAe3t7vv32WwAmTpzI/Pnzs0TYpKen8/nnn2NtbY1Go2HOnDlZxkhOTsbb25v58+c/k40SieTNRTpWJBKJRCKRvJYU5/z5xMREqlatioGBASEhIVy4cCHf9hUrVqRcuXIcOHAAgJUrV74MM98Kirsez+tI9tS352Hbtm3UqFGDw4cPExcXR5s2bXJtN3bsWHXMI0eO5Nnf9OnTcXd3JyYmhlGjRuHu7s7evXtJTEykRIkS/PPPPwDs3buXpk2bZjl23rx5xMfHExMTQ2xsLH379lX3JSUl0aFDB3r37s3gwYOf65wlkpfNxo0bURSFEydOqNsyOxWDgoIYPnz4c40xaNAgjh07Vuj2iqI4K4oSqijKaUVRohVF2aIoik3BRz4fiqI4KYoSWNT9SseKRCKRSCQSSRHTt29fIiMjsbGxYcmSJZibmxd4zMKFCxk8eDB2dnY8ePCAChUqvARL33yeRo/n2rVr9OrVi/fffx9HR0fatm3LqVOn8u3/p59+4uHDh+r33CI3QKsT8jwpJ3fv3uXXX3/Nc79O98TW1hYHBwc1NaYwGiJPiy4VKCYmhg0bNjxXXzY2NuzYsYMvv/ySvXv35vl7/8MPP6hjZi5tXhDu7u7s2bOHf/75h3bt2pGUlMTDhw85f/48DRo0yNI2ODiYIUOGUKKEVi3B2NhY3dexY0cGDBjABx988AxnKZG8WlasWEGTJk1YsWLFC+k/PT2dBQsWYGlpWaj2iqJUA1YDE4QQ9YQQDsA04P1c2hapfIkQIlII8fziT9mQjhWJRCKRSCSS5yQpKSnL98qVKxMeHs6RI0f4448/OH78OCYmJpiYmBAXF6e2+/zzz/H39wfAysqK2NhYYmJiePfdd4tMm+JtR6fHo3Ou5KXHI4Sgc+fOeHp6cvbsWaKiopg2bZqqjZMX2R0rL4K0tLQCHSs6Z8fhw4eZNm0a48ePB4qPhkiJEiXIyPhf5JAuNa5+/fpER0djY2PD119/rabqFBUNGzYkMjJSjVCxt7dn/vz5ODo6PlU/bm5ubNu2TRWhlkheF5KSkggLC2PhwoX5RkP++++/eHp6Uq9ePSZPnqxuX7p0Kc7OztjZ2TFkyBDS09MBrRN5zJgx2NraEh4ejqenJ5GRkYA2Es3BwQFbW1tatGiR23DDgcVCCFWcSQgRJoTYCKAoSpCiKHMVRTkAzFAUxV9RlM91bRVFiVMUxeTJ57iiKPMVRTmqKMp2RVGMnrQJVRTle0VRIhRFOaUoivuT7Z6Komx+8rOxoigbFUWJVRRlv6Iomifb/RVFWfSkj3OKohToiJGOFYlEIpFIJJJiwJYtW7Czs8Pa2pq9e/fy9ddf59lWURTGjBmjfp85c6bqoHla5s6dy5IlS4CsURWZX5ILw/NGZBR1/zExMWzdulXV4/m4QQqD6qfmqccTEhKCgYEBQ4cOVbfZ2tri7u6eRSsEYPjw4QQFBREYGMiVK1do1qwZzZo1U/d/9dVX2Nra4uLiksUxExwcjJOTE/Xr11fFidPT0xk7diwNGzZEo9Hw+++/A1p9End3d3x8fLC0tGTcuHGcPXtWLcedH/fu3eOdd94Bcob7d+nShTZt2lCvXj2++OIL9ZiyZcvmaveaNWuwtrbG1tY2R+rM02BiYkJ0dDQA0dHRnD9/HtBG1JQuXZp+/foxduxYtc2zUq5cOe7fv69+L1myJLVr12bNmjW4urri7u7OzJkzcz0XLy8vfv/9d1X36Pbt2+q+b7/9lnfeeYdhw4Y9l30Syctm06ZNtGnThvr161OpUiWioqJybRcREcG6deuIjY1lzZo1REZGcvz4cVatWsU///yjVqxbtmwZAA8ePKBRo0YcPnyYJk2aqP0kJCQwePBg1q1bx+HDh1mzZk1uw1kBBf2x1wIaCyFGF9CuHvCLEMIKuAt0zbSvhBDCGRgJTMrl2MnAISGEBpgALMm0zxxoDTgDkxRFMcjPCOlYkUgkEonkFXP9+nX69OmDmZkZjo6OuLq6Pnd4fVFw9+5dKlWqpK7QhoeHoygKly5dArQ6IsbGxllWoZ+Hp53Iv2n07NmTmJgY4uLi2LJlC1WqVMmzbalSpVi/fn2RlIAdOnToG5neoHOsgFaP51TMAe5dOJqnHk9cXNxTRzF8+umn1KhRg5CQEEJCQgDtZMPFxYXDhw/TtGnTLEKn8fHxREREsGXLFoYOHcqjR49YuHAhFSpU4ODBgxw8eJD58+erTofo6Ghmz57NqVOnmD59Ou+//z4xMTH88MMPOWzR6Z6Ym5szaNAgvvnmmzyvy6pVqzhy5AirVq3i33//zdfub7/9lr///pvDhw/z3//+96muT2a6du3K7du3sbKy4ueff6Z+/foAHDlyRF0Nnzx5cr4OxcKg0WjQ19fH1taWWbNmAdp0oKpVq2JkZIS7uzuXLl3C3d09x7GDBg3ivffeQ6PRYGtrm6Ns8+zZs0lOTs7ikJJIsqMoCv369VO/p6WlUaVKlSzO2cJQVKXLV6xYQa9evQDo1atXnulAXl5eVKpUCSMjI7p06UJYWBg7d+4kKiqKhg0bYmdnx86dOzl37hygTT/s2rVrjn72799P06ZNMTU1BbKm1OWFoigHnkSezM60eY0QIr0Qp3heCKErUxYFmGTatz6P7TqaAP8BEELsAiopilL+yb4tQogUIcRN4AZQLT8jZLlliUQikUheIUIIOnXqhK+vr/oSf+HCheeawOhIS0tTtQKehYoVK/Luu+9y/PhxLC0t2bdvH/b29uzbt48ePXqwf/9+nJ2d0dOT6zQvmxIlSvDRRx8xa9YspkyZkmVfQkICQ4cO5eLFi4A2VcXV1RUzMzNiYmKoWLEiAPXq1SMsLIzffvuNsmXL8vnnn+cYR8f27duZNGkSKSkpvP/++/zxxx95aolk5tGjR3z88cdERkZSokQJfvzxR5o1a0ZQUBD//e9/efjwIWfPnqVz587MmDED0GrNfP/991SsWBFbW1tKlSrFzz//DGgjPqZPn869e/f48ccfad++fa5juLm5MXHiRJKTkwkLC6N3797MnTsXfX19li5dypw5c6hduzYDBw7k5s2bVKlSRY1g8PPzw8jIiEOHDnHjxg0WLVrE999/z969e/Hz8yMoKCjfcy5ZsqQ6gXJ0dGTHjh3qvh49eqCnp0e9evUwMzPjxIkTbN++ndjYWDUaJzExkdOnT1OyZEmcnZ3VyUlBZC6BHB4ezgcffJAl7UxHixYtVB0TS0tLLly4QO3atfO0283NDT8/P3r06EGXLl2AnKlvmbdlTnfz9PTE09NTtW/79u05jjMxMaF169b5nlte1zw+Pj7H+AYGBuzatStLu++++47vvvsO0KZGZU7nyWyv7vfnxx9/zHOcP/74I19bJZIyZcoQFxdHcnIyRkZG7Nixg5o1az5VH9mrxT1r6fLbt2+za9cujhw5gqIopKenoyhKrs5ZRVFyfBdC4Ovry7Rp03K0NzQ0RF9f/6ltesJRwAHYBCCEaKQoSjcgs/cpc+m2NLIGhRhm+jmzEnk6YJTLvnSe3veRvd98jy/wTUhRlEpPaYBEUqzJTRU7O4VZNc3cpjAvl/kRGhqqisxlRghB5cqVuXPnDgBXr15FURTCwsLUNlWqVOHWrVt59h0YGIiFhQV9+/YlJSWFli1bYmdnx6pVq7KcQ9u2bbl79+5znYdEInk69PX1qVu3LkeOHGHu3Lnqy3udOnUYMWIEkHeagBCCsWPHYm1tTbVq1dTVMV36gLe3N6VKlSI9PZ1PPvmEOnXqoCgKzZs3Z+3atSQmJlK+fHk8PDxwdHSkdevWXL16NYeNjRs3Vu9P+/btY9SoUVm+u7m5kZ6eTu3atbG0tMxiY1JSEi1atMDBwQEbGxs2bdoEUKjyqtu3b8fV1RUHBwe6d+9OUlISu3btolOnTmqbHTt2PHdFkuxkZAjOJSSx/9wtziUkkZFRfPUUhg0bxrJly0hMTMyy/bPPPmPUqFEcPHiQdevWMWjQIPT09OjYsaMaCXXgwAHq1KlDtWr5LsABcPPmTQICAggODiY6OhonJ6ccE8+8+OWXX1AUhSNHjrBixQp8fX1VbY3cIieuXLnCd999x/79+/nnn39yPKtzi/jIbYyMjAy+/fZbNQroyy+/ZOjQoYwaNYqYmBjc3d0ZMWIEvr6+avWX7du3qyHyd+7cITw8nFmzZuHj40OvXr1wd3fnyJEjxMTEqOeQGwYGBuoEJXs57bwmLnPmzFGFWc+fP0+rVq0A7QTtWXB1deXmzZskJCTk2JdXue+87J47dy4BAQH8+++/ODo65vvOIZFItLRt25YtW7YA2oiR3r17q/sePHjAwIEDcXZ2xt7eXn02BgUF4ePjQ/PmzXPokmQvXT5w4EA8PT0xMzMjMDDvAjdr166lf//+XLhwgfj4eP79919MTU3Zu3dvjrY7duzg9u3bJCcns3HjRtzc3GjRogVr167lxo0bgNZRU1CVOxcXF/bs2aNG3mVOqcvEL4CfoiiNM20rnU+38WgdMSiK4gAUzuNcMHuBvk/69QRuCiHuPUtHhVli2q8oyhpFUdoq2Z8GEslryItWxX5a0tLS8nSsKIqCi4sL4eHhAFlWiwFOnjxJpUqVqFQpb//nr7/+yo4dO1i2bBmHDh0CtC+zPXv2zNJu69at6iqmRCJ5ORgZGfHZZ58xePBgYmJiMDExUfcJIcjIyMgzTWD9+vWqUGX//v3ZsmWL6hiJjo7m119/xcLCgsDAQOLj4xk+fDjW1tZEREQAEBYWhr6+PmvXriUqKoqBAwfy1Vdf5bDRJEbgGAAAIABJREFUzc1NveecO3eO7t27qw7Zffv20bhxYxYuXEiJEiVYsmRJFhsNDQ3ZsGED0dHRhISEMGbMGIQQBZZXzWsi36xZM06cOKFOFv/44w8GDhxYZP8fGRmCbUev4bsogk9XHMJ3UQTbjl4rts6V8uXL88EHH+R4qQ4ODmb48OHY2dnh4+PDvXv3SEpKomfPnqoTa+XKlTmeA3mxf/9+jh07hpubG3Z2dixevLjAF2sdYWFhqtPP3NycOnXqqFV2dJEThoaGauREREQEHh4eGBsbY2BgQPfu3bP0l1vER35j5Ed4eDh9+vQBoH///pw4cYKUlBROnTpFhw4dUBQFAwMDypcvT/PmzTl+/Djm5uYcPXqUnTt3qv1k1/TIjzVr1pCRkcHZs2c5d+4cDRo0oHXr1vz222+kpqYCcOrUKR48eJDj2KcZ58SJE6Snp+f7flBYzp49S6NGjfj222+pUqWKmjokkUjyplevXqxcuZJHjx4RGxtLo0aN1H1TpkyhefPmREREEBISwtixY9W/+ejoaNauXcvu3bvz7f/EiRP8/fffREREMHnyZPX+kZ0VK1bkWIDo2rVrrvMgZ2dnunbtikajoWvXrjg5OWFpaUlAQACtWrVCo9Hg5eWV6yJMZqpUqcK8efPo0qULtra2uT5rhBDXgJ7ANEVRziiKsg/oBvycR7frAGNFUY6iFb4t+CZfOPwBR0VRYoHpgO+zdlSYcJj6QEtgIBCoKMpqIEgIUVQnI5G8NHSq2CEhIXTo0EFVvE5OTmbAgAEcPnwYc3NzkpOT1WM+/vhjDh48SHJyMt26dcuikp2ZUaNGsX37dqpXr87KlSupUqUKZ8+eZdiwYSQkJFC6dGnmz5+Pubk5fn5+GBoacujQIWrWrMm+ffuyhCdnzvvVrRa3bdtWXS1ev16bLqhbLU5KSqJjx47cuXOH1NRUAgIC6NixI0OHDuXcuXN4e3vTr18/5s+fT0JCAnZ2dqxbty6L/SYmJkRGRpKUlIS3tzdNmjRh37591KxZk02bNmFkZMTBgwf58MMP0dPTw8vLi7/++ivXMGOJRPJsxMfHY2dnh56eHsnJyZw4cYKff/6ZU6dOMWXKFCpUqICRkRGnT5/mxx9/5MyZM3h4eFC7dm3MzMw4ePAg5cuXV9MHGjduzJYtW+jbty+bN2/miy++UO9hmzdvJjk5GS8vL65cuUJSUhL6+vo0atSIIUOGqPeVq1evcvbsWVxcXDAxMSE9PZ1jx45hbW3NiRMn6NevH9u3b1d1YkqXLs21a9do27YthoaG3L9/H0NDQx49esT58+e5fv06NjY2DBs2jPr167Nw4cIcWgeZJ/IAjx8/xtXVFUVR6N+/P0uXLmXAgAGEh4eroqtFcv1vPWDa1uOkpGk1Y1LSMpi29Tjm1cthVuX5IhNfFCNHjsTBwYEBAwao2zIyMti/fz+GhoZZ2rq6unLmzBkSEhLYuHFjobUshBB4eXkV+YJEXpET+ZFbxEdRoSgKGzZsoHHjxowZM4apU6dSrVo1jIyMqF27Nj169GDu3LnExcVhb2+vHvfRRx/Rpk0bVWslP9577z2cnZ25d+8ec+fOxdDQkEGDBhEfH4+DgwNCCKpUqcLGjRtzHFupUiXc3NywtrbG29s7Ryi/TmMFtP9nixcvLlSYvi5KK0PAuYSkHNWSxo4dy+nTpxFC0KJFC2xtbQvsUyJ529FoNMTHx7NixQratm2bZd/27dv573//y8yZMwFtyqQuddPLy6tQmiTt2rWjVKlSlCpViqpVq3L9+nVq1aqVo11u96TMWi2693g/Pz/8/PxyHatnz565OkeypwSGhoaqP3t7e+Pt7Z3vOQgh9gMeeezzy/Y9GWiVR1fWmdrNzPSzZ6afb/JEY0UIEQqEPvn5NvC/UNj/tffP9t06e5vsFBixIrTsEEL0Bgaj9eJEKIqyW1EU14KOl0iKE3mpYv/222+ULl2a48ePM3ny5Cxq2VOmTCEyMpLY2Fh2795NbGxsjn4fPHiAk5MTR48excPDQ524fPTRR8yZM4eoqChmzpzJJ598oh5z6dIl9u3bx/r163OEJ2cm82pxREQEnTt3VleLdKvFea0Kz507V33R+/LLL1mwYAHu7u7ExMTw/vs5ysSrnD59mmHDhnH06FEqVqyoOmEGDBjA77//rqqCSySS5yM5OZnZs2czf/58dUXp3r17LF++nGrVqnHy5Enu37/Pxo0b1fvM4sWLqVSpEidPnsTf35+tW7dy8ODBLP3q0gfc3NzUlSVdtIkutTAmJgYzMzM++eQTPv30Ux4+fMjNmzdzRJscO3aMChUqMGHCBFxcXNi2bRvvvvsuQ4YMQaPR0KlTJ4QQ1K1bl+XLlxMcHEz9+vWJjIzks88+o0yZMnTt2pXTp0+jp6fH5cuXqV+/Pm5ubrRv3z7X8qq6ibwuNeLYsWMsXLgQ0N6Hli5dyooVK+jevftzachk58b9FNWpoiMlLYMb91PyOOLVY2xsTI8ePdTrA9CqVSvmzJmjftfpbiiKQufOnRk9ejQWFhaFjmZwcXHhn3/+4cyZM4D2mVeYiBDQiobqKkicOnWKixcv0qBBgzzbN2zYkN27d3Pnzh3S0tJyLALkFvGR1xjZIzyyf2/cuLFaenTZsmW4u7tTo0YNPD09+fnnnzl69CiLFi1SHUAzZsygS5cufPPNN6xfv16dhIwYMYKTJ0+qE5jMk41u3bqp+iBBQUHMnTuXyMhITp06pYb16+npMXXqVI4cOUJcXBwhISFUqFABT09PtXKQjuXLlxMXF5erPkJ6err6N3P48GHatWsHZNUQ8fPzU/VqAP773z95VMUc30URWE/YqEZpdenSVbV7/fr1qm2zZ88uUmeWRPIm4+Pjw+eff54lDQi0z7h169apf68XL17EwsICKHz637M4piUvlkJprCiK8pmiKJHA58AIoDIwBlie78ESSTEjL1XsPXv2qGHEGo0GjUajHrN69WocHBywt7fn6NGjHDt2LEe/enp6qie3X79+hIWFkZSUxL59++jevbta9z1z6Fz37t0L5Zxo2LAhhw4d4sGDB6SmplK2bFnMzMw4c+aMGrEihGDChAloNBpatmzJ5cuXs5R3fFpMTU3VVS9HR0fi4+O5e/cu9+/fx9VV60/VhU9LJJJnx8jIiDNnzmBlZaVqKtSpUwdLS0tAu6p17949evbsib29PSdOnGDv3r0EBwfTrFkzNm7cSJkyZWjZsiXnzp3D2dk5S/+NGzfm7t27/Oc//6FOnTokJiZy7949Hj16pKY9rFixgiVLlmBra4utrS23bt1SV6d195WUlBRu375NgwYNsLGx4caNG0ycOBFTU1MqVKhA69atuXLlCmlpaezfv58jR47g4uLCV199xb///sulS5cIDQ0lLS2NjRs3cvz4cSIjI5kxY0au5VXzm8jXqFGDGjVqEBAQkCVKoyioWq4UpUpkfTUqVUKPquVK5XFE8WDMmDFZqgMFBgYSGRmJRqPB0tKSuXPnqvt69uzJ0qVLC50GBNqw7qCgIHr37o1Go8HV1TVPnbIhQ4ZQq1YtatWqhaurK5988gkZGRnY2NjQs2dPgoKCskwIslOzZk0mTJiAs7Mzbm5umJiYqEKr8L+ID29vbzXiI68xmjVrxrFjx1RdsQ4dOrBhwwbs7OzYu3cvc+bM4Y8//kCj0fCf//yH2bNn52nXm0peUVrxt3KmIkkkkqdj4MCBTJo0CRsbmyzbW7duzZw5c1QRZV2qvuT1pjDLPOFoSxB1EkJcyrQ9UlGUuXkcI5EUO55GFVvH+fPnmTlzJgcPHuSdd97Bz88vX8E6HYqikJGRQcWKFdWVwuwU1iNdunRp6tWrx6JFi3BwcAC0k46tW7dy48YNGjRowOLFi0lISCAqKgoDAwNMTEwKZWdeZPeCZ06NkkgkRYuiKGzcuJFRo0YxdepUbt26ha+vL99//z0RERGqaOSff/6JoaEhwcHBtGrVCnNzcx49eoStrS3Xrl2jXbt2VK9ePcuEt169eqSlpZGSksK+ffvo168f1atXJzw8HFNTUxYtWkTLli0pX748aWlpjBkzhsGDBwPa1XXdfeWnn37iiy++wNzcnPr167Njxw7s7e05duwY3377LV9//TUBAQH069eP1NRUSpYsSVhYGKmpqXTo0IGIiAgyMjKoW7cuGzZs4O7duzx8+BAnJycMDAz47bffslyTzBP5lBRttEhAQIBanrVv374kJCSoK3xFhUmlMoxva6FONEuV0GN8W4scqRHFgcxREdWqVePhw4fq98qVK+cqCAzayhKZK6KAVghRR+bqK5nDups3b54jMio7eVVuya2KSvaw88yRGX369OGjjz4iLS2Nzp07q4LFefVvaGiY6xjGxsY5bM4edZq9ekz2cTJHe+Rnw+tKflFaz5v+pq+vj42NDWlpaVhYWLB48WJKl85Pm/LVkJGRwciRI9m1axeKomBoaMjq1asLXY3pWQgNDaVkyZI0bty44MaS15ZatWrlWiL5m2++YeTIkWg0GjIyMjA1Nc0RnZYb4km63qU7D6mCARkZItfS8ZJXQ2EcKw1E9ifwE4QQ3yuKMkcIMaKI7ZJIihydKrauWgWAh4cHe/fupWnTpixfvpzmzZsTFxenvnjdu3ePMmXKUKFCBa5fv85ff/2llg3MTEZGBmvXrqVXr14sX76cJk2aUL58eUxNTVmzZg3du3dHCEFsbGyuucnlypXj3r28BagbN27MTz/9pL78urq60q9fP1xcXFAUhcTERKpWrYqBgQEhISGFFhV8GipWrEi5cuU4cOAAjRo1UsOnJRLJ8/Puu++ycuVK4uPjad++vZpS8M477/DNN9+wc+dOpk6dyuXLlzEwMODSpUv4+flx4MABJk6ciIODgxpllrm8KWjvF4cPH2bdunVYWlpiaWnJ5s2b8fHxwc7OjqlTp7J161bWrFmDgYEBp06dombNmlnuK7oSj4aGhly5cgVzc3OEEGzevJkFCxagp6eHmZkZM2fOpE6dOjg6OpKQkEDdunUJDg5W038AOnTowPr169mzZ08Ox0hhJ/JhYWGqA6go0dNTaGNVHfPq5bhxP4Wq5UphUqmMfHF9CsqWLZvF6RMUFERkZGSW9JOC8Pf3Jzg4mEePHtGqVasslaAyM2jQIEaPHq1GeGUnI0MQf+vBc/1fRkRE8MUXX3D58mXKlSvHu+++y/Tp03OsQL+u6KK0MjtXiipKK3P55759+zJ37lxGjx793P0WNatWreLKlSvExsaip6fHpUuXnqoa07OUtQ8NDaVs2bLSsfKGkls58uylxzPPR3Rkdzhnduw2berBw0oN8F0UQUrVVpQqoce2o9doY1Vd6h0WEwqlsVJAE7ciskUieaHkp4r98ccfk5SUhIWFBRMnTsTR0REAW1tb7O3tMTc3p0+fPqqQYnbKlClDREQE1tbW7Nq1i4kTJwLanO2FCxdia2uLlZWVWk4tO9nDk7Pj5ubGuXPn1DQcBwcHLl26pD6Q+/btS2RkJDY2NixZsgRzc/Nnu0gFsHDhQgYPHoydnR0PHjzIEp4tkUiKnlatWtGnTx9cXV2xsbGhW7du3L9/HwcHB3r27ImtrS3e3t40bNgwzz7c3Ny4cOECw4YNw93dnbFjx3Lx4kX1/jFo0CAsLS1xcHDA2tqaIUOGkJaWlud95ciRIzg7O2NnZ8fkyZNzCKAWlDbSt29fateu/czRJo6OjsTGxqrpm0WNnp6CWZWyuJhVwqxKWelUecmkpaUxc+ZMYmJiOHHiBIGBgXlqeixYsCBfp8rzVni6fv06PXr0YOrUqZw+fZro6GjGjx/P2bNnc7X7ZVMUY+qitHQpcC8qSsvd3Z0zZ85w+/ZtOnXqhEajwcXFRV3I8vf3x9fXF3d3d+rUqcP69ev54osvsLGxoU2bNmrFk507d2Jvb4+NjQ0DBw5UI9pMTEyYNGmSWtpdd8+JiIjA1dUVe3t7GjduzMmTJ3PYdvXqVd5991309LTXoFatWrzzzjuA1lE4atQorKysaNGihVqRzNPTk5EjR+Lk5MTs2bPztUuXphcZGYmnpyfx8fHMnTuXWbNm5fneJ5FkR6btvQYIIZ7rA0Q/bx9F8XF0dBSSNw89PT1ha2urfqZNm/ZCxvH29hZ37twpVNtr166Jdu3aCY1GIywsLIS3t3ehx3F1dRVCCHH+/HmxbNmyAtvXqVNHJCQkFLr/F839+/fVn6dNmyY+/fTTV2iNRCJ5HRk2bJhYsGDBqzaj2JCeniHO3rgvws/eFGdv3Bfp6Rmv2qTnokyZMlm+//HHH2LYsGFCCCFu3LghunTpIpycnISTk5MICwsTQggxadIk0a9fP9G4cWPRq1cvMWnSJPHBBx+IJk2aiPfee0+sW7dOjB07VlhbW4vWrVuLx48fCyGE8PDwEAcPHhRCCLF8+XJhbW0trKysxBdffCHO3rgvmkzfKfRKGop3PXoLo+pmolxtC3Eg7my+tmTm66+/FhMnTszzXH19fcWQIUOEs7OzGDVqlDhw4IBwcXERdnZ2wtXVVZw4cUK9Bp07dxatW7cWdevWFWPHjlX7WLBggahXr55o2LChGDRo0FNfq6LgRf0O6n4XUlNThY+Pj/j111/F8OHDhb+/vxBCiJ07dwpbW1shhPa83NzcxOPHj0VMTIwwMjISW7duFUII0alTJ7FhwwaRnJwsatWqJU6ePCmEEKJ///5i1qxZQgjt+1JgYKAQQohffvlFfPjhh0IIIRITE0VqaqoQQogdO3aILl265LDz33//FXXq1BG2trZi9OjRIjo6Wt0HiKVLlwohhJg8ebL6/+Ph4SE+/vhjIYQo0C7de9zBgweFh4eHer4//PDDc1xdydtG+NmbomHAjhyf8LM3X7VphQaIFMXAb/CiPkUnpS+RvAAyh5G+CHR/CFu3bi30MRMnTsTLy4vPPvsMyJmvnR+66j7x8fEsX778tROA3bJlC9OmTSMtLY06deq8cbnmEsnzUhSpB28yjo6OlClThv/7v/971aYUC3RRFdk1XdpYVX9tf28yl/wFrb6Zj48PAJ999hmjRo2iSZMmXLx4kdatW3P8+HEAjh07RlhYGEZGRvj7+3P27FlCQkI4duwYrq6urFu3jhkzZtC5c2e2bNmSJT3oypUrfPnll0RFRfHOO+/QqlUrjNdtICXtXTIeP6JsbQtqeQ3k323zWbhwAc4/Ts3XFh1Hjx7F19c33/PVVfjT19fn3r177N27lxIlShAcHMyECRPUqkYxMTEcOnSIUqVK0aBBA0aMGIG+vj7fffcd0dHRlCtXjubNm6vpwoW9VkWBLkqrqEuKZ/5dcHd358MPP6RRo0bqNWnevDm3bt1SU6G9vb0xMDDAxsaG9PR02rRpA4CNjQ3x8fGcPHkSU1NTNa3Q19eXX375hZEjRwLQpUsXQHufWb9+PQCJiYn4+vpy+vRpFEVRI18yU6tWLU6ePMmuXbvYtWsXLVq0YM2aNbRo0SJHcQLdGIC6vSC7JK8vxemZ/iLT9iRFQ1E4Vl7PJ7/ktcbExITevXvz119/UaJECebNm8f48eM5c+YMY8eOZejQoQD88MMPrF69mpSUFDp37szkyZOJj4+ndevWNGrUiKioKLZu3YqHhweRkZFUrlyZJUuWMHPmTBRFUSsFZObq1atq9Q5ArSA0bNgwWrdujY+PD507d+add95h0aJFLFq0iLNnzzJlyhQ193zcuHEcP34cOzs7fH19+fTTT/nyyy/Ztm0benp6DB48mBEjtNJFc+bM4c8//yQ1NZU1a9a8sDSfwpBXHXuJRPJmTpKLmsyl7CV5h3abVy9X5JPcl0X2BRGdxgpAcHBwlsp69+7dU7UIfHx8sjgKCppkZ+bgwYN4enpSpUoVQJtutu/gAUqZdkHRN6BCAxcAKtSuz90bF/O1pWzZvK97o0aNuHfvHq1atVIrCGWu8JffJL5FixZq+qylpSUXLlzg5s2beHh4YGxsrPalq371NNequPK0i2M64Xw9PT0MDAzUFDA9Pb1CpT3pjs9cevabb76hWbNmbNiwgfj4+Fx18nTHent74+3tTbVq1di4cSMtWrTI0S5zWlphdFhKlChBRob27/t5igpIXj7F7Zn+Oomrv60UqLGiQ1GUvGS8377adJKXhm61Q/fJXOWg9DvVmLt+JxonF/z8/Fi7di379+9n0qRJgLZM6enTp4mIiCAmJoaoqCj27NkDwOnTp/nkk084evQoderUUfs8evQoAQEB7Nq1i8OHD+daenHYsGF8+OGHNGvWjClTpnDlyhVAuxqjy5O9fPmy+kKkE8fNzPTp03F3dycmJoZRo0Yxb9484uPjiYmJITY2lr59+6ptK1euTHR0NB9//DEzZ84sissqkUiKmIwMQeylu3z751EePk4HZP7zy0JfXz/LcyL7pFvH3bt3+fXXX/PsJ78JdUFk1lF4GvKryPImkpGRwf79+4mJiSEmJobLly+r1z37JPV5J9nljQwY39YCRV8fRVEoVUKPLo7vYaivFGiLDisrqyylwA8cOMB3331HYmKiui2z3bpJfFxcHH/++WeWiXT2ansFncPTXKvXCXd3d5YtWwZoBVwrV65M+fLlC3VsgwYNiI+PV8uw/+c//8HDwyPfYxITE6lZsyaQd0Wn6Oho9V0uIyOD2NhY9d1QV5wAUIsTPI1dJiYmqkNZF6kD2qIF9+/fL9R5S14NxU3TRCeuvnigM4G97Vk80Fku3BQzCnSsKIrSWFGUY8CJJ99tFUVR30yEEEEvzjzJ245utUP36dmzJxkZguTUdP68+y6frjjE3ptG1KhnQ5kyZalSpQqlSpXi7t27bN++ne3bt2Nvb4+DgwMnTpzg9OnTANSpUwcXF5cc4+3atYvu3btTuXJlAHUVKTOtW7fm3LlzDB48mBMnTmBvb09CQoLqWDl27BiWlpZUq1aNq1evEh4eXqDqe3BwMEOGDFFV5TOPmzm0Na8Jg0QieXXoVrV2HLvOjfsp3Hn4OMuL2Js6SS4uZH9OmJiY5NquIMfKq0AX2p2ZNzm0u1WrVsyZM0f9XlSpvs7OzuzevZubN2+Snp7OihUr8PT0pI1VdQxL6KuTELvaFdEFHBTGlmHDhhEUFKSm8QJZylpnpzCT+Mw0bNiQ3bt3c+fOHdLS0rJMvF/UtXrV+Pv7ExUVhUajYdy4cSxevLjQx+rKanfv3h0bGxv09PTUCOW8+OKLLxg/fjz29vZ5OrNu3LhBhw4dsLa2RqPRUKJECYYPHw7kXZygsHZNmjSJzz77DCcnJzWyCQouWiB59RRHx7cUVy/eFCYVaBbQGvgvgBDisKIoTfM/RCJ5ccTfekDiw1RSKYEBkC4g9uoD4m89eHKT0a5mCSEYP348Q4YMyXp8fPxzr/YYGxvTp08f+vTpQ/v27dmzZw9du3bl7t27bNu2jaZNm3L79m1Wr15N2bJlKVeu3DOPlVtoq0QiKT7oVrV8bGuo+c/3H6VSonRJSpfUf2MnycWVpKQkOnbsyJ07d0hNTSUgIICOHTsybtw4zp49i52dHV5eXvzwww8F9vXnn38SEBDA48ePqVSpEsuWLaNatWrcunWL3r17c/nyZVxdXXVi/kycOBFjY2NVW+Grr76iatWqqiZXdt620O7AwECGDRuGRqMhLS2Npk2bMnfu3OfuV1cCuVmzZgghaNeuHR07dgRAUcDFrBIA0ZkmIYWxpXr16qxatYovv/ySy5cvU7VqVSpXrpzr5Bq0k3hfX18CAgJo165dgXbXrFmTCRMm4OzsjLGxMebm5mq60Iu6Vi+T3ErOGhsbs3Hjxhzb/f398zw2874WLVpw6NChHMdnXnhycnJSS7e7urqq6VUAAQEBOY5t06aNmmqWGz/++GOObZlLw+dnl7u7e5bxddSvX/+pNPokLx+paSJ5agpStwUOPPn3UKZth1+16m72j6wK9GaSvbqAEFpV7JIVqwm78WtFw4AdwrTL56JqIx9VFVunwP73338LZ2dntZLNpUuXxPXr18X58+eFlZVVlj51x8TFxYl69eqJmze1fd26dSvH+Dt37hQPHjwQQghx7949YW5uLiIiIoQQ2goBtWvXFqdPnxb79+8XtWrVEiNHjsxxPpGRkaJp06bq9t9++0107dpVVa7XjZuXmrxEIik+6JT628zaLX7cfkKYf71VmI7bLBpN2SG2xF557au8FHcyV4/r1KmTSE1NFYmJiUIIIRISEsT7778vMjIycr33Zya3583t27dFRob2/2/+/Pli9OjRQgghRowYISZPniyEEGLz5s0CEAkJCeL8+fPC3t5eCCFEenq6MDMzU58nefGmVQWSPB26d5TU1FTRvn17sX79+ldskSQzud0XJG8H6ekZYkvsFdFk+k7RMGCHaDJ9p3ymPyfIqkD8qyhKY0AoimIAfAYcL+AYiaRIyF5doE2bNnw05uscisn6ekoOD3KrVq04fvw4rq6ugDZ/funSpVlCMbNjZWXFV199hYeHB/r6+tjb2+cI542KimL48OGqINmgQYNo2LAhoF2Z2L59O3Xr1qVOnTrcvn0bd3f3HONoNBr09fWxtbXFz8+PESNGcOrUKTQaDQYGBgwePFgNQ5VIJMUb3arWrQeP2X70OgPcTFEAL8tqaGpVlKG6L5jsApmpqalMmDCBPXv2oKenx+XLl7l+/foz9X3p0iV69uzJ1atXefz4MaampoBWVNzc3Jx169ahr6+fJSrx1KlTHDp0iOvXr2Nvb0+lSpXyHSOviiyenp7MnDkTJyenQtlqYmJCuXLl0NfXJz09XY3UkRRv/P39CQ4O5tGjR7Rq1SpLtSPJqye3qBvJ24FO08S8erliURVIUvxRxJPw1TwbKEpltAK1LdFWANoOfCaEuPXizSs8Tk5OQqc6L3mzKW6jA8VdAAAgAElEQVQq3RKJ5O1G3pNeLbpqazqCgoL466+/WLp0KQYGBpiYmKhh++3btycuLq5Q/YDWuTF69Gh8fHwIDQ3F39+f0NBQ9PX1OX36NGZmZvz999+0b9+eq1evkpSUhLu7O126dOHatWv4+vrStm3bZzqvZ3Gs6KrbnTx5klatWnHhwoVCj5eenp7vwoPk7aY4lZ2VSCSvJ4qiRAkhCvdQew0pMGJFCHET6FtQO4nkZSE9yBKJpDgh70nFi8TERKpWrYqBgQEhISGqc+FZqnBkFiPNLLKpp6fH8uXL+frrr9m9+//ZO++wKK62D99LEVCsiKgxAhbqLkWkC4oFNBIVNRpLBI2JJZbYoibmtUSNiTUaW4w1Khp7NMZXjSAiKgJSBUEQu5FYUJoCO98f++58uwKKXZO5r2svnTMzZ84Os2fOec7z/J6jWvpX1atX58CBAzx8+BBDQ0MmTpyInp4eCxYswM/Pj6KiIoYNG0ZMTIxWeWFhIQMHDiQhIQEbGxsKCwsBWLNmDYmJiSxatAiAVatWcfbsWRYuXFhhu+/du0ft2rXF7W7dunH58mWKiooYPXo0n376KaAyJg0ZMoTDhw+zdOlSoqOjWbNmDQCDBw9m1KjRRJ45y4DeQbh7epEcd5p33nmHPXv2vBXpfiVeDJLxWEJCQuLJVCYrkKlMJvtSJpP9JJPJ1qg/r6JxEhIVIaliS0hIvEm8yj7pypUrdO3alebNm9O0aVNGjx7Nw4cPAZWgYmBgIAC//fYbc+bMeeHXd3Z2FkNvSkpKxDBLNS4uLlopap+FadOmPXN6+X79+hETE4NCoWDDhg3Y2NgAYGJigre3N3K5nAkTJpQ5r6CggEaNGomfBQsWMG3aND744ANcXFzEbHGg8u747rvvMDAwYN68edSvX1/cp6Ojg5+fH5aWlujq6pKUlERoaCjBwcEUFRWxdOlSZDJZmfLly5dTtWpVUlNTmT59upiitVevXuzdu5fi4mIA1q5dy6BBg8r97n5+fsjlclq3bq0l0rlmzRpiY2OJiYlh8eLF3LqlcjrOz8/H3d2dhIQEjIyMWLt2LadOneLkyZOsWrWKpdsPMe7XBC5eyCS9jhdztxymZs1aWtlrnhV1mmy5XM7777/P3bt3n7tOTbKzs5HL5eXua9OmDY96Oe/Zs0crDOfbb7+lWbNm4vbevXvp0qXLC2vf86T3ftW8aWlnJSQkJN5EnmhYAfYANYHDwO8aHwkJLXbv3o1MJiMtLa3MPqVSICsnj5NZt8jKyUOpfHwI2pOIiYlh1KhRz1UHQEhICNu3bwdUq3Nnz5597jolJCQkXhaCINC9e3e6detGRkYG6enp5OXl8dVXX5U5tkuXLkyaNOm5r/loNjJvb28x/WxCQgJWVlbidn5+PpmZmTg6Oj73dSvLo+E7devW5cSJEyQlJbF27VpSU1PFFMybN28mOTm53IxASqWSK1euiJ+xY8fStWtXsrKyiI2NZe7cuWJIUdWqVbl//z4PHjzg6NGj1KlTR9RSEQSBkydPoqurS//+/QGwsbHB3Nyc9PR0IiMjyy2PiIgQyx0cHHBwcABUE/C2bduyb98+0tLSKC4uRqFQlHsvwsLCSE5OJikpiREjRoj3ZvHixTg6OuLh4cHly5fJyMgAVMaNHj16ABAZGUlQUBDVqlXD2NgYv46BLNr4Gw9LlRjUro9+vSZ8uz+VJjZyrQwsz4paGyc5OZk6deqwdOnS567zefDy8uLkyZPi9okTJ6hRowY3b94EICoqCi8vr9fVvNfKm5h2VkJCQuJNozKGlaqCIEwUBOFXQRB2qD8vvWUSbx2hoaG0atWK0NBQrXK1C+mAVScYFXqG4DXRHEi58VzGlZYtW7J48eLnbbIWP//8M3Z2di+0Tk0EQUCpVD75QAkJCYkKOHLkCIaGhgwcOBBQTYwXLlzImjVrKCgo0Dp23bp1jBgxgtzcXMzNzcX+Jz8/n3fffZfi4mIyMzPp2LEjLi4u+Pj4iIbxkJAQhg4diru7O1988YVWvV5eXqIhJSoqiqFDh4oeLNHR0bi4uKCrq8uCBQuQy+XI5XIxjAWosHzWrFlYWVnRqlUrzp0794Lv3MvD09OTv//+m5ycHDIyMsjIyKBdu3Yv1CNh8ODBrFu3jrVr14p/+8fRtGlTzMzMOHv2LOHh4Rw+fJgTJ06QkJCAs7MzRUVFABgaGlaoq5L/oJSS/72ndXSrAKrJdEGJUMbY9rx4enpy9epVAOLj4/Hw8MDBwYGgoCDu3LkDqLxMJk6ciJubG1ZWVhw7dgxQeab4+PjQokULWrRoIT6bmhQWFvLhhx9ia2tLUFCQGGaliampKTVq1OD8+fMAXL16lR49emg9697e3uTk5NCjRw9cXV1xdXXl+PHjgOrZ9/T0xNnZGS8vL/EZTklJwc3NDScnJxwcHESjliZz587F1dUVBwcHpk6dCqhSd2v+Pr766it++OGHZ7vBz4laoFsTKe2shISEhDaVMazsk8lkz6a8JvGvIS8vj8jISFavXs2WLVvE8vDwcNy9vPmodw9iFgyk9GEhSWsm84F/K2zs7dm6dSugyrTTunVrXFxcCAgI4Pr160DFAylNd/dHXcblctVqWn5+Pp07d8bR0RG5XC5eqyI0XYNXr16NlZUVbm5uWhl6MjMz8fDwQKFQMGXKFK2Bc3kDo+zsbKytrRkwYAByuZzLly8/132WkJD4d5OSkoKLi4tWWY0aNWjcuLE4IXyUmjVr4uTkxNGjRwHYt28fAQEB6Ovr8+mnn7JkyRJiY2OZN28ew4cPF8+7cuUKUVFRLFiwQKs+TY+VqKgofH19MTAw4P79++KqfmxsbJmwkjNnzjy2fMuWLcTHx7N//35Onz79Im/bSyUtLY3S0lJMTExo3rw5VlZWzJ8/Hx8fHzZt2gSoMgVdunQJa2vrCst9fX3ZvHkzAMnJySQmJorXcHd35/Lly2zevJk+ffo8sU03b97kwoULmJubk5ubS+3atalatSppaWlaXhma+Pj4sHv3bgoKCsjPz+f4n/up08RB6xgDPR2MDSqTULLylJaW8ueff4phNgMGDOC7774jMTERhULB9OnTxWNLSkqIjo5m0aJFYnm9evU4dOgQcXFxbN26tVxv1orCrB5F/WyfO3eO5s2b4+HhQVRUFCUlJSQkJODq6sro0aMZM2YMp0+fZseOHQwePBhQeR8dO3aMM2fOMGPGDL788ksAVqxYwejRo4mPjycmJoZGjRppXfPgwYNkZGQQHR1NfHw8sbGxREREMGjQIDZs2ACovKm2bNkiejS9aixMqjH5PVvRuKLWWLEwqfZa2iMhISHxJlKZt+No4EuZTPYAKEaVGUgQBKHGS22ZxFvFnj176NixI1ZWVpiYmBAbGysO/pMTE7AatgKDOg24nXIM/eomWA2YxeI+ztia6FFcXMzIkSPZs2cPpqambN26la+++koU0FMPpPbv38/06dM5fPhwpdp04MABGjZsyO+/qyLXcnNzK3XetWvX+Oabb4iLi6N69eq0bdtWdGsfPXo0o0ePpk+fPqxYsUI8R3NgJAgCXbp0ISIigsaNG5ORkcH69evx8PCo9P2UkJCQeJH07t2brVu34ufnx5YtWxg+fDh5eXlERUXxwQcfiMc9ePD/rv0ffPBBud4M5ubmPHz4kBs3bpCWloa1tTWurq6cOnWKqKgoRo4cqRVWAtC9e3eOHTuGIAjlliuVSoKCgjA0NCL7Vj6urTtwK+8BSqXwRmpoFRYW4uTkBKi8EdevX1/mXg0fPpxhw4ahUCjQ09Nj3bp1GBgYVFg+bNgwBg4ciK2tLba2tmUMaL169SI+Pl5LlPZR/Pz80NXVpbi4mDlz5mBmZkbHjh1ZsWIFtra2WFtbV/guatGiBSEhIbi5uQEw7NNPsG7fhakbw4D/n0ynHIglP7/4me+dGvU9vHr1Kra2tnTo0IHc3Fzu3r1L69atAQgODtZ6Prt37w6odHzU4UjFxcWMGDGC+Ph4dHV1SU9PL3OtiIgI0eCiGWb1KGpvrNLSUjw9PXFzc2PGjBmcOXMGGxsbDA0NOXz4sFbY8L1798jLyyM3N5fg4GAyMjKQyWSiJo6npyezZs3iypUrdO/enebNm2td8+DBgxw8eBBnZ2dAtVCVkZGBr68vJiYmT5W6+2UhCXRLSEhIPJnKZAWq/ioaIvF2ExoayujRowH48MMPCQ0NFQeFji1c0K/3Dg9KlFQ1s+TyHyu5duhnLjoMxOP9AJKTk0lOTqZDhw6AavWqQYMGYt3lDaQqg0KhYNy4cUycOJHAwEB8fHwqdV50dDStW7emTp06gGpyoR6onThxgt27dwPQt29fxo8fD1Q8MGrcuDHm5uaSUUVCQuKFYGdnJ+pCqbl37x6XLl2iWbNmREdHl3tely5d+PLLL7l9+zaxsbG0bduW/Px8atWqJYbxPIra+FEeXl5ebNu2jQYNGiCTyfDw8OD48eNiOMSzhPIIwv9nHslIy8HohoBPyo03MvNIaWlpueUWFhZiOmdDQ0PWrl1b5piKyo2MjLQ8Ph8lMjKSMWPGVLi/ovejgYEBf/zxR7n7HtWnGTt2LGPHjhW3lUoBm/FduDkkQJxMv6coK/z7LKg1VgoKCggICGDp0qUEBwc/9hwDA1Xoia6urhiOtHDhQszMzEhISECpVGJoaPjMbfL29mbJkiWUlpbyySefUL16dYqKiggPDxf1VZRKJSdPnixznREjRuDn58euXbvIzs6mTZs2gGqs4O7uzu+//857773HypUradu2rXieIAhMnjyZIUOGlGmPOgTsxo0bFQoWvyrUAt1NTN8e0V0JCQmJV0llsgJ5y2Syav/7f3+ZTLZAJpM1fvlNk3hbuH37NkeOHGHw4MFYWFgwd+5cfv31VwRBFZttUrOG6EJqWLcRzqNW8GFAK5bNm82MGTMQBAF7e3vi4+OJj48nKSmJgwcPivWXN5DSRE9PT0u7RB07bmVlRVxcnBi2M2PGjJd2D9QDI/V3OH/+PB9//DHw+MmJhISExNPQrl07CgoKxBCB0tJSxo0bR0hICFWrVq3wPGNjYzGMITAwEF1dXWrUqIGlpSXbtm0DVP1YQkJCpdrh5eXFokWL8PT0BFSr8hs2bKB+/frUrFmzTFjJrl278PHxqbDc19eXbTt2MXNPPAX5edw9d4ISpSBlHgHu3r2LlZUVRkZGtGvX7pVe+1Vku6patSqLFy9m/vz5VKtWjdq1a4thv7/88ovovVIRubm5NGjQAB0dHX755ZdyjV6PC7PSxNbWlmvXrhEZGSkulDg5ObFixQq8vb0B8Pf3Z8mSJeI5asOkZmrudevWifuzsrJo0qQJo0aNomvXrmWuHRAQwJo1a0Qj19WrV0XB3KCgIA4cOMDp06cJCAh47H2QkJCQkHi9VEZjZTlQIJPJHIFxQCbwy0ttlcRbxfbt2/noo4+4ePEi2dnZXL58GUtLS3FgJJNBR/v6rB/kxtdt67N2cCu+n/gZEyZMIC4uDmtra3Jycjhx4gSgcutNSUmp9PUtLCzE1J5xcXFcuHABUIX0VK1alf79+4vXqgyurq4cPXqUO3fuUFJSopVW0sPDQ9zWXFl83MBIQkJC4kUhk8nYtWsX27ZtE/U8DA0NmT179hPP7d27Nxs3bqR3795i2aZNm1i9ejWOjo7Y29uzZ8+eSrXD29ubrKws0bDSoEEDSktLxVV9zbASd3d3Bg8ejLOz82PL23TqStyiT0hf/yXV3rEGpMwjALVq1SI9PV00gL0sZs2ahb29PQ4ODjg5OXHq1KmXej1NnJ2dcXBwIDQ0lPXr1zNhwgQcHByIj4/nP//5T5njDx48yLVr13B0dGTv3r0sWLAAR0dH0tLSyl3MGDZsGHl5edja2vKf//ynTJiVGplMhru7OyYmJujr6wMqo2FWVpb4bC9evJiYmBgcHByws7MTw4K/+OILJk+ejLOzs9Yi0K+//opcLsfJyYnk5GQGDBigdU1/f3/69u2Lp6cnCoWCnj17cv/+fQCqVKmCn58fvXr1qlBkWEJCQkLiDUEQhMd+gDP/+/c/wMf/+3/ck8571R8XFxdB4vXQpk0b4Y8//tAq++GHH4ShQ4cKYWFhQufOncXyAwcOCAqFQnB0dBRatmwpnD59WhAEQThz5ozg4+MjODg4CHZ2dsJPP/0kCIIgtG7dWjwmJydHMDc3FwRB0Kq3oKBA6NChg2BnZycMHDhQsLGxES5cuFDhtTTp16+f8Ntvv5W51sqVK4VmzZoJbm5uwoABA4Qvv/xSEARBSE9PF9zc3ASFQiFMmDBBaNiwoVjXokWLBLlcLsjlcsHDw0M4f/68cOHCBcHe3v6577EaQOjXr5+4XVxcLNStW1frHpfHo3+Hp8Hc3FzIycl5pnMlJCQkKkvmzftCqzl/Cq4zD4mfVnP+FDJv3n9p1ywtVQqZN+8LJzL/FjJv3hdKS5Uv7VrPAiCMHTtW3J47d64wdepUQRAEYfny5cL69eufus7y3ktRUVGCh4eHUFRUJAiC6n179erVx9bTunVrwcrKSnB0dBQcHR2Fbdu2CYIgCNWqVXtiG4qLi5+63WoOHTokGBgYCJcvXxYEQRCKioqEtLS0Z67vTaa0tFRwdHQU0tPTX3dTJCTeKq5fvy707t1baNKkidCiRQuhU6dOwrlz58S+7/Tp08LIkSOfqk5pPPz8ADHCG2A3eFmfyhhWjgKTgXSgPiovl8TX3fBHP5JhReJpKS0tFVq0aCGkpKSU2Xf/vmogX1xcLAQGBgo7d+4UBEEQ8vPzBaVSNfAODQ0VunTp8uoaLKgGrI6OjkJBQYEgCIKwf/9+wdHRUTKs/AvR0dERHB0dBXt7e6Fnz55Cfn6+cOfOHWHp0qVPPPdFG/wkJF4EpaVK4ffEa6JxpdWcP4XfE6+9NGPHq77es2BgYCBYWFiIfbCmYeVZKe/3v2PHDiEwMLDc42NiYgRfX1+hRYsWgr+/v3Dt2jUhNTVVqF69urgYceHCBUEulwuCIAiGhoZljhcElSFm9OjRgouLizBv3jwhODhYNMYIwv8bZK5duyb4+PiI/VtERIRWe/bs2SNUqVJFfA9qEhwcLIwcOVLw9PQULC0txfrv378vtG3bVnB2dhbkcrmwe/dusd3W1tZC3759BRsbG6FHjx5Cfn5+hd/7VZKSkiJYWlpqGdYkJCSejFKpFDw8PITly5eLZfHx8UJERMRzjX2k8fDz8083rFQmFOgc8OB/3io3gEaAJBoh8VZz7do15HI5Hh4e2NnZldk/bdo0nJyckMvlWFpa0q1bN0CVFtrJyQkHBweWLVvG/PnzX3XTee+998RMR6GhoVqpN9XCkc7Oznh5eZUrIJmXl8fAgQNRKBQ4ODiIoU2hoaEoFArkcjkTJ04sc152djY2NjaEhIRgZWVFv379OHz4MN7e3jRv3rxC0UyJl4Na+DE5OZkqVaqwYsUK7t69y7Jly1530yQkngl15pH1g9xY3MeZ9YPcXqpwbfatfL7dn8qDEpVG14MS5Run6aKnp8enn37KwoULy+ybNm0a8+bNA+D8+fO0b98eR0dHWrRoQWZmJoIgMGHCBORyOQqFgq1bt5apIzs7Gx8fH6ZPn86ff/5J48aNGT58ODt37sTX1xdHR0d8fHwYP348sbGxDBo0iK+++gobGxuUSiVXr14FYOvWrfTu3Zvi4mIePnzI9u3bOXr0KFevXhWv//fff4v7Vq1aRWRkJCNHjhTfJYWFhTRv3pw5c+YQEBDA8ePHadmyJZ9//jnOzs5imFqNGjUwMzPD3NycPn36sGnTJi2dtevXrxMZGcm+ffuYNGkSoBIM3rVrF3FxcYSFhTFu3Dj14iHnzp1j+PDhpKamUqNGDZYtWyZmK9y+fbvW936V2NnZkZWV9VrGGRISbzNhYWHo6+szdOhQsczR0ZF3331X3A4PDycwMBBQaUV269YNBwcHPDw8RB2kW7du4e/vj729PYMHDxb7jOzsbGxtbfnkk0+wt7fH39+fwsJCAFatWoWrqyuOjo706NGDgoKCV/W1Jd4AKmNYaSkIwgJBEI4BCIJwCZCeEom3moYNG3L27FmWLl1a7v558+YRHx9PWloaixcvRiZTDex9fHxISEggMTGRiIgImjVr9iqbDaiyLm3ZsoWioiISExNxd3cX99nY2HDs2DHOnDnDjBkz+PLLL8uc/80331CzZk2SkpJISUlh6tSpWFlZERwcTM+ePYmLi+P06dNi9iNNzp8/z7hx40hLSyMtLY3NmzcTGRnJvHnzHqvx8NtvvzFnzpwXcwMkyuDj48P58+eZNGkSmZmZODk5MWHChEpNrEpLS5kwYQKurq44ODiwcuVKQDXoaN26NV27dqVJkyZMmjSJTZs24ebmhkKhIDMzk/v372NpaSmmFb13757WtsTjUSoFsnLyOJl1i6ycPJRK4XU36bXzKsRSdXV1cXJyooO3Kym/TKP0YZG471VpulhYWIjGbX9/f27cuFHhsZ999hmbNm0iNze3wmP69etH165dkclklJaWUlhYyM6dO4mPjychIYHDhw8zYcIErl+/rnVevXr1OHToEAkJCcTFxWFkZISpqSkhISGYmpqyadMm9PT0+Oqrr3BycmLmzJlcuXIFAFNTUwYPHoyTkxPTp0/H3rUVvx4+hVKppEOHDnh7e6s9igkLCyMzM5NevXoBqneJvb09P/zwg/guMTIyYt68ecTGxrJ27Vo6duxI8+bNiY2NJSwsjAkTJpCfrzJ6OTg48Oeff+Lm5sa8efO0MuZ069YNHR0d7Ozs+OuvvwCVd/aXX36Jg4MD7du35+rVq+K+d999VxSm7d+/P5GRkZw7d07MVvjo95aQkHizSU5OrlBHqTymTp2Ks7MziYmJzJ49W9RBmj59Oq1atSIlJYWgoCAuXboknpORkcFnn31GSkoKtWrVEhcpu3fvzunTp0lISMDW1pbVq1e/2C8n8UZTYbplmUw2DBgONJHJZJoS5tWB4y+7YRKvB6VSIPtWPjfvPxBTKz7twFZXVxeFQkFJSQm2trasX7+emzdvEhgYKKahrAxt2rRh3rx5tGzZEgsLC2JiYqhbty5eXl5ERUWVOT4kJITAwEB69uxZqfrPnTvHkCFDuHv3Lg8ePMDHx4effvqp0u17XTg4OJCdnU1oaCjvvfee1r7c3FyCg4PJyMhAJpOVO8E9fPiwKLxrZGREcnIye/bsYdOmTRw7dgylUkm/fv2IiIgQPXXUWFpaolAoALC3t6ddu3bIZDIUCsVjU2F36dKFLl26POc3lyiPkpIS/vjjDzp27EinTp1ITk4Ws1Ts2LFDnFj9/fffuLq64uvrq3X+6tWrqVmzJqdPn+bBgwd4e3vj7+8PQEJCAqmpqdSpU4cmTZowePBgoqOj+eGHH1iyZAmLFi2iTZs2/P7773Tr1o0tW7bQvXt3UfRRomKUyv9PLfygRImBng6T37N9I1ML/9NQe3tl5eTh4d+NnNP7qO+tem8Y6OlQr7rBK2lHWFgYdevW5csvv2T27NksXry43ONq1KjBgAEDWLx4MUZGRmX2379/n6tXr5Kfn0/Pnj2ZMmUKoPpt9+nTBx0dHUxNTWndujWnT5/GwcFBPLe4uJgRI0YQHx+Prq4uly9fZvr06ejq6vLdd99Rr149LCwsys2iU69ePQwMDNiyZSuB3T9gQbySO1dSQSZj9i9/0M7KhHHjxhIREUH79u158OCBmLXP0tISU1NTQPUu8fPzY+PGjSgUCvLy8oiIiMDT05OZM2eycuVK6tSpQ1FRkdbERqFQoFAo+Oijj7C0tBQz8agzCQLiCvOmTZvIyckhNjYWfX19LCwsxLaoF07UyGQyBEGVrVAtqi8hIfHPJTIyUjSMtG3bllu3bnHv3j0iIiLYuXMnAJ07d6Z27driOZaWljg5OQHg4uIijoGTk5OZMmUKd+/eJS8vT8rm9S/jcR4rm4H3gd/+96/64yIIQv9X0DaJV4x6oB+8JppRoWcIXhPNgZQbT72KWl6IwoukPKPKszBq1CjGjBlDfHw8qampjBw58rnrFARByyX5ZdGlSxfGjx+vFQYE8PXXX+Pn50dycjJ79+4VB46VwdDQkJ9++okff/xR/B7qFU5fX182bdqEgYEB4eHhtGnThoiICL744gv69euHTCajpKQECwsLpk6dSosWLVAoFKSlpQGq1JMjRowAYNu2bcjlchwdHctM8iUqT2FhIU5OTrRs2ZLGjRuL6b01iYyMpE+fPujq6mJmZiZOrDQ5ePAgGzZswMnJCXd3d27dukVGRgagypDVoEEDDAwMaNq0qWhw0TSkDR48mLVr1wKwdu1aBg4c+BK/9T+HtyEM5Z+OhUk1egV2oPjOdUoK7pG5eSpXVo+g7/vtRUPCtGnT+Oijj/D09KR58+asWrUKUHl0+fr60rlzZ6ytrRk6dChKpZI1a9bw+eefi9dYtWoVY8aMeWw7fH19OX/+PEVFRWKYprOzM2FhYYCq/4yJiWH27NnMnDmT6OhoFixYwIoVK1iyZAm3b9+mqKiIRYsWsXz5cvz8/MjOzmbdunX8/PPPyOVyLl++zNmzZxk3bhwdO3YUs9Z16dKFK1eu8OuvvxIaGkpRURE//PADDx8+pFevXjg4OHDu3DkxM49m1j4jIyN0dHSY/PU0Si08eFCixLBuIxBg8vLt/PDTGv766y82bNhAfHw8VapU4eHDh4DK+GFhYUFsbCw6OjokJSVRXFyMjo4OBQUFmJmZUbduXcaPH0/37t2Jj4/n0qVL2NraUlhYyK1bt8T7Fx8fj7m5+WPvcW5uLvXq1UNfX5+wsDAuXrwo7rt06ZJoQNm8eTOtWrV67myFEhISrw97e3tiY2Nf6jU0Dbi6urpiJrCQkBB+/PFHkpKSmDp16j/rNLcAACAASURBVFONwyXefio0rAiCkCsIQrYgCH0EQbio8bn9Khso8ep4GQN9dYgCqEIOHo1HzMzMpEWLFuLxGRkZWtvlYWxsDKiMGCNGjMDa2pr27dtrpTeeMWMGrq6uyOVyPv30U3HVSpPr16/TqFEjcVvtibFu3Tq6du1KmzZtaN68OdOnTxePWbBgAXK5HLlczqJFiwBVrKW1tTUDBgwQB7Bz584VQyumTp36tLftiQwaNIipU6eKbVaTm5vLO++8I36P8ujQoYNWCNSdO3dwc3Pj6NGj1KhRg5KSEjZs2MDDhw+pWbMmDRo04NChQ2zZskX0gDlz5gyurq4sXLiQrKwsYmJixPrq1q1LXFwcw4YNE+P/NZkxYwb//e9/SUhI4LfffnveW/GvRW3AjI+PZ8mSJVSpUuWZ6hEEgSVLloh1XbhwQTSgaA4cdHR0xG0dHR1xEOHt7U12djbh4eGUlpYil8uf85v9O7h5/4HY16qRUgu/WpTKUi4lRDE8yI+ml//go85tyExL0XIFB0hMTOTIkSOcOHGCGTNmcO3aNUClabVkyRLOnj1LZmYmO3fupFevXuzdu1fsK9euXasVplIe+/btQ6FQsHTpUmQyGUlJSYSGhhIcHCwek56ezpAhQzA2NubPP/+katWqDB06FHNzc3bt2kWzZs1o06YNY8aM4cCBAxQWFnL37l2USiWJiYmcOnWK9PR0IiIi2L9/P4WFhWI4a3p6OgUFBbz//vsIgsBPP/1ETEwMc+bMYdiwYYwZM0ZMye3k5KS1uNGhQwd2b99CDTuVkVxHTx+Znj5Z+1cxd+Z0jhw5wunTpwkLC+PBA+1n+5NPPuHo0aP89ttvpKeni2mSCwoKcHR05OrVq6xevZpRo0YBqvcOqPqszMxMrK2tcXJyYurUqRW+79T069ePmJgYFAoFGzZswMbGRtxnbW3N0qVLsbW15c6dOwwbNowqVaqwfft2Jk6cWO73lqg8t27dwsnJCScnJ+rXr88777wjbqsNbRISL5K2bdvy4MEDLS/0xMRELl++XO7xPj4+bNq0CVAZzevWrUuNGjXw9fVl8+bNAPzxxx/cuXPnide+f/8+DRo0oLi4WKxT4t9DZTRWJP4lvOiBvjpEQT35Ly8esWnTptSsWVMMXXiaFe9du3Zx7tw5zp49y4YNG7QGPSNGjOD06dMkJydTWFjIvn37ypw/ZswY2rZtS6dOnVi4cCF3794V90VHR7Njxw4SExPZtm0bMTExYtz3qVOnOHnyJKtWrRIHehkZGQwfPpyUlBTOnTtHRkYG0dHRxMfHExsbS0RExDPdw4po1KiRONjU5IsvvmDy5Mk4OzuLE99HmTJlCnfu3EEul1NYWEhYWBgNGjRgzpw5+Pn5kZeXh4ODAzdv3mTDhg1cu3aNgIAA7ty5Iw6M3dzcqFatGjo6Ojg5OWnFnnfv3h3Qdo3UxNvbm5CQEFatWkVpaekLuBsSaqpXr879+/fFbR8fH7Zu3UppaSk5OTlERETg5uamdU5AQADLly8XJ4Lp6enk5+dz+/Zt4uLiaNq0KS4uLiQlJWmt8moyYMAA+vbt+9zeKiEhIWzfvh1QecKcPXv2uepTs2jRIgwNDR+rUfE4XmRb1NSrboCBnvYr+FWGofyb0fT2MjdvzMTPh3M+KYZRQz9GR0em5QoO0LVrV4yMjKhbty5+fn6iULebmxtNmjRBV1eXPn36EBkZibGxMW3btmXfvn2kpaVRXFxcxgCuxs/PDycnJ+7du8fkyZOJjIykf3+VQ7CNjQ3m5uaiB6Sfnx+TJ0/m9u3bGBoa8v777wNQv359srOz+eWXXzh16hTz58/Hy8uLnJwczM3N8fHxwdHRkc8++wxDQ0M6depEYGAgDx48ICMjg0mTJnHv3j369OmDs7Mzurq6pKSk0KdPH9q1a4ezszPHjx8nMjKShIQEUlJS+OSTT8Tv8NFHH5F58z41TBuKZTIdHZyGLeKPoyewsrJi8eLFojFDMwzJzMyMkydP0qVLF/r3709eXh4AtWrVIjk5mQsXLvD+++/TtWtX7O3t+frrrwGoWrUqbm5unDt3jvj4eFHkFlQLCprhwOo669aty4kTJ0hKSmLt2rWkpqZiYWEBqASCN27cSGpqKjt27KBq1aoAODk5ERERUe73lqg8JiYmouF+6NChoqew2otJQuJFI5PJ2LVrF4cPH6Zp06bY29szefJk6tevX+7x06ZNIzY2FgcHByZNmsT69esBlfZKREQE9vb27Ny5k8aNGz/x2t988w3u7u54e3trGXAl/h1UqLEi8e9DPdDXNK48y0BfPWgF1cTu448/5tq1axXGI6pDCRYsWMDWrVsrnV0mIiJCDHNo2LAhbdu2FfeFhYXx/fffU1BQwO3bt7G3txcHomoGDhxIQEAABw4cYM+ePaxcuZKEhARAtQpnYmICqAwFkZGRyGQygoKCxFW17t27c+zYMbp06YK5uTkeHh6AKrTi4MGDODs7A6qBXUZGxgsJe1EPEjVp06YNbdq0AcDT05P09HRx38yZM8scY2xsLL40jI2NRUNInz59cHd3x9XVlSVLltCzZ0+WLFlSJj40PDwcAwMDcYUwPDyc2rVrk5ycjIWFhejVoOkaqcmKFSs4deoUv//+Oy4uLsTGxor3WuL5MDExwdvbG7lcTqdOnfj+++85ceIEjo6OyGQyvv/+e3Eipmbw4MFkZ2fTokULBEHA1NSUXbt2MWXKFExMTEhKSgKgZcuW3L5dvsNiv379mDJlihiaVlJSgp7e871efv755+c6X5PQ0FBcXV3ZuXPnUxt/SktLX2hb1FiYVGPye7ZlNFYsTN7OpHvlaWupJ6gvix9++IELFy6I3oNDhgwhMzOTw4cPA7BkyRIyMjLKaJeovb0qi0wmIzs7m8DAQFq0aCFqcpSnzQGq39Ts2bOxsbF57POm1lh5HCdPniQuLg4DAwPMzMwoKCgQ+9lp06aJYULNmzcnODgYY2Njxo8fT3Z2NsbGxsydO5e5c+cybtw4rKysGDJkSJlr/Pzzz0RFRXHjxg3RizA4OFjLY6Y8wsPDAVUYseaz7DXjdya/Z0sLq/oVapRo6q1peptYWFiI+4yMjEQxbU0032cSbyd//vkn48ePp6SkBFdXV5YvXy6Gh/Xp04c//vgDPT09fvrpJyZPnsz58+eZMGGCVpYXCYnH0bBhQ3799dcy5er+RbMfqVOnTrkJG0xMTDh48GCZ8rp162r1YePHjxf/P2zYMIYNG/a8zZd4S5E8ViRE1AN99Srqsw70KwpRqCgesUePHvzxxx/s27cPFxeX555kFxUVMXz4cLZv305SUhKffPJJhTGODRs2ZNCgQezZswc9PT2xo6xowFwRamMLqNyUJ0+eLN6D8+fPl6t/8aaRk5PD0KFDGTFiBDKZrEJPhuclMzMTd3d3ZsyYgampaYWumRKPpzwjG6g0ApKTk5k7dy4ymYy5c+eSnJxMUlISvXv3BrQnLzo6OsyePZukpCSSk5MJCwsjLi6OunXrikYVgJiYGD755BMEQeD3338nOztbzDQUGRmJj48P77//Pl26dMHOzk7U4unZsyc2Njb069dPDMmLjY2ldevWuLi4EBAQUCZTCagGPeoQM3X4H8D27dsJCQkBKqfXk5mZSV5eHjNnziQ0NFQsLygooFevXtjZ2REUFIS7u7vW9caNG4ejoyMnTpwo05YxY8aI4s05OTlie0ePHi2maVcbiCtKgf6qUwu/bJ5VW6siz7rK4O3treWpmJCQQG5urugJFxUVhZeXV6XqqsgVHGDPnj08ePCA0tJSwsPDcXV1BVR/2wsXLqBUKtm6dSutWrUCwN3dncuXL7N58+YyOliVbUN6ejqXLl3C2tq60uc/joCAANasWSP2G1evXhXDZ4OCgjhw4ACnT59+JqHFt/lZ1uwLJV4NRUVFhISEsHXrVpKSkigpKWH58uXi/saNGxMfH4+Pj4/oxXjy5MmXElYtISEh8SKRDCsSIq9rcGRoaEhAQADDhg17qtVkX19fMczh+vXrotCf2ohSt25d8vLyxNCCRzlw4IBoNLhx4wa3bt0S9UkOHTrE7du3KSwsZPfu3Xh7e+Pj48Pu3bspKCggPz+fXbt24ePjU6bexw1g3zTU3kX29va0b98ef39/cfAyePBg7OzsaNGiBXK5nCFDhjzXJEjNhAkTUCgUyOVyvLy8cHR0fO46JV4sj0tV+GgK18GDBzNhwgQ++ugj4uLi+OGHH0SvqTNnzrBo0SLOnj1LVlYWx48fp7i4mJEjR7J9+3ZiY2MZNGgQX3311TO1szJ6PVu2bOHDDz/Ex8eHc+fOiSlWly1bRu3atTl79izffPONltBdfn4+7u7uJCQkiJNlzX0tW7YkJSWF1q1ba2kwFRQUEB8fz7Jly0RdjcelQH8VqYVfB2ptrfz8fAYNGoSbmxvOzs7s2bMHUHkodOnShbZt29KuXTvy8vJE0VYHBwd27NghisCqUyM3bNgQU1NT5s+fL4bHODk5kZ6eTmFhIbm5uRgZGeHk5CQaBKOiovD29iYzM5OOHTvi4uKCj4+PeP7evXtxd3fH2dmZhIQEjh8/Tv369enYsSOpqanIZDJmzZrFxYsXadeuHenp6bz33nuYmZmxYsUK9PT0cHR0pEGDBlhaWrJ7925x1bNXr17o6Og8VRjo8OHDUSqVKBQKevfuzbp167QWJJ4Hf39/+vbti6enJwqFgp49e4phg1WqVMHPz49evXqhq6v7TPX/U59liRdPaWkplpaWWFlZASrvKM3fiTqDoEKhwN3dnerVq2NqaoqBgYFWyLaEhITEm4YUCiShhXpw1MTU+MkHv0D69evHrl27RNHMyhAUFMSRI0ews7OjcePGeHp6Aqr47E8++QS5XE79+vXF1cVHOXjwIKNHj8bQ0BCAuXPnivGXbm5u9OjRgytXrtC/f38xfjskJETUqBg8eDDOzs5ldET8/f1JTU0V22NsbMzGjRupV69e5W/IM/DXX38xZswYTp48Se3atalSpQpffPEFQUFBFZ7zOI2Ttm3bMm/ePGbPnq1V/qgb9o8//ij+X/NetGzZUnQVDwkJEb0M1KnrJN5OHs001K1bNz744ANq1KiBm5sblpaW4rFubm6iQLSTkxPZ2dmifkKHDh0A1TPYoEGDZ2qLWq+nV69eYkjbo4SGhrJr1y50dHTo0aMH27ZtY8SIEURGRjJ69GgA5HK5lvaDrq4uPXr0KLc+HR0d0fOnf//+WtdVeyf4+vpy79497t69y/3795+YAv2fhGb671mzZtG2bVvWrFnD3bt3cXNzo3379gDExcWRmJhInTp1mDhxIjVr1hQNInfu3EFfX59Zs2aJnjBeXl5iVpx79+4xffp09PT0cHZ25vTp0xQWFuLu7k7z5s2JiorC1NQUQRB49913adeuHStWrKB58+acOnWKyZMnA9CqVStOnjyJTCbj559/JjU1lQMHDvD+++8zadIkAgICGDVqFDVr1qR37944OzvTvn17Vq9eTbVq1WjdujU7duzA29ubiRMncunSJRYuXEi3bt0ICwvj4cOHdO7cGVCFy2Tfyufm/QfUq25AVtaFMsYHQ0NDMcOWJpr9J2j3s5r7pk2bJpY3bmzOb2EnOZl1i3rVDbAwqcbo0aPFZ14TpVLJyZMn2bZt21P/vSuLZqiYpaUlv/zyC7Vq1arweHWIk+b75WWhDvPS9FyZNm2aGFb1IvDy8ipX/DYkJITAwEAtXZh/O5oi6Y8KqL+IxR2Jt4tH+04Lk2pl+k51/yIIArq6uvz444+V9lZUM3v2bK2Fj4p+sxVhYWFB9erV0dXVpbS0lJkzZ9K1a9cKj7979y6bN29m+PDhgKofioqKom/fvk/Vbok3C8mwIvHCKS9E4VF320cHK5GRkQwcOFBrtUw9KQftgaS6fplMVuGga+bMmaK+SEUsWLCABQsWlLuvUaNG5cZbjh07lrFjx2qVledKXNEAVpPKvCwqiyAIdOvWjeDgYFHB/OLFi5XOuvMiNDEknp0X+Sy8COzt7Sv09HocmiFxUH74nyAI2NvbV6i9UB6aoXiaYX1P0utJSkoiIyNDNOI8fPgQS0tLMfV3RRgaGlZ65V6zbeWFEKpToO/atYvs7Ox/rDZEedpaXl5e/Pbbb2J2sKKiIi5dugSodKzq1KkDwOHDh9myZYtYV+3atQGVcXfjxo2iCGybNm1o3Lgxrq6uTJs2DaVSSWFhIX379qW4uJgePXrg6enJ9OnTWb58Offv38fe3p6MjAw++OADHj58SFZWFoaGhtjb21OzZk2MjIy4efOm+GyAymA3duxYiouLKSoqEtsJKm2vTZs2kZubS5UqVXB3d+fu3bt88cUXpKamcv78eerVq0ejRo3w9fWlXbt21KxZi+i4ePSbeVHF1IKbJ3dhYijj0P69NG/ejL179zJz5kwePnyIiYkJmzZtwszMjKNHj4rvEZlMRkREBNWrV3/i30KpFDiQcqOMfk95Hqhnz54lMDCQoKAgmjdv/kx/+8qgqWsTHBzM0qVLn9lT7W1C/W6VMgr9P7q6umRnZ3P+/HmaNWvGL7/8QuvWrV93syTeQCrbl2n2L//973+ZPHkyR48erdQ1BEFAEIQyhpVn+c2qdbPOnTuHv7//Ew0ry5Yt0zKsbN68WTKsvOVIoUASr52goCA2bNjwREPEPwn1yyJ4TTSjQs8QvCaaAyk3UCrLpoWuDEeOHKFKlSpawm7m5uaMHDmSoqIi0c3e2dlZDJl61B2/sLCQDz/8EFtbW4KCgigsLBTrCg0NFcN3Jk6cKJYbGxvz1Vdf4ejoiIeHhxhmIVF5XvSz8CKoKFXhsWPHKpVp6HFYW1uTk5MjGlaKi4tJSUl57DlmZmakpqaiVCrZtWuXWP4kvZ7Q0FCmTZtGdnY22dnZXLt2jWvXrnHx4kW8vb1FYbuzZ89q6ck8DqVSKRqdNm/erBUqtHXrVkBlKK5ZsyY1a9asVAr0fwLlaWsJgsCOHTvE8kuXLmFrawuUNcKVx+DBgykuLtbKFtekSRNKS0u5efMmq1evxsrKihYtWqBQKIiKisLQ0JD09HR8fHyYPn06+/btQ6lUcubMGfbv309JSQnh4eGkpKRw/vx5HB0dSUpKYuXKlaLRbtKkSaJg8Y4dOwgMDBTbdP36dVq3bs2yZcto2LAh8fHxzJ8/n7t375KQkMD48eMpLi5GEAQ6depEQkICX86eT9NhK/kr7hBFt65gO/RHdGzaMnveQuD/PWfOnDnDhx9+yPfffw/AvHnzWLp0KfHx8Rw7dgwjI6NK/S2yb+WLExFQZff7dn8q2bfKamTZ2dmRlZXF/PnzK1X3i8DT05OrV68C2lpKf//9t5ipB+Dy5cu0adOG5s2ba4Xcbdy4ETc3N5ycnBgyZIjoefk8WkyPY9WqVbi6uuLo6EiPHj0oKCgAVP2Ph4cHCoWCKVOmiNcPDw/Hx8dH1JvSbJsgCIwYMQJra2vat2//xoYJv0zUnlkffPABCoUCHR0dSZRWolyepi9Tc+/ePdE4DypvdFdXVxwcHMRQ9+zsbKytrRkwYAByuZyPP/5YXBzo168foN2flFfH43i0DQsWLEAulyOXy0Wx9UmTJpGZmYmTkxMTJkxg0qRJHDt2DCcnJxYuXPgUd0niTUJaopZ47WhOlN4EHnW7fhlU9LKwqV/9mcKwUlJScHZ2Jisnr4zXw9KlS5HJZCQlJZGWloa/v7+ogaHpjr9gwQKqVq1KamoqiYmJtGjRAoBr164xceJEYmNjqV27Nv7+/uzevZtu3bqRn5+Ph4cHs2bN4osvvmDVqlVMmTLlxd2ofwEv+ll4EahTFX7++ed89913GBoaYmFhwaJFi2jVqlW5mYbS0tIqVXeVKlXYvn07o0aNIjc3l5KSEj7//HPs7e0rPGfOnDkEBgZiampKy5YtRa+1CRMmkJGRgSAItGvXroxez5YtW9i/f79WWVBQEFu2bGHEiBEEBwdjZ2eHjY2N6MHwJKpVq0Z0dDQzZ86kXr16ojEFVBMGZ2dniouLWbNmDaBKgR4cHMzMmTPFsJB/CwEBASxZsoQlS5Ygk8k4c+aMmC1Nkw4dOrB06VJxwHnnzh1q166Nu7s7giCwefNmEhMTy5z33/8eJCYujquXL6Gnr0+D+vU5f/48devWZePGjZiZmbFmzRqUSiU///wzHTp0wNLSUvQs0tPTEw3I6kxpoJowKxQK9PX1cXV1JS0tTfTGUfd7+/fvFw3Je/fupXv37ujq6jJy5EgWLlxIfn4+FhYWqlDUqrUpRg+DOg2p0UylXVTF1IKsLJWR+8qVK/Tu3Zvr16+X6znTr18/unfvLobVPYmb9x9oZfcDVb9y8/6D19anqCktLeXPP/+slKB7dHQ0ycnJVK1aFVdXVzp37ky1atXYunUrx48fR19fn+HDh7Np0yYGDBhQYT1qLaZ33nmnQo0O9QRHzY0bN0TP2u7du4uplqdMmcLq1asZOXKk6Jnap0+fMmLNcXFxJCcna4VGgmq8c+7cOc6ePctff/2FnZ2dqMf0b0AzXO3MmTNl9lcU5vboPol/B5Xty9RGkaKiIq5fv86RI0cAVch/RkYG0dHRCIJAly5diIiIoHHjxmRkZLB+/Xoxo+e2bdvKzRZXUR3lGWn9/PwQBIGsrCxx4SY2Npa1a9dy6tQpBEHA3d2d1q1bM2fOHJKTk8VrhoeHM2/ePPbt2/dibp7Ea0EyrEhUyJsWnvBP4kUPfAVBIPtWAcFronlQouTKviUY3j6PSY2qNGrUiJEjRwIqIU1zc3PRsKLpjh8REcGoUaMAcHBwEDUnTp8+TZs2bTA1NQVUejgRERF069aNKlWqiKu5Li4uHDp06Bnuxr+bN3USVFGqQkBM4arJo9o7j9PicXJyKlfUU9OjQzMUsGfPnuVqEDxJrycrK6tMmTr8r7S0lI0bN2JoaEhmZibt27fH3NwcKBvOqNkWzToepX///qJxQE1FKdD/DXz99dd8/vnnODg4oFQqsbS0LHfQOGXKFD777DPkcjm6urpMnTpV1K7R09PD29tbXP3LyspCV1eXunVNuZFbSPW2Q9Dft5zqDZuxdMMvtLevz7JlyygoKCAxMREjIyMaNWrExo0bWbBgAZcvX2bPnj04OjoSEBDAli1biI6Opm3btly4cAGARYsWERYWRmFhIfr6+nTq1EnMXGVgYECfPn3Izs5m7969yOVycnNzRR0uMzMzatasSbt27cTj61U3wEBPh5KCe6StGoN89Gr09XTRlal+9yNHjmTs2LF06dKF8PBwcfI5adIkOnfuzP79+/H29ua///0vNjY2T7zv6utp9iunvw5gUKg9Vf6X9W/37t307duXqKiocjVGHsXCwoKYmJgnpoeuCPXE5+rVq9ja2orheY+jQ4cOYmhf9+7diYyMRE9Pj9jYWFE7rbCw8In6ZZXRYmratKnWpErTAJCcnMyUKVO4e/cueXl5YuakEydOiCHDffv21QpxflRvSk1ERISoUdWwYUPatm37xPsgIfFvpby+zEBPh3rVtUW9NUOBTpw4wYABA0hOTubgwYMcPHhQNOjn5eWRkZFB48aNMTc3F40qj6OiOsozrKhDgTIzM2nXrh1t2rQhMjKSoKAg0Uuze/fuHDt2TBRplvhnIRlWJMrlaWK0JZ6eyr4sKkudRk0J+2EN1ja9AGgUOBKdB/e5su7zx65yVsYd/3Ho6+uLq7+aKbQlKs+LfhYkKkdBQQF+fn5i2MayZcvE1PAST0952lpGRkasXLmyTPmjK9HGxsZaHiOalJaWit4CminhL94u4GYNa/4+8Rv2n61AR1eP/6w/SOMRHfHz8+Pdd9/FyMiIsLAwrl69SmRkJACBgYH85z//AVRaQubm5lqTaIAlS5aI7VKn6LawsBDj5dUpyhcvXkxycjI7d+5k5cqVDBs2jCtXrpCTk8OYMWO4du2a6lyTakx+z5au39zFqH5TcpPDGd63K8euqoZg6nCxkpKScj1nFAoFp0+fJi0trVKGFfX1NN/fhoaGJCcmaL2/X6Xuh3riU1BQQEBAAEuXLmXUqFHo6emJWZo09ZOgfM0iQRAIDg7m22+/LXONZ9ViehIhISHs3r0bR0dH1q1bV8bQWh7P+26VkJAovy+b/J4tFiYV/748PT35+++/ycnJQRAEJk+ezJAhQ7SOyc7OrvRvtKI6HkfTpk0xMzPj7NmzlT5H4p+BpLEiUS7PEtcoUXnULwuD/60eVuZl8TiaOXlQWvyQm6f2imWFhYWUKgV8fHzYtGkTAOnp6Vy6dAlra+sydfj6+orCt8nJyaLrvZubG0ePHuXvv/+mtLSU0NBQSWjuBfKinwWJylG9enViYmJISEggMTGRTp06Veq88gwIoPJqUXstSDw/d+/excrKitLSUsaNG1cmJfzN+w+o5dwRI9PGnF02jOTFn5C+cyE3cgvo168fMTExKBQKNmzYUCljxPMQFBSEg4MDzZo1o3nz5vTt21dMJQuqbHutzI2RFRfy9ZQp6GWfwM2iDjKZ6rl58OABvr6+GBsbY2JiQkZGBjY2Nvj5+VG9enXMzc3R19dn9OjR/P333wDExMSIHmFHjx7FyckJJycnnJ2dyc/Po6N9fdYPcmNxH2fWD3JDV0dWZlFEU0NATWlpKePHjxczZamNTKAyOKn1bCob+vcoVatWZfHixcyfP5+SkhIsLCzEVOePCmYfOnSI27dvU1hYyO7du/H29qZdu3Zs375d1Ca5ffs2Fy9eBJ5di+lJ3L9/nwYNGlBcXCy+SwE8PDzYsWMHgJb48uPw9fUVNaquX78uap69TSiVAlk5eZzMukVWTt5r1QOT+GejoyMr05c9aYE3LS2N0tJSTExMCAgIYM2aNeJ7++rVqxXqGunr65ebCDfsiAAAIABJREFUte9p6lBz8+ZNLly4gLm5OT4+PuzevZuCggLy8/PZtWsXPj4+VK9eXUx5D5TZlng7kTxWJMrlTQ1P+KegflnY1K/+QkKtzGoYYj9gBuf3LuP6sV/Rr1YTPQNDZkz9hk8/6s2wYcNQKBTo6emxbt06rWwtaoYNG8bAgQOxtbXF1tYWFxeVFkCDBg2YM2eOGDvauXPnxyqdSzwdL/pZkJD4J1CrVi2tEKpHqVfdAMMqejTy/5hG/iq9DgM9HZo0NKVuXeMKs049LjvdozxqRHtUfFgzQ92TwuP27v2Nj/r3Z/JnIezd9BM1a9Zg3759hIeHc/HiRVGPY/v27Zw9e5Z9+/Zx8+ZNbG1tmT9/Pj179tQSdtVELXLr7e1NXl4ehoaG6OjIaGJqLL6vNbM2WVpaVqht9tNPP5GdnU18fDx6enrcvn1b3Fe3bl3i4uJYtmwZ8+bNEwV+nxZnZ2ccHBwIDQ1l/Pjx9OrVi59++qmMBpGbmxs9evTgypUr9O/fXzRczpw5E39/f5RKJfr6+ixduhRzc/Nn1mJ6Et988w3u7u6Ympri7u4uTn4WLVpE//79mTVrFh07dqyURlNQUBBHjhzBzs6Oxo0b4+np+VRted1I3swSr5pH+7Ly0OzfBEFg/fr16Orq4u/vT2pqqvg7MzY2ZuPGjeVm/fv0009xcHCgRYsWWgbUiuooLwTRz88PXV1diouLmTNnDmZmZpiZmRESEiKK/A8ePFgMK/L29kYul9OpUydmz56Nrq4ujo6OhISEMGbMmGe8YxKvE5kg/DMszS1bthTUyvISz09WTp6o16HGQE+H9YPcJMPKG4g02JF4HJJeksTT8DY8L29bnxcYGMjo0aPp0KEDixcv5tKlS8ybN4/w8HCmT58uei58/vnnODo6ilmQunfvTt++fUXDilrnJCYmhvHjxxMeHs6cOXPYtWvXY0VujY2NyxiK1GWaGis9evRg6NChZTRQLCwsOH78OO+88w6nTp3iq6++4vDhwy/pbr0dFBQUYGRkhEwmY8uWLYSGhrJnz57X3ayXijQ2lJCQeB5kMlmsIAj/WPdeyWNFolyeJa5R4vUheT1IVMTbNgF9VnR1dVEoFAiCgK6uLj/++CNeXl6VEua8du0ao0aNKhOK8DRcvnyZ999/X6ssKyuLYcOG8d1331V4XkWioCtWrKBq1aqPzXYSExPDhg0bWLx48TO3+1Heluflberzbt++zZEjR0hKSkImk1FaWip6uUDl9Tgq0iN5VpHbp0Xt6SjpaamIjY1lxIgRCIJArVq1xExg/2Qkb2YJCQmJipE0ViTK5VniGiVeL2p3SY8mJjQxNZb+VhLAv0cvSS2OmZCQwLfffsvkyZMrfW7Dhg2fy6gC8O677xIfHy9+fvnlF2rWrPnM7rxDhw7VMqqUp4cRExPzXLouSUlJojZHnTp1sLS0RO7gSN/ugc/9vLz33ntlUtu+aG2Gt6XP2759Ox999BEXL14kOzuby5cvY2lpybFjx8oc6+3tzY4dO1Aqlfz1119aQqmaeiRqbQ/4f5HbiRMniumhn5UOHTqwcuVK0XCiDgUqKCjA1NRUq+7s7GzkcjmgCpMaMWLE/7F373E53+8Dx1/3XekkhQ7MoUQOnc8hETmznDVnGTPnzRjfHciwsdmMsWEOsRltNnPeiEzmkKRSOZTKeSQLqXR6//7od3/WrcI2hryfj0cP3Z/j+3N3p/u+Ptf7uv7xecuzf/9+TE1NcXNzo0mTJrRu3fqxtiIdPnx4ub/3+/fvV7rdPYifn59So0mtVlfYyrky0RRbL00WW5ckSSohAytShZ6XN62VjSwMJz1OD7rDWFndvn1bac9bWnp6On5+fri7u+Pu7q50RSn9ATExMRFvb29cXV1xdnYmOTkZgG+//VZZPnr0aIqKiio8f15eHgMHDmTp0qXUqlULKKlh5OnpiYODAzNnztTa/uOPP8bJyQlvb29SUlKAknavCxYsAEpqdeTn5+Pt7U3jxo2VD+RNmzatsCX2o3ByclICQYGBgXzyySes3hpB4+HaGTblvV4elrGwc+dOzMzMlMeaTJhhq6OYuOEEw1ZH8UviHy/E/28bNmygV69eWsv69OmjdBy6f3ndunWxt7dn8ODBuLu7K7U7Zs6cyaRJk/D09NSqEfD5558rxWY17aH/qZEjR1K/fn2cnZ1xcXFRCprfvXsXHx8fNmzYQHGxIK+giBMX/iS/qPiJ/gz9/Pw4ceIEZ86cYfHixYwfP569e/c+sfP9Vx70/8ezTBZbl54k+f5Xet7JqUCS9Ax5XtLwpefHi9LOWVO8Li8vj6tXr7Jv374y21haWrJnzx4MDAxITk5mwIAB3F+ba9myZUyaNIlBgwaRn59PUVERp06dIiwsjN9//x09PT3Gjh3L+vXrK5ym8/bbb9OqVSsCAwOVZXPnzqVGjRoUFRUREBBAfHw8zs7OAJiamnLy5EnWrVvHG2+8Ue5deSEEUVFR7Ny5k1mzZhEeHk5oaCipqakALF68mGXLlqGrq4u9vT0bN24kKiqKSZMmkZeXh6GhIWvWrCm3I5jWc2Siz5lVU6jbeRTGdZpQcPcWp74ah+VrKYSGhvLTTz+RnZ1NUVERs2bNYsaMGZiYmJCSkkLbtm358ssvUavVyhSn7OxsunTpgrOnD9t370fXpCZ2gz/gHvp8tPMUTWuZVPopBOV1fpk4caLyvabALZS0cl6wYAFVq1YlMzMTb29vnJycgJIgQ3kFfUt37qlIed2sNMtsbGyUqXK6urp89tlnfPbZZ1rbmZmZsW7dOl5++WV8+r6OXuAsQrYmcvnPXCVAdvHiRfz9/bl8+TKDBw9m5syZZabiLViwgOzsbEJCQsp9zT6Iq6srM2bMYMmSJQQEBDB8+HC6d+9O3759gb9qxuzfv5+ZM2diZmbGyZMn6d+/P05OTixatEjpMNSwYUMAwsPDmTdvHrdv3+azzz4rk6ly9+5dJkyYQEJCAgUFBYSEhNCjRw9yc3MJDg4mLi6Opk2bkpubq+yzYcMGPvzwQ6XYu2YqYNWqVRk9ejTh4eEsXbqU9PR0Fi9eTH5+Pj4+Pnz55ZflFtV8ljxPU/Ck54t8/ytVBjKwIknPkIqmbbwIHz6kJ+NFqZekmQoEcPjwYYYOHVqmrkpBQQHjx48nNjYWHR2dcj+ktmjRgrlz53Lp0iV69+6NnZ0de/fu5fjx43h5eQElQZzyOgIA7Nq1i/DwcGXKhsb333/PihUrKCws5OrVqyQlJSmBlQEDBij/VjR1SFe35M+1h4cH6enpZdbPmzePtLQ09PX1lSkJTZs2JTIyEl1dXcLDw3nnnXe0ppCUx6amMdY1jVDr/HVH2tRID5uaxhwAYmJiiI+Pp0aNGuzfv5+oqCiSkpKwtramc+fO/PTTT8oHXY3k5GT+98lXpDUdTMrG2dxMjMTctb2szVCB7t27k5WVRX5+Pu+//76S9fS0bNmyhc6dO9O4cWOMq5nx7oot6NVqBIAQ8NHOU7xsdI+oqCgSEhIwMjLCy8uLbt26lakdVFp5r9mHcXd31+q+lJmZSY8ePUhKSiInJ4fx48cTGBhIXFwcp06dokaNGtja2jJy5EiioqJYtGgRX3zxBWfPnsXMzIw//viDqKgozp07R9u2bUlJSWH69OlKltDcuXNp164dq1evJisrC29vb9q3b8/y5csxMjLi1KlTxMfH4+7uDpTUa5o2bRrHjx+nevXqdOzYkZ9//pmePXsqWT8zZsxg6NChhIeHU6tWLZo3b05hYeEDg7VQkk00efJk7O3tH+m5Kk/pmk7lFTR+FI/SpUWS/i75/leqDGRgRZKeIbIwnPS4vYh3GFu0aMGNGzfIyMjQWr5w4UKsrKyIi4ujuLgYAwODMvsOHDgQHx8fduzYQdeuXVm+fDlCCIYNG8ZHH330wPNev36d0aNHs2XLFgwNDZXlaWlpLFiwgGPHjlG9enWGDx+uVXxUpVKV+315Kioc6uzszKBBg+jZsyc9e/YE4NatWwwbNozk5GRUKhUFBQUPPDaUvF5qGFfhjUAHajV0QDf/Dn3X6Sivlw4dOlCjRg1le29vb2xtbYGSwNDBgwfLBFYaNGhAKx9Pvk6MwvglO/L/vAZUzsypx6F0XZVnwYYNG5g0aRIA/l168t2+vdTv0khZf6+wmDu5hXTo0IGaNWsCJd2MDh48qLwWy1Pea/ZhSneyFELwySef8O6777JlyxaMjY3Jzc1l+fLleHl5Ubt2bQAaNmxIx44dgZLpbxEREezcuZPhw4fTv39/1Go1dnZ2NGjQgKSkJObNm6dMw9u9ezdbt25VHufl5XHhwgUOHDigZB05OzsrQdJjx47h7++PhYUFAIMGDeLAgQP07NkTHR0d+vTpQ1BQEAUFBZiammJiYsLevXvJzs6mXr16D7z2itpbFxUVaWW63P9Ykp4H8v2vVBnIGivPkUuXLtGjRw/s7OywtbVl/PjxqFQq3nrrLWWbBQsWEBIS8q/Os3LlSuVNBJSkxq9bt+6R9i2vGGL9+vWpWrUqzs7OODo6smXLlr91TNCugXA/f3//Mun8/9STKMD3d8jCcNKT8KLVSzp9+jRFRUXKhzyNW7duUbt2bdRqNd988025dQ5SU1OxtbVl4sSJ9OjRg/j4eAICAti0aRPXr18HSgp6nj9/vsy+I0aMYMKECbi5uWktv337NsbGxpiamnLt2jV27dqltT4sLEz5t0WLFv/omnfs2MG4ceOIiYnBy8uLwsJC3n//fdq2bUtCQgLbtm3TCuY8iK6uLi+ZGtDctia1qmrff7m/g839gaDyAkP6+vpK5pSuri6iuOi5zZx60WoAaDoajRw5EhsbGzasWkpWwgGtAIe+rhoTQ91yXwulOxmBdjej8l6zD3PixAmaNWsGQEZGBnp6egQHB1NcXExBQQELFy5k9+7d6OjoKH/P1Wo1+vr6dO/enfj4eAoLC7GxsSEvL4/MzEyaNGnC0KFDiYmJ4dq1a7zyyivk5+eTnp5OQkIC9vb2FBQUYGlpyZkzZ2jWrBkHDx7kzJkzANy4cYPExEQALly4wM6dO5UaTdeuXVPGbmBgQFpaGsePH6dTp04MGzaM2NhYLl++jLm5OQMGDChTOHf8+PGEhoYC2u91qlatyltvvYWLiwuHDx8u8/jv1ISSpGeBfP8rVQYysPKcEELQu3dvevbsSXJyMsnJyeTm5qKjo8NPP/3EjRs3Htu5tm/fzubNm5XH93eneJD7iyFOnz4dPT09Ll++THx8PEeOHMHe3v5vHfNZ9rhbTsrCcJL0z2hqrLi6uhIUFMTatWvL3LUdO3Ysa9euxcXFhdOnT5fb5vb777/H0dERV1dXEhISGDp0KPb29syZM4eOHTvi7OxMhw4duHr1qtZ+hw8fZseOHXz77bfKOFxdXZk6dSouLi64ubnRtGlTBg4ciK+vr9a+f/75J87OzixatIiFCxf+7WsvLi7m4sWLtG3blvnz53Pr1i2ys7O5desWderUAVA+nD2K0t1nHtYtKSoqirS0NIqLiwkLC6NVq1blbqfJnHrFqx5dnGo9l53mXsQCvPd3NLp88SJ2jWy5d7EkkKBSwf+6NsPcWJ89e/Zw8+ZNpY6Jr68vVlZWXL9+nczMTO7du6fUD6roNfsg8fHxzJ49m3Hjxv3/uVXK7/DWrVspKCigWrVq1KpVi7t3H62L1Y4dO0hOTiYwMJDq1avTtm1brfX5+fmoVCoSEhIwMzPj008/BcDMzIxffvkFgFOnTpGfnw+UBH6gpHbL0aNH2bNnD23atFGOl5SUhKurKx06dFCCtTo6Ojg4OPDbb7890pjhr2LCcXFxtGrVSutxzZo1lZpQmmmP69evf+RjS9LTIN//SpWBnAr0nNi3bx8GBgYEBwcDJengCxcuZPXq1QwbNozg4GCsra2xsbEBSuZojxw5km+++YaTJ09y5coV6tSpg7OzM4mJiRw6dAhXV1euXbuGlZUVJiYm2Nra0rt3b7Zt2waU1CyYNm0aubm57NixA7VaTXp6On369CExMZFz587h4+NDTk4OFy5c4I033tAqyAcld4hNTEwIDAzEzc2NgwcPMmDAAO7cuUNeXh7R0dEcOXIEIyMjrKysyM/Pp1q1akrgqEePHnz//fdcunSJ5ORkbG1tuXTpErVq1eLLL7/ko48+IiYmhsTERDw9PVm8eDHvvvsuRUVFGBoasmfPHtzd3QkNDWXr1q3k5ORw7tw5evXqxccffwzAmjVr+OijjzAzM8PFxQV9/ZLoeEZGBq+//joXLlwASjov+Pr6EhISwrlz50hNTaV+/frldnb4p17EaRuS9DhUdEe2dGFOOzs74uPjlXWaopKlt5k+fTrTp08vc5ygoCCCgoIqPH+LFi207uLfr6LAhqZeimYsGqUzD/fv349araZu3brKss8++wwbGxscHR0pKipi8ODB3Lp1CyEEEydOxMzMjLfffpthw4YxZ84cunXrVuHY7jdlyhT69+/PihUrHrqfl5cX48ePV4rX3t/9pjS1WkXNqvroY/TMp3bPnTuX7777Dh0dHdRqNcuXL8fC1uGZqwGQnp5Os2bNtIoSb926lcmTJ//jFuLLli3DyMiIoUOHsmHDBqZNm6asU6tVjBzyClEnTtJ30Dim7TCks0Mt1h1X4e3tTZ8+fbh06RKDBw9WWoHPmDEDb29v6tSpQ9OmTQEqfM3eLzIyEjc3N3JycrC0tGTx4sUEBAQA0LJlS5YsWYKLiwudO3cuN1D6MHXq1EFPT4933nmHZcuWlZkeaGtri5mZGc7Ozly/fp24uDjee+89XnrpJXJzc2nWrBm2trZUqVIFgPbt27N7924cHR0xMTGhd+/e9OjRo8x5Swdri4uLuXDhAq1bt37kcWumFZX3+O/UhJKkZ4V8/ytVCkKISvHl4eEhKrNFixaJN954o8xytVotIiMjRc2aNcWoUaPEJ598ImbOnCm6desm2rVrJ7Zt2yb8/PzEqVOnRNOmTcW8efOEp6en2L59u3jppZdEvXr1xMiRI8XSpUtFtWrVRHZ2tujRo4do2bKlcg4vLy/RoUMHIYQQLi4uwsLCQgghxMCBA4WpqanIy8sTGRkZokaNGiI/P1/Zb9iwYSIsLEx07NhR6OvriyZNmoitW7cKIYSYOXOmqFevnvjpp59EmzZtxOTJk8Xdu3fFp59+KmrVqiWuXLkiLl26JHR0dERGRoaIjIwUgFi7dq0oKioSNWvWFJ6enqK4uFg4ODiI1q1bi4yMDNGyZUuRlZUlhBDi1VdfFc2aNRNCCLFmzRrRoEEDkZWVJXJzc0X9+vXFhQsXxJUrV0S9evXE9evXxb1790TLli3FuHHjhBBCDBgwQERGRgohhDh//rxo2rSpMnZ3d3eRk5PzWH/GkiRJz5OIiAjRrVu3pz2Mx+7QoUOiefPmIi8vTwghREZGhrh8+bI4fO6G8Jqzp8zX4XM3ntpY09LShIODw1M7/9O0Z88e4efnp7Xs1q1bolatWiInJ0d88803YsyYMcq6gIAAERERIYQQwtraWmRkZJT7/FW0TvP+SnOso0ePCiGEuHjxorC2tla2S0lJEYsWLRKNGjUSe/fu1Tp2cnKysLGxEUVFRcqyoqIi0aBBA3H+/HkRGRkpunTpoqx79dVXxZo1a4QQQrRp00YcO3ZMCCGEsbGx1nFLP168eLGYPn16uc+Z5trKO4YkSdKTBkSLZyBu8KS+5FSgSqBq1ar4+voSFxentfz48eNMnDiRQ4cO4ebmRkpKCmvWrMHY2JgDBw6Ql5fHpEmTOHnypFI0rbw7PhcuXMDDwwNAuaN0+/ZtateujY6ODvr6+pibm2Npaak1nxhKWkf+8ssvODg44Ofnx5tvvklISAj37t3j1q1byt3N3r17Y2RkhKOjI7q6unTq1Ilu3bpRXFysdPrQ1dVl6NChqNVq3NzcEEKgUqmoWrUqV69e5ciRI5w6dYr69etjaGjIt99+y5UrV5SxBAQEYGpqioGBAfb29pw/f56jR48qheaqVKmidUc6PDyc8ePH4+rqSmBgILdv31ZSlQMDA7WKU0qSJEmVw9WrVzE3N1eyF83NzXnppZewNNGn4I8UTq+cTOKXYzkTOh1Vzp9Ymujz9ddf4+XlhYuLC3369CEnJweA4cOHM2bMGJo3b46trS379+9nxIgRNGvWjOHDhyvnrFr1r4yXTZs2Ket++OEHHB0dcXFx0cpo0NHRwdXVla5du3Lu3DnS09OV+hyla5KFhobSu3dvOnfujJ2dHW+//TaLFy+mWbOSejfTpk3DxMQEY2Njli9fDpRkS2nqrB07dgxnZ2dlWpvmuOnp6fj5+eHu7o67uzuHDh0CSrKr/P396du3L02bNmXQoEEPzOT6NwICAsjJyVHqtRUVFfHWW28xfvx4DA0NsbGxITY2Vpl2FBUV9djOXdF0ufJqNJXWqFEj3NzcmDNnjrJszpw5BAQEUL9+faytrUlKSuLevXtkZWWxd+/evz22R60JJUmSJD1eMrDynLC3ty/TvvP27dsIIWjSpAldunQhKSlJmVecl5enVMzv168fubm5FBQUcPr0ab755hsiIyPJy8ujTZs2WFhYsH//fqpVq/ZIY9EUqFOr1VpvmCrqVqFSqTAxMWH06NFs3Lix3Hafmjew+/bto6ioiOPHjxMbG0uVKlWUN6ilC+Op1WrU6r9evkVFRQghMDU1Zfbs2eTm5nL69Gmt1GLNOR401tKKi4s5cuSIUjPm8uXLypvff5JyLEnSo3nRCoQ+r/z9/ZWaGZVJx44duXjxIo0bN2bs2LFK7Ys61aqQF7kS+8EhOIz9ktpeXTBN+hGbmsb07t2bY8eOERcXR7NmzVi1apVyvD///JPDhw+zcOFCAgMDefPNN0lMTOTkyZPKjYOKfPDBB/z666/ExcWxdetWZbmmvfjOnTsB6NmzJyNHjizTYhwgNjaWsLAwTp48SVhYGIsXL2bPnj0UFRVhbm6Oj48P48aNK9NFCyA4OJjly5crtTo0LC0t2bNnDzExMYSFhWlNAz5x4gSff/45SUlJpKam8vvvvz/iM//3qFQqNm/ezKZNm7Czs6NmzZqo1WreffddAHx9fWnQoAH29vZMnDhRaYn8OEyZMoWvvvoKNzc3rRp35dVout/q1atJTk6mYcOGWFhYcOTIEZYtWwZAvXr16N+/P46OjvTv379MIexH8Sg1oSRJkqTHT9ZYeU4EBAQwffp01q1bx9ChQ5U7M7q6uhgaGuLo6Ei1atVYuXIlffv2JSoqCi8vL+Lj4/n9999JSUkhOzsbOzs7cnNzuXHjhlIZv1WrVnz22WdKe0BTU1PS0tKUc1tbWxMTEwNAVlYWZmZmjxyEuXnzprIvlLzBs7a2Rl9fHzMzM37++WegpEBcTk4O2dnZVKlSBT09PSIiIrh3756yb0FBAYcPH6ZFixakpaWV6Z7RvHlzrl27pgRcVqxY8dD2oj4+PkyaNInMzEyqVavGDz/8gIuLC1Dy5vqLL75g6tSpythdXV0f6bolSfpnNAVCNbUsNAXsnrdCp9Lzq2rVqhw/fpzIyEgiIiIICgpi3rx5eHp6cjn1LKrNIRQWC1QUI+rUQa0uKW763nvvkZWVRXZ2Np06dVKO9/LLL6NSqXBycsLKygonJycAHBwcSE9Pf+DfFV9fX6UtcO/evcvdpmHDhsTGxrJ//34l0+T69essWLAAc3NzAgIC8PX1Zfv27RQXC9LPn6dNQEd0dHRYvnw5GRkZpKSkUK9ePW7cuKHckFi0aBEXLlxQ/tYOHDhQCaQVFBQwfvx4JeBy9uxZZTze3t5KPSBXV1fS09MrLGr8b9WrV08JOB06dIgBAwYQExODu7s7KpWqwqKtmtpG5ubmZYJRFa2bMmWK8n3Tpk21slE0GSgV1WgqzczMjG+++QaAM2fO0K1bN3799Ve6du0KwMcff6zUgCutdBvu+wv93v+4oppQmmsrbx9JkiTp35EZK8+Jiu7MaAqm+fr60rx5cy5fvswvv/yCu7s7EydO5PTp0+jq6uLk5ERAQAAtWrTg9OnT+Pj4oKenB4Cfnx/Xr1/H1NQUgHHjxpGcnIyhoSEhISH4+/tz+fJlnJ2dSU1N/VvtnIuKipgyZQpRUVEMHDiQsLAwFi1aBMCAAQNYvHgx0dHRjBgxgj/++IMOHTpw69YtnJycWLdundZ0mypVqrB06VKaNWvGvXv36Nixo9a5LCwsmD9/PlOmTMHQ0JBVq1Y9NLBSu3ZtQkJCaNGiBb6+vkobR0AZm7OzM/b29sodJUmSnpz0zLvlFghNz3y0Lh/PA5mR8+zT0dHB39+fWbNmsWTJEn788UeEEDg4OJCUEM/ZpJOcSUpkz57dQMmUnyVLlnDy5Elmzpyp1VZYky2pafuroVarlczJ0hmZpfddtmwZc+bM4eLFi3h4eJCZmQn81QWra9euSoH1imjOWVwsqG3bBLWBCdX6zEbo6DHynfm0auXHggULqF+/Ptu2bVMKQa9fv77C7MyFCxdiZWVFXFwc0dHRSlec0ufTPI+Pu3teRVq2bMn58+cfa2bKk9akSRNSUlKUoIokSZL0/JIZK8+R8u7MHDhwACh5U1beFJvyqtFDSY0QDXNzc60pPd7e3sr0G437O1ZA2bsq99/10XTBGDNmTJl9KwrO2Nra8ueffyqP16xZo3xfOnultCNHjijfT5gwgQkTJpTZZvjw4Vrz2UunrwcHByvdlkozNzcnLCzskccuSdK/d/3OPSWoonGvsJjrd+49851kHoXMyHnyVCoVgwYN4ttvvwWgsLCQ2rVr4+Pj80hTl86cOYNarcbOzg4oyVb87bffmDFjBhkZGRw+fJjLly+zdetWpk2bhoODA3fu3KF27doUFBSwfv16pc31g9y4cYMRHksqAAAgAElEQVTVq1fTt29frKysOHXqFE2aNGHz5s2YmJgAKN33fHx82LVrFxcvXqRmzZrKVKD09HS6d+/+SM/LpT9zSLl+h9JhvPVHzmNRUBL40NPTo127dpw9exZra2uEENSsWZOjR4/i4+PDxo0blf1u3bpF3bp1UavVrF27tsKuXJIkSZL0opCBleeU5s6MJElSZWJpoo++rloruKKvq8bSRP8Bez0/KsrIeZoteysbY2NjEhISyM3NxdDQkD179lQY6CgsLERXV/utUHZ2NhMmTCArKwtdXV0aNWqEmZkZJ06c4NNPP2XatGmcP3+eW7du4efnh4ODA7Nnz8bHxwcLCwt8fHy4c+dOmfPc/9jc3FwJisybN4/u3btjYWGBp6enMk1j6tSpJCcnI4QgICBAmar6MCqViuLiv36H8vLyyLybz/3JUQVFQut3beTIkQwbNozr168THByMh4cHo0aNQq1W06ZNGyWzdezYsfTp04d169b941bH9ysuFqRn3pWtViVJkqTnkupJVWv/t1QqVWdgEaADrBRCzHvQ9p6eniI6Ovo/GZskSZL0ZFT2jI4jqZlM3HCizPLFA9xoblvzKYzo39PR0cHJyYnCwkKaNWvG2rVrMTIyemrjqVq1qlKstG/fvgwdOhQHBwciIyPZvn07ISEhnDt3jtTUVOrXr897771HcHAw+fn5FBcX8+OPPyrZKho2Nja89dZbHDlyhPXr17Np0ya2b99OaGgoN2/eZMSIEaSmpmJkZMSKFStwdnYuc54mTZpoPR49ejQLFixg+/bt/Pbbb0yaNAkoCYocOHBAyVqp6Brvr5GhqbGyfft2vv32W7Zv387GjRuJiYnBy8uLiKh43g2/RtS8gdiPWYqesSm55+OxSN/Nvt2/KMdxd3cnIyOD+Ph49PT0lKLt8+bN4+rVq8p03sepsv/eS5IkSaBSqY4LITyf9jielGeyxopKpdIBlgJdAHtggEqlsn+6o3p85Px6SZKk8qnVKjo71GLtCG8WD3Bj7QjvSvXhSpORU9rznpGjmZaSkJBAlSpVnol6VK+88gobN24kLy+P+Ph4fHx8tNYnJSURHh7Ohg0bWLZsGZMmTSI2Npbo6Gil8Or9+vfvT0xMDCkpKVrLZ86ciZubG/Hx8Xz44YdanWBKn6e8xxoLFixg6dKlxMbGEhkZqVVf7J/o06cPN2/exMHBgSVLltC4cWPqVjfif12boflN0tdVM6i5NYZ62hk7/fv3x9fXl+rVq7Njxw5cXV1xdHQkMjKS995771+NqyIvQm0lSZIkqXJ7JgMrgDeQIoRIFULkAxuB8ouFPGc0d2WGrY5i4oYTDFsdxS+Jf1BYWCyDLZIkSZQEV2wtqtLctia2FlUrTVAFwKamMQenB5C+qSQJU19Xzdsd7fCxb6BMC9m6dSvz5pWsDwkJUTq9DB8+nE2bNgElUzaSkpIe69g+/PDDisdtY4OTkxOurq44OTmxZcuWcrfz8/MjJSWFu3fvYmdnR6NGjXBzc1O2LyoqYurUqXh5eWFtbc3MmTOBkkDIjh07lONorrX09s7OzixfvhyAq1ev0rp1axo1aoSJiQmRkZFa43B2diY9PZ0NGzaUWxg0MDBQCV60aNGCDz/8kPnz53P+/PkKgxo6OjpMnTqVjz76SGv5wYMHGTJkCADt2rUjMzOT27dvlzlPeY81fH19mTx5MosXL1amID1IeR1dSre/NjQ0ZPfu3SQmJrJ69WpOnTqFrW0DOjvUIulsCl+N9GftCG/eHt6bHTu0684cPHiQUaNGASXdZTRBsx07dijdAx+3B9VWkiRJkqTnwbMaWKkDXCz1+NL/L3vuVXRXJjIlo0ywRQZXJEmSKhe1WoWxsTHmBdf5uFdT1o7wRn3lpFYNkMDAwIe2bF25ciX29o83kfNBgRWAiIgIYmNj2bRpExMnTiyzvrCwkF27duHk5MTcuXOpVasW8+bNIyIigqlTp3L37l1WrVqFqakpx44do3Xr1nz77bekpaURFBTE999/D0B+fj7h4eF069ZNa/tjx47x9ddfk5aWxnfffUenTp1YuXIlrVu3LrdlcWBgIFOmTCEo6BWuZOXyZ04+qRnZCCG0aoIMHDiQrVu3YmhoSNeuXdm3b1+Fz8GQIUM4cOAAFy9erHCb0u6vPVJRLZLp06ezcuVKcnNz8fX15fTp0490/L/rQUHLrKwsGjdujKGhIQEBAU/k/BWpjJlckiRJ0ovlWQ2sPBKVSvWaSqWKVqlU0RkZGU97OI+kvLsyOflFRKf/KVNgJUmSXhA9A7tzI+kIthZVCQvbyIABA5R1oaGhjB8//oH7+/v7o6kr9ssvv+Du7o6Li4vygfju3buMGDECb29vrYyR0NBQevfuTefOnbGzs+Ptt98GSj7Ya1r4Dho06IHnvn37NtWrVwcgPT2du3fv4urqiqenJzdu3ODKlSvs3r2bhIQEpkyZgr+/P3/88QfOzs5MnTqVTz/9FDs7OzZs2MCFCxdo3749TZo0ISwsjAkTJmBvb4+lpSWHDh3i7bffZvbs2dSoUQMvLy8yMzP57rvvWLx4MR988AHTpk3jzp07mJiYKNecm5uLm5sbderUYcaMGVxWW/DRzlMkXrnNsNVRpFzP1uqEl5qaiq2tLRMnTqRHjx7Ex8dXeO16enq8+eabLFy4UFnm5+fH+vXrgZI6J+bm5lSrVu2Bz+H9zp07h5OTE9OmTcPLy+uJBVYexMzMjLNnz/LDDz/85+e2qWnM/7o2U4IrmhorNjX/fVHcF5mOjo4ylevll18mKyvraQ9JkiSp0npWAyuXgXqlHtf9/2VahBArhBCeQgjPJ5We+riVd1dGT0fF/bkpMgVWkiSp8npYDZBHlZGRwahRo/jxxx+Ji4tTPhTPnTuXdu3aERUVpZUxAiXtg8PCwjh58iRhYWFcvHiRefPmKbVSNEGC+7Vt2xZHR0fatGnDnDlzlOUqlYrY2FhiY2Pp1asXOjo6CCHw9/dnwYIF7N27l9q1a5OSkkL79u1ZuXIlycnJDB48mA0bNnDu3Dns7e0xMzPj3LlzeHt788477zB8+HC8vb3ZunUr3bt3Z8SIEZw6dYply5YRHh5OamoqRUVFxMbGsm7dOuWaDQ0NiYiIYP78+QT0eIWPdp6ioKjkr+y9wmIik29w826+Mv7vv/8eR0dHXF1dSUhI0KqRUp5XX31Vq8tPSEgIx48fx9nZmenTp7N27dpH/vkJAakZ2UyfNY/GzexxdnZGT0+PLl26PPIxKoNq1Uy0aiu9bHSWHcvmPPFpgPv378fU1BRXV1eaNWvGrFmzHrh9aGgoV65cUR5//vnn5OTkPNEx/hul6x/VqFGDpUuXPu0hSZIkVVrParvlY4CdSqVqQElA5RVg4NMd0uOhuStTuvL9Wx0bs+b3NK3tZAqsJElS5fWwGiCP6siRI7Ru3ZoGDRoAUKNGDQB2797N1q1blfoseXl5XLhwAYCAgAClba69vT3nz5+nXr165RxdW0REBObm5pw7d46AgAD8/f0r3LZTp05s3rwZIQSmpqYIIXj11VexsLBg7dq1BAYGAnDlyhXu3r2LsbExFhYW3Llzh5MnTzJ58mQaNGhA3759+eqrrxgzZgzLly+nQYMG1K9fnypVqlCrVi1mzJjBO++8Q0xMDAcPHmTr1q00atQIf39/8vLySDibyr3CYqrZulDNtqRVca22Q+gxwE0Z6/Tp0x869So9PV35Xl9fX+vDdY0aNfj555/L7BMSEvLAx61btyGnZhOGrY7iXpMgrBwGvNCdcDTTlGwtqnLaxIALqkd/Du5vm11eG+2K+Pn5sX37diXz6uWXX8bd3b3cbUNDQ3F0dOSll14CSgIrgwcP/ltdsIqKitDR0Xnk7R+XFi1aKNlYsbGxvP766+Tk5NCwYUNWr15N9erV8ff3x8fHh4iICLKysli1ahV+fn6kp6czZMgQJTi7ZMkSWrZsyf79+wkJCcHc3JyEhAQ8PDz49ttvUf2Nn50kSVJl8UxmrAghCoHxwK/AKeB7IUTi0x3V41Fex4vuTi8xuk0jmQIrSZL0AtHUACk9DehxEULw448/KpkkFy5coFmzZkBJYEBDR0dHK/viUTRs2BArKyuSkpLKfHjNy8sD4P3336e4uJi33noLFxcXGjZsSN++fbl37x7x8fG4u7uzZcsWli9frpy/Ro0axMXF0b59e/T09ICSIr329va8/vrrhIeHM3v2bIQQ7N+/HxcXF9544w2uXLnCpEmTyr1mbzenZ7Z2h6bm2qEZ3YC/pgEvWLr8oVPB7mdjY8ONGzceaduuXbs+V1NCtm3bho+PD25ubrRv355r164BJYGqIUOG4Ovry5AhQ8o8bt26NbGxscpxWrVqRVxcXIXnMTY2xsPDg5SUFGJjY2nevDnOzs706tWLP//8k02bNhEdHc2gQYNwdXVl0aJFXLlyhbZt29K2bVugJKDZokUL3N3d6devn1Jk2MbGhmnTpuHu7v5UploVFRWxd+9eJaA5dOhQ5s+fT3x8PE5OTlqZOoWFhURFRfH5558ryy0tLdmzZw8xMTGEhYVp1Vg6ceIEn3/+OUlJSaSmpvL777//txcnSZL0jHgmAysAQoidQojGQoiGQoi5T3s8j9P9xeN0ddWVur2oJEmSVNaIESOYOXMmTk5O//gYzZs358CBA6SllWQ93rx5EyjJGPniiy+UWiInTpx46LH09PQoKCh46HbXr18nLS0Na2trrKysqFGjBpmZmdy7d0+rK02LFi347LPPOHr0KGvXrqVr1658/vnnSlbK4MGDmTJlipI9o1Kp2LdvH2vWrKFJkyakp6eTmprKhx9+SJs2bZg9ezYHDx7k0qVLtGrVioSEBHx8fGjZsiUNGjQo95qf5dodFXXCuZP79wJdf9fOnTsxMzN7ouf4uzT1fTRfM2bMUNa1atWKI0eOcOLECV555RU+/vhjZd2D2lm/+uqrhIaGAnD27Fny8vJwcXGpcAyZmZkcOXIEBweHcgMPffv2xdPTk/Xr1xMbG8ukSZN46aWXiIiIICIighs3bjBnzhzCw8OJiYnB09OTzz77TDl+zZo1iYmJ4ZVXXnnMz17FNM9rrVq1uHbtGh06dODWrVtkZWXRpk0bAIYNG8aBAweUfXr37g2Ah4eHkqlVUFDAqFGjcHJyol+/flodyby9valbty5qtRpXV1et7C5JkqQXybM6FeiFUzoFVpIkSar86tatW253nb/DwsKCFStW0Lt3b4qLi5U7y++//z5vvPEGzs7OFBcX06BBAyXoUZHXXnsNZ2dn3N3dy62z0rZtW3R0dCgoKGDevHlYWVkBMGPGDLy9valTpw5NmzYts9+dO3fo0aMHeXl5CCGUD5uvvPIKo0aNYvHixUobaQ0DAwPWrFlDv379yLmXj52DKx37DKZKFX1WrFhBt27dMDIyws/Pjzt37gBUeM2dHWrRtJYJ1+/cw9JEH5uaxs/EjYuKOuGYGOry5/8/zsjI4PXXX1emcX3++ef4+vqSmZnJgAEDuHz5Mi1atFCCSZ988gn6+vpMnDiRN998k7i4OPbt28e+fftYtWoV69evx8bGhujoaMzNzZk9ezbffvstFhYW1KtXDw8PD6ZMmfJfPg3AX7VANEJDQ5XizJcuXSIoKIirV6+Sn5+vTHuDB7ez7tevH7Nnz+aTTz5h9erVDB8+vNxzR0ZG4ubmhlqtZvr06dStW7dM4KFfv34PvYYjR46QlJSEr68vUNLdqkWLFsr6oKCgR3w2Hh/N85qTk0OnTp1YunQpw4YNe+A+moy20tlsCxcuxMrKiri4OIqLizEwMCiz/f37SJIkvWhkYEWSJEmS/kOa6QGl+fv7KzVLhg8frnwILF2XQ3P3HUqKbmp06dKlTLFTQ0NDli9fXuY8pY8NaAVb5s+fz/z588sd84PuQk+cOLHcAFHp8UZFRZVZ7+vrq3Xnu/Q1AbRt246563by0c5TXC8s5rX1cSU1SDp2KrdrTkXX/KzeuNBk03T7Xz4JS0ajVqmwrKbPkpw7ypSNSZMm8eabb9KqVSsuXLhAp06dOHXqFLNmzaJVq1bMmDGDHTt2sGrVKqCkXsinn37KxIkTiY6O5t69exQUFBAZGUnr1q21zn/s2DGl6HFBQQHu7u54eHj858/Dw0yYMIHJkycTGBio1PTQeFA7ayMjIzp06MCWLVv4/vvvOX78eLnH19RY0bh169Y/GqcQgg4dOijZM/erqNX2f8HIyIjFixfTs2dPxo4dS/Xq1YmMjMTPz49vvvlGCSJV5NatW0pWytq1aykqKvqPRi5JkvT8kIEVSZIkSZIoLhakZ959ZjI7NDVINNNlNDVImtYyeeaCJP+EpuaakaEhe3+PUp7zdevWKtka4eHhWsGn27dvk52dzYEDB/jpp58A6Natm9L+2sPDg+PHj3P79m309fVxd3cnOjqayMhIFi9erHX+33//nR49emBgYICBgQEvv/zyf3Tlf8+tW7eoU6cOwN/quAQlNXpefvll/Pz8lOfoYUxNTSsMPJiYmCgZUqUfm5ub07x5c8aNG0dKSgqNGjXi7t27XL58mcaNG/+tMT8pbm5uODs7s2HDBtauXasUr7W1tWXNmjUP3Hfs2LH06dOHdevW0blz56caJJIkSXpWycCKJEmSJL3giosFvyT+odWx7ml3qKmoBsn1O/cqRWAFSoIrKhU0t61Z7vri4mKOHDmiNfXiQfT09GjQoAGhoaG0bNkSZ2dnIiIiSElJUYoXP29CQkLo168f1atXp127dko9oUfh4eFBtWrVCA4O/lvnrCjwMHz4cF5//XUMDQ05fPgwr732Gp07d1ZqrYSGhjJgwADu3bsHwJw5c55qYOX+7Lht27Yp3x85cqTM9qWzxszNzZVMNTs7O6WjEKBktpXOtIOSbkGSJEkvKpVmXu7zztPTU2ju8EiSJEmS9OhSM7JL2v6WCmTo66pZO8L7qQUxnsUxPQlVq1bV+gCsqS+yZMkSBg4ciJubG1OnTgVK2uS6uroyceJELC0tee+999i1axddu3YlIyMDc3NzQkJCWL16NatXr8bJyQkvLy88PDzYvHkzgFJjJS0tjdGjR3Po0CEKCwtxd3fntddeeyo1Vp6UK1eu4O/vz+nTp1Grn9l+DZIkSS8ElUp1XAjh+bTH8aTIvzKSJEmS9A8VFwtSM7I5kppJakY2xcXP582KB2WHPC3Pckef/8rixYuJjo7G2dkZe3t7li1bBsDMmTM5cOAADg4O/PTTT9SvX1/Zx8/Pj6tXr9KiRQusrKwwMDDAz8+vzLG9vLwIDAzE2dmZLl264OTkpHRoqgzWrVuHj48Pc+fOlUEVSZIk6YmTGSuSJEmS9A88i9Nn/qlnNTvkWav7UtlkZ2dTtWpVcnJyaN26NStWrMDd3f1pD0u6j/w9kCSpMpAZK5IkSZIklVFRcdX0zLtPeWR/37OaHaLp6NPctia2FlXlh8nH7LXXXsPV1RV3d3f69OlTJqhy7do1Bg4ciK2tLR4eHrRo0UKZUlSeR83gatmy5QPH5e/vz8NuluXn5/PGG2/QqFEj7Ozs6NGjB5cuXVLWV61aEhBMT0/H0dERgOjo6H/d4vxhQkJCWLBgwWM7niaAO2x1FBM3nGDY6ih+Sfzjuc2OkyRJqqxk8VpJkiRJ+gcqU3FVTYeaprVM5F3xF8h3331X4TohBD179mTYsGHKdufPn2fr1q3lbl9eBtfbHe3o5lJXeR0VFhaiq6vLoUOH/vXY33nnHe7cucOZM2fQ0dFhzZo19O7dm6NHj6JSlf+69fT0xNPz2bpZqnlOKlLZu2NJkiRVFjJjRZIkSZL+AUsTfSXDQ0NfV42lif5TGtG/I7NDpNL27dtHlSpVeP3115Vl1tbWTJgwASjJBPHz88Pd3R13d3d+3LWXj3aeIuPsCU59/SYJoe/Sv2MLNm79BT8/PwIDA7G3twf+yiaBkg4zTk5OuLi4MH36dK0xFBcXM3z4cN577z2t5Tk5OaxZs4aFCxeio6MDQHBwMPr6+uzbt6/Ca9q/fz/du3enuLgYGxsbsrKylHV2dnZcu3aNbdu24ePjg5ubG+3bt+fatWtASSbKiBEj8Pf3x9bWVqt99dy5c2ncuDGtWrXizJkzyvJz587RuXNnPDw88PPz4/Tp08Bf3YV8fHx4++23H/hzeBbrH0mSJEllyYwVSZIkSfoHNNNn7q+x8rSnz0hPT2WqhZGYmPjAeiuWlpbs2bMHAwMDkpOTCezdD5NXSqbA5FxJwXHCCvRr1CYr5y4xMTEkJCTQoEEDrWPs2rWLLVu2cPToUYyMjLh586ayrrCwkEGDBuHo6Mi7776rtV9KSgr169enWrVqWss9PT1JTEwkICDggdemVqvp0aMHmzdvJjg4mKNHj2JtbY2VlRWtWrXiyJEjqFQqVq5cyccff8ynn34KwOnTp4mIiODOnTs0adKEMWPGEB8fz8aNG4mNjVW6K3l4eAAlU62WLVuGnZ0dR48eZezYsUrg59KlSxw6dEgJDFX4PP9/APdeYTHH3u+EoZUNapWKERuM2Ll9KwMHDnwsGUCSJEnSvyMDK5IkSZL0D8jpM1JplamYcXnGjRvHwYMHqVKlCseOHaOgoIDx48cTGxuLjo4O6efO4vn/GVzGdZugX6M2+rpqzIyq4O3tXSaoAhAeHk5wcDBGRkYA1KhRQ1k3evRo+vfvXyao8rgEBQXxwQcfEBwczMaNGwkKCgJKAh5BQUFcvXqV/Px8rXF369YNfX199PX1sbS05Nq1a0RGRtKrVy/lGgIDA4GSwsCHDh2iX79+yv737v2VZdKvX7+HBlVAO4Cr1quCxxtfa72uyguqPGx6kSRJkvT4yalAkiRJkvQPyekzkkZlKmYM4ODgQExMjPJ46dKl7N27l4yMDAAWLlyIlZUVcXFxREdHU5Cfz/+6NkNPR4W6ioESWKpVzQBj47+fxdWyZUsiIiLIy8srs65hw4ZcuHCBO3fuaC0/fvw4Dg4Oj3T8Fi1akJKSQkZGBj///DO9e/cGYMKECYwfP56TJ0+yfPlyrfPr6/81zU9HR4fCwsIKj19cXIyZmRmxsbHK16lTp5T1j/qcaAK4a0d4o6+rw9oR3lrBOs20qv3792tNuSoqKmLq1Kl4eXnh7OzM8uXLle38/f3p27cvTZs2ZdCgQQghiI6OxtXVFVdXV5ycnJQ6NRVNZ5IkSZK0ycCKJEmSJEnSv1TZamG0a9eOvLw8vvrqK2VZTk6O8v2tW7eoXbs2arWab775hqKiIjo71OJ/XZvh8FK1MgGA8nTo0IE1a9Yoxy09FejVV1+la9eu9O/fv0wAw9jYmGHDhjF58mSKiooAWLduHTk5ObRr1+6Rrk+lUtGrVy8mT55Ms2bNqFmzpnJdderUAWDt2rUPPU7r1q35+eefyc3N5c6dO2zbtg2AatWq0aBBA3744QegpBhwXFzcI43tfpoA7r28XHp3aIW7uxu9evUqs11MTAyLFi3i7NmzrFq1ClNTU44dO8axY8f4+uuvSUtLA+DEiRN8/vnnJCUlkZqayu+//46np6cSAOrcuTNTpkwBSqYzffHFFxw/fpwFCxYwduzYf3QNkiRJlZ3ME5QkSZIkSfqXStfC0HieixmrVCp+/vln3nzzTT7++GMsLCwwNjZm/vz5AIwdO5Y+ffqwbt06OnfujLFxyTS4l8wMqW5U5ZE61nTu3JnY2Fg8PT2pUqUKXbt25cMPP1TWT548mVu3bjFkyBDWr1+PWv3X/cCPPvqIKVOm0LhxY9RqNU2bNmXz5s0VdgQqT1BQEF5eXoSGhirLQkJC6NevH9WrV6ddu3ZKMKIi7u7uBAUF4eLigqWlJV5eXsq69evXM2bMGObMmUNBQQGvvPIKLi4ujzy++xkaGhIbG1vh+tJTrnbv3k18fDybNm0CSgJGycnJVKlSMjWrbt26ALi6upKenk6rVq0ACAsLIyYmht27dz90OpMkSZL0F5UQ4mmP4bHw9PQU0dHRT3sYkiRJkiQ9o3R0dHBycqKgoABdXV2GDh3Km2++qfWB/WGGDx9O9+7d6du3r9by0jVWToXNw8K+BZ9Oe/1f1Vh50Hijo6NZt26dVneav6Oi65CeXVWrViU7O7vcZfv372fBggVs374dgD59+vDaa6/RqVMnre3v3278+PF4enoyfPhwEhIS6NevHwcOHMDCwoLbt2/TpEkTrl69+t9coCRJlZpKpTouhHi2et4/RnIqkCRJkiRJLwTNHf/ExET27NnDrl27mDVr1mM5dulaGD4NajK+nd2/LlxraGjIr7/+iouLC1lZWcyaNYv69euzefNmPD09ywRVrly58kQCJT///DNJSUnK49DQUK5cufLI+4eGhjJ+/HitZf7+/jyOG2Lp6ek4OjqWuy45OZnu3bvTsGFDPDw8aNu2LQcOHHjg8UJCQliwYMEDzxMdHc3EiRP/9difpE6dOvHVV19RUFAAwNmzZ7l7t+J6P1lZWQwYMIB169ZhYWEBPN7pTJIkSZWdDKxIkiRJkvRM0tHRwdXVFQcHB1xcXPj0008pLi5++I6lVBRssLS0ZMWKFSxZsgQhhFLs093dnZo1a2JhYYGHh4dS6LNJkya0b9+e69evK8f44IMP8PLywtHRkddeew2VCmwtqmJhoo9VNQPUahU2NjbcuHEDf39/1q1bh7+/PwC//fYbrq6u2NjYYGBgQOvWrcuMUQhBz549ad26NefPnyc2Npbs7GwuXrzI/v376d69OwC+vr54e3vToUMHzMzMsLa25saNGwDMnj2bJk2a0KpVKwYMGFBu0OD48eO0adMGDw8POnXqVCZD4d8GVp6GvLw8unXrxmuvvca5c+c4fvw4X3zxBampqf/62OUFtZ41I0eOxN7eHnd3dxwdHZ3o6WIAACAASURBVBk9evQDi+1u2bKF8+fPM2rUKKWILZRMZ1q1ahUuLi44ODiwZcuW/+oSJEmSni9CiErx5eHhISRJkiRJqjyMjY2V769duyYCAgLEjBkzHnn/goKCCo+nYWpqKv744w+xfPlyMXv2bBEUFCSmTJki3N3dRWpqqvjyyy+Fq6urKCwsFJcvXxampqbi+++/F0VFRSIzM1M5zuDBg8XWrVuFEEIMGzZM/PDDD0IIIaytrUVGRoZo06aNWLt2rWjTpo0QQoju3buLgwcPik6dOolff/21zFiFEMLAwEC0bt1aa1m1atXEH3/8ISIiIoSzs7N4+eWXRZUqVcRLL70k0tLShLW1tQDE4sWLhb+/vzAxMRENGzYUkyZNEo0aNRKffPKJWLlypahWrZpo2LChGDFihLCyshLXr18XaWlpwsHBQVSvXl20a9dOnD9/Xvz++++ievXqwsbGRri4uIh58+YJY2Nj0bhxY+Hi4iJycnLEtGnTRLNmzYSTk5N46623ylzHmjVrxLhx47SWtWnTRhw7dkwIIcSvv/4qmjdvLtzc3ETfvn3FnTt3hBBCzJo1S3h6egoHBwcxatQoUVxcLIQQIjo6Wjg7OwtnZ2cxZcoU4eDgUOacK1euFEOHDi2zXCMzM1P06NFDODk5CR8fHxEXFyeEEGLmzJli8ODBonnz5qJRo0ZixYoVQgihPDdCCBERESG6deumbB8cHCzatGkjGjRoIBYtWlThOSVJkl5kQLR4BuIGT+pLZqxIkiRJkvTMuz/DJC8vj+DgYJycnHBzcyMiIgIoyaYIDAykXbt2BAQEaE3hKC4uxtvbG1dXV5ydnUlOTlaOv3v3blauXMnmzZvZvXs3N2/eJDk5mTNnzjBhwgQuXrxI27ZtqVatGpMnT+bixYsEBwdjZGSEgYEBO3bsIDExEYCTJ08yefJkXFxc+PPPP7WuQwjB8OHDuXv3LkFBQURERDBmzBj+97//lbmmwsJC3N3dta7p7t275Obm8sEHH3D69Gn27NmDjo4OX375JVBSc6N69eoAxMfHM2bMGBISEti8eTPuPi1JTL/KzFkf0KVLV+bMmUNsbCw3b96kQ4cOypQjT09PBg0axMSJE2nZsiWBgYF88sknxMbGMm3aNDw9PVm/fj2xsbHk5OSwefNmEhMTiY+P57333iv35xcWFqZkQri6uirTgG7cuMGcOXMIDw8nJiYGT09PPvvsM6Ck/sexY8dISEggNzdXqQsSHBzMF1988cBpKYmJibi7u1e4fubMmbi5uREfH8+HH37I0KFDlXXx8fHs27ePw4cP88EHHzw0O+f06dP8+uuvREVFMWvWLGX6jSRJkvTikIEVSZIkSZKeC7a2thQVFXH9+nWWLl2KSqXi5MmTbNiwgWHDhpGXlweUtJ3dtGkTv/32m9b+BQUFTJo0idjYWKKjoykoKEBHRwdLS0sl4NG1a1fi4uJIS0ujY8eOWvsnJydja2vLwoULOXToELt27SIpKYnz589TVFRERkYGu3bt4uLFi3z00UfExcVRo0YNZfpSbm4up06dws7Ojn379rFr1y7q1KnD3bt3efXVV8tcU2FhoTJ9IyYmBnNzcwD8/PzQ19enadOmdOzYkdzc3HKfr8aNG2NgYECVKvpY1GvI3vjzbDuUQIFFE27kFqNW69ChQwdq1KhBbGwsenp6pKWlsXv3boYMGcLBgwcf+jMxNTXFwMCAV199lZ9++gkjI6NytwsKClLa+Wo6AQEcOXKEpKQkfH19cXV1Ze3atZw/fx6AiIgIfHx8cHJyYt++fSQmJpKVlUVWVpYydWrIkCEPHSNAr169cHR0pHfv3gAcPHhQ2bddu3ZkZmZy+/ZtAHr06IGhoSHm5ua0bduWqKioBx67W7du6OvrY25ujqWlJdeuXXukMUmSJEmVhwysSJIkSZL03Dl48CCDBw8GoGnTplhbW3P27FkAJVhwPx0dHT788EPmz5/PiRMneOONNxg/fjwqlYpOnTqxa9cuJQiiKfbZunVrwsLCKCoqom7dukqWRGRkJAYGBlhZWWFsbIxKpeLKlSuEh4fTqFEj9PVL2iw3bNiQ48ePA/Dee+9hbGzMu+++y7lz53BycqJ+/fo4ODhw+vTpMtekUqk4fPgwUBJMycrK4s033yQzM5MOHToAUK9ePczNzQkPDwcgOztbyZKpV68e27Zt48zlTM5lZHP7fElGTVExnLyURUb2PSwtLcnNzVXOU1BQoGTePApdXV2ioqLo27cv27dvp3Pnzo+8L5Rk8HTo0EEJuCQlJbFq1Sry8vIYO3YsmzZt4uTJk4waNUoJnD0KBwcHYmJilMebN28mNDT0/9i787ioqv+P4y8WRRAVA1xyQ1xQlmHYFEQUxT0ixF1TyXJJTTP3MkWz0iDX8muuWJFamlq44Y5rAooKRC6ImpoiBAKyz/n9wW9uIItglkvn+XjwyLlzl3MvMxP3zDnvDykpKY/c9uGSzY8q4az9XUPha6y8LBMtjUaQkJTBqYRkEpIy0GhejCqdkiRJ/1WyY0WSJEmSpOdCQkKCMsKkPNWrVy91eV5eHhqNhsWLF9OhQwcsLS2ZM2cOUBj26ejoyO7du7GxsVHCPnv37k2LFi3o2rUrKSkpuLm5AYU30x06dMDW1pbu3btjampa6jHnzJnDxIkTiYqKokGDBqSmppKdnc2SJUuwtbUlMjISfX19evbsWWJbIQSxsbG8++677Nu3j27dujFu3LgS69WvX59Tp07RrVs37t+/T7169ahWrRp16tTBx8eH7h3akn4jHoPa9TA0b0J64nny8nJJychmx44d9OzZk+nTp5Obm0uLFi04ceIEISEheHh4AFCjRg3S09OV4xV9nJGRQVpaGr169WLx4sWVrhrj6urK8ePHuXz5MgCZmZlcvHhR6UQxMzMjIyODLVu2AGBiYoKJiYkymiYkJKTU/Q4ePJjjx4/z008/KcsePHig/NvDw0PZ9vDhw5iZmVGzZk2gMMg1Ozub5ORkDh8+jIuLS6XO6VG0pbmHrzvNhI1nGb7uNHti/5CdK5IkSc8x2bEiSZIkSU+Bjo6OMjoBID8/H3Nzc6XSy08//cSCBQueVvOK8fT0pHHjxhRmzxXy9fXF2Nj4kdsuWrSIVq1aYWdnh729Pe+9995jZVAkJSUxZswYZYRJ0Rvjixcvcv36daysrMrdx6VLl4iLi+OPP/6gWrVqNGzYEF1dXYyNjdHV1eV///sfvr6+9O7dm4MHD1KrVi2uXbtGz549OXjwIBYWFuzatYu+ffvi4eFBXl4eFy9eZPv27eTn57N48WJlJEmvXr2AwpETFy9exMnJiTVr1vDhhx/Sv39/Fi9eTExMDM7Oznz88ccYGBiUOKfGjRvz66+/YmVlRW5uLt9//z1vvPEGffr0IS4uThm9EhcXx/LlywkLC8PExIS6detSpUoVAKZMmcLh0+eo0agVeRl/UrO5A/U7DiLr1iW2bvgKCwsLmjVrRnh4OBcuXMDKyorly5fzzTffsHTpUgAGDhxIYGAgDg4OXLlyBX9/f8aMGYNarSY9PR1vb29UKhXt27dX8lEqytzcnODgYAYNGoRKpcLNzY34+HhMTEwYOXKk0nFVtHNj/fr1jBs3DrVaXew1WZShoSGhoaGsXLkSS0tL3NzcmD9/vpIBExAQQFRUFCqVihkzZrBhwwZlW5VKRadOnXB1deXDDz/k5ZdfrtQ5PUpiciaf7vqVnPzC0VE5+Ro+3fUriclll0OWJEmSnm06Zf0P6Xnj7OwstEFokiRJkvSsMzY2pnnz5pw8eRJDQ0N2797NzJkzadiwoRLS+SQoafW6j/9diqenJykpKaxYsYL27duTmppK9+7diY2NJSMjo8ztVq5cyfbt29m0aRMmJibk5uayaNEixo4dq4wOKI+enh52dnbk5eWhr6/P0KFDee+999DV1SU7O5u3335bGfGxaNEiOnXqRHBwMJGRkXzxxRcAJCYm4u3tTUxMDAsWLOCbb76hSpUq/Pbbb5w/f54WLVpgbGysnMf9+/eZPHkyBw8eVHI2AgMDlU6vmJgY5bpOmzaN3bt3o6Ojw6xZsxgwYAAACxYs4Ouvv6Zq1ar06tWLTz75BE9PT4KCgnB2dmbOnDlcvHiRkJAQOnfurCyv6DllZWXxxhtvcO7cOVq3bs2VK1fIzs7+/zyVqqxYsULpiBg8eDBxcXEkp2WgZ+VJHY+B6BfkMKu3I12szOjTx48RI0bQu3fvx359SJVzKiGZCRvPlli+bJADrpalj3ySJEl63uno6EQJIZyfdjv+KbJjRZIkSZKeAmNjYyZMmICjoyN9+/Zl2LBh2NjYcPToUUJDQ4vdTPv7+1OzZk0iIyP5448/+Oyzz+jbty8AgYGBfP/99+Tk5NC7d2/mzp1LYmIi3bt3p23btkRFRdG/f38yMjIIDAwEKLZvX19fbty4QXZ2NhMnTmTUqFEl2urp6Um3bt24desWX3zxBevWrSMpKYmPPvpI6ZBYuHAh3377Lbq6uvTs2ZMFCxbQqFEjwsPDadq0aanXYOPGjXzyyScIIXjllVdYuHChcm0mTpxIaGgohoaG7Nixg7p16/Lzzz8zf/58cnNzMTU1JSQkhLp165KUlMTgwYO5desWbm5u7Nu3j6ioKMzMzMo8PwsLCyIjIzEzMyvWsfKi0mgEicmZ3E3PYU3QXCJPhJOdnU23bt1YunTpI3NEpCcnISmD4etOKyNWAAz0ddkwog2W5o8eBSZJkvQ8etE7VuRUIEmSJEl6SgYOHMimTZvIzs7m/PnztG3btsx1b9++zbFjxwgNDWXGjBlAYYngS5cucfr0aaKjo4mKiiI8PBwonPYyduxYYmNjGTt2LNu2bVP2tXnzZgYOHAjAunXriIqKIjIykmXLlpGcnFzq8b28vAgPD6egoIBNmzYpozMAdu/ezY4dO/jll184d+4c06ZN4/79+2RkZJTZqXLr1i2mT5/OwYMHiY6OJiIigu3btwOFORuurq6cO3eODh06sHr1agDat2/PqVOnOHv2LP37D+CDgPmcSkhm8oxZdOrUidjYWPr27cv169eV41T0/F50uro6WJob42ppypoVy4iOjiY+Pp5ly5bJTpV/mYVpdWb2ao2BfuGf4Qb6uszs1RoL09KzgSRJkqRnn+xYkSRJkh5bRTI2HrZ9+3bi4uKUx7Nnz1YqmlTE4cOHqVWrFmq1GrVaTZcuXYiMjGTChAmVbguAv7+/EoxZnoCAABo0aKAcV9u54enpyaNGTC5ZsqRYcKaWSqUiMTGRjRs3UqNGDTZv3lzq9iEhIfj6+qKrq4u1tbVSzjUsLIywsDAcHBxwdHQkPj6eS5cuAdCkSRNcXV2BwhwLS0tLTp06RXJyMvHx8bi7uwOwbNky7O3tcXV15caNG8r2D9PT06N9+/Zs2rSJrKwsLCwslOf279/PG2+8oZTaLa0iz969e1Gr1VhYWHDixAkiIiLw9PTE3NwcfX19hgwZonQKVa1aVcmacXJyIjExEYDff/+d7t27Y2dnx7xPFrD14C9M2HiWH3cfoJ6DFxqNoEePHtSuXVs5bkXP759WWhWYO3fuMHjwYCwtLXFycsLNza1YB5jWrVu3lBFKZUlMTMTW1vaJtLUir2np8enq6tDDph4bRrRh2SAHNoxoQw+beujqyg4uSZKk55XsWJEkSZL+VQ93rMybN48uXbo8crvff/+d1157jSFDhpCfn0/Hjh05ffo0+/fvx9nZmWXLlv2TzQZg0qRJSlnY0oJlc3Jy6NKlC2q1ulgnyZIlS1i7di23bt1Slj148IB79+7h4+PDlClTHnlTXLSkq0ajwdDQkK+//pqcnBxUKhURERFcvnyZN998EyhZGadVq1ZMmTKFrVu3Uq9ePT7//HMOHz7M/v37CQ0NRUdHh4KCAnr16kWDBg0wNTWlVatW5ObmKvsYOHAgEyZMoH///o+8VjVr1sTY2JirV68CcOLECXr69qOBZUsS76ah0Qh+/PFH7t27V2LbKlWqoKOjQ2pqKvv27VPK17766qs0aNCAHQdPUrvbOApyczgX9DoFBQW89VoHnNu6FtuP9vxOnjzJuXPncHBwqFTJ3ieltCowu2Nu4+vrS4cOHUhISCAqKopNmzbx+++/F9s2Pz+fl19+uUKdf9Lzo+gIIktzY9mpIkmS9JyTHSuSJEnS33L48GFldAHA+PHjCQ4OBmDGjBlYW1ujUqmYMmUKJ06c4KeffmLq1Kmo1Wqlwoj2ptHCwoI5c+bg6OiInZ0d8fHxQGFQqJ+fH76+voSEhODp6UlGRgYffPBBiTYEBAQwYsQIPD09sbS0LNbh8vXXX6NSqbC3t2fo0KHK8vDwcNq1a4elpWWpN7DaG/tHWblyJREREejq6rJlyxYyMjJYtmwZt27dYubMmfj4+ACwZ88ehBB4enqyd+9e5syZQ926dUlMTOTkyZNYWlqyb9++Uo8RGBhIdnY2Qgi6detGo0aNOHz4MCNGjODmzZvcvXuXwMDAElNe5s6dy+3bt9m4caPSiZOWlkbt2rVp1KgRmzZtIj8/Hx8fH6XaTHx8PFWrVlX24eHhwcyZMxk0aFCxfXft2pX169cro3JSUlIAmDlzJm+//TYpKX9y+W4GG09fJ+baPT7d9SuZtSyUkrYFBQVs3LiRjh07Fttvamoqe/fuVR7n5ORQq1Yt7qbn8EfkX8uNG1qBRsOKzbsICwvjzz//LHZ+RkZGxMfHc+rUqQr9Hp+00qrAzFj+HRodPcaMGaOs16RJE9555x2Cg4Px8fGhc+fOeHl5FRuNEhwczGuvvYanpyctWrRg7ty5yvYFBQWMHDkSGxsbunXrRlZWFgDR0dG4urqiUqno3bu3cn3KWq6l0Wjw9/dXKulIkiRJklQ6/afdAEmSJOnFlJyczLZt24iPj1dGH5iYmODj44O3t3eZUxvMzMw4c+YMK1asICgoiDVr1nDw4EGqVavGG2+8weHDhzl27BhNmjQhLi6O6tWrs2fPHqUDYOXKlVStWpVLly7xwQcf8P7772Ntbc3MmTOJj4+nbt26tG3bliVLlijt3LlzJ40aNaJ+/fpMnTqVvn374unpiVqt5tixY0pHwuLFi/n2228pKCigRo0aZGRkkJiYyKVLl6hevTozZsygSpUqaDQamjZtyqJFi5g9ezbz588nMzOT9PR0bG1tSU1NRUdHhz59+rBt2zZWr15Nx44duX79Os7OzpiamrJx40ZeeuklpXwv/JWpUq1aNSwsLEhNTcXV1ZWQkBA2bdrE5cuXGT58OGvWrEFHR4cuXbooAa87duygoKCAa9euKR0YTZs25ejRo7Ru3RorKyvUajXbt2/H1tYWJycnhBDo6Ohw8eJFXn/9dYyMjLhx4wZXr17l4MGDZGVlERUVxZQpU4iNjaVOnTo0btyYW7duoVaradOmDbGxsdStVxehZ4BeterUtmnPnfPhjP5pOQLo2LEjZmZmVKtWjcGDB6PRaMjJyeH27dvMmDGDO3fuKJ1xHTt2ZNWqVXy1ahX5OlXRrWoA6FC3fX/und1Hu+bmvPnmm9SrV48PPviAQ4cOkZKSgrGxMdbW1ri6unLq1CnGjBnD7du3mTlzJrdv3wbgyJEjTJw4ESgshR0eHk6NGjWeyHvhbnpOsaBSgPu3r2LTquxRSmfOnOH8+fO89NJLylQordOnTxMTE4ORkREuLi688sormJmZcenSJTZu3Mjq1avp378/W7du5fXXX2fYsGEsX76cjh07Mnv2bObOncuSJUvKXA6FnYlDhgzB1tZW6cCUJEmSJKl0csSKJEmS9I+oVasW1apV48033+THH39U8jcexc/PDyierREbG4uTk5OyjoeHB+fPn8fOzg4/Pz9UKhUpKSmkpaWhq6uLgYEBBgYGREVFUbduXf78809iYmLw9/fn4sWLJCQk8Ouvv5KXl8cvv/zCvHnzOHPmDBMmTCg2FSM3N5fIyEgmT54M/DUVyNPTk+7du3P+/HksLS2ZM2cOV65coWrVqkoQaGhoKNeuXQPAyMgItVpNSEgIn376KR07dqRx48aYmZlx/vx53n77bU6cOMHgwYNxcnKiV69eWFlZceTIEaZOnYqBgQF9+/ZVMlWaNGlCQkIC8fHxyoggZ2dnVqxYgampKa+++irZ2dkMHDiQzz77TDkfb29vEhISlMcqlQoLCwt27drF9u3b6d27N46OjgghuHz5MgsXLmTv3r00bNiQNm3acObMGWrUqEFERAQXLlygcePGvPPOO3To0AFnZ2emTZuGhYUFPXv2BApHUNy4cYOF//saPUNjREE+KReOkBy9Hw066OrqcvToUdauXUtcXByxsbEkJSXx8ssvM2bMGBYsWEDLli1JSUkhMDBQmSJk1bIljRo2oCArg9z79zCqboyBgQFGRkaMGDECAwMDbty4QXx8PDExMVSpUoVp06axZ88evvzyS3bv3k1OTo5SCSgjI4OgoCC+/PJLoqOjOXr0KIaGhpV6vZenTg0DJahUS19XB6Oqf32/NW7cOOzt7ZUyyV27di01q0b7nKmpKYaGhvj5+XHs2DGgsKNMrVYDf71/0tLSSE1NVTrThg8fTnh4eJnLtUaPHi07VSRJkiSpgmTHiiRJUiXp6emhVquxtbWlX79+PHjw4G+Fp5bH09MTKysr7O3tcXd357fffitz3YenC4wfP77EOitXruTrr79+om3U19dHo/nr23hthoW+vj6nT5+mb9++hIaG0qNHjwrtT5sloqenV+EpOHZ2dqSkpHD8+HFatmxJXl4eDx484OrVqxgaGlJQUEDjxo2pWbMmurq6qNVqEhMT+e233/jzzz9ZuHAharWa+fPnI4QA4OrVq4SFhSk3qkUdO3ZMmUpkYmJCWloamZmZODs74+HhQXR0NHFxcaxdu7bcdhftREpNTcXAwICwsDAWLFhAYmIi/fr1Izs7W7m+QghmzpzJrl27gMLw4OnTp1O/fn3effddgoODWbt2LVeuXMHOzo7AwEBiY2PLbUP//v2VPJjNmzdjY2NDTk4OmZmZjBs3jjZt2nDp0iW2bduGWq3mzp07mJmZoa+vT7169Th//jxff/01SUlJrFixgosXL+Lh4VHs/Nq7tkGTnUld9z4YN2xF80Ef4jxpDXXr1ad27dps27aNgoICfH19ad++Pbm5uaW+1rWdVwA1DavQoH49atWsyYwO5uTl5pCVlcWECRNwdXWlX79+6OrqUq9ePTp16gRAfHw8lpaWSqWiolOa3N3dee+991i2bBmpqano6z+5Qb2lVYF589UOXPn1grLOl19+yYEDB0hKSgJKZuQU9XAVH+3jojk8lXn/lKZdu3YcOnToqWTSSJIkSdLzRnasSJIkVZKhoSHR0dHExMRQtWpVVq5cWenw1Mrc8ISEhHDu3DmGDx/O1KlTH6fJijFjxjBs2LC/tY+Haafk5OTkkJqayoEDB4DCUQBpaWn06tWLxYsXc+7cOQBq1KhBenp6pY5hbW1NVFRUsWX379/n+vXrNG/enFatWpGWlsbRo0dp0qQJDRo0YPXq1cVGudSrV48ffviB5ORk9PT0SE1NRQiBiYkJQUFBREdHc+HCBapVqwYUfvu/adMmoqOjK9RGFxcXYmJiyMzMBApLBl+8eFE5Z+3v3NXVlfDwcPLy8jAwMCAlJQU9Pb1inSdbt26lWbNm7Nq1i+vXr6OrW/i/6+7du7Nu3ToyMzNp1qwZO3fu5NSpU0RFRaGvr8+ePXs4cuQIs2fP5sKFC3z11VePvDEeMGAA33//PRcvXkRHRwdTU1OEEBgZGfHdd9+xdOlS+vXrR3p6OtHR0bi4uDBv3jygsEPIzMyMtm3bEhERgZOTE82bN1c6VrQ3+hbmNTDQ00H//wM6q+jpMLNXa+WxEAJzc3MlGHj06NGMHTu2RFuFEHTu3FlZ79rVK5jUqkkHZzsMDQ0xNDQkIiKCevXqVeh3VtSMGTNYs2YNWVlZuLu7K/k+T0JpVWCmj+hLdnY2//vf/5T1SqscVZp9+/aRkpJCVlYW27dvVyo8laZWrVrUrl2bo0ePAvDNN9/QsWPHMpdrvfnmm/Tq1Yv+/fv/rQ4aSZIkSfovkB0rkiRJf4OHhweXL18uFp6amZnJiBEjaNOmDQ4ODuzYsQOgRCDl7du36dChgzL6RXuDU5YOHTpw+fJlhBBMnToVW1tb7OzsyizRq7Vz507c3Ny4d+8eAQEBBAUFAYVlaLXTSAYOHAgU5kxoywk7ODiU2wGSn5+PgYEBjRo1on///tja2tK/f38cHBwASE9Px9vbG5VKRfv27Vm0aBFQWFkmMDAQBwcHrly5UoGrDF5eXjx48EAZbSOEYPLkyfj7+2NkZESVKlWoVq0aP/zwAw0bNqRp06YEBQXRoUMHZR81atTggw8+oGPHjmzatIlNmzZhZWVFTk6OMjoiLy+v2Oibsnh4eBASEgKgZMdQow4D3xpP1JkzqFQq3NzclJvzUaNGERsby8iRIzE3N2fVqlUkJSXh6enJgAEDiu27e/fuLF++XHl89uxZ5d/dunVj8ODB9OnTh8uXL9O3b1+qVq3KggULCAoKolOnTtSsWZPGjRsDsGHDhkeeS7NmzdDT0+Ojjz5S2mJgYEBeXh7nz5/H1dWVY8eOsXv3bgAlpwXgtdde4+bNmzRq1Ahzc3OSkpK4cOFCiQpHuro66OvpMNClEW8Neo1Gd07QxcoMgD///BM/Pz+SkpI4dOgQmZmZ/Pjjj7z88sslOuGaN29ORESEMoXn5s2bpf6+3N3d2bp1KxqNhjt37nD48GEArKysSEhIUKaYFX3vaEf5TJ8+HRcXlyfasaK9BkWrwOjp6bJ9+3aOHDlC06ZNadOmDcOHD2fhwoWP3FebNm3o06cPKpWKPn364OzsXO76x3uZWgAAIABJREFUGzZsYOrUqahUKqKjo5k9e3a5y7Xee+89HBwcGDp0aIXeF5IkSZL0nyWEeCF+nJychCRJ0r+hevXqQggh8vLyhI+Pj1ixYoU4dOiQeOWVV4QQQsycOVN88803Qggh/vzzT9GiRQuRkZEh1q9fLxo0aCCSk5OFEEIEBQWJ+fPnCyGEyM/PF/fv3y9xrI4dO4qIiAghhBCfffaZ6N+/v9iyZYvo0qWLyM/PF3/88Ydo1KiRuHXrlrh69aqwsbERQgixfv16MW7cOPHjjz+K9u3bi5SUFCGEEHPmzBGBgYFCCCHq168vsrOzlXYKIYS3t7c4duyYEEKI9PR0kZeXV+Z1iI6OFi4uLo97GSvt+vXrwtvbWzRv3lxYWlqK8ePHK+0XQohZs2YJNzc3IYQQN2/eFICIiooSQohivx8hhBg3bpxYv369EEKIs2fPCg8PD6FSqYS1tbVYtWqVEKL4tX9YcnKyeO2114SdnZ1o27at+GLLftF+wQFhNSJI1G7VVuw8f0sUFGiKbbNlyxbRsmVLYW9vLx48eCCaNGkikpKShBBCREREiI4dOwohhHjw4IEYNWqUsLW1FdbW1sXarVX0dy2EEBqNRtjZ2YnmzZuLFStWiKZNmwpHR0cxZcoUZb/a14QQxV8HQggRGBgoAHH16lXlOScnJ+Hg4CBUKpVo0qSJaNKkibCzsxPVq1cXQUFBSlv19fWFra2tUKlUwsTERKhUqhLXLykpSdSqVUsEBgaKvLw8MWnSJNG6dWtRpUoV8emnnwohhHjvvfeEkZGRMDAwEHXr1lV+D4MGDRI2NjZiypQpYs6cOcLHx0fY2toKW1tb4erqKho0aCCSkpJE9erVlfdmQUGBGD16tLCyshJdunQRXl5eIiwsTAghxE8//SSsrKyEo6OjGD16tBg8eLAQQojx48cLGxsbYWdnJwYOHFjstfUsKfp7lCRJkqTnBRApnoF+g3/qR0f8/1zy552zs7OIjIx82s2QJOk/QE9PDzs7O6Bw5MLnn3/OiRMnCAoKIjQ0FGdnZ7Kzs5WMhpSUFPbu3csvv/zCkSNHWL9+PVBY4nfEiBG8/vrr+Pr6lprl4enpye3btzE0NMTCwoLly5ezaNEi7OzsGDFiBABDhw6lX79+qFQqvL29iYmJITg4mM8++4yaNWsSFhZGzZo1gcJSxMbGxkyZMoUePXpgbGyMr68vvr6+GBsbs2DBArZt28aQIUPw8/OjYcOGpV6DlStXsmzZMpYsWUK3bt2e+DV+niQkZTB83eliVV8M9HXZMKINlubGj7VP7WtMCIGenh5ffPEF7dq1K3P9uLg4vL296d27N59//vljHfPvWrJkCaNGjSozpPitt97ivffew9rautTnDx8+TNWqVcs9z8rIyMjA2NiY5ORkHB0dmT59OmPHjlWWCyEYN24cpqamtG7dmsGDBwOFI8siIyP54osvKn3MgoKCYtPPAH7//Xe8vLweObKsov5O+yRJkiTpadHR0YkSQpQ/xPI5JqcCSZIkVZI2YyU6Oprly5crYZpa4v8zMrTrXL9+ndatWwPFAyk7dOhAeHg4DRo0wN/fv8xQ2ZCQEKKjo9m+fTuNGjWqcDubNWtGenq6kvPxsJ07dzJu3DjOnDmDi4sL+fn5Fc6ZGDNmDHFxcf/5ThUovZRuTr6Gu+k5j71P7Wvs3LlzfPrpp8ycObPc9a2trUlISHhqnSpQ2LFSVkZIQUEBa9asKbNTBQo7Vk6cOFGpY5aX/eHt7Y1arcbDw4NBgwYpgb+rV69GrVZjY2NDWloa7u7ufPfdd5U6bln09PSU9310dDS7d+/G0NCQDz/88InsH8Df3192qkiSJEnSM0Z2rEiSJD1h2owM7YjAohkZRV27do26desycuRI3nrrLc6cOVOh/Xt4eLB582YKCgpISkoiPDycNm3alFivSZMmbN26lWHDhpWoDKPRaLhx4wadOnVi4cKFpKWlEZP4B1sORVK9XlOmTp32j+RMvIhKK6VroK9LnRoGZWxROffv36d27doAZebrZGRk4OXlhaOjI3Z2dkquz8P27NmDo6Mj9vb2eHl5AYUjqnx9fVGpVLi6unL+/HmgcHTTiBEj8PT0xNLSUglnzszM5JVXXsHe3h5bW1s2b97MsmXLuHXrFp06dVIq8BgbGzN58mTs7e05efIknp6eaEeWPtyOxMREVq5cyeLFi1Gr1Rw9epTExEQ6d+6MSqXCy8uL69evA4UdC2PGjKFt27ZMmzat2PklJibi4eGBo6Mj9+/fZ8WKFcTFxXH48GGOHj2qjArTVm0KCQkhICBAeW7x4sUA3Lp1ix49etCiRYtixwgLC8PNzQ1HR0f69eunZL1oNIKEpAxOJSSTkJSBRlM4LFgbOK3NnDlw4AAODg7KiLOcnJxyl0vPho8//hgbGxtUKhVqtZpffvkFKByFFRcXV+o25T1XUYmJiRgaGqJWq7G3t6ddu3ZKHlTRXK/KsrCw4N69e3+rbZIkSdJDnvZcpCf1IzNWJEn6t2hzHIoqmuFRVkbGw9kIwcHBwsbGRqjVatG+fXuRkJBQYr+l5XxoNBoxZcoUYWNjI2xtbcWmTZuEEKLUjBUhhDhz5oxo3bq1uHz5spKfkZubK9zd3YWtra2wsbERwyfOFO0XHBB1XF8TRnUthEWL1mLAgH8mZ6KgQCOu3E0XJ6/cE1fuppfIInneFBRoxM7zt0T7BQeEy/x9ov2CA6VmrFSGrq6usLe3F1ZWVqJmzZoiMjJSCCHKzNfJy8sTaWlpQojCPJNmzZqJy3fuF7vGd+/eFQ0bNlReZ9qsn/Hjx4uAgAAhhBAHDhwQ9vb2QojCHBY3NzeRnZ0tkpKSxEsvvSRyc3PFli1bxFtvvaW0NTU1VQghimXGCCEEIDZv3qw81r6Wy2rHw7kv3t7eIjg4WAghxNq1a8Vrr70mhBBi+PDh4pVXXhH5+fklrltmZqbIysoSQghx8eJFof3b4OGMnaIefm79+vWiadOmIjU1VWRlZYnGjRuL69evi6SkJOHh4SEyMjKEEEIsWLBAzJ07t8zff1BQkOjZs6fQaApfB1lZWaJhw4bit99+E0IIMXToULF48eIyl0vPhhMnTghXV1flszApKUncvHmz3G1Ke20+joezlFauXCmGDRsmhCj/Nf0oD79XJUmS/g284Bkr+k+7Y0eSJOl5o/2WuihPT088PT2BwmkcX331VYl1/P398ff3Vx4PHz6c4cOHl3ssbTWTonR0dAgMDCQwMLDYcgsLC2JiYkocy8HBQfnmNCAgQFn/2LFjQPGMkCbe44HCERefjGijlMt9UjQawZ7YP/h016/k5Gsw0NdlZq/W9LCph+7/l9593mhL6baqV4O76TnUqWGAhWn1v3U+2qlAACdPnmTYsGHExMRw7NgxBg0ahJ6eHnXr1qVjx45ERETQs2dP3n//fcLDw9HV1eXG7zcZvGwvwtBEucZ5CRF06NCBpk2bAvDSSy8Bha+DrVu3AtC5c2eSk5O5f/8+AK+88goGBgYYGBhQp04d7ty5g52dHZMnT2b69Ol4e3srpZUfpqenR58+fUosP3XqVKnteNjJkyf58ccfgcIcoaIjR/r164eenl6JbfLy8hg/fjzR0dHo6emVOQ3uUby8vKhVqxZQOM3q2rVrpKamEhcXp5Q2zs3Nxc3NjcTkTOX1DIXTwD5YE8qdrUs4GxWJjk7h6+C3336jadOmtGzZEih8/3/55Zd06tSp1OXvvvvuY7VderJu376NmZmZ8lloZmamPOfp6UlQUBDOzs4YGxszevRo9u/fz5dffsmsWbOKPaf9/8aWLVsIDQ0lODiYH374gblz56Knp0etWrUIDw8vty1FR68Vdfr0aSZOnEh2djaGhoasX78eKysrCgoKmD59Onv27EFXV5eRI0fyzjvvKNtlZWXh5+eHn58fI0eOfBKXS5Ik6T9LdqxIkiT9x5WXEfK44atlKe0m9NNdv9KqXo0nfqx/k7aU7j9xDtpS2UlJSWWuExISQlJSElFRUdxIzcG6ZXOys7MxMPzrGg9rkF3pYxftWNPT0yM/P5+WLVty5swZdu3axaxZs/Dy8ipRphegWrVqpXZ+PAlFs4qKWrx4MXXr1uXcuXNoNBqqVav2WPsv7byFEHTt2pWNGzcWW/dUQnKx948mL4ffNn3CR598Rt26dR/r+NKzo1u3bsybN4+WLVvSpUsXBgwYQMeOHUusl5mZSdu2bSuVczRv3jz27t1LgwYNSE1NLXWdK1euoFarSU9P58GDB8o0pKJatWrF0aNH0dfXZ//+/bz//vts3bqVVatWkZiYSHR0NPr6+qSkpCjbZGRkMHDgQIYNG8awYcMq3GZJkiSpdDJjRZIk6T/un84IKeqfCHp90cXHx1NQUICpqWmZ+TppaWnUqVOHKlWqsDtsPzmpd4rtIydfQ0Mre8LDw7l69SqAcpPl4eFBSEgIUDhCyszMTKkiVZpbt25hZGTE66+/ztSpU5VsoBo1apCenv7I83F1dS21HQ9v365dOzZt2gQUdhyVNTKmqLS0NOrXr4+uri7ffPMNBQUFj2xbZdp9/PhxLl++DBTeSF+8eLHE++fGnq8wsVTR2+fVYttbWVmRmJiobP/NN9/QsWPHMpdLzwZjY2OioqJYtWoV5ubmDBgwgODg4BLrlTVCqzzu7u74+/uzevVq5bX6sGbNmhEdHc2VK1eUylsPS0tLo1+/ftja2jJp0iQlU2v//v2MHj1aqVBXdHTYa6+9xhtvvCE7VSRJkp4Q2bEiSdJ/Wmmhk/81FqbVmdmrtXJzqJ06YmFa+qiAv+Pf7MR5nmVlZaFWq1Gr1QwYMIANGzagp6dH7969UalU2Nvb07lzZz777DPq1avHkCFDiIyMxM7OjkOhWzA0b1xsfwb6ulhZNGDVqlX4+flhb2/PgAEDgMLpYVFRUahUKmbMmMGGDRvKbduFCxdo06YNarWauXPnMmvWLABGjRpFjx49lPDaspibm5fajldffZVt27Yp4bXLly9n/fr1qFQqvvnmG5YuXfrI6zZ27Fg2bNiAvb098fHxysgWlUqFnp4e9vb2SkCtVlnPGRv/Nfro1KlTuLu7s3DhQgYNGoRKpcLNzY34+Phi75/c+/e4+8vP6N2Jw69re+V3OGTIEKpVq8b69evp168fdnZ26OrqMmbMmDKXV9bUqVOxsbFh6tSpxZY/XG3J39+fLVu2VHr/T0pwcDC3bt1SHhcNea1sqOq/FcKqp6eHp6cnc+fO5YsvvlCmzhVV3ggt7XQwgOzsv0aOrVy5kvnz53Pjxg2cnJxITk4utx0+Pj6lThf68MMP6dSpEzExMfz888/FjlEWd3d39uzZo4SsS5IkSX/T0w55eVI/MrxWkqTK+idCR59X/1agrLzm/zx5jZ8MbUj1/v37C8OAL18uc91/6v2Tl5dX4XVr1qxZamjqw6HAw4cPFz/88MMTad/jhLSWFsitVdlQ1X8jhDU+Pl5cvHhRefzBBx8oweBFz+XhUPOizzVr1kzExcWJgoIC4efnJ4YPHy6EEMVeU87OzuLs2bPF9vFweG1YWJiwtbUVQhQPr/X19RVbtmwRQhT+vps0aSKEEOJ///uf6NOnj/I60gZFa6/bO++8I95+++3HvDKSJEmVwwseXitHrEiS9J9VVt5HYnLmU27Zv0+bEeJqaYqlufE/FiSrDXrdMKINywY5sGFEm+c6uPZZJK/xkxMeHs7IkSMJDQ2lWbNmAHz77bfKiJ3Ro0dTUFCArq4Ol8+eYNIQb/p278CAAf2VsFILCwumTZuGnZ0dbdq0Uab8JCUl0adPH1xcXHBxceH48eNA4QiioUOH4u7uztChQ4u1R4jSy237+PiQkZGBk5OTsgwotYy19rzatWuHpaVlsdErgYGBuLi4oFKpmDNnTqnX5OEy2qVdD+16kyZNwsbGBi8vL5KSktiyZQuRkZEMGTIEtVpNVlZWsTLcRZW134ctX75cKTOuLQ9fXgnxoKAgZVtbW1sSExNLLSEOEBUVxaBBg3BwcMDY2Bhra2vi4uKKhYBXxIIFC/D29qZdu3bUr19fWT516lTs7OywtbWlXbt22Nvbl9hWm7Fib2/P+++/z5o1a0qsM23aNGbOnImDgwP5+fnK8rfeeovGjRsro9y+++67YtstXbqUrKysEmXLJUmSpMfwtHt2ntSPHLEiSVJlnbxyT7jM31fi5+SVe0+7aZIkPWX6+vqidu3a4ty5c8qyuLg44e3tLXJzc4UQQrz99ttiw4YNZZZiFqJwdMD8+fOFEEJs2LBBGWUwaNAgcfToUSGEENeuXROtWrUSQhSOOHB0dBQPHjwo0aayym0LUXoZeO3+Hh6x0rdvX1FQUCBiY2NFs2bNhBBC7N27V4wcOVJoNBpRUFAgXnnlFXHkyJES+6NIGe2yrod2vW+//VYIIcTcuXNLHeXx8GPtSIry9ltUkyZNxLJly4QQQnz55ZfizTffFEKUX0K86LWwsbERV69eLbWEeG5urnBzcxN3794VQgixadMm8cYbb5R6jSVJkqRH4wUfsSKrAkmS9J+lzfsoGqb6IuV9bN++nd69e/Prr7/SqlWrSm9ftERoRQQEBGBsbMyUKVPw9/fH29ubvn37Vnjb1atXY25uDkCPHj2wsLDAyMjouQ9X1GgEicmZT6wUs/TvqFKlCu3atWPt2rVKvsuBAweIiorCxcUFKMzCqVOnDqdOnSq1FLPWoEGDlP9OmjQJKAwW1WaLQGEpXe37zcfHB0NDwxJtKqvcto+PT6XOzdfXF11dXaytrblzpzDoOCwsjLCwMBwcHIDCqjGXLl2iQ4cOxbYtGtJa1vUA0NXVVfJzXn/9dfz8/CrcvvL2+zDtfp2cnJTy3OWVEC9NaSXEY2JiiImJoWvXrgAUFBQUG20iSZIkSUXJjhVJkv6ztKGT2ulA/2Ro69OwceNG2rdvz8aNG5k7d26J5/Pz85VqEc+CSZMmMWXKlKfdjCdKoxHsif2jxGtMTs159unq6vL999/j5eXFJ598wvvvv48QguHDh/Ppp58WW/fnn38utRSzVtHwUu2/NRoNp06dKrUkdFnlpJ+UouWkC79ELPzvzJkzGT16dLnbFg1pLet6lKboNXiUyuxXey7astjl0dfXR6P5qyNdG/JaWgnx3r17Y2Njw8mTJyvcbkmSJOm/S2asSJL0n/UiZ1FkZGRw7Ngx1q5dq5SshcIKIR4eHvj4+GBtbQ0Ufnvt5OSEjY0Nq1atKrafhzMSoHDOf48ePXBycsLDw0PJNSjLvHnzcHFxwdbWllGjRik3co9SNA8hIiIClUqFWq1WMiYAHjx4QP/+/bG2tqZ37960bdu21LyGp0Xm+DzfjIyM2LlzJyEhIaxduxYvLy+2bNnC3bt3gcIsj2vXrpVZillLm9mxefNmZSRLt27dWL58ubJOdHT0I9tTVrnt8lS0nHT37t1Zt26dMmrm5s2bynmWpazrAYUdR9r8lu+++4727dtXuD3l7bciyioh3rhxE8JPnuZUQjI/HTimlPwurYS4lZUVSUlJSsdKXl6eUsZYkiRJkh4mO1YkSfpP+7dCW/9tO3bsoEePHrRs2RJTU1OioqKU586cOcPSpUuVG79169YRFRVFZGQky5YtU0p+ZmZm4uzsTGxsLB07dlRGvYwaNYrly5cTFRVFUFAQY8eOLbct48ePJyIigpiYGLKysggNDS11PW3AplqtZu/evcWee+ONN/jqq6+Ijo4uVtJ0xYoV1K5dm7i4OD766KNi5/ksuJueU2yqGRR2rtxNz3lKLZIq66WXXmLPnj3Mnz+fy5cvM3/+fLp164ZKpaJr167cvn0bc3NzgoODS5Ri1vrzzz9RqVQsXbpUKem8bNkyIiMjUalUWFtbs3Llyke2paxy2+V5uIx1Wbp168bgwYNxc3PDzs6Ovn37PrIDxNrautTrAYWjbk6fPo2trS0HDx5k9uzZQGG55zFjxijhtZXdb0WUVkJcoxHUaO3O8dhEOrk5MXL6x7zcxBKNRpRaQrxq1aps2bKF6dOnY29vj1qtLla2WpIkSZKK0qnoN4fPOmdnZ/EsfUspSZL0NHl7ezNx4kS6du3KsmXLuH79OkFBQRw+fJi5c+dy6NAhZd2AgAC2bdsGFFYR2bt3L66urujp6ZGTk4O+vj4JCQn4+flx7NgxzM3NsbKyUrbPycnh119/LTNjZevWrXz22Wc8ePCAlJQU3nnnHWbMmFGsvUW3fXjZW2+9hb29vfKN9fnz5xk8eDAxMTH4+voyceJEOnXqBICjoyOrVq3C2dn5H7u2lZGQlMHwdadL5PhsGNEGS3Pjp9gy6d9iYWFBZGQkZmZmT7sp/6rKZjT90+R7UZIk6enS0dGJEkI8G3+g/QOencn1kiRJ0hORkpLCwYMHuXDhAjo6OhQUFKCjo0NgYCBQPL/h8OHD7N+/n5MnT2JkZISnp6eSO/AwHR0dNBoNJiYmFZq2AIUZBmPHjiUyMpJGjRoREBBQ5v5fRC96jo8kPS/KGz0mO1YkSZKkv0tOBZIkSXrBbNmyhaFDh3Lt2jUSExO5ceMGTZs2LXUaQFpaGrVr18bIyIj4+HhOnTqlPFdaRkLNmjVp2rQpP/zwA1AYMnnu3Lky26LtRDEzMyMjI0PZX2WYmJhQo0YNfvnlF4BimTHu7u58//33AMTFxXHhwoVK7/+f9CLn+EgVk5iY+J8brQI8U6NV4K8qcEW9SFXgJEmSpKdLdqxIkiS9YDZu3Ejv3r2LLevTp0+pFUt69OhBfn4+rVu3ZsaMGbi6uirPlZWRoA3ytLe3x8bGhh07dpTZFhMTE0aOHImtrS3du3dXyqdW1tq1axk5ciRqtZrMzExq1aoFwNixY0lKSsLa2ppZs2ZhY2OjPPeseFFzfJ4nGo0gISmDUwnJJCRloNG8GNOgpYrTjh7Tdq7I0WOSJEnSkyQzViRJkqRnXkZGBsbGhcP1FyxYwO3bt1m6dCkFBQXk5eVRrVo1rly5QpcuXfjtt9+oWrXqU26x9KyQJa8lLY1GkJicyd30HOrUMMDCtLp8DUiSJP1LZMaKJEmSJD1lO3fu5NNPPyU/P58mTZoQHBwMFJZb7tSpE3l5eQghWLFihexUkYopq+R1q3o1ZLbGf4x29Jj8vUuSJElPmpwKJEmS9C/Q09NDrVZja2tLv379ePDgQZnrRkdHs2vXrr91vNmzZ7N///4Krx8QEECDBg1Qq9W0aNECPz8/4uLi/lYbitKONnlcAwYMIDo6mpiYGHbu3Im5uTkANWrUIDIyknPnznH+/Hl69uz5JJorvUBkyetnV2U+F/9Jnp6eaEc9W1hYcO/evUpta2VlpZSK1+ZI/d3PvEc5fPgw3t7e/+gxJEmSpIqTHSvSv2779u3o6OgQHx+vLEtMTMTW1haAyMhIJkyYUO4+evXqRWpqaoWPGRoaioODA/b29lhbW/PVV1+Vu35F2vA4tm/f/kRvVqXnh6GhodIxULVqVVauXFnmukU7Vh43G2LevHl06dKlUm2cNGkS0dHRXLp0iQEDBtC5c2eSkpIqvH1+fn6ljidJ/wYZWvrsqsznYlHP2mdNSEgI0dHRREdH07dv36fdHEmSJOkpkB0r0r9u48aNtG/fvtQgTQBnZ2eWLVtW7j527dqFiYlJhY6Xl5fHqFGj+Pnnnzl37hxnz57F09Oz3G0q0obHITtWJAAPDw8uX75MZmYmI0aMoE2bNjg4OLBjxw5yc3OZPXs2mzdvRq1W8/7nX+E5aBz9xr3P8HWn2RP7B7a2tiQmJpKYmEjr1q0ZOXIkNjY2dOvWjaysLAD8/f2Vb07nzZuHi4sLtra2jBo1iopkaw0YMIBu3brx3XffAcW/xY2MjFTeQwEBAQwdOhR3d3eGDh1KbGwsbdq0Qa1Wo1KpuHTpUol9BwYG4uLigkqlYs6cOUDhCJslS5Yo63zwwQcsXbr08S+yJP0/GVr6fCjvcxEgODgYHx8fOnfujJeXV7nr+fn50aNHD1q0aMG0adOUY4SFheHm5oajoyP9+vV7ZOWib7/9Vvk8Gz16NAUFBZU+r4yMDLy8vHB0dMTOzk5pZ2JiIq1atcLf35+WLVsyZMgQ9u/fj7u7Oy1atOD06dMAZZ6nJEmS9GyRHSvSvyojI4Njx46xdu3aYiVTiyo6vDUjI4M33ngDOzs7VCoVW7duBYrf5Pn6+uLk5ISNjQ2rVq0qsb/09HTy8/MxNTUFwMDAACsrK6Dw5nPMmDE4OzvTsmVLQkNDS7QhICCAESNG4OnpiaWlpdLhUt5N7ZUrV+jRowdOTk54eHgQHx/PiRMn+Omnn5g6dSpqtZorV648kWsqPV/y8/PZvXs3dnZ2fPzxx3Tu3JnTp09z6NAhpk6dSl5eHvPmzWPAgAH8uO8YxzUtKfj/USrabIjcgr+mNVy6dIlx48YRGxuLiYmJ8h4pavz48URERBATE0NWVpbyOn8UR0fHYiPLyhIXF8f+/fvZuHEjK1euZOLEiURHRxMZGUnDhg2LrRsWFsalS5c4ffo00dHRREVFER4ezogRI/j666+BwjLPmzZt4vXXX69QOyWpPLLk9bPvUZ+LmZmZAJw5c4YtW7Zw5MiRcteLjo5m8+bNXLhwgc2bN3Pjxg3u3bvH/Pnz2b9/P2fOnMHZ2ZlFixaV2aZff/2VzZs3c/z4caKjo9HT0yMkJKTUdYcMGaJMBUpOTi72XLVq1di2bRtnzpzh0KFDTJ48Wencvnz5MpMnTyY+Pp74+Hi+++47jh07RlBQEJ988glAuecpSZIkPTtkeK30WIyNjZVvenbt2sW7777Lvn37aNKkSanrb9++nZYtW3L27Fl69OjBt99+i56eHlFRUTg5OZV5nI8++ohatWrRp08fVq9eTUBAAB988AHJyclICsBzAAAgAElEQVRoNIU3l+vWreOll14iKysLFxcX+vTpg6mpKQEBARgbGzNlyhRMTEyoV68evXr1wtvbm0GDBqGrW9ivmJiYyOnTp7ly5QqdOnXi8uXLJdoRHx/PoUOHSE9Px8rKirfffhsovKnduHEjq1evpn///mzdupXXX3+dUaNGsXLlSlq0aMEvv/zC2LFjOXjwID4+Pnh7e8uhwv9BWVlZqNVqoPCb2TfffJN27drx008/ERQUBEB2djbXr19XtikrG6Kg4K8RJ02bNlX26+TkRGJiYoljHzp0iM8++4wHDx6QkpKCjY0Nr7766iPbXNGqcT4+PhgaGgLg5ubGxx9/zO+//46fnx8tWrQotm5YWBhhYWE4ODgAhZ2nly5dokOHDpiamnL27Fnu3LmDg4OD0hkqSX+XDC19NlX2c7Fr16689NJLQOFnSVnreXl5KWXXra2tuXbtGqmpqcTFxeHu7g5Abm4ubm5uZbbtwIEDREVFKSXis7KyqFOnTqnrhoSE4OxceqELIQTvv/8+4eHh6OrqcvPmTe7cuQMUfn7b2dkBYGNjg5eXFzo6OtjZ2Smf5eWdpyRJkvTskB0r0t9y4MABJkyYwN69e8vsVIHCjhVvb282btzIxIkT6dq1K2ZmZmzcuLHcjpX9+/ezadMmQkJCmDRpElOmTEGj0WBkZMSJEyfw9fVl2bJlbNu2DYAbN25w6dKlEjdk7dq1w87ODl1dXYKCgti3b59SVaR///7o6urSokULLC0tS/2G/pVXXsHAwAADAwPq1KlT7I+ih29qMzIyOHHiBP369VO2z8mRIYn/ddosgaKEEGzdulUZQaX1yy+/AH9lQ+jo6oEo7GAx0NclPy9XWdfA4K+cCD09PWXUlFZ2djZjx44lMjKSRo0aERAQQHZ2doXafPbsWeVmQV9fX+nMfHj76tX/mlIxePBg2rZty86dO+nVqxdfffUVnTt3LnbOM2fOZPTo0SWO99ZbbxEcHMwff/zBiBEjKtRGSZKeX5X9XCz6WVPeeg9/Lubn5yOEoGvXrmVOQ36YEILhw4fz6aefVva0igkJCSEpKYmoqCiqVKmChYWF8hlatJ26urrKY11dXSVHpqzz1P4dIkmSJD0b5FQg6bGFh4czcuRIQkNDadasGQCrV6/GxcUFe3t7+vTpw4MHD5QpMJMnT2bXrl0MHz4cY2Nj5s6dy/fff09kZCQDBgzgypUrdO/evcQw2ofl5uYihKBWrVocPnyYn3/+mTp16qCvX9hPePHixVK3a9KkCZMmTWLfvn3Fpkvo6BQfDv7wYyh586r9g6e05RqNBhMTEyXILjo6ml9//bXcc5L+m7p3787y5cuVkSFnz54FCivdpKenK9kQ1c3q8eDWZQz0delnkcfv1xMrfAztH/BmZmZkZGQouSuPsnXrVsLCwhg0aBBQOP0uKipKea4sCQkJWFpaMmHCBF577TXOnz9f4pzXrVunjHi7efMmd+/eBaB3797s2bOHiIgIunfvXuFzlCTpxVHW5+Ljrqfl6urK8ePHlVGpmZmZZf69AIWjXrZs2aJ8PqWkpHDt2rVKn09aWhp16tShSpUqHDp0qNL7qOx5SpIkSU+H7FiRHktOTg6+vr5s376dVq1aKcv9/PyIiIjg3LlztG7dmrVr19KuXTt8fHzo0aMHI0eO5NatW/Tt25evvvqKJk2a4O/vz4oVK2jWrBkjRoxgzZo1yv66du3Kl19+CcDixYuxs7Ojfv366OvrY2dnR1paGteuXWPFihWEhISQlZVVLAATCqca/PHHH8rj6OjoYqNrfvjhBzQaDVeuXCEhIaHEt0KVVbNmTZo2bcoPP/wAFH7bdO7cOeCvG2ZJAvjwww/Jy8tDpVJhY2PDhx9+CECnTp2Ii4vD0dGBtJgjbPvsPZrXgjvrx3F2zyZatmxZ4WOYmJgwcuRIbG1t6d69uzKsvTSLFy9Wyi1/++23HDx4UClrPGfOHCZOnIizszN6enpl7uP777/H1tYWtVpNTEwMw4YNK/Z8t27dGDx4MG5ubtjZ2dG3b1/lPVG1alU6depE//79yz2GJEkvrrI+Fx93PS1zc3OCg4MZNGgQKpUKNze3cjOkrK2tmT9/Pt26dUOlUtG1a1du375d6fMZMmQIkZGR2NnZ8fXXXxf7m6kiKnuekiRJ0tOhU9E59M86Z2dnERkZ+bSb8Z9hZGRE586dadasWbHKHUeOHGHWrFmkpqaSkZFB9+7dWblyJf7+/kRERPD555/To0cP/P398fb2JjIykkWLFtG8eXOuXr1K8+bNqVatGnXr1iU0NJSMjAzGjRvH7t270dfX54svvuDVV1+lVq1aLF26FD8/P+WbIAMDAwoKCjA1NeXatWtKxsro0aNp3bo1Go2GOnXqUL16dZYuXYqzszP+/v5Uq1aNyMhI7t+/z6JFi/D29ubw4cMEBQURGhpaLKsFwNbWVgn/9Pb2JiYmBoCgoCAyMjIICAjg6tWrvP3229y+fZu8vDwGDhzI7NmzOX78OCNHjsTAwIAtW7YoI30kSSoMrXV0dOSHH34okc0iSZIkSZIkPb90dHSihBClB1K9AGTGivRYdHV1+f777/Hy8uKTTz7h/fffBwqr7Gzfvh17e3uCg4M5fPiwss3cuXPp0aNHsf0MGTKEI0eOcPLkyVKPY2xszIYNG5TODT8/PwA+//xzzp49y4ABA6hTp0653yLVqFGDLl26lBka26VLF1auXFlsmaenZ7FyskVpO1Ie/re24wUKs1f27NlT4lju7u6y3LIklSIuLg5vb2969+4tO1UkSZIkSZKk54qcCiQ9NiMjI3bu3ElISAhr164FCksb169fn7y8vGJlCcuaAmNlZUVSUpLSsZKXl0dsbGy5xxVCcPz4cZo1a1butBtJkkrXqVMn9u7dW2zZkiVLlGpXT4O1tTUJCQls3boVOzs77OzssLa2ZtasWRUO232U4OBgxo8f/0T2JUmSJEmSJElasmNFKtP27dvR0dEpdw6yn58fCxcuZP78+fz000989NFHtG3bFvf/Y+/Ow6Iq2weOfwdwBXPFJTVRU5FlhgEEARfANRdy3xXltXJJy0rTSkHT8k0rUzPTTMwF11xKrTRFwQ1BFhE1E0ctDREXBESBOb8/+HFeRhaXVFzuz3V5Xc5ZnnMPxmnOPc9z315eXLhwgWvXrgHQr18/Zs2ahV6v5/Tp0+r5pUuXZv369bz//vvodDqcnJzYv3+/yTVCQ0OZOXMmkyZNUpcJ5eTkMGrUKAA1saPT6bC3t2fz5s33/B6Dg4Ol9bG4L0ajQmJyGgcTU0hMTsNofPqWU/bv35/Vq1ebbFu9erVaqPZucnJyHkVYqt27d3P06FEiIiJITEwstINQcR51fEKIgp6Fe6MQQgjxoKTGiihS3759uXDhAr6+vkydOrXAfqNRwbNlK94YH0hrr+bYVLXEzCy3o05OTs5DKz6Zv95Jeno6Tk5OrFmzBmdn54cyvhD3ymhU+OXYP3y67Ti3so2UsTBjUqemdLSvqf63/2+Zm5vj6OhIVlYWFhYWDBkyhHHjxmFmdu958ODgYCIjI5k/f36BGkGQ293C1taWv/76i9KlS2MwGGjVqhVnz55lx44dBAYGcuvWLRo2bMjSpUuxsrKiUqVK5OTkkJOTwwsvvMCNGzfw9/fn4MGDZGVlsW7dOmxtbbly5QoBAQEkJiZSvnx5Fi1ahFarJSgoiHPnzpGYmMi5c+d4++23GTt2rBqTlZUVaWlp2NjYEBkZSbVq1QBITU2lbt26nDlzhri4OPVeAPDmm2+qtZJsbGzo27cvO3bsYMKECVy6dImFCxdiYWGBnZ0dq1evNvm5JCcnM2LECM6dOwfkztjx8PCgSZMm7N+/H2tra4xGI40bN+bAgQNqEV8hREGP494ohBDi6fas11iRGSuiUGlpaYSHh7NkyRKTb7Zv3rxJv379aNq0KS3adeLY+cvM/u0k/t9HYGllxTvvvINOp+PAgQN4e3uTl+waOXIkrq6u2NvbExgYqI5nY2NDYGAgzs7OODo6Fjs7BsDS0hIXFxf+/PNPgoKCmD17trrPwcEBg8EAwA8//IBWq0Wn0zF48GAAkpOT6dmzJ82aNaNZs2bs27cPo9FIo0aNSE5OBnKLZ7788svqayHyM6Skqw8OALeyjXy67TiGlPSHdo1y5coRExPDsWPH2LFjB9u3by80sflvVKlSBTc3N7Zv3w7kzlbp06cPKSkpTJ8+nZ07d3LkyBFcXV354osv1PNatWpFRkYG//zzD+XLl2fFihX8+uuvjBw5Uv1dDAwMRK/XExcXxyeffGLSFej48eP8+uuvREREMHXqVLKysu4aa95yv1OnTt312KpVq3LkyBH69evHzJkziY6OJi4urkANJYC33nqLcePGcfjwYTZs2MDw4cMxMzNj0KBB6jLGnTt3otPpJKkixF08jnujEEII8SSTxIoo1ObNm+nYsSONGzematWqREVFAfDNN9/k1lbZe5hMxx6k/f0HkPshKvNmBvXtnIiNjaVFixYm482YMYPIyEji4uLYs2cPcXFx6r5q1apx5MgRk4ezoqSkpHDw4EHs7e2LPObYsWNMnz6dXbt2ERsbq3Ytkgcp8W9dunFLfXDIcyvbyKUbtx7J9apXr86iRYuYP38+iqIUqBGS18EKYOnSpTRu3Bg3Nzf27dtX6HinT5+mY8eOuLi4cOrUKRYtWsSNGzeYMmUKvXv35uDBgxw7dozKlSuj0+lYtmwZZ8+eVc93cnJS/25paUn79u1ZtWoVLi4urFy5ksuXLxMeHo5Op8Pb2xtfX1/OnDlD3759WbJkCenp6fz555906tSJ9PR0tFptoQmT+fPn06xZM7RaLYGBgSiKwqJFi1i/fr16zIcfflignlLfvn3Vv2u1WgYOHMiKFSuwsChYp33nzp28+eabODk54efnR2pqKmlpaQQEBPDDDz8A8P333zNs2LDi/omEEDz+e6MQQgjxpJHEynOuqDXRISEh9OvXD8itjxISEgLA3r17GTRoEJdu3MLCuj7lazT432BmZji37ljgGgBr167F2dkZvV7PsWPHTDrj5HX6cXFxUWec3CksLAy9Xk/79u2ZOHFisYmVXbt20bt3b3UpQZUqVQB5kBL/XvUKZShjYXrbLGNhRvUKZR7ZNRs0aEBOTg6XLl0q8piLFy8SGBjIvn37CA8PL7Lz1Ouvv868efOIiopi4cKF7Nixg1OnTlGuXDkuXryIoig0bNiQMWPGEBsbS0JCglqYGnJrIuXn5OTEiRMnMDc3p7hlpSdPnmTIkCEMGTKEhQsX8tZbb/Hyyy+zefNm6tSpY3JsZmYmiYmJREREEBMTw6FDhzh9+jRjx47lt99+w2g0YjQaWb16NfXq1TM519LSUv371q1bGT16NEeOHKFZs2ZkZ2ebHGs0Gjl48CAxMTHExMTw999/Y2VlRd26dalRowa7du0iIiKCV155pcj3JYTIVRL3RiGEEOJJIu2Wn2NFrYl2q1WaXbt2cfToUTQaDTk5OWg0GmbNmqWeW9iHKDOL0tSqVL7Adc6cOcPs2bM5fPgwlStXZujQoSZdPsqUyf3gZW5uXuDhJ0/Lli3Vugp5LCwsMBr/9w3Z3TqH5D1IlS1b1mS7lZWVyYNU/m5GQuRnU9WSSZ2aFvidsalqefeTH6FDhw7h7e2tzrTq27cvf/zxh8kxaWlp7N+/n969e6vbypYtS0BAAD179mTp0qV89913xMbGqi3G09PT+fvvv2ncuHGh1y0smdKyZUu11XhoaCjly5ene/fu6rEeHh7MmDGDlJSUQse+efMmu3fvRq/Xk5OTg8FgUJf11ahRg5iYGH7++Wfs7e3Zt28fbdu2LRCD0Wjk/Pnz+Pj40KJFC1avXk1aWprJMe3bt2fevHmMHz8egJiYGHVGzvDhwxk0aBCDBw9+aLWihHiWPan3RiGEEOJxkRkrz7Gi1kR/u2wlgwcP5uzZsxgMBs6fP0/9+vUJCwujVatWrFq1CpuqlvRvpCEjKRHI/WaqtLlZoR+iUlNTsbS0pGLFiiQlJal1Hf4tGxsbjhw5AsCRI0c4c+YMAL6+vqxbt46UlBQgt1An/O9BKk9MTIz697wHqd69e8uDlCiSmZmGjvY1WRbgxtz+epYFuD3y4oyJiYmYm5tTvXr1+04m5mc0GqlUqZI6QyMmJoYffviB2NhYJkyYgMFg4NixY9SvX5/AwEC0Wi0eHh7F1j06evQoTZs2BUCj0WA0GgkKCuLYsWNERkYyceJEunXrZjKTZMCAAWzZsgWNRsOwYcPYtWtXobFmZ2eTk5PD2LFj1WPefPNNatWqxcCBA/nrr7/Q6/WFxpWTk8OgQYNwdHREr9czduxYKlWqZHLM3LlziYyMRKvVYmdnZ1KHxc/Pj7S0NJm99hCZm5vj5OSEg4MDXbt2VTvGFWXo0KEmS7/+jfz1vu5FYde2srJ6KLE8aExPupK4NwohhBBPEkmsPMeKWhP947q1dO/e3WR7z549CQkJYeTIkaSlpWFvb8eO5fPQOTnzXvsmLAtww9xMU+iHKJ1Oh16vx9bWlgEDBuDl5fVQ4u/ZsydXrlzB3t6e+fPnq99829vb8+GHH9K6dWt0Oh3vvPMOIA9S4uEwM9PQwNqK5g2q0sDa6pE+OOR1rnnzzTfRaDTY2NgQExOjzsiIiIgAwN3dnT179pCSkqJ26LlTXhHYvH2KolC/fn0URcHW1pYhQ4YwYMAA3nrrLQ4fPkxcXBxxcXH4+fkB8Pbbb5skSD7//HP27t1L//79cXV1xcvLi6ioKKpUqYKrqyuurq4cPHiQGjVqABAUFMR7771HYmIiDRo04OLFi/Tq1cuk3hLAunXrqFOnDgcPHiQhIYFRo0aRmpoKQPfu3UlLS8Pa2prDhw/z448/MnToUAAMBoO6/K9UqVKEh4dz9OhR4uPjmThxIpD7wDx//nwgt7bTmjVriIuLIyEhweR+EBsbi06nw9bW9t/9AwpVXlHm+Ph4qlSpwtdff13SIYmH7HHeG8WTb9OmTWg0mrs2JXhQoaGhdOnSBYAtW7Ywc+bMhzKujY0Nly9fLnK/wWDAwcHhoVxLCPFskaVAz7G85Tz5kytlLMxY9tMvNLA2/XYuf1vU/F2C8rtzqn1eUU3Ibf9amPw1VVxdXU3OyePt7Y23t3eB7eXKleO3334rdFx/f3/8/f1NtuU9SBVGHqTEk+LmzZs4OTmp7ZYHDx6sJge9vLyoX78+dnZ2NG3aVG05XqtWLYKCgvDw8KBSpUomRWbzW7lyJSNHjmT69OlkZWXRr18/dDodAAMHDuSjjz6if//+Rcb25ZdfsmLFCtLT03FwcGDXrl3q8qPAwED+85//MHny5EJ/X/OsXbuW5cuXU6pUKWrWrMkHH3xgsr99+/YcP34cDw8PIHemwIoVK6hevTqlS5fGx8eHSpUqPbKZZTNnzuSbb76RJYGPkIeHh5pQi4mJYcSIEWRkZNCwYUO+//57KleubHL8tGnT+Omnn7h58yaenp58++23aDQavL29cXd3Z/fu3Vy7do0lS5bQsmVLbt68ybBhw4iNjcXW1pabN2+qY40cOZLDhw9z8+ZNevXqdd8dtxRFYcKECWzfvh2NRsNHH31E3759i9wO8N///pcVK1ZgZmbGK6+8oj4Arlu3jlGjRpnELsSzIiQkhBYtWhASEvLQO9vdyc/PT/0SQAghSoyiKM/EHxcXF0Xcn5wco7I17oLSYubvSrPpO5QWM39XtsZdUHJyjCUd2mP16aefKi+99JISFhZW0qEIUWLWrVunDBo0qKTDKFZOTo6i0+mUP/74o6RDEffJ0tJSURRFyc7OVnr16qVs375dURRFcXR0VEJDQxVFUZTJkycrb731lqIoiuLv76+sW7dOURRFSUlJUccZNGiQsmXLFkVRFKV169bKO++8oyiKomzdulVp06aNoiiK8vnnnyvDhg1TFEVRYmNjFXNzc+Xw4cMmY2VnZyutW7dWYmNjC8Tq7++v2NjYKDqdTv2TF//69euVtm3bKtnZ2co///yj1K1bV7lw4UKR27dt26Z4eHgo6enpJtcvKnYhngU3btxQXnzxReXkyZNK48aN1e27d+9WWrdurfTs2VNp0qSJMmDAAMVozP3MuXXrVqVJkyaKs7OzMmbMGKVz586KoihKWlqaMmzYMKVZs2aKk5OTsmnTJnWsvGOWLl2qjB49WlGU3N/fMWPGKB4eHkr9+vXV+8iNGzcUX19fRa/XKw4ODuo4d6pXr56SnJysKEruvcTe3l6xt7dXvvzyS0VRFOXMmTOKra2tMnz4cMXOzk5p166dkpGRoShK7u/1hAkTlGbNmimNGjVS9u7dqyiKosTHxyvNmjVTdDqd4ujoqP4/7H7HF+JpB0QqT0De4FH9kaVAzzFZE51r4sSJnD17tkCLaCGeBkV19rofY8aMYeLEiUyePPkRRPhwJCQk8PLLL9OmTRsaNWpU0uGI+5Q3E6tmzZokJSXRrl07rl+/zrVr12jdujWQO9Nw7969Bc7dvXs37u7uODo6smvXLo4dO6buK6yrXF73Oshtu63VatXji+tQl9+sWbNM6hHlCQ8Pp3///pibm1OjRg1at27N4cOHi9y+c+dOhg0bRvnyuYXd87rUFRW7EM+CzZs307FjRxo3bkzVqlWJiopS90VHRzNnzhwSEhJITExk3759ZGZm8sYbb7B9+3aioqJITk5Wj58xYwa+vr5ERESwe/duxo8fT3p6erHXv3jxIuHh4fz888/qUtCyZcuyceNGjhw5wu7du3n33XeL7WYXFRXF0qVLOXToEAcPHmTx4sVER0cDcOrUKUaPHs2xY8eoVKkSGzZsUM/Lzs4mIiKCOXPmqDN18rrhxcTEEBkZSZ06dR54fCHEk0uWAj0HjEYFQ0o6l27conqFMthUtVSTJ3lrou9c+iOEePIV1dnrfhOk+Ys6P6ns7OxITEws6TDEA8qrsZKRkUGHDh34+uuvCyzXLExmZiajRo0iMjKSunXrEhQUdN9d5fLcrUPd43Y/sQvxNAkJCeGtt94CoF+/foSEhODi4gKAm5sbderUAcDJyQmDwYCVlRUNGjSgfv36APTv359FixYB8Ntvv7FlyxZmz54N5N4Tzp07V+z1u3XrhpmZGXZ2diQlJQG5M/Q/+OAD9u7di5mZGX///TdJSUnUrFmz0DHCw8Pp3r27WlusR48ehIWF4efnR/369dUlt3cmRgtLmOZ1w/vrr7/o0aMHjRo1euDxhRBPLpmx8ozLe/Dy/z6CsSHR+H8fwS/H/nmgb7WFEPfnYcwmKU5Rnb0MKcV/mycejsKKM95rYcNOnTrdtTNOfo+6i8z9jh8aGsr+/fvV15s2bSpy9kd+5cuXZ+7cuXz++edYWlpSuXJlwsLCAFi+fLk6eyVPXuKjWrVqpKWl3VOnoLzudQDx8fFqPZeH0aGuZcuWrFmzhpycHJKTk9m7dy9ubm5Fbm/Xrh1Lly4lIyMD+F+XOiGeVVeuXGHXrl0MHz4cGxsbZs2axdq1a9XZIXkJRbi3pKKiKGzYsEGdPXbu3Dm1G93WrVvV2WmQO1tk9erVfPHFF0BuUdtbt24B0Lt3b8LCwoiKiiImJoYaNWrcd2I1JSUFW1tb/vrrL3Q6HZ6enqSkpJCdnU1oaChHjx4tNGGa1w0vJSWF1q1bF9oNL7/8XyLkHycoKEhNMAkhnjySWHnGyYOXECXjcSQ1i+rsdenGrYd2DVG0/MUZ79e2bdsKtIB+mjxoYgVAr9ej1WoJCQlh2bJljB8/Hq1WS0xMDFOmTDE5tlKlSrz22ms4ODjQoUMHmjVrdtfx87rXNW3alClTpqjflD+MDnXdu3dHq9Wi0+nw9fXls88+o2bNmkVu79ixI35+fri6uuLk5CQPReKZt379egYPHszZs2cxGAycP3+e+vXrqwnUwjRp0oTExER1Zkb+RgMdOnRg3rx5amImb7kM5CYd4uPjuX37NgA7duxQl91BblHb0qVLA7lJWisrK0qVKsXu3bs5e/Zsse+jZcuWbNq0iYyMDNLT09m4cSNubm7Uq1ePhg0bEhsbi7+//12TJIDaDc/Ozo4aNWoQFxdX6PhSwFqIp5ssBXrGFffgJct/hHh0ikpq2tas8NB+94rq7FW9QplizhIPQ1paGuHh4ezevZuuXbsW2vUiIyODoUOHEh8fT5MmTbhw4QJff/01rq6u2NjYEBkZSbVq1VixYgVz587l9u3buLu7s2DBgnvqenTlyhUCAgJITEykfPnyLFq0CK1WS1BQEOfOnSMxMZFz587x9ttvq53dPv74Y1asWIG1tTV169bFxcWF9957D8idMTJ8+HCys7P5/vvvcXNzK/QaL7zwAgsXLsTc3JwVK1bw1VdfsWXLFvbs2cP06dPZsGEDN27cMOn2c/78eSB3Zoxer+fixYt88skn/PDDD7z44oscPXoUBwcHtSNQ/k5y06dPZ/r06QXef/4uctWqVVMfysqVK1dk97qiOtTd7Zi8rncajYZZs2Yxa9Ysk/1FbYfcOl55dR7uFrsQT7uQkBDef/99k209e/YkJCRE7ZR1p3LlyrFgwQI6duyIpaWlSQJ18uTJvP3222i1WoxGI/Xr1+fnn39W93fq1InY2Fg0Gg0hISHqciLI/V3Om7Gi1WpZs2YNjo6ONG7cGEtLS7p27UqlSpVYvHgxtra2rFu3jr///hsfHx91uaCbmxsAw4cPx97e3iTu1NRUypUrV+D9pKenM3bsWC5evIher8fR0ZHIyEj+/PNPAJYsWUKtWrXo378/tWvX5ubNm1SpUoXExEQ1Efzhhx/y888/c+3aNXr37l3gGqdPn2b06NEkJydTvnx5Fi9eTO3atdFqtfzxxx+UKlWK1NRUdDqd+loI8WbcOnMAACAASURBVGhJYuUZJw9eQpSMx5HUtKlqyaROTQvUWLGpavlQxhdFK6w4Y94H4jwLFiygcuXKJCQkEB8fX2gb7OPHj7NmzRr27dtHqVKlGDVqFCtXrmTIkCF3jSEwMBC9Xs+mTZvYtWsXQ4YMUQutnjhxgt27d3Pjxg2aNGnCyJEjiYmJYcOGDcTGxpKVlYWzs7NJzBkZGcTExLB3714CAgKIj48v8hojRozAyspKTcr4+fnRpUsXevXqBeQ+xMybN4/WrVszZcoUpk6dypw5cwAoXbo0kZGRfPXVV7z66qtERUVRpUoVGjZsyLhx46hateqD/aMIIUrc7t27C2zLS+xCbnI1z/z589W/+/j4cOLECRRFYfTo0bi6ugK5SZdvv/22wJje3t6ULVuWfv36MW3aNFasWEHz5s2ZM2eOycywN954A8hdhjhmzBjee+892rRpQ3R0NI0aNeLQoUOMGjWKXbt2ERgYSNWqVTl69CjXrl2jUqVKvPPOO+pYBoOBc+fO0aRJExo2bEhGRgaHDh3ipZdeIjQ0FA8PD1xdXfnggw/o1KkTq1at4tq1a7i5uREdHc26deuIjIxU3/f777+Pv7+/em+8evUqlStXxmg00rx5c2bMmMGECRN44YUXCrz/119/nYULFxZ4D97e3mzdupVu3bqxevVqevToIUkVIR4TSaw84+TBS4iS8TiSmnmdvWxrVii0OLV4dIorzpgnPDxcPcbBwcGkO02e33//naioKPUb2ps3b1K9evV7iiE8PFztFuHr60tKSgqpqakAdO7cmTJlylCmTBmqV69OUlIS+/bt49VXX6Vs2bKULVuWrl27mozXv39/ILdGSWpqKteuXSv2GkUprNtP/m9c/fz8AHB0dMTe3p5atWoB0KBBA86fP//UJFY0Gg0DBw5kxYoVQG59h1q1auHu7m7yjfrjZjAYaNq0KU2aNFG3RUREsGrVKvWhbuHChZQvX77YBF5MTAwXLlygU6dOjyNs8ZxbvHgxy5Yt4/bt2+j1ejUhcjdarRaDwUBISMg9/bealpbG/v37Te5Jt27dYsuWLVy4cIE6deqwePFitQjtnRo2bKgmsNesWcPrr7/OL7/8YnLMvRbc3blzp8nsurwZe6VLl6ZLly5AbvHaHTt23NN7gNyZNZ999hndunVj6dKlLF68+K4/EyHEwyGJlWecPHgJUTIeV1JTOns9fnnFGY8ePYpGoyEnJ0ddCnK/FEXB39+fTz/99KHGeL8FIiE3UVDc6zxGo8LV9Nuk3EonMTntvv+bzovNzMzMJE4zM7OnqjuOpaUl8fHx3Lx5k3LlyrFjxw5q1659X2NkZ2djYfHwP4rlf/grzIgRI+46Rl5rWEmsiMdh3LhxjBs37oHO9fPz47333iM0NJSUlJRijzUajVSqVKnQ349r165x6NAhtm7diouLC1FRUcUmev38/Bg2bFiB7XkFd/MnNwEOHTp0T++nVKlS6v23sPt3ce/By8sLg8FAaGgoOTk591RMXQjxcEjx2udA3oNX8wZVaWBtJUkVIR6DvKTmsgA35vbXsyzA7b7bIIsn070WZ/Ty8mLt2rUAJCQkcPTo0QJjtWnThvXr13Pp0iUgN2lzt6KKeVq2bMnKlSuB3Jod1apVK3TKeP54fvrpJzIzM0lLSyswqyKvYGR4eDgVK1akYsWKhV5j//kMtiRc4cdDf6pFma2srLhx4wYAFStWvGu3n2dFp06d2Lp1K5A7iylv1g/kzhLx8PBAr9fj6enJyZMngdy6D35+fvj6+tKmTRvS0tIYNmwYjo6OaLVadYaQldX/kqXr169n6NChAKxbtw4HBwd0Oh2tWrV6oLjzdxfx9vbm/fffx83NjcaNGxMWFsbt27eZMmUKa9aswcnJyaSYqHh+POrOdg9LQEAAgYGBODo63vXYF154gfr167Nu3TogNwkSGxsL5NYtcXd3Z9q0aVhbW6u1oYoSHh5Ow4YNC2wvquBuhQoV1PskQLt27fj666/V11evXr1r/Hd7DwBDhgxhwIABhSZ9hBCPjiRWhBDiEZGk5rMpJCSE7t27m2zLK86Y36hRo0hOTsbOzo6PPvoIe3t7KlasaHKMnZ0d06dPp3379mi1Wtq1a8fFixcLvW7nzp2pU6cOderUoXfv3gQFBREVFYVWq2XixIksW7as2LibNWuGn58fWq2WV155BUdHR5N4ypYti16vZ8SIESxZsgSgwDVmfPkNn247ToXGzbmasI+oOa8x8es1tOr4KrNmzUKv13P69Om7dvt5VvTr14/Vq1eTmZlJXFwc7u7u6j5bW1vCwsKIjo5m2rRpfPDBB+q+I0eOsH79evbs2cPHH39MxYoVOXr0KHFxcfj6+hZ7zWnTpvHrr78SGxvLli1bCj3m9OnTODk54eTkxOjRo+/6PrKzs4mIiGDOnDlMnTqV0qVLM23aNPr27UtMTEyRRUfFs+txdLZ7WOrUqWNSx+VuVq5cyZIlS9DpdNjb27N582YAxo8fj6OjIw4ODnh6eqLT6Qqcm/e7pdPp+OCDD/juu+8KHDN58mSysrLQarXY29szefJkILeOTEJCgpqs/Oijj7h69aqaKC2sPs39vgeAgQMHcvXqVZNErxDi0dPkZVOfdq6urkpkZGRJhyGEEEIAkJOTQ1ZWFmXLluX06dO0bduWkydPqu0/S0JaWhpWVlZkZGTQqlUrFi1ahLOz8z2ffzAxhbEh0QW2z+2vp3mDp6M2ysNiZWVFWloarq6ujB49mlOnTtG+fXtmz57Nzz//zPnz5xk7diynTp1Co9GQlZXFiRMnCA4OZs+ePSxduhTIraGwevVqGjVqVOj4kDtj5eeffyY4OJgRI0Zw+vRp+vTpQ48ePQosVTAYDHTp0oX4+HiT7cHBwWqNlaCgILX4sLe3NzNmzMDLy4ukpCS8vLz4888/TY4Xz5/E5DT8v48oUCdsWYCbLD19wq1fv57NmzezfPnykg5FCBMajSZKURTXko7jUZEaK0IIIcQjkJGRgY+PD1lZWSiKwoIFC0o0qQK5nSQSEhLIzMzE39//vpIqIJ3mClNUfYfJkyfj4+PDxo0bMRgMJt1QLC3vXpcmf42bzMxM9e8LFy68rzoQ9yKv1s291uMRz77H0dlOPHxjxoxh+/btbNu2raRDEeK5I4kVIYQQ4hGoUKECT9pMylWrVv2r86XTXEEBAQFUqlQJR0dHQkND1e3Xr19Xi9kGBwcXeX5enYU7W67WqFGD48eP06RJEzZu3EiFChWA/9WBcHd3Z/v27Y+sk9Kd9SDE80WSqE+nefPmlXQIQjy3pMaKEEKI59rTUqDxSSBFmQsqqr7DhAkTmDRpEnq9vthZIEXVWZg5cyZdunTB09NTbUkN91YH4mG4sx6EeL7kJVHLWOQ+KjzKJKrcg4UQzwKpsSKEEOK5lVeg8c4ZGM97skAIIYxGBUNKOpdu3KJ6hTLYVLV86PdFuQcL8fx41musyIwVIYQQzy1DSrr6gR5yawh8uu04hpT0Eo5MCPEsMTc3Vzs1OTk5MXPmTCC33XXeF4Pr1q2jadOm+Pj4FDj/woUL9OrV656vFxwczIULF9TXNjY2XL58+b5izutsV9PsBvYvWePsrFfj/+GHH+5rrKLIPVgI8ayQGitCCCGeW1KgUQjxOJQrV46YmJhij1myZAmLFy+mRYsWJtuzs7N58cUXWb9+/T1fLzg4GAcHB1588cUHivdODRs2vGv8D6Kwe3DmrSy5BwshnjoyY0UIIcRzK69AY35SoPH5IzUeREmbNm0a4eHh/Oc//2H8+PEEBwfj5+eHr68vbdq0wWAw4ODgAOS2cn/vvfdwcHBAq9UWKFi6fv16IiMjGThwIE5OTty8eRPILWzq7OyMo6MjJ06cACA9PZ2AgADc3NzQ6/Vs3rz5vuIeOXIkrq6u2NvbExgYqG7ftm0btra2uLi4MHbsWLp06VLo9WLDd1DGwozLR37l1IrJnFgynj+CJ8g9WAjx1JHEihD55E3V1el0ODs7s3///mKPv3btGgsWLFBfh4aGqh8e7jR8+HASEhKAoqfkBgUFMXv27HuONzg4GGtra5ycnLC3t6dXr15kZGTc8/n34n6nD4eGht715ybEk+JxFmgUT6a8Gg/+30cwNiQa/+8j+OXYP5JcEQ/VzZs3TZYC3VkQeMqUKbi6urJy5UpmzZoFwJEjR1i/fj179uwxOXbRokUYDAZiYmKIi4tj4MCBJvt79eqljhUTE0O5cuUAqFatGkeOHGHkyJHqZ40ZM2bg6+tLREQEu3fvZvz48aSnF1yGc/r0aZP4w8LC1PMjIyOJi4tjz549xMXFkZmZyRtvvMH27duJiooiOTlZHefO630+fQrjvOthYaYh/cKf2A0OJGTzL3IPFkI8dWQpkBD55J+q++uvvzJp0qQCH2jyy0usjBo16q5jf/fddw8tzvz69u3L/PnzARgwYABr1qxh2LBhj+Ra9yI0NBQrKys8PT1LLAYh7lVelxvbmhUeaYFG8eQqqsaDbc0KshRBPDT3shToTu3ataNKlSoFtu/cuZMRI0ZgYZH7Mb6wYwrTo0cPAFxcXPjxxx8B+O2339iyZYuaaMnMzOTcuXM0bdrU5NyilgKtXbuWRYsWkZ2dzcWLF0lISMBoNNKgQQPq168PQP/+/Vm0aFGR12tidYvhrRqwV2nH3Dfbyj1YCPFUkhkrQhQhNTWVypUrA5CWlkabNm3UKbR5U2UnTpyofoszfvx49dhevXpha2vLwIEDyeu8lb9AXX4zZsygcePGtGjRgpMnT6rbFy9eTLNmzdDpdPTs2fOuM1Gys7NJT09XY/7pp59wd3dHr9fTtm1bkpKSAEhOTqZdu3bY29szfPhw6tWrx+XLl0lPT6dz587odDocHBxMvk0rbPrwlStX6NatG1qtlubNmxMXF4fBYGDhwoV8+eWXJt9oCfEkyyvQ2LxBVRpYW8kH+udMcXV2hChJlpYPd9ZGmTK5y2vMzc3VFuCKorBhwwZiYmKIiYkpNKlSlDNnzjB79mx+//134uLi6Ny5M5mZmcWeU9j17O3tqF6hLDY1q8g9WAjx1JLEihD55E3VtbW1Zfjw4UyePBmAsmXLsnHjRo4cOcLu3bt59913URSFmTNnqt/i5E3djY6OZs6cOSQkJJCYmMi+ffuKvF5UVBSrV68mJiaGbdu2cfjwYXVfjx49OHz4MLGxsTRt2pQlS5YUOsaaNWtwcnKidu3aXLlyha5duwLQokULDh48SHR0NP369eOzzz4DYOrUqfj6+nLs2DF69erFuXPnAPjll1948cUXiY2NJT4+no4dO6rXKGz6cGBgIHq9nri4OD755BOGDBmCjY0NI0aMYNy4ccTExNCyZcsH/acQQojHQursiKdNu3bt+Pbbb9XkyJUrVwocU6FCBW7cuHHXsTp06MC8efPUL4Gio6PvOY7U1FQsLS2pWLEiSUlJbN++HYAmTZqQmJiIwWAAMPmi5t9cTwghnmRPXGJFo9EEaTSavzUaTcz//+lU0jGJ50feVN0TJ07wyy+/MGTIEBRFQVEUPvjgA7RaLW3btuXvv/9WZ4Dcyc3NjTp16mBmZoaTk5P6waIwYWFhdO/enfLly/PCCy/g5+en7ouPj6dly5Y4OjqycuVKjh07VugYffv2JSYmhn/++QdHR0c1wfPXX3/RoUMHdVve+eHh4fTr1w+Ajh07qjNcHB0d2bFjB++//z5hYWFUrFhRvUb+6cN57yc8PJzBgwcD4OvrS0pKCqmpqXf7EQshxBNF6uyIx+HOGisTJ0584LGGDx/OSy+9hFarRafTsWrVqgLHDB06lBEjRpgUry3M5MmTycrKQqvVYm9vr36hdKc7a6zMnTsXnU6HXq/H1taWAQMG4OXlBeR+llqwYAEdO3bExcWFChUqqJ8p7vV6QgjxtHlSa6x8qSjKvVfwFOIR8PDw4PLlyyQnJ7Nt2zaSk5OJioqiVKlS2NjYFDndNW+qLZhOt71fQ4cOZdOmTeh0OoKDgwkNDS32eI1GQ9euXZk3bx4TJ05kzJgxvPPOO/j5+REaGkpQUFCx5zdu3JgjR46wbds2PvroI9q0acOUKVNM3tO/eT9CCPEkkjo74nHIyckpdHv+/7fn//vQoUMZOnSo+trGxob4+HgALCws+OKLL/jiiy+KvF7Pnj3p2bOn+jr/lzyurq7qtcqVK8e3335bbOw2NjZFJmeCg4ML3e7j48OJEydQFIXRo0fj6upa7PXufL9CCPG0eeJmrAjxpDhx4gQ5OTlUrVqV69evU716dUqVKsXu3bs5e/YscO9TbYvSqlUrNm3axM2bN7lx4wY//fSTuu/GjRvUqlWLrKwsVq5ceU/jhYeH07BhQwCuX79O7dq1AVi2bJl6jJeXF2vXrgVyi8hdvXoVgAsXLlC+fHkGDRrE+PHjOXLkSLHXatmypRpXaGgo1apV44UXXvjXPxMhhHjcpM6OEA/X4sWL1Y6F169f54033ijpkIQQ4pF6UmesvKnRaIYAkcC7iqJcLewgjUbzOvA6wEsvvfQYwxPPqrypupBbYG3ZsmWYm5szcOBAunbtiqOjI66urtja2gJQtWpVvLy8cHBw4JVXXqFz5873dT1nZ2f69u2LTqejevXqNGvWTN338ccf4+7ujrW1Ne7u7kUmK9asWUN4eDhGo5E6deqo3x4FBQXRu3dvKleujK+vL2fOnAFya6P079+f5cuX4+HhQc2aNalQoQKhoaGMHz8eMzMzSpUqxTfffFNs7EFBQQQEBKDVailfvryavOnatSu9evVi8+bNzJs3T+qsCCGEEM+ZcePGMW7cuJIOQwghHhtNXvGox3pRjWYnULOQXR8CB4HLgAJ8DNRSFCXgbmO6uroqhXVcEUKYunXrFubm5lhYWHDgwAFGjhx53y0ghRBCiOeR0ahgSEmXZWNCCHGfNBpNlKIoriUdx6NSIjNWFEVpey/HaTSaxcDPjzgcIZ4r586do0+fPhiNRkqXLs3ixYtLOiQhhBDiiWc0Kvxy7B8+3XacW9lGtdBxR/uaklwRQojn3BO3FEij0dRSFOXi/7/sDsSXZDxCPGsaNWok7Q2FEEKI+2RISVeTKgC3so18uu04tjUr0MDaqoSjE0IIUZKeuMQK8JlGo3EidymQAZBqV+K+yVRdIYQQQjxMl27cUpMqeW5lG7l045YkVoQQ4jn3xCVWFEUZXNIxiKebTNUVQgghxMNWvUIZyliYmSRXyliYUb1CmRKMSgghxJNA2i2LZ05RU3UNKeklHJkQQgghnlY2VS2Z1KkpZSxyPz7nfXFjU9WyhCMTQghR0iSxIp45xU3VfVAajYZBgwapr7Ozs7G2tqZLly4AbNmyhZkzZz7w+MUJDg7mzTffvK9zIiIi8Pb2plGjRjg7O9O5c2eOHj36WK59N97e3kgHLyGEEE8bMzMNHe1rsizAjbn99SwLcJPZsEIIIYAncCmQEP/Wo5iqa2lpSXx8PDdv3qRcuXLs2LGD2rVrq/v9/Pzw8/MrcF52djYWFo/31ywpKYk+ffqwatUqPD09AQgPD+f06dM4Ojo+1liEEEKIZ4mZmYYG1lZSU0UIIYQJmbEinjmPaqpup06d2Lp1KwAhISH0799f3Zd/ZsfQoUMZMWIE7u7uTJgwgYiICDw8PNDr9Xh6enLy5En1nB49etCxY0caNWrEhAkT1PGWLl1K48aNcXNzY9++fer2n376CXd3d/R6PW3btiUpKalAnPPnz8ff319NqgC0aNGCbt26AWAwGPD19UWr1dKmTRvOnTsHwLp163BwcECn09GqVSv13AsXLhQa48iRI3F1dcXe3p7AwEAADh8+TI8ePQDYvHkz5cqV4/bt22RmZtKgQQOTOI1GI0OHDuWjjz66538DIYQQQgghhHjSyIwV8czJm6prW7PCQ+0K1K9fP6ZNm0aXLl2Ii4sjICCAsLCwQo/966+/2L9/P+bm5qSmphIWFoaFhQU7d+7kgw8+YMOGDQDExMQQHR1NmTJlaNKkCWPGjMHCwoLAwECioqKoWLEiPj4+6PV6IDdBcvDgQTQaDd999x2fffYZn3/+ucm1jx07hr+/f5HvY8yYMfj7++Pv78/333/P2LFj2bRpE9OmTePXX3+ldu3aXLt2TT2+sBjr1q3LjBkzqFKlCjk5ObRp04a4uDj0ej0xMTEAhIWF4eDgwOHDh8nOzsbd3V0dMzs7m4EDB+Lg4MCHH374YP8gQgghhBBCCPEEkMSKeCY9iqm6Wq0Wg8FASEgInTp1KvbY3r17Y25uDsD169fx9/fn1KlTaDQasrKy1OPatGlDxYoVAbCzs+Ps2bNcvnwZb29vrK2tAejbty9//PEHkJuw6du3LxcvXuT27dvUr1//rnG7u7uTmppK+/bt+eqrrzhw4AA//vgjAIMHD1ZnoXh5eTF06FD69OmjzjopKsa6deuydu1aFi1aRHZ2NhcvXiQhIQGtVkvDhg05fvw4ERERvPPOO+zdu5ecnBxatmypjvnGG2/Qp08fSaoIIYQQQgghnnqyFEiI++Dn58d7771nsgyoMJaW/1t2NHnyZHx8fIiPj+enn34iMzNT3VemzP/qvpibm5OdnV3suGPGjOHNN9/k6NGjfPvttyZj5bG3t+fIkSPq60OHDvHxxx9z/fr1YsdeuHAh06dP5/z587i4uJCSklJkjGfOnGH27Nn8/vvvxMXF0blzZzWWVq1asX37dkqVKkXbtm0JDw8nPDzcJLHi6enJ7t27C41fCCGEEEIIIZ4mklgR4j4EBAQQGBh4X0Vgr1+/rha6DQ4Ovuvx7u7u7Nmzh5SUFLKysli3bl2hYy1btqzQ80ePHk1wcDD79+9Xt2VkZKh/9/T0ZPXq1QCsXLlSTXicPn0ad3d3pk2bhrW1NefPny8yxtTUVCwtLalYsSJJSUls375d3deyZUvmzJmDh4cH1tbWpKSkcPLkSRwcHNRj/vOf/9CpUyf69Olz12SSEEIIIYQQQjzJJLEixH2oU6cOY8eOva9zJkyYwKRJk9Dr9feURKhVqxZBQUF4eHjg5eVF06ZN1X1BQUH07t0bFxcXqlWrVuj5NWvWZM2aNUyaNImXX34ZT09P1q9frxbXnTdvHkuXLkWr1bJ8+XK++uorAMaPH4+joyMODg54enqi0+mKjFGn06HX67G1tWXAgAF4eXmp+9zd3UlKSlIL4Gq1WhwdHdFoTGvcvPPOO+j1egYPHozRaNoeWwjx+CUlJTFgwAAaNGiAi4sLHh4ebNy4saTDKtScOXNMEsZWVg++7DMjI4OBAweq978WLVqQlpb2MMIUQgghxHNCoyhKScfwULi6uiqRkZElHYYQQgjx1FEUBU9PT/z9/RkxYgQAZ8+eZcuWLYwZM8bk2EfZRj4nJ0etT1UcGxsbIiMj1QSzlZXVAydDPv30U5KTk/niiy8AOHnyJDY2NibLIP+tR/kzE0IIIZ4GGo0mSlEU15KO41GRGStCCCHEc27Xrl2ULl1aTaoA1KtXT02qBAcH4+fnh6+vL23atCE9PZ2AgADc3NzQ6/Vs3rwZyJ390adPH+zs7OjevTvu7u7kfekREhKizgp5//331etYWVnx7rvvotPpmDFjhtoaHmDHjh10797dJNa5c+dy4cIFfHx88PHxUbd/+OGH6HQ6mjdvrraiT05OpmfPnjRr1oxmzZqZtK/Pc/HiRXWJJUCTJk0oU6YMBoMBW1tbhg4dSuPGjRk4cCA7d+7Ey8uLRo0aERERAUBERAQeHh7o9Xo8PT05efJkoT+z4OBgunXrRrt27bCxsWH+/Pl88cUX6PV6mjdvzpUrVzh9+jTOzs5qLKdOnTJ5LYQQQognlKIoz8QfFxcXRQghhBD376uvvlLefvvtIvcvXbpUqV27tpKSkqIoiqJMmjRJWb58uaIoinL16lWlUaNGSlpamjJr1izl9ddfVxRFUY4ePaqYm5srhw8fVv7++2+lbt26yqVLl5SsrCzFx8dH2bhxo6IoigIoa9asURRFUYxGo9KkSRPl0qVLiqIoSv/+/ZUtW7YUiKdevXpKcnKy+hpQjxs/frzy8ccfq+eHhYUpiqIoZ8+eVWxtbQuMFR0drVhbWyvNmzdXPvzwQ+WPP/5QFEVRzpw5o5ibmytxcXFKTk6O4uzsrAwbNkwxGo3Kpk2blFdffVVRFEW5fv26kpWVpSiKouzYsUPp0aNHoT+zpUuXKg0bNlRSU1OVS5cuKS+88ILyzTffKIqiKG+//bby5ZdfKoqiKN7e3kp0dLT6c547d26R/y5CCCHE0wKIVJ6AvMGj+iPzUsVzxWhUMKSkc+nGLapXKINNVUvMzDR3P1EIIZ4jo0ePJjw8nNKlS3P48GEA2rVrR5UqVQD47bff2LJlC7NnzwYgMzOTc+fOER4ezltvvQWAg4MDWq0WgMOHD5u0kR84cCB79+6lW7dumJub07NnTwA0Gg2DBw9mxYoVDBs2jAMHDvDDDz/cNd7SpUvTpUsXAFxcXNixYwcAO3fuJCEhQT0uNTWVtLQ0k5osTk5OJCYm8ttvv7Fz506aNWvGgQMHKFeuHPXr11eLldvb29OmTRs0Gg2Ojo4YDAYgt6i4v78/p06dQqPRkJWVpY6d/2cG4OPjQ4UKFahQoQIVK1aka9euADg6OhIXFwfA8OHDWbp0KV988QVr1qxRZ8YIIYQQ4skliRXx3DAaFX459g+fbjvOrWwjZSzMmNSpKR3ta0pyRQjxXLO3t2fDhg3q66+//prLly/j6vq/pdD528grisKGDRto0qTJv7522bJlTeqqDBs2jK5du1K2bFl69+59T7VJSpUqpRbIzt+63mg0cvDgQcqWLVvs+VZWVvTo0YMePXpgZmbGtm3b6Nmzp0mdFTMzM/W1mZmZeo3Jkyfj4+PDxo0b9RNiDwAAIABJREFUMRgMeHt7q+fk/5kB9zRez549mTp1Kr6+vri4uFC1atW7vn8hhBBClCypsSKeG4aUdDWpAnAr28in245jSEkv4ciEEKJk+fr6kpmZyTfffKNuy991504dOnRg3rx5KP9fAD86OhoALy8v1q5dC0BCQgJHjx4FwM3NjT179nD58mVycnIICQmhdevWhY794osv8uKLLzJ9+nSGDRtW6DEVKlTgxo0bd31f7du3Z968eerrmJiYAsfs27ePq1evAnD79m0SEhKoV6/eXcfOc/36dbVGS3Bw8D2fV5SyZcvSoUMHRo4cWeT7F0IIIcSTRRIr4rlx6cYtNamS51a2kUs3bpVQREII8WTQaDRs2rSJPXv2UL9+fdzc3PD39+e///1vocdPnjyZrKwstFot9vb2TJ48GYBRo0aRnJyMnZ0dH330Efb29lSsWJFatWoxc+ZMfHx80Ol0uLi48OqrrxYZz8CBA6lbt65Ju/n8Xn/9dTp27GhSvLYwc+fOJTIyEq1Wi52dHQsXLixwzOnTp2ndujWOjo7o9XpcXV3VpUn3YsKECUyaNAm9Xq/OOvm3Bg4ciJmZGe3bt38o4wkhhBDi0ZJ2y+K5kZichv/3ESbJlTIWZiwLcKOBtVUxZwohhLgXOTk5ZGVlUbZsWU6fPk3btm05efIkpUuXvq9x3nzzTfR6Pf/5z38eUaRPttmzZ3P9+nU+/vjjkg5FCCGEeCie9XbLUmNFPDdsqloyqVPTAjVWbKpa3v1kIYQQd5WRkYGPjw9ZWVkoisKCBQvuO6ni4uKCpaUln3/++SOK8snWvXt3Tp8+za5du0o6FCGEEELcI5mxIp4r0hVICCGEEEIIIR4vmbEixDPEzExDA2srWfojhHimSRJZCCGEEOLxkcSKEEII8QyR1vJCCCGEEI+XdAUSQgghniHSWl4IIYQQ4vGSxIoQQgjxDJHW8kIIIYQQj5ckVoQQQohnSPUKZShjYfq/9zIWZlSvUKaEIhJCCCGEeLZJYkUIIYR4huS1ls9LrkhreSGEEEKIR0uK1wohhBDPEDMzDR3ta2Jbs4J0BRJCCCGEeAwksSKEEEI8Y6S1vBBCCCHE4yNLgYQQQgghhBBCCCEekCRWhBBCCCGEEEIIIR6QJFaEEEIIIYQQQgghHpAkVoQQQgghhBBCCCEekCRWhBBCCCGEEEIIIR6QJFaEEEIIIYQQQgghHpAkVoQQQgghhBBCCCEekCRWhBBCCCGEEEIIIR6QJFaEEEIIIYQQQgghHpAkVoQQQgghhBBCCCEekCRWhBBCCCGEEEIIIR6QJFaEEEIIIYQQQgghHpAkVoQQQgghhBBCCCEekCRWhBBCCCGEEEIIIR6QJFaEEEIIIYQQQgghHpAkVoQQQgghhBBCCCEekCRWhBBCCCGEEEIIIR6QJFaEEEIIIYQQQgghHpAkVoQQQgghhBBCCCEekCRWhBBCCCGeEhqNhkGDBqmvs7Ozsba2pkuXLo81jqFDh1K+fHlu3Lihbnv77bfRaDRcvnz5vscLDg7G2toavV5Po0aN6NChA/v373+YId+Vt7c3kZGRj/WaQgghng2SWBFCCCGEeEpYWloSHx/PzZs3AdixYwe1a9e+rzGys7MfSiwvv/wymzdvBsBoNLJr1677jiW/vn37Eh0dzalTp5g4cSI9evTg+PHjDyVWIYQQ4lGSxIoQQgghxFOkU6dObN26FYCQkBD69++v7rty5QrdunVDq9XSvHlz4uLiAAgKCmLw4MF4eXkxePBgDAYDLVu2xNnZGWdnZ3V2iNFoZNSoUdja2tKuXTs6derE+vXrC42jX79+rFmzBoDQ0FC8vLywsLBQ93fr1g0XFxfs7e1ZtGiRuv2XX37B2dkZnU5HmzZtCh3bx8eH119/XT0vJiaG5s2bo9Vq6d69O1evXgVMZ5lcvnwZGxsbADIyMujTpw92dnZ0794dd3d39biRI0fi6uqKvb09gYGB9/GTF0IIIQoniRUhhBBCiKdIv379WL16NZmZmcTFxeHu7q7uCwwMRK/XExcXxyeffMKQIUPUfQkJCezcuZOQkBCqV6/Ojh07OHLkCGvWrGHs2LEA/PjjjxgMBhISEli+fDkHDhwoMo7GjRuTnJzM1atXCQkJoV+/fib7v//+e6KiooiMjGTu3LmkpKSQnJzMa6+9xoYNG4iNjWXdunVFju/s7MyJEycAGDJkCP/973+Ji4vD0dGRqVOnFvszWrBgAZUrVyYhIYGPP/6YqKgodd+MGTOIjIwkLi6OPXv2qMknIcTTw9zcHCcnJxwcHOjduzcZGRn3fK6Njc0DLVksjsFgoFy5cjg5OWFnZ8eIESMwGo1FHr9p0yYSEhLU11OmTGHnzp2ALEt8WkliRQghhBDiKaLVajEYDISEhNCpUyeTfeHh4QwePBgAX19fUlJSSE1NBcDPz49y5coBkJWVxWuvvYajoyO9e/dWP+CHh4fTu3dvzMzMqFmzJj4+PsXG0qNHD1avXs2hQ4do2bKlyb65c+ei0+lo3rw558+f59SpUxw8eJBWrVpRv359AKpUqVLk2IqiAHD9+nWuXbtG69atAfD392fv3r3FxhUeHq4mehwcHNBqteq+tWvX4uzsjF6v59ixYyYPN0KIp0O5cuWIiYkhPj6e0qVLs3DhwpIOiYYNGxITE0NcXBwJCQls2rSpyGPvTKxMmzaNtm3bPo4wxSMiiRUhhBBCiKeMn58f7733nskyoLuxtLRU//7ll19So0YNYmNjiYyM5Pbt2w8UR9++fZk8eTLt2rXDzOx/HytDQ0PZuXMnBw4cIDY2Fr1eT2Zm5n2NHR0dTdOmTYs9xsLCQv1W+F7GP3PmDLNnz+b3338nLi6Ozp0733dcQognS8uWLfnzzz/56aefcHd3R6/X07ZtW5KSkgBISUmhffv22NvbM3z4cDVpazAYsLW1ZejQoTRu3JiBAweyc+dOvLy8aNSoEREREQBERETg4eGBXq/H09OTkydPFhuPhYUFnp6e/PnnnyxevJhmzZqh0+no2bMnGRkZ7N+/ny1btjB+/HicnJw4ffo0Q4cOLXLZpXg6SGJFCCGEEOIpExAQQGBgII6OjibbW7ZsycqVK4Hc5Ea1atV44YUXCpx//fp1atWqhZmZGcuXLycnJwcALy8vNmzYgNFoJCkpidDQ0GLjqFevHjNmzGDUqFEFxq9cuTLly5fnxIkTHDx4EIDmzZuzd+9ezpw5A+TWhCnMnj17WLRoEa+99hoVK1akcuXKhIWFAbB8+XJ19oqNjY26zCf/Q4mXlxdr164FcpdAHT16FIDU1FQsLS2pWLEiSUlJbN++vdj3J4R4smVnZ7N9+3YcHR1p0aIFBw8eJDo6mn79+vHZZ58BMHXqVFq0aMGxY8fo3r07586dU8//888/effddzlx4gQnTpxg1apVhIeHM3v2bD755BMAbG1tCQsLI/r/2rv/+J7r/f/jt8d7bHPmx7BpiFBkm81bZko5ib5+9EOHopySRSSpjlCfTvomOZ1P6HJO+EQr0Q+VYqfkVJ9QhzqJoTdG5MdZqQjz42s2bPb8/rF5Z9n8eNu8jfv1ctnF+/V8vV7P1+P99rq8vPfweD6f33zDmDFj+POf/3zCmHJycli4cCEJCQn07NmT9PR0Vq1aRWxsLNOmTaNdu3Z0796d8ePH4/P5uPTSS8vvA5KzptLJDxERERGRc8nFF1/snxflWKNHj6Z///4kJibyu9/9jtdee63E84cMGcKtt97K66+/TteuXf3VLLfeeisLFy4kLi6OBg0acMUVV1CjRo0TxnLfffcd19a1a1emTp1KbGwsl19+OVdeeSUA0dHRpKam0rNnTwoKCvxzvQDMmjWLL7/8kpycHBo3bsycOXP8FSuvvfYagwcPJicnhyZNmjB9+nQARowYQe/evUlNTeXGG28s9v769etHXFwczZs3Jz4+nho1atC0aVNatWpF8+bNadCgAVdfffXJPmoROQfl5ubi9XqBwoTygAED2LBhA7fffjvbtm3j8OHD/iGHixcvJi0tDYAbb7yRmjVr+vtp3LixP0EdHx9Pp06dMDMSEhLIzMwEChPF/fr1Y+PGjZgZeXl5Jca0efNmvF4vZsYtt9xCt27dWLRoEaNGjWLv3r1kZ2fTpUuX8vpIJMiUWBERERGpILKzs49r69ChAx06dAAK5ywpaVz/6NGji203bdq02KStzz33HAAej4cJEyZQtWpVsrKySE5OPq4qBmDGjBklxnf0FxGg1GqQbt260a1bt2JtKSkppKSklHg8gNfr9Ve9HKt58+bF3sfYsWMBCA8P58033yQ8PJzNmzdz/fXXc8kll5ww9pNV54jIuePoHCvHevDBB3nkkUfo3r07//rXv4577pUkLCzM/9rj8fi3PR6Pf2n6J598kuuuu45//OMfZGZm+p+3v3V0jpVjpaSk8P7779OyZUtmzJih58x5TIkVEREREfG76aab2Lt3L4cPH+bJJ58kJiYm2CGdtpycHK677jry8vJwzvHiiy8SGhoa7LBEpBzt27eP+vXrAxSr1vv973/PW2+9xahRo/j444/9y7UH0m9pidnS7N+/n7p165KXl8fMmTP9/VSrVo39+/efVl9yblNiRURERET8zof/Ua1WrZqWKxW5wIwePZpevXpRs2ZNOnbs6J/L6amnnqJPnz7Ex8fTrl07GjZseFr9Pvroo/Tr14+xY8cWG3J4Kp555hnatm1LdHQ0bdu29SdT7rjjDgYOHMjEiRM1ae15wo7OilzRJSUlOf0DKiIiIiIiInJuMbMVzrmkYMdRXlSxIiIiIhIEBQWOzKwD7Nh/iDrVwmhUOwKPx4IdloiIiJwmJVZEREREzrKCAscna7fz14++5VB+AWGVPDx+Qyxd42OUXBEREalgPMEOQERERORCk5l1wJ9UATiUX8BfP/qWzKwDQY5MROT8l5WVhdfrxev1EhMTQ/369fF6vURGRhIXF1cu16xatWq59GtmDB8+3L89YcKEk66I9P7777Nu3Tr/9owZM/j555/LJb4LhRIrIiIiImfZjv2H/EmVow7lF7Bj/6EgRSQiEhwFBY4tO7P5eksWW3ZmU1BQ/nOA1q5dG5/Ph8/nY/DgwQwbNsy/7fEE/1fko0s9n4qwsDDS0tLYtWvXKZ+jxErZC/5dIyIiInKBqVMtjLBKxb+GhVXyUKdaWJAiEhE5+44Oi+z36jIeevsb+r26jE/Wbj8ryZXSHDlyhIEDBxIfH0/nzp3Jzc0FYPPmzXTt2pXWrVvTvn171q9fD0BmZiYdO3YkMTGRTp068cMPPwDwn//8h6uuuoqEhARGjRrl7985x8iRI2nRogUJCQnMmjULKFyRrX379nTv3p24uDiOHDnCyJEjadOmDYmJibz00kslxlupUiUGDRrE3/72t+P2lRTbV199xdy5cxk5ciRer5fnnnuO5cuXc+edd+L1ev3vV06PEisiIiIiZ1mj2hE8fkOsP7lydI6VRrUjghyZiMjZcy4Oi9y4cSMPPPAAa9euJTIykjlz5gAwaNAgJk2axIoVK5gwYQJDhgwB4MEHH6Rfv36sXr2aO++8k4ceegiAhx9+mPvvv581a9ZQt25df/9paWn4fD5WrVrFggULGDlyJNu2bQNg5cqVvPDCC3z33XdMmzaNGjVqkJ6eTnp6Oi+//LJ/CenfeuCBB5g5cyb79u0r1l5SbO3ataN79+6MHz8en8/HY489RlJSEjNnzsTn81GlSpUy/0wvBJq8VkREROQs83iMrvExNI+pplWBROSCdaJhkU2iy2dOkpNp3LgxXq8XgNatW5OZmUl2djZfffUVvXr1+jXOQ4VDN5csWUJaWhoAffv25dFHHwXg3//+tz8p07dvXx577DEAvvzyS/r06UNISAgXXXQR1157Lenp6VSvXp3k5GQaN24MwKeffsrq1auZPXs2APv27WPjxo3+/ceqXr06d999NxMnTiyWGCktNil7SqyIiIiIBIHHYzSJrhq0Xx5ERILt6LDIY5MrwR4WGRb267VDQkLIzc2loKCAyMhIfD7fafVldnrJ8oiIX6sWnXNMmjSJLl26nNK5f/rTn7jiiiu45557TuuaUjY0FEhERERERETOyF/+8hfi4+NJTEzE6/WydOnSEx6fkpLC8s8/5vEbYtkwbQQHftpQ6rDIkJAQvF4vLVq0oFevXuTk5LBr1y4qV67M1KlTy/NtAdC9e3e2b99OaGgoERERtGvXjoULFwLQrl073nnnHQBmzpxJ+/btAbj66qt55513yMzM5LLLLvPPXdK+fXtmzZrF0qVLGThwIIsXLyY5Ofm4a3bp0oUpU6aQl5cHwHfffceBA6UPkapVqxa9e/dm2rRp/rbSYqtWrRr79+/3H/fbbTl9SqyIiIiIiIhIwJYsWcK8efNYuXIlq1evZsGCBTRo0OCk5x0dFhlbtxojOl/Oa/2T6Rofc9ywyCpVquDz+cjIyCA0NJSpU6fy3nvvceWVV/L222+X19sqJjo6mmuuuYZatWqxfPlynnjiCQAmTZrE9OnTSUxM5I033uCFF14A4IUXXmDy5Ml06dKl2Co/PXr0IDExkQEDBvD1118zbtw4YmJijrvevffeS1xcHFdccQUtWrTgvvvuO+lqQcOHDy+2OlBpsd1xxx2MHz+eVq1asXnzZlJSUhg8eLAmrz0DSqyIiIiIiIhIwLZt20ZUVJR/GE1UVBT16tUDYMyYMbRp04YWLVowaNAgnCu+4o/HY4RXDiHh4kj+9eG7PPLIMP++l19+mWHDhhU7vn379mzatInJkyeze/duvv76a6655hp++eUXAEJDQ2nZsiVVq1YlPDycsWPHAnDXXXfh8XiIiIggNDSUYcOG8dlnn/H++++zfPly2rRpQ0JCAnv27PFfa8SIEYwePRooXH3n3XffZf78+cTExFClShWqV69OkyZNWLp0KTk5OfTu3Zs//vGPeDwekpKSyMjI4PDhw0RFRREbG8uWLVuIj49n7ty5DB06lFq1avH8888TExNDz5492bFjB02aNGHixIl4PB6eeOIJGjZsSEhICDt37uSTTz4BYOHChbRq1YqEhAR69+7tn++lbdu2jBw5krlz55KQkEBubi6fffYZq1evZuHChTRs2BAorKZZt24d33zzDZdeeim33norGzZs0OS1Z0CJFREREREREQlY586d2bp1K82aNWPIkCEsWrTIv2/o0KGkp6eTkZFBbm4u8+bNK7Wf3r178+GHH/qHv0yfPp3+/fv79+fn5/Pxxx9Tv359Dh48SEZGBsOHD6devXqMGzcOgLy8PA4dOkRWVhYDBw7k2WefJS8vj59++gmA/fv34/P5+OCDD7juuuvIysoiNDSUZcuWERUVRZUqVVi8eHGpMX744YeEhYXRqlUrLrroIqKjo3nllVeoXr06U6dOZdu2bTjnyM3NZc2aNXz++ecAHD58mBtvvJGCggLeffddmjdvzvfff8/DDz/M4MGDadasGZ9++inLli3j6aefJi8vj08++YR69eqxatUqMjIy6Nq1KwcPHiQlJYVZs2axZs0a8vPzmTJlij++qKgoVq5cyf3338+ECRMC+NuUQCixIiIiIiIiIgGrWrUqK1asIDU1lejoaG6//XZmzJgBwOeff07btm1JSEjgs88+Y+3atSfsp2PHjsybN4/169eTl5fnr7zwer0kJSX5Kzg6duxIly5deO+995g7d66/35CQEO666y7CwsK45pprCA0N5ZdffqFmzZo453j88cfJyspi586dmBlmxuzZs0lMTOSHH34gOzubuXPn8oc//MEf1549e9i+fTsNGjRg7NixJCYm8vDDD7N161Z27dpF37598fl8/Pjjj1x++eWYGW3btqVRo0Y8++yzbN68mY0bN5KVlUVaWhqJiYlMmTKF7du3M2DAAObMmcNVV12Fz+fjtttuIy8vj+bNmzNjxgzmz5/PY489xhdffEGNGjXYsGEDjRs3plmzZgD069evWCKoZ8+ewK8rGsnZocSKiIiIiIiInJGQkBA6dOjA008/zeTJk5kzZw4HDx5kyJAhzJ49mzVr1jBw4EAOHjx4wn7uvfdeZsyYwfTp0/0r3ISEhPj3T5o0iffee4/XX3+dVatWkZeXR/6RI/ywfQdbdmbj8XgIDw/3n2dm5OfnU716dUJDQ0lISGDUqFEcPnwYgDp16hAWFsaQIUOIjY1l8uTJjB8/nvXr17Nz504Atm/fTmRkJFu3bmXfvn3MmTOH6dOn4/F4GD9+PLGxsXg8Hlq1asXdd9+NmREREUFaWhrr1q2jYcOGVKlShT179vDPf/6TtLQ0Nm3aRKdOnVi0aBEbN27k9ddfZ+XKlXzzzTfUrVuX+fPns2vXLl588UV/zGPGjDnp38PR4VghISEnnZNFyo4SKyIiIiIiIhKwDRs2sHHjRv+2z+fjkksu8SdRoqKiyM7OZvbs2Sftq23btmzdupW33nqLPn36AIXzpvh8Pnw+H9999x3Z2dnExcUxb94/efHDJYRFX8Lm73+m36vLcI7j5nEByMnJAQrnWhk5ciRHjhwBIDY2loMHDzJmzBguu+wyfzVL3759efPNN9m7dy/79u0rtgwzwL59+4iIiOCDDz6gdu3aHDlyhN27d1OjRg3/MV9++SXdu3encuXKNGrUiMjISP7+97/zyiuv0KlTJ3Jzc0lOTqZZs2bUrVuXLVu2kJycTOXKlfF4PDRt2pTt27f7Y165ciWXX345mZmZbNq0CYA33niDa6+99nT+uqQcVAp2ACIiIiIiIlJxZWdn8+CDD7J3714qVarEZZddRmpqKpGRkQwcOJAWLVoQExNDmzZtTqm/3r174/P5qFmz5nH73n77bXr06MFVV13Frbf1YveRylSJacKejMUcyi/giHPsPnD4uPP27NnD4cOH8Xq9VK5cmdDQUAAuvfRS4uPjWbduHYsWLWLdunVcf/313HPPPdx8882Eh4dTp06d46o/hgwZQmpqKqtXr6agoAAoTLYcTdj8lsfjoWPHjqSnp7NkyRKqVKnCzz//TIsWLdiyZQu1atWic+fOxYbv7N27l6eeeoqJEydSuXJlpkyZQnh4ONOnT6dXr17k5+fTpk0bBg8efEqfq5QfKymbVxElJSW55cuXBzsMEREREREROQM33XQTw4YNo1OnTic87ustWTz09jfHtU/s04orm9Q+rr1q1apkZ2cXaxs9ejTz58+nf//+fPHFF9x0003cdtttANx8882sXLmSBQsWEBsbe1x/HTp0YMKECbRu3Zrnn3+elJQUoqKi/NdJS0vjpZde4qOPPmL37t0kJSWxdOlSvvrqqxLb169fz4QJE/wT/A4dOpSkpCRSUlJO9aM7Z5nZCudcUrDjKC+qWBEREREREZGg27t3L8nJybRs2fKkSRWAOtXCCKvk4VB+gb8trJKHOtXCSjw+JyeHiy++2L/9yCOPkJqaSnh4OHfddRdffPFFsePvvPNOdu7cWWJS5VhmxogRI45r79GjB0uWLKFly5aYGePGjSMmJqbU9vXr15/0Pcu5SRUrIiIiIiIiUuEUFDg+Wbudv370LYfyCwir5OHxG2LpGh+Dx2Nn3P/QoUNp1aoVAwYMKINoL2yqWBEREREREZELQkGBIzPrADv2H6JOtTAa1Y4okyRFefTv8Rhd42NoHlOtzONt3bo1ERERPP/882fcl5z/lFgRERERERGRcq8AKY/+PR6jSXRVmkRXPeP4jrVixYoy7U/Ob1puWURERERERMjMOuBPegAcyi/grx99S2bWgXOq/4ICx5ad2Xy9JYstO7MpKDg/preQiksVKyIiIiIiIsKO/YeKTQQLhcmPHfsPlUlFSFn0X95VNSKBUMWKiIiIiIiI+FfZOdaJVtkJRv/lXVUjEgglVkRERERERIRGtSN4/IZYf/LjaDVIo9oR50z/J6p6EQkWDQUSERERERGRcl1lp6z6P1r1cmxypSyrakQCoYoVERERERERAX5dZefKJrVpEl21zOctOdP+y7uqRiQQqlgRERERERGRCqG8q2pEAqHEioiIiIiIiFQYR6teymKlIpGyoKFAIiIiIiIiIiIBUmJFRERERERERCRASqyIiIiIiIiIiARIiRURERERERERkQApsSIiIiIiIiIiEiAlVkREREREREREAqTEioiIiIiIiIhIgJRYEREREREREREJkBIrIiIiIiIiIiIBUmJFRERERERERCRASqyIiIiIiIiIiARIiRURERERERERkQAFLbFiZr3MbK2ZFZhZ0m/2PW5mm8xsg5l1CVaMIiIiIiIiIiInUimI184AegIvHdtoZnHAHUA8UA9YYGbNnHNHzn6IIiIiIiIiIiKlC1rFinPuW+fchhJ23QK845w75Jz7D7AJSD670YmIiIiIiIiInNy5OMdKfWDrMds/FrWJiIiIiIiIiJxTynUokJktAGJK2PWEc+6DMuh/EDAIoGHDhmfanYiIiIiIiIjIaSnXxIpz7voATvsJaHDM9sVFbSX1nwqkAiQlJbkAriUiIiIiIiIiErBzcSjQXOAOMwszs8ZAU2BZkGMSERERERERETmOORecQg8z6wFMAqKBvYDPOdelaN8TQH8gH/iTc+7jU+hvJ/B9+UUsF4AoYFewgxA5TbpvpaLSvSsVke5bqah070qwXeKciw52EOUlaIkVkXONmS13ziUFOw6R06H7Vioq3btSEem+lYpK965I+ToXhwKJiIiIiIiIiFQISqyIiIiIiIiIiARIiRWRX6UGOwCRAOi+lYpK965URLpvpaLSvStSjjTHioiIiIiIiIhIgFSxIiIiIiIiIiISICVWREREREREREQCpMSKXPDMrJeZrTWzAjNL+s2+x81sk5ltMLMuwYpR5ETMbLSZ/WRmvqJgqUUbAAAE80lEQVSfG4Idk0hpzKxr0TN1k5n9V7DjETlVZpZpZmuKnrPLgx2PSGnM7FUz22FmGce01TKz+Wa2sejPmsGMUeR8o8SKCGQAPYHFxzaaWRxwBxAPdAVeNLOQsx+eyCn5m3POW/TzUbCDESlJ0TP0f4BuQBzQp+hZK1JRXFf0nE06+aEiQTODwu+ux/ovYKFzrimwsGhbRMqIEitywXPOfeuc21DCrluAd5xzh5xz/wE2AclnNzoRkfNKMrDJObfFOXcYeIfCZ62IiJQR59xiYPdvmm8BXit6/Rrwh7MalMh5TokVkdLVB7Yes/1jUZvIuWioma0uKv9Vea+cq/RclYrMAZ+a2QozGxTsYERO00XOuW1Fr7cDFwUzGJHzTaVgByByNpjZAiCmhF1POOc+ONvxiJyuE93DwBTgGQq/9D8DPA/0P3vRiYhcEK5xzv1kZnWA+Wa2vqgyQKRCcc45M3PBjkPkfKLEilwQnHPXB3DaT0CDY7YvLmoTOetO9R42s5eBeeUcjkig9FyVCss591PRnzvM7B8UDm1TYkUqil/MrK5zbpuZ1QV2BDsgkfOJhgKJlG4ucIeZhZlZY6ApsCzIMYkcp+gL0lE9KJyQWeRclA40NbPGZhZK4QThc4Mck8hJmVmEmVU7+hrojJ61UrHMBfoVve4HqGJbpAypYkUueGbWA5gERAP/NDOfc66Lc26tmb0LrAPygQecc0eCGatIKcaZmZfCoUCZwH3BDUekZM65fDMbCvwvEAK86pxbG+SwRE7FRcA/zAwKvz+/5Zz7JLghiZTMzN4GOgBRZvYj8BTw38C7ZjYA+B7oHbwIRc4/5pyG14mIiIiIiIiIBEJDgUREREREREREAqTEioiIiIiIiIhIgJRYEREREREREREJkBIrIiIiIiIiIiIBUmJFREREypyZRZrZkGDHISIiIlLelFgRERGR8hAJKLEiIiIi5z0lVkRERKQ8/DdwqZn5zOxlM1tc9DrDzNoDmFm2mf3FzFaZ2ddmdlFRe7SZzTGz9KKfq0u7iJm9YGb/t+h1l6Lr6PuNiIiInDXmnAt2DCIiInKeMbNGwDznXAszGw6EO+f+YmYhwO+cc/vNzAHdnXMfmtk44P8558aa2VvAi865L82sIfC/zrnYUq7zOyAdGApMBW5wzm0+C29RREREBIBKwQ5AREREznvpwKtmVhl43znnK2o/DMwrer0C+D9Fr68H4szs6PnVzayqcy77tx0753LMbCCwGBimpIqIiIicbSqVFRERkXLlnFsM/B74CZhhZncX7cpzv5bOHuHX//DxAFc657xFP/VLSqocIwHIAuqVQ/giIiIiJ6TEioiIiJSH/UA1ADO7BPjFOfcy8ApwxUnO/RR48OiGmXlLO7Co7+FAK6CbmbU9w7hFRERETouGAomIiEiZc85lmdm/zSwDiAAOmFkekA3cfeKzeQj4HzNbTeF3lcXA4N8eZIVjhaYBI5xzP5vZAAorYto45w6W5fsRERERKY0mrxURERERERERCZCGAomIiIiIiIiIBEhDgUREROScZ2b3AA//pvnfzrkHghGPiIiIyFEaCiQiIiIiIiIiEiANBRIRERERERERCZASKyIiIiIiIiIiAVJiRUREREREREQkQEqsiIiIiIiIiIgESIkVEREREREREZEAKbEiIiIiIiIiIhKg/w8jKs0XyumyrQAAAABJRU5ErkJggg==\n",
- "text/plain": [
- "
"
- ]
- },
- "metadata": {
- "tags": [],
- "needs_background": "light"
- }
- }
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/tomaz/.local/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py:795: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.\n",
+ " warnings.warn(\n",
+ "/home/tomaz/.local/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py:805: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.\n",
+ " warnings.warn(\n"
+ ]
},
{
- "cell_type": "markdown",
- "metadata": {
- "id": "sdzt_FjjeBDB"
- },
- "source": [
- "Another node embedding category of algorithms is the structural role embedding category. Instead of capturing the similarity between nodes close in the network (neighbors), we want to capture the similarity between nodes with similar structural roles. One such algorithm is the Role2Vec algorithm.\n",
- "\n",
- "The default walk_length is 80. Given that our example graph has only 100+ nodes, I have decided to use a smaller walk_length value. Other than that, there is room for more hyper-parameter tweaking."
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABFgAAAJNCAYAAAAFyMG3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd1yVdfvA8c99AJGhoIi5BScKB9miiOE2NJyIIxNJ09xmltpwPGnLyvSpzEpxoqU5cj1q7hUCHlFwoIi5xYUCAsK5f38g908SN4rjer9evOTc43t/74PiOde5vtelqKqKEEIIIYQQQgghhHh0uqKegBBCCCGEEEIIIcTzTgIsQgghhBBCCCGEEI9JAixCCCGEEEIIIYQQj0kCLEIIIYQQQgghhBCPSQIsQgghhBBCCCGEEI9JAixCCCGEEEIIIYQQj8m0qCdQWMqUKaM6ODgU9TSEEEIIIYQQQghxm+jo6IuqqtoX9TyetBcmwOLg4EBUVFRRT0MIIYQQQgghhBC3URTlRFHP4WmQJUJCCCGEEEIIIYQQj0kCLEIIIYQQQgghhBCPSQIsQgghhBBCCCGEEI9JAixCCCGEEEIIIYQQj0kCLEIIIYQQQgghhBCPSQIsQgghhBBCCCGEEI9JAixCCCGEEEIIIYQQj0kCLEIIIYQQQgghhBCPSQIsQgghhBBCCCGEEI9JAixCCCGEEEIUEUVReOONN7TH2dnZ2Nvb07Zt23uet3//ftzc3HBzc6N06dI4Ojri5uZG8+bNWbFiBZ9//jkAoaGhLF68+I7zw8PDGTRoUIFjW1tbP8YdCSHEy8u0qCcghBBCCCHEy8rKyooDBw5w48YNLCwsWL9+PRUrVizw2OzsbExNc1++6/V6DAYDkBtEadu2LZ07d9aODQoKeuJzF0IIkZ9ksAghhBBCCFGEAgMDWbVqFQARERF069ZN2zdu3Dh69uyJn58fPXv2fKDx/p2dsmHDBry8vKhVqxYrV67Utp88eZKAgABq1qzJ+PHjCxzrq6++wtvbG1dXV8aOHQtAWloabdq0oV69eri4uLBo0aKHvmchhHgRSQaLEEIIIYQQRahr165MmDCBtm3bEhsbS1hYGNu2bdP2x8fHs337diwsLB5p/KSkJCIjIzl27BhNmjTh6NGjAERGRnLgwAEsLS3x9vamTZs2eHl5aeetW7eOhIQEIiMjUVWVoKAgtm7dSnJyMhUqVNCCQikpKY9x90II8eKQDBYhhBBCCCGKkKurK0lJSURERBAYGHjH/qCgoEcOrgB06dIFnU5HzZo1qVatGocOHQKgRYsW2NnZYWFhQceOHdm+fXu+89atW8e6detwd3fHw8ODQ4cOkZCQgF6vZ/369XzwwQds27YNGxubR56bEEK8SCSDRQghhBBCiCIWFBTEe++9x+bNm7l06VK+fVZWVo81tqIoBT6+2/Y8qqoyevRo+vXrd8eYMTExrF69mo8++ohmzZrxySefPNYchRDiRSAZLEIIIYQQQhSxsLAwxo4di16vL/Sxf//9d4xGI8eOHSMxMZHatWsDsH79ei5fvsyNGzdYtmwZfn5++c5r1aoVM2fOJDU1FYDTp09z4cIFzpw5g6WlJW+88QYjR44kJiam0OcshBDPI8lgEUIIIYQQoohVqlSJIUOGPJGxq1Spgo+PD9euXWP69OkUL14cAB8fHzp16sSpU6d444038tVfAWjZsiUHDx6kQYMGQG775nnz5nH06FFGjhyJTqfDzMyMH3/88YnMWwghnjeKqqpFPYdC4eXlpUZFRRX1NIQQQgghhBBCCHEbRVGiVVX1uv+RzzdZIiSEEEIIIYQQQgjxmCTAIoQQQgghhBBCCPGYJMAihBBCFLJly5ahKIrWCrWwbd68mbZt2wKwYsUKPv/880IZ18HBgYsXL951f1JSEi4uLoVyLSFeZEajSmJyKrsTL5GYnIrR+GIsyRdCCHFvUuRWCCGEKGQRERE0atSIiIgIxo8f/0SvFRQURFBQ0BO9hhDiwRmNKmvjzvHZ6oNkZhsxN9UxOrAOrZ3LodMp9x/gLi5dukSzZs0AOHfuHCYmJtjb2wMQGRlJsWLF8h0/cuRIVq9eTWBgIM7OzrRs2ZIKFSo8+o0JIYS4L8lgEUIIIQpRamoq27dv59dff2XhwoXa9s2bNxMQEEDnzp1xcnKiR48e5BWaX716NU5OTnh6ejJkyBAtOyUtLY2wsDB8fHxwd3dn+fLld1wvPDycQYMGARAaGsqQIUNo2LAh1apVY/HixdqcmjVrhoeHB3q9vsBx/u2bb77BxcUFFxcXpkyZom3Pycmhb9++2hu2GzduABAQEMAHH3yAj48PtWrVYtu2bQDExcXh4+ODm5sbrq6uJCQk3HX8pKQk6tSpU+D4Qjwvki6lacEVgMxsI5+tPkjSpbTHGtfOzg6DwYDBYKB///4MHz5ce/zv4ArAjBkziI2N5auvviI8PJwzZ8481vWFEELcnwRYhBBCiEK0fPlyWrduTa1atbCzsyM6Olrbt3fvXqZMmUJ8fDyJiYns2LGDjIwM+vXrx5o1a4iOjiY5OVk7fuLEiTRt2pTIyEg2bdrEyJEjSUu795u0s2fPsn37dlauXMmoUaMAKF68OEuXLiUmJoZNmzYxYsQI7tVFMDo6mlmzZvH333+ze/dufv75Z/bu3QtAQkICAwcOJC4uDltbW5YsWaKdl52dTWRkJFOmTNEyd6ZPn87QoUMxGAxERUVRqVKlRx5fiOfBheuZWnAlT2a2kQvXMwv9WqGhoVogFXLbKENuZltqaiqenp4sWrSIqKgoevTogZubG6tWraJ9+/baOevXr6dDhw6FPjchhHgZSYBFCCGEKEQRERF07doVgK5duxIREaHt8/HxoVKlSuh0Otzc3EhKSuLQoUNUq1YNR0dHALp166Ydv27dOj7//HPc3NwICAggIyODf/75557Xb9++PTqdjrp163L+/HkAVFVlzJgxuLq60rx5c06fPq3tK8j27dvp0KEDVlZWWFtb07FjRy0jxdHRETc3NwA8PT1JSkrSzuvYseMd2xs0aMCkSZP44osvOHHiBBYWFo88vhDPg7IlzDE3zf8S29xUR9kS5k9tDitWrMDCwgKDwUBISAheXl7Mnz8fg8FAYGAghw4d0oK5s2bNIiws7KnNTQghXmRFGmBRFGWmoigXFEU5cNu20oqirFcUJeHWn6WKco5CCCHEg7p8+TIbN26kT58+ODg48NVXX/Hbb79p2SLm5v//BsvExITs7Ox7jqeqKkuWLNGWAfzzzz/UqVPnnufcfo28686fP5/k5GSio6MxGAy88sorZGRkPNI93use8vbdvr179+7am73AwEA2btz4yOML8TxwsLNidGAdLciSV4PFwc6qiGeWS1EUevbsybx587h69Sq7du3itddeK+ppCSHEC6GoM1jCgdb/2jYK+EtV1ZrAX7ceCyGEEM+8xYsX07NnT06cOEFSUhInT57E0dFRy84oSO3atUlMTNQyNRYtWqTta9WqFdOmTdMCJXnLaB5WSkoKZcuWxczMjE2bNnHixIl7Hu/v78+yZctIT08nLS2NpUuX4u/v/0jXTkxMpFq1agwZMoR27doRGxtbqOML8azR6RRaO5djdpgPU7u5MzvM57EL3N6NqakpRmPuciSj0UhWVtYDnde7d2/mzZtHREQEwcHBmJpK3wshhCgMRRpgUVV1K3D5X5vbAbNvfT8baP805ySEEEI8qoiIiDtqGXTq1CnfMqF/s7Cw4IcffqB169Z4enpSokQJbGxsAPj444+5efMmrq6uODs78/HHHz/SvHr06EFUVBR6vZ45c+bg5ORU4HHZ2dmYm5vj4eFBaGgoPj4+1K9fnz59+uDu7v5I1/7tt99wcXHBzc2NAwcO8Oabbxbq+EI8i3Q6hWr21vhWs6OavbUWXJk4cSLOzs64urri5ubG33///VjXcXBw0Oo8rVixgps3bxZ4XIkSJbh+/br2uEKFClSoUIFPP/2U3r17P9YchBBC/D/lXkXunsoEFMUBWKmqqsutx1dVVbW99b0CXMl7fC9eXl5qVFTUE5ypEEII8WSkpqZibW2NqqoMHDiQmjVrMnz48Kc6h+TkZNzc3Dh9+vRTva4QL4tdu3bx7rvvsnnzZszNzbl48SJZWVmP1Dp53LhxWFtb07NnT9q1a8eNGzdo3bo133//PampqUBuwdu875csWcKYMWOwsLBg165dWFhYsHDhQqZMmcLu3bsL9T6FEKIgiqJEq6rqVdTzeNKKeonQPam50Z+7RoAURXlbUZQoRVGibu+6IIQQQjxPfv75Z9zc3HB2diYlJYV+/fo91euvWLECf39/Pvvss6d6XSFeJmfPnqVMmTJanaEyZcpQoUIFHBwcGDt2rNZG/dChQ0BuTaf27dvj6uqKr68vsbGxAOj1eoYNG8aIESOoW7cuAwYMYN++fZw9e5alS5fSuHFjDAaDFlxp1KgRNWrU4PDhwxgMBiwsLIDcYtZ9+/YtgmdCCCFeXM9igOW8oijlAW79eeFuB6qqOkNVVS9VVb3s7e2f2gSFEEKIwjR8+HAMBgPx8fHMnz8fS0vLp3r9oKAgDh06xJtvvlng/rzWr4Vl8+bNtG3b9rHGcHBw4OLFi4U0IyGevJYtW3Ly5Elq1arFgAED2LJli7avTJkyxMTE8M477zB58mQAxo4di7u7O7GxsUyaNEn79+nn58eOHTuIi4ujWrVqWo2nXbt20bBhQ9566y3Cw8MBOHLkCBkZGdSrVy/fXDw9PYmNjeWNN954CncuhBAvj2cxwLIC6HXr+17A8iKcixBCCIHRqJKYnMruxEskJqdiNBbt8tqXjXQSEi8Ca2troqOjmTFjBvb29oSEhGiBkIJanG/fvp2ePXsC0LRpUy5dusS1a9fw9/dn69atbN26lXfeeYf9+/dz+vRpSpUqhZWVFcHBwaxcuZKbN28yc+ZMQkND75hLdHQ0W7duzde1SwghxOMr6jbNEcAuoLaiKKcURXkL+BxooShKAtD81mMhhBCiSBiNKmvjztFrZiRDIvbSa2Yka+POPRdBFkVR8n1CnZ2djb29/WNnjwAcO3ZMK8zr7++vLWtITk6mU6dOeHt74+3tzY4dO+4499y5c6xZswY3Nzf0ej02Nja4uLhQvXp1unbtCkDbtm3x8/PDz8+Pnj17cunSJVq2bImzszN9+vRBVVX279/P6tWrad++PZ6enjg7OzNjxgztOtbW1nz44YfUq1cPX19fzp8//9j3LcTjMDExISAggPHjx/Pf//6XJUuWAHD2+k12J17i7LXM+wYUGzduzLZt29i2bRsBAQHY29uzePFirROXpaUlLVq0YPny5fz222/06NHjid+XEEKIXEXdRaibqqrlVVU1U1W1kqqqv6qqeklV1WaqqtZUVbW5qqr/7jIkhBBCPDVJl9L4bPVBMrNzW6FmZhv5bPVBki6lFfHM7s/KyooDBw5w48YNANavX0/FihUfaoy7vdl7++23mTZtGtHR0UyePJkBAwYAMHToUIYPH86ePXtYsmQJffr0KfB8S0tLDAYDAQEBvPvuuxw4cIBOnTqxYcMGALy8vMjIyGDDhg1EREQwfvx4GjVqRFxcHB06dOCff/7hwIEDrF69mpkzZxIdHU1UVBRTp07l0qVLAKSlpeHr68u+ffto3LgxP//880PduxCF6fDhwyQkJGiPDQYDVapU4cbNHAYt2MuQiL2MWxHH5bQsjEYVf39/5s+fD+QuqytTpgwlS5akcuXKXLx4kYSEBKpVq0ajRo2YPHkyjRs31sbu06cPQ4YMwdvbm1KlSj31exVCiJeVNL0XQggh7uHC9UwtuJInM9vIheuZVLMv3NokT0JgYCCrVq2ic+fORERE0K1bN61mQ2RkJEOHDiUjIwMLCwtmzZpF7dq1CQ8P548//iA1NZWcnBxUVaV3795ERUWhKAoffPABO3fuxMnJCb1eD+RmroSGhrJhwwZ27typZYsYjUatS1JBtm/frn2KX7duXTIyMrh27RqbN2/Gzs4OCwsLAgICiI+Pp3z58sybN49ff/0VW1tbvvjiCzIzM1m8eDHm5ubY2tpy8uRJEhISsLOzo1ixYlq2jqenJ+vXr3/ST7cQd5WamsrgwYO5evUqpqam1KhRgzGTvuHXBUvIzDZiZg43c4ycupRO0qU0xo0bR1hYGK6urlhaWjJ79mxtrPr165OTkwOAv78/o0ePplGjRtp+T09PSpYsKS2YhRDiKZMAixBCCHEPZUuYY26qyxdkMTfVUbbE81G7oGvXrkyYMIG2bdsSGxtLWFiYFmBxcnJi27ZtmJqasmHDBsaMGaMFO2JiYoiNjaV06dIUK1YMGxsb9u/fD8CJEyewtbXl+vXrGAwGABYvXszKlSsxGo1YW1uzY8cOKlasyNWrVwsMrqSnp+Pm5sbhw4cZO3Ysc+fOveOYYsWK5Xu8dOlSDh06xPjx47VAz8aNG0lOTmbdunVYWloSEBBARkYGAGZmZiiKAuQuzZBaLqIoeXp6snPnznzbdidewvW9edpjq4q1qf3W5NwAbjU7li1bVuBYt/97adiwIUZj/iDwmTNnMBqNtGzZsvBuQAghxH09i0VuhRBCiGeGg50VowPrYG6a+1+muamO0YF1cLCzKuKZPRhXV1eSkpKIiIggMDAw376UlBSCg4NxcXFh+PDhxMXFaftatGhB6dKlAcjJyWHgwIHavqpVq+Lo6KgFLFRV1QpztmzZEmtra0JDQ/n555+1AMy/5S0R6tu3L7Vq1QLg0KFDWFhYULJkyTuOb9y4MQsWLMDT05P4+HiuXLkCQFZWFqVKlcLS0pJDhw6xe/fuR3uihCgCeQHc2z1uAHfOnDnUr1+fiRMnotPJS30hhHiaJINFCCGEuAedTqG1czmcypXgwvVMypYwx8HOCp1OKeqpPbCgoCDee+89Nm/erNUnAfj4449p0qQJS5cuJSkpiYCAAG2fldX/B5CMRiP+/v6Ymua+bHj33XeZP38+NWvWpF69ety8eZM6depQokQJpk6dysCBA4mOjmbMmDFkZGSQlJSEnZ2dNl52drb2xu/2ZRBpaWk0a9aswHvo378/X375JXPnzuX69etUqVIFgCpVqpCUlESdOnWoXbs2vr6+hfa8CXE/RqNK0qW0R/7dkBfAzavzVBgB3DfffPOuLdeFEEI8WRJgEUIIIe5Dp1OoZm/9XNRcKUhYWBi2trbo9Xo2b96sbU9JSdGK3ua1iy3IBx98QEZGBlOmTAHgypUrlCpVCgcHBxYuXEjt2rUJDg4GoEyZMkyaNInq1asD4O3tzcmTJ/MFWI4cOaIt/yldurS2DCI8PJyoqCgAAgIC8i0tsrW1Zd26dVy8eBEvLy+SkpJYsmQJUVFRrFmzpsB5p6amat937tyZzp07P8CzJcSDyesw9u/gSGvncg8cZHkRArhCCCH+n+QNCiGEEC+4SpUqMWTIkDu2v//++4wePRp3d/d71if56KOPuHLlCi4uLtSrV49NmzYB8Pnnn9O2bVsaNmxI+fLlteNHjhyJXq/HxcWFhg0bUq9ePW3fW2+9xYoVK7TlR4+jSZMmxMfH4+bmxqJFix57PCEeRmF1GMsL4PpWs6OavbUEV4QQ4jmmqKpa1HMoFF5eXmrep15CCCGEuLfHXdogxMtud+IlhkTsvWP71G7u+FazK+AMIYR4eSmKEq2qqldRz+NJkwwWIYQQ4iWTt7Sh18xIhkTspdfMSNbGncNofDE+dBH5KYrCG2+8oT3Ozs7G3t5ea2H9tISGhmJpacn169e1bcOGDUNRFC5evPjQ44WHh2Nvb4+7uzs1a9akVatWd3TpeZLKljDn8K/vkXb6sLbteeowJoQQovBJgEUIIYR4yRTW0gbxfLCysuLAgQPcuHEDgPXr12u1dx5UYbW4rlGjBsuXLwdyiydv3Ljxoedyu5CQEPbu3UtCQgKjRo2iY8eOHDx4sFDmej8OdlZUtbPEzOT57DAmhBCi8EmARQghhHiOGI0qicmp7E68RGJy6iNlnVy4nqkFV/JkZhu5cD2zsKYpnjGBgYGsWrUKgIiICLp166btu3z5Mu3bt8fV1RVfX19iY2OB3A5PPXv2xM/Pj549e5KUlIS/vz8eHh54eHho2SJGo5EBAwbg5OREixYtCAwMZPHixQXOo2vXrlq9nM2bN+Pn56d1pwJo3749np6eODs7M2PGDG372rVr8fDwoF69enftNNWkSRPefvtt7TyDwYCvry+urq506NBBa+0dEBCgFVO+ePEiDg4OAKSnp9OlSxfq1q1Lhw4dqF+/vnbcO++8g5eXF87OzowdOxbIrZ1S2qoY44KcmdrNndlhPg9V4FYIIcSLRwIsQgghxHOisJb2lC1hjrlp/pcAsrThxda1a1cWLlxIRkYGsbGx1K9fX9s3duxY3N3diY2NZdKkSfla/MbHx7NhwwYiIiIoW7Ys69evJyYmhkWLFmmFk//44w+SkpKIj49n7ty57Nq1667zqFWrFsnJyVy5coWIiAi6du2ab//MmTOJjo4mKiqKqVOncunSJZKTk+nbty9Llixh3759/P7773cd38PDg0OHDgG57Yq/+OILYmNj0ev1jB8//p7P0Q8//ECpUqWIj4/nP//5D9HR0dq+iRMnEhUVRWxsLFu2bNGCUACVSllKgVohhBCABFiEEEKI50ZhLe1xsLNidGAdLcgiSxtefK6uriQlJREREUFgYGC+fdu3b6dnz54ANG3alEuXLnHt2jUAgoKCsLCwAODmzZv07dsXvV5PcHAw8fHx2vnBwcHodDrKlStHkyZN7jmXjh07snDhQv7++2/8/f3z7Zs6dSr16tXD19eXkydPkpCQwO7du2ncuDGOjo4A9+xAlde8ISUlhatXr/Lqq68C0KtXL7Zu3XrPeW3fvl0L+Li4uODq6qrt++233/Dw8MDd3Z24uDjt3oUQQojbmd7/ECGEEEI8C+61tKeavfUDj6PTKbR2LodTuRLSReglEhQUxHvvvcfmzZu5dOnSA51jZfX/Qbdvv/2WV155hX379mE0GilevPgjzSMkJARPT0969eqFTvf/n/Vt3ryZDRs2sGvXLiwtLQkICCAjI+Ohxt67dy916tS55zGmpqYYjbn/jh5k/OPHjzN58mT27NlDqVKlCA0Nfeh5CSGEeDlIBosQQgjxnCjMpT06nUI1e2tZ2vASCQsLY+zYsej1+nzb/f39mT9/PpAb5ChTpgwlS5a84/yUlBTKly+PTqdj7ty55OTkAODn58eSJUswGo2cP3+ezZs333MeVatWZeLEiQwYMOCO8UuVKoWlpSWHDh1i9+7dAPj6+rJ161aOHz8O5NaMKciWLVuYMWMGffv2xcbGhlKlSrFt2zYA5s6dq2WzODg4aMt/bq8V4+fnx2+//QbkLo3av38/ANeuXcPKygobGxvOnz/PmjVr7nl/QgghXl6SwSKEEEI8J/KW9uQtE5KlPeJhVKpUSaubcrtx48YRFhaGq6srlpaWzJ49u8DzBwwYQKdOnZgzZw6tW7fWsls6derEX3/9Rd26dalcuTIeHh7Y2Njccy79+vW7Y1vr1q2ZPn06derUoXbt2vj6+gJgb2/PjBkz6NixI0ajUasFA7Bo0SK2b99Oeno6jo6OLFmyRMtgmT17Nv379yc9PZ1q1aoxa9YsAN577z26dOnCjBkzaNOmTb7769WrF3Xr1sXJyQlnZ2dsbGyoWbMm7u7uODk5UblyZfz8/O73VAshhHhJKXlrVZ93Xl5eal6ldyGEEOJFZTSqJF1Kk6U94pmSmpqKtbU1ly5dwsfHhx07dlCuXLmintZDycnJ4ebNmxQvXpxjx47RvHlzDh8+TLFixYp6akII8dxTFCVaVVWvop7HkyYZLEIIIcRzJG9pz8PUXBHiSWvbti1Xr14lKyuLjz/++LkLrkBum+YmTZpw8+ZNVFXlhx9+kOCKEEKIhyI1WIQQ4hkzceJEnJ2dcXV1xc3Njb///vuex4eGhmp1BAICAnjYbL6LFy9iZmbG9OnTH3nOD8PBwQG9Xo+rqystW7bk3LlzD3xuUlISLi4uT3B2QjwfjEaVxORUdideIjE59aFbdRe2zZs3YzAYiI+PJzQ0tEjn8qhKlChBVFQU+/btIzY2ltdee62opySEEOI5IwEWIYR4huzatYuVK1cSExNDbGwsGzZsoHLlyk/0mr///ju+vr5EREQ80evcbtOmTcTGxuLl5cWkSZMe6Jzs7OwnPCshng9Go8rauHP0mhnJkIi99JoZydq4c0UeZBFCCCFedhJgEUKIZ8jZs2cpU6YM5ua5XWHKlClDhQoVAJgwYQLe3t64uLjw9ttvc68aWjNnzmTYsGHa459//pnhw4cXeGxERARff/01p0+f5tSpU9p2a2trPvzwQ+rVq4evry/nz58HcjNmhgwZQsOGDalWrVq+LhxfffUV3t7euLq6Mnbs2Pveb+PGjTl69Cg5OTmMHDlSO/enn34Ccj8V9/f3JygoiLp16+Y7NzExEXd3d/bs2UNcXBw+Pj64ubnh6upKQkLCfa8txPMq6VKaVugYclt1f7b6IEmX0op4ZkIIIcTLTQIsQgjxDGnZsiUnT56kVq1aDBgwgC1btmj7Bg0axJ49ezhw4AA3btxg5cqVdx2nS5cu/Pnnn9y8eROAWbNmERYWdsdxJ0+e5OzZs/j4+NClSxcWLVqk7UtLS8PX15d9+/bRuHFjfv75Z23f2bNn2b59OytXrmTUqFEArFu3joSEBCIjIzEYDERHR7N169Z73u/KlSvR6/X8+uuv2NjYsGfPHvbs2cPPP/+stWSNiYnhu+++48iRI9p5hw8fplOnToSHh+Pt7c306dMZOnQoBoOBqKgoKlWqdM/rCvE8u3A9Uwuu5MnMNnLhemYRzUgIIYQQIAEWIYR4plhbWxMdHc2MGTOwt7cnJCSE8PBwIHdZTf369dHr9WzcuJG4uLh7jtO0aVNWrlzJoUOHuHnzJnq9/o7jFi1aRJcuXQDo2rVrvmVCxYoVo23btgB4enqSlJSk7Wvfvj06nY66detqmS3r1q1j3bp1uLu74+HhwaFDh+6aSdKkSRPc3Ny4du0ao0ePZt26dcyZMwc3Nzfq16/PpUuXtHN9fHxwdHTUzk1OTqZdu3bMnz+fevXqAdCgQQMmTZrEF198wYkTJ7CwsLjfUy3Ec6tsCXPMTfO/hDM31VG2hHkRzUgIIYQQIF2EhBDimWNiYkJAQAABAQHo9Xpmz55N165dGTBgAFFRUVSuXJlx48aRkZFxz3H69OnDpEmTcHJyonfv3gB8+OGHrFq1CgCDwUBERATnzp1j/vz5AJw5c4aEhARq1qyJmZkZiqJoc7q9BkreEiZAW6qkqiqjR4+mX79+973HTZs2UaZMmXxjTJs2jVatWuU7bvPmzVhZWeXbZmNjQ5UqVdi+fbu2bKh79+7Ur1+fVatWERgYyE8//UTTpk3vOw8hnkcOdlaMDqyjLRMyN9UxOrAODnZW9z9ZCCGEEE+MZLAIIcQz5PDhw/myPgwGA1WrVtWCKWXKlCE1NTVf3ZO7qV+/PidPnmTBggV069YNyO1QZDAYMBgMHDlyhNTUVE6fPk1SUhJJSUmMHj36kYvdtmrVipkzZ5KamgrA6dOnuXDhwgOf++OPP2pLmo4cOUJaWsH1JIoVK8bSpUuZM2cOCxYsAHLrsVSrVo0hQ4bQrl07YmNjH+kehHge6HQKrZ3LMTvMh6nd3Jkd5kNr53LodEpRT00IIYR4qUkGixBCPENSU1MZPHgwV69exdTUlBo1ajBjxgxsbW3p27cvLi4ulCtXDm9v7wcar0uXLhgMBkqVKnXHvoiICDp06JBvW6dOnQgJCeGTTz556Lm3bNmSgwcP0qBBAyB3mdK8efMoW7bsfc/t06cPSUlJeHh4oKoq9vb2LFu27K7HW1lZsXLlSlq0aIG1tTXx8fHMnTsXMzMzypUrx5gxYx56/kI8T3Q6hWr21lSzty7qqQghhBDiFuVeXSieJ15eXmpUVFRRT0MIIZ4pbdu2Zfjw4TRr1qyopyKEEEIIIV5SiqJEq6rqVdTzeNJkiZAQQryArl69Sq1atbCwsJDgihBCCCGEEE+BLBESQoinwGhUSbqUxoXrmZQtYY6DndUTrZdga2ubr62xEEIIIYQQ4smSAIsQQjxhRqPK2rhzd3T8kKKUQgghhBBCvDhkiZAQQjxhSZfStOAKQGa2kc9WHyTpUsFdcoQQ4kmbOHEizs7OuLq64ubmxt9///1Q54eHh3PmzBntcZ8+fYiPjy+UuVlb5y/cGx4ezqBBg+55zubNm9m5c2ehXF8IIYR4VBJgEUKIJ+zC9UwtuJInM9vIheuZRTQj8bSdP3+e7t27U61aNTw9PWnQoAFLly4t6mlx9epV7OzsyCt4v2vXLhRF4dSpUwCkpKRQunRpjEbjvYZ5YAEBAUhB+qK3a9cuVq5cSUxMDLGxsWzYsIHKlSs/8Pk5OTl3BFh++eUX6tat+ySm+0AkwCKEEOJZIAEWIYR4wsqWMMfcNP+vW3NTHWVLmBfRjMTTpKoq7du3p3HjxiQmJhIdHc3ChQu1IMbjyM7OfqzzbW1tKV++PAcPHgRg586duLu7a29Ud+/ejY+PDzpd7t9fExMT3NzccHFx4fXXX+fq1av3HD80NJTFixc/1hzzPGxwpqBr/zsz4mnP6Vlx9uxZypQpg7l57u+gMmXKUKFCBQD++usv3N3d0ev1hIWFkZmZGwh2cHDggw8+wMPDg4iICKKioujRowdubm7cuHEj33NhbW3Nhx9+SL169fD19eX8+fMAHDt2DF9fX/R6PR999NEj/Tz+/PNP6tevj7u7O82bN+f8+fMkJSUxffp0vv32W9zc3Ni2bVthPE1CCCHEQ5MAixBCPGEOdlaMDqyjBVnyarA42FkV8czE07Bx40aKFStG//79tW1Vq1Zl8ODBQG42wMiRI/H29sbV1ZWffvoJyA3MjBw5EhcXF/R6PYsWLQJyP6n39/cnKCiIunXrYjQaGTBgAE5OTrRo0YLAwEAtsBAdHc2rr76Kp6cnrVq14uzZs3fMr2HDhlpAZefOnQwfPjzfYz8/P22OAEajkcGDB1O6dGm+/fZbmjVrhoeHB3q9nuXLlwOQlpZGmzZtWLFiBcOHD9fmfrt169bRoEEDPDw8CA4OJjU1lY0bN9K+fXvtmPXr19OhQ4fHev7FnVq2bMnJkyepVasWAwYMYMuWLQBkZGQQGhrKokWL2L9/P9nZ2fz444/aeXZ2dsTExPDGG2/g5eXF/PnzMRgMWFhY5Bs/LS0NX19f9u3bR+PGjfn5558BGDp0KEOHDmX//v1UqlTprvO7ceMGbm5u2tcnn3yi7WvUqBG7d+9m7969dO3alS+//BIHBwf69+/P8OHDMRgM+Pv7F+bTJYQQQjwwCbAIIcQTptMptHYux+wwH6Z2c2d2mI8UuH2JxMXF4eHhcdf9v/76KzY2NuzZs4c9e/bw888/c/z4cf744w8MBgP79u1jw4YNjBw5UguQxMTE8N1333HkyBH++OMPkpKSiI+PZ+7cuezatQuAmzdvMnjwYBYvXkx0dDRhYWF8+OGHd1zfz89PC6gkJiYSHBysZSLs3LmThg0banO0sLDQ5lizZk3Onz/P0qVLmTlzJubm5nTp0oUOHTqwePFiKlSoQFBQEN9++y2tW7dmwoQJxMTEEBISwptvvsl//vMfNmzYQMmSJUlOTsbJyYn+/fsTExNDcnIyN27coE+fPkRFRdGhQwdu3Lihzfmdd97By8sLZ2dnxo4d+9A/k7sFr+62HeCLL75Ar9dTr149Ro0apW3//fff8fHxoVatWs9N5oS1tTXR0dHMmDEDe3t7QkJCCA8P5/Dhwzg6OlKrVi0AevXqxdatW7XzQkJCHmj8YsWK0bZtWwA8PT1JSkoCcpcmBQcHA9C9e/e7nm9hYYHBYNC+JkyYoO07deoUrVq1Qq/X89VXXxEXF/dQ9y6EEEI8SdJFSAghngKdTqGavTXV7At3iYJ4/gwcOJDt27dTrFgx9uzZw7p164iNjdWyTlJSUkhISGD79u1069YNExMTXnnlFV599VX27NlDyZIl8fHxwdHREYDt27cTHByMTqejXLlyNGnSBIDDhw9z4MABWrRoAeRmypQvX/6O+TRs2JDPPvuM48eP4+DgQPHixVFVldTUVKKjo6lfvz4//vgjsbGx3Lhxg/r163P16lXWrVvH+++/z5gxY/j111+pWLEiOp0OR0dHNm7cyJYtWyhRogTVq1enc+fODBo0iI0bNzJ58mRGjhzJvn378PPz4+jRo5ibm9O+fXs6derE4MGDmTdvHunp6Vy+fJkrV64QHx+fL0g1ceJESpcuTU5ODs2aNSM2NhZXV9c77m3kyJF8+umnd2y/PXh18eJFvL29ady4MTt37ixwu8FgYPny5fz9999YWlpy+fJlbazs7GwiIyNZvXo148ePZ8OGDY/xt+PpMTExISAggICAAPR6PbNnz8bd3f2e51hZPVjWnZmZGYqiaNd53KVstxs8eDDvvvsuQUFBbN68mXHjxhXa2EIIIcTjkgCLEEII8QQ5OzuzZMkS7fH333/PxYsX8fLyAnKzJqZNm0arVq3ynbdmzZq7jvkgb3RVVcXZ2VnLaLmbmjVrcvXqVf78808aNGgA5GYdzJo1CwcHB6ytrbU5BgYGArlLQAAuXLjA6dOnsbe35+jRozg4ONCuXTuGDx9OTEwM7dq1IyIiQptLTEwMXbt25cqVKzg6OmIwGAgICGDixIn4+flx/vx5jEYj8+bNIzs7m8DAQExNTXF1dc0XQPntt9+YMWMG2dnZnD17lvj4+AIDLF999RWdO3fWHufV/Lhb8Opu27ds2ULv3r2xtLQEoHTp0tqYHTt21J6zvEyNZ93hw4fR6XTUrFkTAIPBQNWqValduzZJSUkcPXqUGjVqMHfuXF599dUCxyhRogTXr19/qOv6+vqyZMkSQkJCWLhw4SPNPSUlhYoVKwIwe/bsfPO5du3aI40phBBCFBZZIiSEeGgFFSacPn06c+bMAR6+sOWDFIocN24cFStW1Apsrlix4p7HT5o0Sfv+6tWr/PDDDw88HyEKU9OmTcnIyMhXyyI9PV37vlWrVvz444/cvHkTgCNHjpCWloa/vz+LFi0iJyeH5ORktm7dio+Pzx3j+/n5sWTJEoxGI+fPn2fz5s0A1K5dm+Tk5HxLhu62nMLX15fvvvtOC7A0aNCAKVOm4Ofnl2+OeUs3NmzYQHZ2NitXrsTe3h6ATZs2ceLECe1alpaWVK9enXbt2rFnzx4GDBhA3bp1WbhwIWFhYdobecit63LkyBFMTExQVZUKFSpw5MgRWrdufcdcjx8/zuTJk/nrr7+IjY2lTZs2ZGRkPPgPpJDlFYot7EyNJyk1NZVevXpRt25dXF1diY+PZ9y4cRQvXpxZs2YRHByMXq9Hp9Plqx10u9DQUPr3768VuX0QU6ZM4ZtvvsHV1ZWjR49iY2Pz0HMfN24cwcHBeHp6UqZMGW3766+/ztKlS6XIrRBCiKKlquoL8eXp6akKIZ4OKysr1crK6q77e/Xqpf7+++8PPN6rr76q7tmz557HjB07Vv3qq69UVVXV+Ph4VafTqS4uLqper1dbtGihnj179o455lm1apVapUoV7fGmTZvUHTt23PN6RqNRzcnJuev+48ePq87OzvccQ4g8Z86cUUNCQlQHBwfV29tbDQgIUBcuXKiqqqrm5OSoo0ePVl1cXFRnZ2c1ICBAvXr1qmo0GtX33ntPdXZ2Vl1cXLTjN23apLZp00YbOycnR+3Xr59au3ZttXnz5mqzZs3UdevWqaqqqnv37lX9/f1VV1dXtW7duuqMGTMKnN+XX36pmpmZqenp6aqq5v79BtQFCxbkm6NOp9PmuGXLFrVSpUpq/fr11eLFi6uvvfaa6uTkpA4dOlTt0KGDqtfr1VKlSqnVqlVTN27cqJYtW1Zt1KiRumXLFtXZ2Vl98803VS8vL9XKykqtXr26unz5cjU5OVmtWrWqGhERoVapUkV96623VFVV1f3796smJibqnj17VIPBoLq6uqo5OTnquXPn1LJly6qzZs26454K+j2U93thyZIlasuWLdXs7Gz1woULapUqVdSzZ8/edfuaNWvUBg0aqGlpaaqqquqlS5dUVc3/uytv7uLu0tLSVKPRqKqqqkZERKhBQUFFPCMhhBBPCxClPgNxgyf9JUuEhBCFYty4cVhbW/Pee+9p2zZu3MjUqVNZtmwZkNsR5IcffmDp0qWPda06deoAucsEDAYDQ4YMwdnZmT59+vDFF18watQorQuFs7MzR48e5fTp07i5udGiRQusrKyIiori/PnzZGZm0qFDB8aPH09SUhKtWrWifv36REdHs3r1aqpWrQrk1lkwNZVfmeLRlC9f/q5LInQ6HZMmTcqXdZXnq6++4quvvsq3La9uxu3nT548GWtray5duoSPjw96vR4ANze3fEVK72bkyJFalyDIbcmb+1oo/xynTp3KgQMHtO1ubm506dIFvV5P//79MTMzIykpiVmzZlGqVClCQ0Np27YtTZo0oW/fvkRERDB69Gi8vb2pWrUqs2fPJiAggMmTJ+Pl5cXFixeB3CU8o0aNYsuWLdSpU4c6derg6ekJQL169XB3d8fJyYnKlStrWTYPo0OHDuzatYt69eqhKApffvkl5cqVu+v21q1bYzAY8PLyolixYgQGBhb48xL3Fh0dzaBBg1BVFVtbW2bOnFnUUxJCCCEKlXL7C6jnmZeXl3q/JQZCiMKRt0To3LlztGvXjitXrnD69Glee+01wsPD6dy5M7t27aJFixYsWLCA119/nXfeeYdu3bphZmbGsmXL8PHxIS0tTetyUr58eb788kvatWtHXFwcvXv3JisrC6PRyJIlS5g/f74WwPn777/x8/Nj7969tGnThq+++orw8HDS09MxNTXlwoULxMfHs2HDBvz8/HB0dOT8+fO4uLjQrVs3vvjiCzIzM6lZsybfffcdn376KVlZWVy9epXY2FimT59Ov379GDduHMeOHSMxMZEqVaoQERGhPQdJSUm0bds235tNIQqTiYmJFigBWLZsGQ4ODgUeGxAQwNWrV8nKyuL9998nNDRU21dQ8PPq1atUr16dixcvoigKu3btomHDhpw8eZJKlSqRkpKCo6MjFy9eRKd7/NXEtwdR7sfT0xMrKyvWr1+vLb8RD8ZoVEm6lMaF65mULWGOg52VdCsTQgjxTFAUJVpV1fu/EHjOycexQohHVrx4cZYuXUrJkiV5//33mTlzpvap97lz5xgxYgTVq1dnxowZWFhYYGVlxTfffMOkSZNYtmwZEydOpGnTpiQmJjJ27Fj69etH8+bNmT59OkOHDqVHjx5kZWWRk5MDwLfffsu8efMoUaIE9vb2WoHMbdu24erqyvHjx4mPj+fAgQNYWlrSq1cvjhw5wvDhw/nss88wGAwALF++nIMHDwIwdOhQjh07xsCBA+nfvz/+/v5MmTKFfv36ARAfH8/27duxsLB4+k+weKnl1TspSF4aal7wI6/uyoOytbWlfPnyHDx4kLp167Jz507c3d3ZuXMnXbp0Yffu3fj4+BRKcOVhRUdHP/VrvgiMRpW1cef4bPVBMrONmJvqGB1YR1rCCyGEEE+RFLkVQjwyVVUZM2YMrq6uzJkzh5SUFM6fPw9A2bJl0ev1vPXWW6Snp2NmZkaXLl1wc3PTOm2sW7eOzz//nKioKPr160dGRgb//PMPDRo0YNKkSXzxxRecOHFCC24MHz4cg8HAtm3bMDc356OPPmLlypVcu3aN0aNHc/ToUZycnIDcJQ1Vq1blyJEjBc67adOmGAwGDAYDFhYWrF27lsDAQC5evMi1a9dITU0FICgoSIIrokBGo0piciq7Ey+RmJyK0fhkM0KTkpKoXbs2b775Ji4uLpw8eZKvvvoKb29vXF1dGTt2rHbsxIkTqVWrFo0aNeLw4cMFjtewYUN27tyJ0aiyftNWXu/RlzV/bcFoVNm5cyd+fn7k5OQwcuRI7Ro//fQTkFsktVmzZnh4eKDX61m+fDmQ212oTZs21KtXDxcXFxYtWnTHddetW0eDBg3w8PAgODiY1NRUNm7cSPv27bVj1q9fT4cOHQrx2XvxJV1K04IrAJnZRj5bfZCkS2lFPDMhhBDi5SEBFiHEI5s/fz7JyclER0fTv39/SpQooXXzMDMzA6BChQpYWlqyfPlyevfujU6n0zptqKrKkiVL8PLyYsGCBfzzzz/UqVOH7t27s2LFCiwsLAgMDGTjxo0FXn/VqlWUKFGCb775hhIlSnDq1Cnq1aunXT8vm6Z48eJkZWVp59WoUYM9e/ZoQZTs7GxWrFjB6tWrqV69OqdPn9aWQT1IO1zx8snLFug1M5IhEXvpNTOStXHnCjXIkldHyM3NTQs2JCQkMGDAAOLi4jh8+DAJCQlERkZiMBiIjo5m69atREdHs3DhQgwGA6tXr2bPnj0Fju/n58eOHTtYG3eO7THxrLpelT/+t5W1cefYsWMnDRs25Ndff8XGxoY9e/awZ88efv75Z44fP65lr8XExLBp0yZGjBiBqqqsXbuWChUqsG/fPg4cOHBHF6CLFy/y6aefsmHDBmJiYvDy8uKbb76hSZMmHDp0iOTkZABmzZpFWFhYoT2XL4ML1zO14EqezGwjF65nFtGMhBBCiJePLBESQjy0vBazw4YNIzs7m2nTpnH8+HGuXLlS4PHVqlXjzJkz1KlTR8tegdzWr9OmTePmzZuYm5uzd+9evv/+e9q2bUu7du0YMmQI//zzD7GxsQWOW65cOT7//HOaNGmCqqq4uLho43fu3Jnw8HAmTZpEcHAwZcqUwcXFhddeew03NzeSk5O1lrQ6nY4ffvhBa0dqMBhwc3MrnCdLvJDuli3gVK4E1ezvbGP+KP69RCgpKYmqVavi6+sL5GaCrFu3Dnd3dyA3qyQhIYHr16/ToUMHLC0tgdwsrII0bNiQCZ9O5EDZjZjZvoLOrBhG1cinS2OIj46mfv36/Pjjj8TGxmpt11NSUkhISKBSpUqMGTOGrVu3otPpOH36NOfPn0ev1zNixAg++OAD2rZti7+/f75r7t69m/j4eK0wbVZWFg0aNEBRFHr27Mm8efPo3bs3u3bt0tq+iwdTtoQ55qa6fEEWc1MdZUtIHRshhBDiaZEAixDioWVlZfHKK69w+PBhXn/9dWbNmoWXl5e2PGfy5Mm0bdtWO/7ChQs0b978jnE+/vhjBg8eTGRkJF26dKF69eqsXLmSzz//nA8//BAzMzPKlSvHmDFjKF26dIFz6datG926dQMgIyODd955B71ej6mpKevWraNJkyZcvnyZMmXKcPPmTby8vHB3d2f27NmYmJgwbdo06tSpw8CBAwkKCsJoNDJ9+nSmT5/+BJ458aK4V7ZAYQVYCnJ7RpWqqowePVqrF5RnypQpDzRWzZo1uXo1hey4nVhXye3MZVmhFqcj1/BKxUpYW1ujqirTpk2jVatW+c4NDw/XstfMzMxwcHAgIyODWrVqERMTw+rVq/noo49o1qwZn3zySb45t2jRIl/B6Dy9e/fm9ddfp3jx4gQHB0vXrofkYGfF6MA6d9RgcbCTLDwhhBDiaZFXL0KIhxYXF0f16tUpU6YMu3btKvCYvO46np6e2Nvba2/6HBwctH1xcXHs2LGDCRMmMHr0aO3cUaNGMWrUqHvO4fZMmDzFixdn1qxZd2wvXbr0Hcsk/p0VU1CtiHHjxt31+rffh3j5PAvZAq1ateLjjz+mR48eWFtbc/r0aczMzGjcuDGhoaGMHj2a7Oxs/vzzzzuCMHk8vLzZvmspDh1zWzRbV67Dmb/CCe4QpF3jxx9/pGnTppiZmXHkyBEqVqxISkoKZcuWxczMjE2bNnHixAkAzpw5Q+nSpXnjjTewtbXll19+yXc9X19fBg4cyNGjR6lRowZpaWmcPn2aWrVqUaFCBSpUqKAtIRIPR6dTaO1cDqdyJaSLkBBCCFFEJMAihHgo06dPZ+rUqQ/8Kfm9OoJ4eXlp3XyEeJ48C9kCLVu25ODBg9pSN2tra+bNm4eHhwchISHUq1ePsmXL4u3tfdcxWjRpzOYN6yhV1YlsoLSjC4mXz9KqSWMA+vTpQ1JSEh4eHqiqir29PcuWLaNHjx68/vrr6PX6fNlr+/fvZ+TIkeh0OszMzPjxxx/zXc/e3p7w8HC6detGZmZubZBPP/2UWrVqAdCjRw+Sk5OpU6dOYT9dLwWdTqGavfUTzaISQgghxN0peUUgn3deXl5qVFRUUU9DiOdWdraRA2dSOJuSQXmb4rhUsMHUVOpgC3E3RqNK0qW05z5b4Fm6j0GDBuHu7s5bb71VJNcXQgghxJOhKEq0qqpeRT2PJ00yWIQQZGcbWRxzivF/xmmfxo993ZnOHpUkyCLEXbwo2QLPyn14enpiZWXF119/XaTzEEIIIYR4VPLOSQjBgTMpWnAFcot1jv8zjgNnUop4ZkKIl0Vem2lzc+l6c7vz58/TvXt3qlWrhqenJw0aNGDp0qWPNFaTJk343//+l2/blClTeOedd1ixYgWff/75Y801OzubMWPGULNmTa3F+MSJE+84LikpiQULFtx1nCNHjtCkSRPMzc3x8PCgS5cunD9//oHnkZSUhIuLS4H7HBwcuHjx4gOPJYQQQjwMCbAIITibklFgR5SzKRlFNCMhXjxGo0piciq7Ey+RmJyK0fhiLNEVT46qqrRv357GjRuTmJhIdHQ0Cxcu5NSpU3ccm52dfd/xunXrxsKFC/NtW7hwId26dSMoKOiuxcVzcnIeaL4fffQRZ86cYf/+/RgMBrZt28bNmzfvOO5eAZaMjAzatGlDjx49qFmzJjExMQwYMIDk5OR8xz3I/QohhBBPmwRYhBCUtymO+b+WApmb6ihvU7yIZiTEi8VoVFkbd45eMyMZErGXXjMjWRt3rsiCLKdOnaJdu3bUrFmT6tWrM3ToULKysgDYvHmz1ma9MLIaCuLu7o7BYABy3yjnFejN4+npSUxMzGNdY9y4cUyePPmxxihqGzdupFixYvTv31/bVrVqVQYPHgzktssOCgqiadOmNGvWjLS0NMLCwvDx8cHd3Z3ly5cDkJ6eTpcuXfj6669ZsGAB3t7eREVFkZSUxNGjRxkwYAAVK1bEw8MDgNDQUMzMzKhQoQLm5uZ0796d9u3bA/DFF1/g6OiIjY2NFpA5duwYLVq0YPLkyRw5ckTr8jZ48GAuX75Mw4YNqVatGr169cLFxYXAwED++usv3NzcaNmyZb6i6Z07d8bW1pbmzZtr2/z9/Zk9ezaOjo6ULFkSJycnmjVrRmpqKs2aNcPDwwO9Xq/dL+T+verRowd16tShc+fOpKena/u+/PJL9Ho9Pj4+HD16FIDk5GQ6deqEt7c33t7e7Nixo5B+ikIIIV4mEmARQuBSwYaxrztrQZa8GiwuFWyKeGaiqFy6dElL8S9XrhwVK1bUHue9ERcPLulSmtZxCHIzxD5bfZCkS2lPfS6qqtKxY0fat29PQkICR44cITU1lQ8//PCOY++V1fAw/p1t4Ofnx86dOwHYt28ftWrV0h6npaVx7Ngx6tWr99jXfd7FxcVpQY+7iYmJYfHixWzZsoWJEyfStGlTIiMj2bRpEyNHjiQtLY0ffviBUqVKcfjwYXx9fbXg1YwZM8jKymLTpk1MmDCBCxcusGzZMiD3Z/bNN9+wd+9eoqOjOXToEAsXLmT58uV4e3szb9483n//fQDefvtthgwZgl6v59tvv2XAgAHa/M6ePcv27dv54osvWLhwIX///TdLlizB1NSUWbNmMWPGDObMmQOA0Whk+/btdOjQId89/vrrr9jY2DB27FhKlixJ8eLFCQ8Pp3jx4ixdupSYmBg2bdrEiBEjyGvecPjwYQYMGMDBgwcpWbIkP/zwgzaejY0N+/fvZ9CgQQwbNgyAoUOHMnz4cPbs2cOSJUvo06fPo//ghBBCvLQkwCKEwNRUR2ePSkT09eX77h5E9PWVArcvOTs7OwwGAwaDgf79+zN8+HDtcbFixYp6es+dC9czC1yGd+F65lOfy8aNGylevDi9e/cGwMTEhG+//ZaZM2fm+5QfcjMkBg0aREpKClWrVsVozL2HtLQ0KleuzM2bNzl27BitW7fG09MTf39/Dh06BORmQfTv35/69etrb8TzNGzYUAuo7Ny5k/79+2sZLZGRkXh6emJiYsI333yDi4sLLi4u+bIc7rZ94sSJ1KpVi0aNGnH48OHCfNqeCQMHDqRevXr5Wm+3aNGC0qVLA7Bu3To+//xz3NzcCAgIICMjg3/++Yft27fTtWtXIDcYUrJkSQAiIiLw9/fH3t4eExMTatWqxdatWwFQFIXg4GDq1q3L+fPn6dmzJ9OnTyckJIQ9e/bw2muvUbp0aVJTU9m5cycjR47k0KFD9OvXj7NnzzJr1ixWrFjBxo0bOX36NGfOnAHAysoKCwsLypUrx7Zt23BwcMDOzo69e/eybt067O3tsbLK3+583bp1zJkzh08++YT09HRSUlJISEhAVVXGjBmDq6srzZs35/Tp01qtlsqVK+Pn5wfAG2+8wfbt27XxunXrpv25a9cuADZs2MCgQYNwc3MjKCiIa9eukZqaWrg/QCGEEC886SIkhABygyxuVUrhVtQTEc+sv/76i/fee4/s7Gy8vb358ccfMTc3x8HBgW7durFmzRpMTU2ZMWMGo0eP5ujRo4wcOTLf8oaXVdkS5pib6vIFWcxNdZQt8fQLusbFxeHp6ZlvW8mSJalSpYq2XOLfbGxscHNzY8uWLTRp0oSVK1fSqlUrzMzMePvtt5k+fTo1a9bk77//ZsCAAWzcuBHIXYq0c+dOTExM8o3n5+fHRx99BOQGWMaOHUtERATXr19n586dNGzYkOjoaGbNmsXff/+NqqrUr1+fV199FaPReNftCxcuxGAwkJ2djYeHxx33+bxxdnZmyZIl2uPvv/+eixcv4uX1/10ubw9GqKrKkiVLqF279l3HbNeuHaGhoRw6dIisrCzs7OwKPK5YsWLaz01VVXr37s3UqVOpWLEiwcHBmJrmvoQ0Go3Y2toSExND5cqV2bZtGyVKlABgy5Yt/PXXX1oNl7zskn/r06cP4eHhnDt3jsDAQKKjo2nXrl2++5o2bRpnz54lKiqK//73v0BuADA5OZno6GjMzMxwcHAgIyO3dpii5G81fvvjgr43Go3s3r2b4sVlaawQQohHJx9PCyGEuK+MjAxCQ0NZtGgR+/fvJzs7mx9//FHbX6VKFQwGA/7+/oSGhrJ48WJ2797N2LFji3DWzw4HOytGB9bJtwxvdGAdHOys7nPmsyMkJIRFixYBuYVRQ0JCtOyF4OBg3NzctOyFPMHBwXcEVyC3jkhWVhbnzp3j0KFD1K5dG29vb/7++2927tyJn5+ftlTEysoKa2trOnbsyLZt2+66fdu2bXTo0AFLS0tKlixJUFDQU3tunpSmTZuSkZGR79/av7OMbteqVSumTZumBTL27t0L5Aa0fvvtNwD++ecfcnJymDBhAiEhIWzZsoWLFy9iNBpJSEjg1VdfLXDsChUq4ODgwO+//65lw1y+fJmSJUvi6OjIqlWreOuttxg4cCCRkZFAbmAkb3mYv78/OTk5pKenY2pqypkzZ/D39wegQ4cOrF27lj179jBx4kR27typBekAHB0d+eKLL7RAzZEjR0hLSyMlJYWyZctiZmbGpk2bOHHihHbOP//8o2WnLFiwgEaNGmn78v4eL1q0iAYNGgDQsmVLpk2bph2Tl1ElhBBCPAzJYBFCCHFfOTk5ODo6UqtWLQB69erF999/r9UvyHszq9frSU1NpUSJEpQoUQJzc3OuXr2Kra1tEc382aDTKbR2LodTuRJcuJ5J2RLmONhZodMp9z+5kNWtW5fFixfn23bt2jX++ecfatSoob05/regoCDGjBnD5cuXiY6OpmnTpqSlpWFra3vXN6P/Xupxu4YNG/L7779Tvnx5FEXB19eXHTt2EBkZSYMGDV7IJT4PS1EUli1bxvDhw/nyyy+15TNffPFFgcd//PHHDBs2DFdXV4xGI46OjqxcuZIBAwbQq1cv6tati5OTE1WrViUhIYG3334bb29vmjRpwuXLl3nllVdo167dXdtADx8+nPfff5833niDYsWKERgYyKRJk5g/fz7vvPMOZ86c4cyZM6xcuZKqVaty+vRpmjVrpgVnTE1N8fHxQVVVKlSoQGhoKKGhoQwfPpwmTZpga2uLtbU1K1eupF+/fiQkJFC3bl30ej16vZ6xY8dy48YN4uLiWLZsGT169OD1119Hr9fj5eWFk5OTNtfatWvz/fffExYWRt26dXnnnXe0fVeuXMHV1RVzc3MiIiIAmDp1KgMHDsTV1ZXs7GwaN27M9OnTC/GnKYQQ4mUgARYhhBCPzdw8d6mLTqfTvs97LO1Uc+l0CtXsralmb12k82jWrBmjRo1izpw5vPnmm+Tk5DBixAhCQ0OxtLS863nW1tZ4e3szdOhQ2rZti4mJiZa98PvvvxMcHIyqqsTGxj5QgdqGDRsyZcoUQkNDAWjQoAEjR46kXLly2NjYaNlQo0aNQlVVli5dyty5c1FV9Z7bR48eTXZ2Nn/++Sf9+vUrrKetyJQvX/6O1sp58gIUeSwsLPjpp5/uOK548eLMmzeP4sWLc+zYMZo3b05mZibFihXDyclJq0mSJzw8nPDwcO1xXi2S7du3M3bsWN566618xzs6OrJ27dr73ktmZsE1h/KW5/z+++8AODk5sWXLljuO++677+7Ylpel8m95tYD+La/D0b+DVGXKlNEyW4QQQohHJQEWIYQQ92ViYqK1dK1RowZz586961IC8WxTFIWlS5cyYMAA/vOf/2A0GrVMhPsJCQkhODiYzZs3a9vyshc+/fRTbt68SdeuXR8owOLn58fw4cO1JRrly5cnJyeHhg0bAuDh4UFoaCg+Pj5Abp0Od3d3gLtuDwkJoV69epQtWzZfIdiXXXp6Ok2aNOHmzZuoqsoPP/zw0MWqPT09sbKy4uuvvy7UucXHx9O2bVs6dOhAzZo1C3VsIYQQ4mlT7lZw7Hnj5eWlRkVFFfU0hBDihTNu3Disra1xd3e/a5HbqKgoypQpQ3h4eL4ilLfvE0KA0aiSdCmt0JaKFfZ4QgghxJOgKEq0qqpe9z/y+SYBFiGEEEKIp8BoVFkbd47PVh8kM9uoFTtu7VzukYIihT2eEEII8aS8LAEW6SIkhBCiSJmYmODm5oaLiwvBwcH37JJSlIxGI0OGDMHFxQW9Xo+3tzfHjx9/otfcvHkzO3fufMD5qSQmp7I78RKJyakYjS/GBygvkqRLaVowBCAz28hnqw+SdCntmRhPCCGEEI9HAixCCPESeRbfhFtYWGAwGDhw4ADFihV7Zjt3LFq0iDNnzhAbG8v+/ftZunTpQ3VHepRivw8aYMnLZOg1M5IhEXvpNTOStXHnnomfr/h/F65nasGQPJnZRi5cL7j469MeTwghhBCPRwIsQgjxknge3oT7+/tz9OhRLl++TPv27XF1dcXX15fY2Fggtx5Mr1698Pf3p2rVqvzxxx+8//776PV6Wrduzc2bNwH466+/cHd3R6/XExYWpnUvcXBwYOzYsXh4eKDX67VOI3mtgd3d3WnYsGGBLYLPnj1L+fLl0ely/+usVKkSpUqVAnI77AwfPhxnZ2eaNWtGcnIyAAEBAQwbNgwvLy++++67e87r4sWLAERFRREQEEBSUhLTp0/n22+/xc3NjW3btt31eZNMhudD2RLmmJvmf+llbqqjbAnzu5zxdMcTQgghxOORAIsQQrwknvU34dnZ2axZswa9Xs/YsWNxd3cnNjaWSZMm8eabb2rHHTt2jI0bN7JixQreeOMNmjRpwv79+7GwsGDVqlVkZGQQGhrKokWL2L9/P9nZ2fz444/a+WXKlCEmJoZ33nmHyZMnA7ltYbdt28bevXuZMGECY8aMuWN+Xbp04c8//8TNzY0RI0awd+9ebV9aWhpeXl7ExcXx6quvMn78eG1fVlYWUVFRDBw48J7z+jcHBwf69+/P8OHDMRgM+Pv73/VYyWR4PjjYWTE6sI4WFMmrmeJgZ/VMjCeEEEKIxyMBFiGEeEk8q2/Cb9y4gZubG15eXlSpUoW33nqL7du307NnTwCaNm3KpUuXuHbtGgCvvfYaZmZm6PV6cnJyaN26NQB6vZ6kpCQOHz6Mo6MjtWrVAqBXr15s3bpVu17Hjh2B3LazSUlJAKSkpBAcHIyLiwvDhw8nLi7ujnlWqlSJw4cP89lnn6HT6WjWrBl//fUXADqdjpCQEADeeOMNtm/frp2Xt/1+83ocksnwfNDpFFo7l2N2mA9Tu7kzO8znsQrSFvZ4Qgghnn2KojBixAjt8eTJkxk3btxjjWkwGFi9evVjzuz/zZw5E71ej6urKy4uLixfvrzQxi5siqKEKory38Iaz7SwBhJCCPFsy3sTfnuQ5Vl4E55Xg+VBmZvnzlen02FmZoaiKNrjB6lzkne+iYmJdvzHH39MkyZNWLp0KUlJSQQEBNz13Ndee43XXnuNV155hWXLltGsWbM7jsubE4CV1f2zCUxNTTEac38uGRkZ9z3+3/IyGf7dTUYyGZ49Op1CNXtrqtlbP5PjCSGEeLaZm5vzxx9/MHr0aMqUKVMoYxoMBqKioggMDHzssU6dOsXEiROJiYnBxsaG1NRUben0i0BRFFNVVe/6glMyWIQQ4iXxPC0n8Pf3Z/78+UBuodcyZcpQsmTJBzq3du3aJCUlcfToUQDmzp3Lq6++es9zUlJSqFixIgDh4eEFHhMTE8OZM2eA3I5CsbGxVK1aVXu8ePFiABYsWECjRo0eal4ODg5ER0cDsGTJEu2cEiVKcP369fves2QyCCGEEC8HU1NT3n77bb799ts79iUnJ9OpUye8vb2pV68e/v7+1KxZk2LFitG3b18yMjKws7Njzpw5ALz55pv873//45NPPmHRokW4ubmxaNGie9bCCwsLIyAggGrVqjF16tQ7CvL/8MMP3Lx5E2vr3MC/tbU1jo6OACiKUkNRlA2KouxTFCVGUZTXFEWJVRTluqIo2YqiZCmKknjrGAdFUQ4pihKuKMp5RVF2KorSXFGUHYqiJCiK4nNrTB9FUXYpirL31jG1b517SlGUPxRFWXvr+C9vHb9ZUZTxiqIcURQlEvDLm7uiKPaKoixRFGXPrS+/W9vHKYoyV1GUHcDce/18JMAihBAviefpTfi4ceOIjo7G1dWVUaNGMXv27Ac+t3jx4syaNYvg4GD0ej06nY7+/fvf85z333+f0aNH4+7uftcsmAsXLvD666/j4uKCq6srpqamDBo0CMjNUomMjMTFxYWNGzfyySefPNS8xo4dy9ChQ/Hy8sLExEQ75/XXX2fp0qX3LXIL/5/J4FvNjmr21s/kz1UIIYQQj2/gwIHMnz+flJSUfNuHDh3K8OHDiYyMRFEUjh49SkJCAqGhoZw4cYI+ffpQrVo17TXFrl27aNSoERMmTCAkJASDwUBISMg9a+EdOnSI//3vf0RGRjJ+/Hj++uuvfAGW//znP9SpUwdHR0d69+7Nn3/+efsU5wPfq6paD2gIbAE8gIrAPKAfYARa3Dq+BjAFKA+YA92BRsB7QF7BvEOAv6qq7sAnwKTbrucGhAB6IERRlMpAsVvX8bs1Vt3bjv8O+FZVVW+gE/DLbfvqAs1VVe1W8E8ll6Kqz073iMfh5eWlRkVFFfU0hBBCvISsra1JTU0t6mkIIYQQ4gWX95rjk08+wczMDAsLC1JTUxk3bhxly5alQoUKXL9+nfPnz2NjY8Phw4dZvnw5e/bsYcaMGUyePJmvv/4af39/4uPjiYyMxM3NDUdHR5YuXcq6devo0KEDjo6O1KlTh1mzZlGnTh10Oh0ODg4kJCRgZ2fH77//Tps2bbh+/TpmZmbY29szbdo0/vrrL6ysrHj11Vfp2rUrV65cwdLSkjNnzmQC11RVLXv7/SiKYgZ8S27wJAUoB+wlN3DSHfgQKAG0vXVcXyAR6AqcIDfY8jNgd+v8y0BrYBeQBtwE4m6N8R9gOnBCVdU2iqK0BH4CrMgN9gQAp2+bnj1Q+9Y1VFVVx3MfksEihBBCCCGEEEI8R4YNG8avv/5KWtr/d4M0Go3s3r2boUOH0rdvX06fPo21tTWNGzcmMjISc3NzqlSpQokSJTh27NgdHQovXrzIp59+SvXq1VmxYgVeXl5888032n5LS0veffddrROjhYUF3bt3v6PjoaIo+Pj4UKVKFQIDAyldujTAKaCg9d49yA1k/AmMBM6TG6cwA46qqvr1reNUIK8zQya5QZbpwO/AD7fGzgEsbx1TDjCoqloHuAZU5rYatIqilAE+Ar4HfgOibp3rq6qq262viqqq5n2C9kBtNyXAIoQQotAZjSqJyansTrxEYnIqRuOLkS15N5K9IoQQQoinqXTp0nTp0oVff/1V29ayZUumTZumPc5rIlC5cmUuXrxIZmYmlSpVombNmuzdu5fGjRsDuYX/09PT2b17N/Hx8Zw9exY/Pz9mz57N7t27KVOmDIqiUKdOHSB/J8Z/u379OqdOndIeV65cOa9mXSqAoijtb/1priiKJWADXCA3gOIMVL116sp73P6GW3/uvzXuQVVVM4Es/j+Ichk4d+v7eUDpW99fI3dZUgtyl/2MI3cZUa9bxw/Ou4iiKG73mEOBJMAihBCiUBmNKmvjztFrZiRDIvbSa2Yka+POvfBBFiFeNiYmJri5ueHi4kJwcDDp6elP7Fr/biG6YsUKPv/88zuOCw8Px97eHjc3N+rWrcvPP/98z3GnTJmSb96BgYFcvXoVQCvQKIQQz6oRI0Zw8eJF7fHUqVOJiopiypQp/PTTT0yfPl3b5+7ujqqq1K5dm7p165KWlqYV5be2tiYpKYnBgwdTu3ZtDh8+TP369TE1NeXy5ctaLTxT09zYxe2dGP8tJyeHlStX4uTkRFRUFJs2beK7777L230RGKIoSiywk9wsk/mAF9AOeJXcpUEA9/pPJevWn0bgCPCZoih7/3XMv1945j3OAmYAkwEFWAAsUlW1LlAf8LpVeDceuHcRvwJIgEUIIUShSrqUprULBsjMNvLZ6oMkXXqgzEohxHMir8X6gQMHKFasWL4X8vfyIO3U/+3fAZagoCBGjRpV4LF5hRo3b97MmDFjOH/+/F3H/XeAZfXq1dja2j70/IQQ4mm5PWv2lVdeIT09nXHjxgFQpkwZFi1axLFjx6hbty4NGzYEcoMeJUuW5KOPPsLCwoIWLVrQoEEDSpUqxcmTJ9m7dy8//fQTkZGRnDx5ksuXL7Ns2TJ27drFnDlzcHV1BXKbArz33nva9Q8cOEDlypXzdTy0tbWlf//+HDp0CC8vL77//nuqV6+etztbVdWmqqq6qqrqqapqoqqqF1VVbQAsB364taQnAzirqqrLbbe+SFXVxbe+v33fVVVVa90qcnscCLq13Y7c4A3k1nKZrKrq5luP/yS3AG4a8KWqqoMURbECSquqGnJrfnVVVe0PoKrqOFVVJz/Iz0cCLEIIIQrVheuZWnAlT2a2kQvXM+9yhhDieefv78/Ro0f5888/qV+/Pu7u7jRv3lwLbowbN46ePXvi5+dHz5498fX1JS4uTjs/ICCAqKgoIiMjadCgAe7u7jRs2JDDhw+TlZV1RwvR8PBwrYvX3ZQtW5bq1atz4sQJ3nnnHby8vHB2dmbs2LFA7ie9Z86coUmTJjRp0gTIbZl++6fBQghR2JYtW4aiKBw6dOj+Bz8iRVFYunQpv/zyC7a2ttjZ2aHT6fjwww8B8PPzw9HRkbp16zJkyBA8PDwAsLe3Jzw8nG7duuHq6kqDBg04dOgQoaGhWjC6T58+JCYmatd6mI6HT9lhYKCiKAeBUsCPt+9UVTUZCAUibmXU7AKcHvei0kVICCFEoUpMTqXXzMh8QRZzUx2zw3yoZi8p9+LldOnSJZo1awbAuXPnMDExwd7eHoDIyEiKFStWlNN7JHmdLLKzs+nUqROtW7ema9eu2NraoigKv/zyCwcPHuTrr79m3Lhx/Pnnn2zfvh0LCwu+/fZbrl69yvjx4zl79iwBAQEcPnyYa9euYWlpiampKRs2bODHH39kyZIlhIeHExUVxX//+1+AOx7nuX17YmIivr6+2puY0qVLk5OTQ7NmzZg6dSqurq44ODgQFRVFmTJlAPI9lu5gQrw8TExM0Ov1ZGdnU6dOHWbPns2FCxdo27YtBw4ceOBxAgICmDx5Ml5eXvl+nzRs2FBrZRwSEsKZM2do2rQpJ06coG3btnTu3FkbIzs7W1uK82+HDx+mX79+XL16lczMTPz9/ZkxY8Z957Vz5066devG0qVLtWDKwwgNDb1jng9LUZRoVVW9HuA4hdw4hfF+xz6LJINFCCFEoXKws2J0YB3MTXP/izE31TE6sA4OdlZFPDMhio6dnR0GgwGDwUD//v21jgsGg4FixYo90rKZB/GkxgW4ceMGbm5ueHl5UaVKFd566y1OnTpFq1at0Ov1fPXVV/myVIKCgrCwsACgS5cuLF6cm+n922+/aS/aU1JSCA4OxsXFheHDh+c7/0HlZbp069aNn376idKlS/Pbb7/h4eGBu7s7cXFxxMfHF8IzIIR4UTzqkscHlRdcSU1NZfv27fz6668sXLhQ279x4ya8fRvi37w1NWs7cf16Km3atKFevXq4uLiwaNEiIDfQkZycjImJCVWqVKFr165AbmDngw8+wMfHh1q1ammZJJs3b6Zt27Y0bNiQ3r17s3HjRu2aLi4uJCUlkZqaSmBg4B3Xupu8jEOAX3/9lVq1auHj40Pfvn21zMJjx47h6+uLXq/no48+ylfTSlGUkYqi7LlV52T8rW0OiqIcVhRlDnCA3I4/zyUJsAghhChUOp1Ca+dyzA7zYWo3d2aH+dDauRw6nVLUUxPimRIaGkr//v2pX78+77//PseOHaN169Z4enri7+/PoUOHSElJoWrVqhiNuR/kpaWlUblyZW7evInBYMDX1xdXV1c6dOjAlStXgNwXv8OGDcPLy+v2woKFLu8NicFgYNq0aRQrVozBgwczaNAg9u/fz08//URGRoZ2vJXV/wdZK1asiJ2dHbGxsSxatIiQkBAAPv74Y5o0acKBAwf4888/853/oPJqsPz999906NCB48ePM3nyZP766y9iY2Np06bNI40rhHg55C15hNzaJX379sXZ2ZmWLVty48YNjh07li8LJCEh4b5ZIXkBhmXLlmFjY8Prr7/O+fPnSUhIwGhUiUy6TPSePUQfOMKFtBwatwykXLly7Nu3jwMHDtC6dWtu3rxJbGws3333HdHR0YSFhTFv3jwgNzNyyZIlWFpakpaWRq9evbRrJyYm4uLiwg8//KAFXpKSkkhISODdd9+lTp06lCxZkjfeeAMLCwsmTJigLaW8lzNnzvCf//yH3bt3s2PHjnxLnoYOHcrQoUPZv38/lSpV0rYritISqAn4kFsDxVNRlMa3dtcktwaLs6qqJ+47gWeUBFiEEEIUOp1OoZq9Nb7V7Khmb/3SBVfyuqvUq1cPDw8P7ZOrpKQkXFxc7nnumTNnHisFF+DkyZO4ubnl+ypZsiQffPDBPc+7W/2J6dOnM2fOnHueGxUVxZAhQx5r3i+jU6dOsXPnTr755hvefvttpk2bRnR0NJMnT2bAgAHY2Njg5ubGli1bAFi5ciWtWrXCzMyMN998ky+++ILY2Fj0ej3jx4/Xxs3KyiIqKooRI0Y81ftJSUmhYsWKAFrXibsJCQnhyy+/JCUlRSugePv54eHh2rElSpTIV0TxYVy7dg0rKytsbGw4f/48a9asKZRxhRAvnuzsbNasWYNerwdygycDBw4kLi4OW1tblixZQvXq1bGxsdFaIM+aNYvevXs/0PjffvstxYsXJz4+nhEjRhAdHU1yaibzd5/AqlJtXAbPwHnwz/yTks2yFSv44IMP2LZtGzY2Nhw8eIicHCOtWrXCukQJhg0bxvHjx7Wxr169ypIlS9ixYwenTp0iKiqKw4cPc+rUKf7++2/69OnD33//zd69uc12srKy6NmzJ3/99RebNm1i3rx5fP311+zfv5/o6Gi2bt16z3uJjIzk1VdfpXTp0piZmREcHKzt27Vrl/a4e/fut5/W8tbXXiCG3JonNW/tO6Gq6u4HeiKfYRJgEUIIIQpZ3if7+/bt47PPPmP06NEPfG6FChW0pROPqnLlylpmgcFgYO7cudjY2DB8+PBHGq9///68+eab9zzGy8uLqVOnPtL4d5MXqMr7SkpK0joi3B6sKqzgTmhoKI6Ojtr18u7n9sDT7ddfsGDBA499t8BZcHAwJiYmpKamsmnTJjp06ICbmxv9+vXj7NmzQG4gIi9le+HChYSEhJCSksLVq1d59dVXAejVq1e+F8N5GSFP27hx4wgODsbT01Ora3I3nTt3ZuHChXTp0kXb9v777zN69Gjc3d3zLW9q0qQJ8fHxWpHbh1GvXj3c3d1xcnKie/fu+Pn5afvefvttWrdurRW5FUK8nApa8gho/ycAeHp6kpSUBOQWep01axY5OTksWrTo30GEAl2+fJl9+/Zx4sQJqlevzowZM9DpdFxNz+JmjooxO4v46YM5MK0v108doV3XUG2Jzfjx49mekEyxVxzRvzef8q36U9XJlbNnz5KZmdtEoH79+tjZ2WFtbY2lpSXbt29n//79vPLKK1hZWWFpaYmzs7OWxWJqaoq7uzu1atUiODiYM2fOEBgYSMWKFTl06BAJCQmF/0TntkX+TFVVt1tfNVRV/fXWvhei3WTB1XOEEEIIUSiuXbtGqVKl7tielJREz549SUvLfT3x3//+l4YNG5KUlKQV1YuLi6N3795kZWVhNBpZsmQJNWvWZN68eUydOpWsrCzq16/PDz/8gImJSYHXz8jIoHv37nz//feUK1cOgHfeeYc9e/Zw48YNOnfunC/z4csvv2TNmjVYWFiwYMECatSowbhx47C2tua9994jICCA+vXrs2nTJq5evcqvv/6Kv78/mzdvZvLkyaxcubLQnru8QNXt8rKBbufl5YWX133r5j2Qr7766p4ZRLdnIy1YsOCBXlTD3QNnectmjEYjOp2OzZs33xGYCAoKYsyYMVy+fJno6GiaNm163+Krty/HeVIKmkO7du1o167dHdvzWoje7pVXXrmjRkyDBg04cuSI9vjTTz8FcgvU7tmzJ9+xoaGhd4wZGhpa4Pbbs2FuN3jwYAYPHqw9znvzBAXfnxDixVTQ/zcA5ubm2vcmJibcuHEDgE6dOjF+/HiaNm2Kp6cndnZ2973G4sWLqVOnDsOHDycsLAzIbat88eQxTNSS3Dh/HP3w2ZjbluX02p+wMFV44403sLW15bvvp5Nu6ktWagpZVy9Qyr0VJkoLMn55RyvCm1sb9v/9+7GDgwPnzp0Dctsr5/3+PXPmDCYmJnz66adUrFiRX375hWXLlt33fry9vRk2bBhXrlyhRIkSLFmyRMv88fX1ZcmSJYSEhOSrNQP8D/iPoijzVVVNVRSlInDzvhd7jkgGixBCCFHI8j4Jc3Jyok+fPnz88cd3HFO2bFnWr19PTEwMixYtKjADY/r06QwdOhSDwUBUVBSVKlXi4MGDLFq0iB07dmAwGDAxMWH+/Pl3ncv7779Po0aNCAoK0rZNnDiRqKgoYmNj2bJlC7Gxsdo+Gxsb9u/fz6BBgxg2bFiBY2ZnZxMZGcmUKVPyBWeehtsL5eXJK+IHuW/kJ0+erO3LK+KXlpZWYMHAR73+qFGj2LZtG25ubnz77be0adNGex7d3d2ZMGECAJ988gk///xzvowbo9HIn3/+yfLlyxkxYgTTpk2jZMmSmJqasnz5cm7cuEHr1q355JNPtGt6e3szdOhQ2rZti4mJCTY2NpQqVUr7JHLu3LlaNosQQognq3jx4rRq1Yp33nnngZcHRURE0L59exYtWkROTg5nz54lPT2duL176OxRHgAzKxtMczLJPrabxQtm4+bmxvjx4+nebxg3MeGVhh35Z+3PHPhvP6K/eYuLycnassq///6by5cvc+PGDdLT0/Hz88PV1ZXz58+Tnp5O69atOXHiBFOmTGH27Nla97r9+/ezYsUK3n33XT755BM++ugjTp8+zYULF7S5Z2dn5ws2QW4trTFjxuDj44Ofnx8ODg7Y2NgAMGXKFL755htcXV05evSotl1V1XXAAmCXoij7gcVAiUf/STx7JINFCCGEKGS3fxK2a9cu3nzzzTvaPN68eZNBgwZpQZLbP7XP06BBAyZOnMipU6fo2LEjNWvW5K+//iI6Ohpvb28gN5hTtmzZAuexZs0aNmzYQHR0dL7tv/32GzNmzCA7O5uzZ88SHx+v1cDo1q2b9ufdlhR17NgRyJ8u/STkBaogN0176dKljzzW2rVrqVChAqtWrQJya30UZOTIkVrWxNy5c7VP4/7t888/z5exk5mZybZt26hatSqmpqbs2LEDgG3btt3RjSI6OporV67w+uuvExQURNOmTYHcTkNz5sxh2LBhlCxZUluOBLlLfoKDg9m8ebO2bfbs2fTv35/09HSqVavGrFmzHuGZEUII8Sh69OjB0qVLadmy5QMdv2nTJlRVZfDgwdStW5cqVaoQEBBAWFgYHTt24mLiAZbPGsQrr7zCay2b4+BQVcv+S0xOZebhSDIvnyUn/SqKaTFMzIoxYcI3lCtXjlGjRrFs2TI6derEqVOn+PDDD7XsztTUVHx8fIDcrMBhw4aRlJTEwYMHcXBwwMHBgePHj/Pdd9/xyy+/0Lt3b6ytrZk3bx5ly5bFaDRy8OBBqlevDpDv/6Hu3bvz9ttvk52dTYcOHWjfvj2QG3zZvXs3iqKwcOFCDh8+zIoVKwBQVfU7oKAK7PcuUveckACLEEII8QQ1aNCAixcvkpycnG/7t99+yyuvvMK+ffswGo0UL178jnO7d+9O/fr1WbVqFYGBgfz000+oqkqvXr347LPP7nndCxcu0K9fP5YvX661xgW0jip79uyhVKlShIaG5uuocntK8b/Ti/PkfYplYmLyRNsA3y1l+1Ho9XpGjBjBBx98QNu2bfH39y/wuPstEbobf39/pk6diqOjI23atGH9+vWkp6dz/PhxateunS8QVbx4cb7++mtatGiRbwwzMzOuXr3K9OnT6dGjR759nTt3RlXVfNvc3NzYvfvOeoC3v/h9WEajStKlNC5cz6RsCXMc7KxeuiLVQoiXT0FLAh0cHPJ9OPLee+/l2799+3Z69+6db4nu7b9/C1pyqCgK//3vfwucw/fffMn333xZ4D4HOytGB9bhMwaQmd0fc1MdowPr0Nq5nHZMpUqVClza8+677/Luu+/e897g/zv/3O7MmTM0b96cJk2aULdu3TvGHjduHBs2bCAjI4OWLVtqAZbo6GgGDRqEqqrY2toyc+ZMLcDyopMlQkIIIcQTdOjQIXJycu5Yn52SkkL58uXR6XTMnTuXnJycO85NTEykWrVqDBkyhHbt2hEbG0uzZs1YvHixlrp7+fJlTpy4s5thWFgYgwcPxt3dPd/2e3VUAbSlM4sWLaJBgwaPde9FwdTUVGtpDGjBo1q1ahETE6MVDMxbwlNYvL29iYqKYtu2bTRu3Bh3d3d+/vlnPD09H2ocPz8/1q5de0cw5WkwGlXWxp2j18xIhkTspdfMSNbGncNofPpzEUI8nxQlt25InuzsbOzt7bVlnCtWrODzzz9/ItcODw9n0KBBD3VOZGQkAQEB1KxZEw8PD9q0acP+/fvve16HDh2YM2eOFpB4lGvfT0BAAFFRUUBud8bWzuWYHebD1G7uzA7zobVzuSceAK9QoQLx8fF8//33Be6fPHkyBoOBQ4cOMXXqVO2DGX9/f/bt20dsbCxbt26lRo0aT3SezxIJsAghhBCFLG9pi5ubGyEhIcyePfuOIrQDBgxg9uzZ1KtXj0OHDhVYlPS3337DxcUFNzc3Dhw4wJtvvkndunX59NNPadmyJa6urrRo0ULrNpNn165drFq1innz5uXrwjNy5Mh7dlQBuHLlCq6urnz33Xd8++23hf/kPGEODg7ExMQAEBMTo7WwPHPmDJaWlrzxxhuMHDlSO+ZR5bX3NRpVEpNTiTl1HftyFfj9999p0KAB/v7+TJ48mcaNG99xbosWLfjpp5+07J/Lly9r+yZMmECpUqUYOHDgY83vUSRdSuOz1QfJzM4NUGVmG/ls9UGSLhV9Y4eCau88bf+u7/OwNm/erLXddnV1pXnz5vlqHAhRlJYtW4aiKBw6dOiux9z+hv9udDodkZGR3LhxA2tra9avX6/VCIHcwMTChQupV68eHh4eWuHwgrIhN2/ezP/+9z9++OGHfNvatGlDmTJluHLlCgBnz55FURS+/fZb7fepiYkJhw4dJjE5ld2Jl0hMTsVoVLV/x1OnTqVmzZo0bdqUcePGUbVqVYxGIz4+PnTr1k27T1dXV+zs7HBzc8PZ2ZnOnTuTnp7O0qVLiY2NpXRpOxKTUzl2IZVrN24+UkD69k51935uFarZW5Pxz37OJcTmC66EhobeNTNGPF2yREgIIYQoZAVlo0D+lNyaNWvmKy77xRdf3HHMqFGjGDVq1B3jhISE3LMNb4MGDe6ZAXG3jip56cx5c8lzeweY29Ofy5Qpo50TEBBAQEDAXa/5tHTq1Ik5c+bg7OxM/fr1qVWrFpBbxG/kyJHodDrMzMz48ccfH+s6rq6umJiYUKOOC9R8lTINOnKuuANW1jcwNy+Ov78/p06dKnApUp8+fThy5Aiurq6YmZnRt2/ffJ98fvfdd4SFhfH+++/z5ZcFp4s/CReuZ2rBlTyZ2UYuXM+kmn3RBzieN9nZ2Zia5n+p7e/vr9XtGT16NN9///0dhaILOk+IJy0iIoJGjRoRERHx2MXL/fz8tHpXERERdOvWLV9r4EaNGvHf//6XFi1a0LlzZypXroyfnx9du3Zl6NChZGRkULx4cTw9PSlZsiSzZ89mw4YNpKenc+DAAczNzfH19WXXrl2cP3+eDz/8EEtLS8zNzSldujSHDx8GoG3HYM5dvYGJRQmcuo1hbIif9n/jDz/8QGBgILa2ttoS3bwlqZs2bQJy/0+8efMmiqJgZ2fHrFmzGDVqFO+99x5bt27FxMSEHFMLSnWZxOnIE1w7HI+3f1OuXThFhw4dtN/fBXXu27NnD5999hl//PEH6enpVK5cmZSUFIxGI3Xr1iUxMVF7Po1GI2FhYVSqVIlPP/2UzZs3Y21tna9Ol3h2KEWRgvokeHl5qfeLqAohhBBCFJbE5FR6zYzMF5QwN9UxO8znuQxIPMv3Y21tfUeNhD///JNPP/2UrKws7OzsmD9/Pvb29lSrVg2DwYCtrS2QG8zcvn07Op2O/v37888//wC5XS78/PwYN24c//zzD4mJifzzzz8MGzZM6+o1ceJEZs+eTdmyZalcuTKenp689957HDt2jIEDB5KcnIylpSU///wzTk5OhIaGUrx4cfbu3Yufnx/ffPONNt/bW5nnFbqsUaMGw4YNY9y4cRw7dozExESqVKnCZ599RlhYGBcvXsTe3p5Zs2ZRsWJFatSoQWJiIikpKdjZ2bFp0yYaN25M48aN+fXXX5k/f/5d70WIu0lNTaV27dps2rSJ119/XQtQ3Lhxg969e7Nv3z6cnJw4c+YM33//PV5eXgUGDSA3c2TevHksWbKENWvWYGlpiZWVFampqRw8eJBKlSrRpUsXkpOT2bFjB5mZmezdu5eqVatSvXp1srOzuXHjBg4ODiQmJqLT6bhx4wampqa88847tG3blqCgIKpWrcqFCxfIysqiZ8+e1K9fn7fffpsOHTrw2muvMXDQIOoOmsGRxZNJP32EnKwbWJSpTLNGPlw8e4ro6GhMTEywtLQkNTUVo9FInTp1WLp0KW+99RaTJ09m/PjxbNq0iZCQEGrXrs1//vMfSpcuzdmzZ/H19SUk9G0++GQC2RnpZF09DyqU822L+bkDnDtzisqVK9O4cWPWrl2LwWCgWLFiODo6Ymdnh5mZGRcvXuT8+fPY2NhgbW2NlZUV2dnZ1KlTh1WrVtGoUSN0Oh2xsbGUKFGCVatWUbJkSXx9fTExMcHe3p5p06bdtabYs0ZRlGhVVb2Keh5PmiwREkIIIe4jbxnI7WnGQtwr4+N5lFdE0dw09+VhXhFFB7s7l689Cxo1asTu3bvZu3cvXbt25csvv0Sn09GuXTut49Tff/9N1apVeeWVVxg6dCjDhw9nz549LFmyhD59+mhjHTp0iP/9739ERkYyfvx4bt68SXR0NAsXLsRgMLB69Wr27NmjHf/2228zbdo0oqOjmTx5MgMGDND2nTp1ip07d+YLruTJa+1dpUoVNmzYQFhYmLYvPj6eDRs2EBERweDBg+nVqxexsbH06NGDIUOGYGJiQu3atYmPj2f79u14eHiwbds2MjMzOXnyJDVr1rzrvQhxL8uXL6d169bUqlULOzs7rfPcjz/+iKWlJQcPHmT8+PH5OtJNnDiRqKgoYmNj2bJlS76MzJo1a5KUlER6ejoNGjQgPDwcOzs77e/jokWLOHLkCJmZmfTq1YvBgwdTvHhxGjRogJmZGVWqVOHYsWNYW1szbNgwKlSoQGhoKFOnTqVYsWJkZ2fzxhtvUKlSJSwtLdm1axfBwcHodLm/u3bu3InOxJTDv31J5pVzGLOzsK7qgjE7i5ioKDp16kSFChXw9/dn5syZ/O9//8PBwYFr167Rtm1bjh49CuQutzU3N2fZsmXMmjWL1NRUSpcuTe/evTl8+DB/rlhOzTc/Q2diRonqHhS3r4RqYs7lSxepUqUKM2fOpHPnzpw+fZqmTZui1+tJT09nwoQJxMXFUbduXQ4ePEhmZiYtWrSgd+/eODs7a0ufjh8/zpEjRxg5ciSzZ8/mzTffxMHBgf79+zN8+HAMBsNzE1x5mTyz+YeKoiQB14EcIPtliHYJIYR49uQV/syrTXF75X7prvLwXqQuNWVLmGNuqrsj46NsCfMinNWjyyui6FSuxHPx8zl16hQhISGcPXuWrKwsHB0dgdwldBMmTKB3794sXLhQW063YcMG4uPjtfOvXbumZcW0adMGc3NzzM3NKVu2LOfPn2fbtm106NABS0tLAIKCgoDcT/t37txJcHCwNlZm5v8H1YKDg++ouZTn9iVCX3zxBe+//77WxjsoKEjr+LVr1y7++OMPAHr27Mn777+vnb9161aOHz/O6NGj+fnnn3n11Ve1tu13u5dKlSo90nMsXg4RERFasdauXbsSERGBp6cnW7du1TKgXF1dcXV11c757bffmDFjBtnZ2Zw9e5b4+Ph8+4OCgoiOjmb8+PGkpKRQsWJFtm/fjpmZGTk5OZQsWZLixYsTHh5OjRo1UFWVTZs2oSiKtmTn9uBgXvc6gFKlSuHt7c3nn39OhQoVSEtLw9raGjMzM1JTU4mLiyMrI4OqXq05t2c12Teuk346AVQjjdt218axtbVl8ODBmJiYcP78ed58802aN29+R7Ha9u3bM2rUKJycnGjQoAFVqlShc+fObNu5mwOruqHm5HAzPQXFxJTyHs2Ij1xGxYoVyc7Opnbt2uh0Ov744w+MRiMeHh7MmTOHihUr0rRpU9asWYOiKLz77ruMHj2ay5cva8uYUlJSaNeuHZs2bWLEiBFcunSJa9euFdaPXTwhz3oGSxNVVd0kuCKEEKKoPMuFP583L1qXmuct4+NB5BVR9K1mRzV762c2uAIwePBgBg0axP79+/npp5+0jlENGjTg6NGjJCcns2zZMjp27Ajk1jHYvXs3BoMBg8HA6dOnteK5t795u1/7caPRiK2trTaOwWDg4MGD2v6CClYXJCgoiK1btz7UeY0bN2bbtm1ERkYSGBjI1atX2bx5c75PsR/mXoS4fPkyGzdupE+fPjg4OPDVV1/x22+/3bOO1/Hjx5k8eTJ//fUXsbGxtGnTRvv3lycsLAxFUdDr9dq2vA4z5ubmGAwGOnbsiKWlJVu2bGH+/PlkZ2fTu3dvDAYDFhYWd52DTqejePHi1KxZk5MnT1K+fHlu3rxJTk4OZ8+evVU8WsXV+hpq1g3MbcpiXak2ZcqWxcL0/3+n7dixg+zsbEaMGEGtWrXIyMggPT1d29+wYUOysrKA3CwfKysrXn/9ddasWYOjoyPXrlzilVfKY2ZlQxn3lmA08pZ/Ne0+ITeQqygKJUuWxMbGBktLSypVqsRHH31EYmIiU6ZMoVixYlSoUIFLly7xzz//5Ps3HBwcTGBgIF26dCmS7nLi4T3rARYhhBCiSL1oy0CK0osWrCqqtpkiV96n4gCzZ8/WtiuKQocOHXj33XepU6eO1iK9ZcuWTJs2TTsur6Dl3TRu3Jhly5Zx48YNrl+/zp9//glAyZIlcXR05PfffwdAVVX27dv30PPfvn071atXL3Bfw4YNWbhwIQDz58/XAig+Pj65yx9uvcF0c3Pjp59+KrBblRAPYvHixfTs2ZMTJ06QlJTEyZMncXR01FrOL1iwAIADBw5oy4CuXbuGlZUVNjY2nD9/njVr1twxbqVKlVBVlcWLFwNw+vRpGjVqBOR2Yfv999+1oq6nTp0iJSWF9PR0/vvf/2Jubk5KSgpZWVncvHnzjuBNnoCAABRFITY2Fj8/P6ysrEhISMDX1xdbW1s2LV+ESfolimVdo3zxbC6cOcXGjRv59ddfMRqN3Lhxg19++YUZM2awf/9+Vq9ezeLFi7XfK9OmTSMjI4O5c+cyduxYMjMzGTx4MKdOneLrr7/m1KlTvNqoAVUrvoJ18gFKWxXjVNQGLC0tOXv2LAMHDuT8+fPk5OSg1+vp1KkTDRo0oGHDhowcOVKrwZKXsRMXF0eVKlW0AI2trS1r167l3XffpVSpUlqmTl4XO/FsepYDLCqwTlGUaEVR3i7oAEVR3lYUJUpRlKjk5OSnPD0hhBAvg7xlILd7npeBFKUXMVj1PGV8PM/S09OpVKmS9vXNN98wbtw4goOD8fT0pEyZMvmODwkJYd68efm6bU2dOpWoqChcXV2pW7eutjTnbjw8PAgJCaFevXq89tpr+ZbhzJ8/n19//ZV69erh7OzM8uXLH+g+8mqw1KtXj7lz5/L1118XeNy0adOYNWsWrq6uzJ07l++++w7I/eS/cuXK+Pr6ArlLhq5fv54vS0CIhxEREUGHDh3ybevUqRMRERG88847pKamUqdOHT755BM8PT0BqFevHu7u7jg5OdG9e3f8/Py0c2/PprKysiIyMpJBgwZRsWJFPvnkE7KzsylVqhRvvfUWa9eupVSpUqxcuZIePXoAUL58ebp3746TkxOrV6/mf//7H0ajkVWrVjFy5EgAvL29CQgIwM/Pj4yMDMaMGUNkZCR169YlKyuLhg0barVZ6tZxongxU86c+ofixYuj1+t566230Ol0jB49moEDB5KVlUXlypUJDAxkxYoVlChRAoCqVatiYmKCmZkZVatWRVEUypUrx65duxgxYgSdO3cmMjISE1SuXjxP6vVrpKenU716dSpUqICiKPz++++UKlUKT09PPv74Y44fP86UKVMYP368FrTJWxpoZ2fHf/7zH+35i42N5dy5c7i6unL48GG2bNmCTqfj9ddfZ+nSpbi5uWndmcSz45ntIqQoSkVVVU8rilIWWA8MVlV1692Oly5CQgghngSpwVJ4nuUuNUIIIYpWQd3CABwcHOjWrRtr1qzB1NSUGTNmMHr0aI4ePcrIkSPp378/gLa8KTMzkw4dOjB+/HiSkpJo1aoV9evXJzo6mtWrV/Pqq68SFRVFmTJlmDNnDpMnT0ZRFC2gebugoCB69epFp06d8m0fOHAgrVq1IigoiNdffx17e3utqG1SUhK7d+/G1taW9evX07x5c0xNTXF0dKRXr14MGTKEDz74gLVr16LT6ejbty+DBw/GwcGBXr168eeff3Lz5k1+//13nJycntwT/pRJF6Eipqrq6Vt/XgCWAj5FOyMhhBAvo2dlGYiiKLzxxhva4+zsbOzt7Wnbti0AK1as4PPPPwdg3LhxTJ48GYDQ0FAtRbtPnz75inwWhkmTJt11n4ODA3q9Hjc3N/R6Pfu2b7hvzZLb51uQZcuWPfY9bN68WXvehBBCPBtu3LiBm5ub9rVo0SJtX5UqVbSuOXn/T+zevZuxY8cCsG7dOhISEoiMjMRgMBAdHa3VOEpISGDAgAHExcVRtWpVbcy4uDg+/fRTNm7cyL59+7RMsdsNHDiQt956iyZNmjBx4kTOnDkD5Gbq5GWPHDx4kEWLFuHi4sLu3bvp2bMn3t7e3LhxgyFDhvD111/j7++PwWBg+PDhzJgxg6SkJAwGg9YpLE+ZMmWIiYnhnXfe0f4fF8+XZ7KLkKIoVoBOVdXrt75vCUwo4mkJIYR4SeUtAynKLAsrKysOHDjAjRs3sLCwYP369do6ccj9lC2vy8nd/PLLL4U+r0mTJjFmzBig4E8fe/XqRdmyZalfvz4tW7bk+PGkh+pSs3//fnr27AnAP//8w82bN7Gzs6NGjRps2LAh37HZ2dmYmj74S5vAwEAWLFiAra3tA58jCs+L1FFKiGdNYf77ut9YhXUtCwuLu9ZGyvv/Ta/Xk5qaSokSJShRogTm5uZcvXqVdevWsW7dOtzd3YHcbl8JCQlUqVKFqlWrasvqbrdx40aCg4O1JYalS5e+45hWrVqRmJjI2rVrWbNmDe7u7hw4cAB/f3+mTJlCfHw8jRo14sqVK0yfPp0mTZoQFhbG0KFDsba2Zs+ePWzevFnrHga5Hc369++v/X91+3XzinJ7enpqncTE8+VZzWB5BdiuKMo+IBJYparq2iKekxBCCFGkAgMDWbVqFZC7br5bt27avvDw8DtaS/5bQEAAectp165di4eHB/Xq1aNZs2YApKWlERYWho+PD+7u7lpdifDwcDp27Ejr1q2pWbOm1jJ21KhR2ieOt38Cd7vQ0FDefPNNrl27RqlSpdDpFHRpF+kT9KpWs2Ty5MmMGzfujnNHjRpFSEgIRqOR5s2b4+vri6qqKIrCxYsXOXbsGAEBAQwbNgwvLy++++47/vrrL9zd3dHr9YSGhmrtc9euXYuTkxMeHh7ai9bVq1djZmZW4D2LJ+tF6yglxLOkMP993W+sp/VvOa+zjk6ny9dlR6fTkZ2djaqqjB49WuvsdfToUd566y3gwTt73U3p0qXp3r07c+fOxdvbm61bt1KxYkWuXr3K2rVrady4Mf7+/vz2229aEdrHvU/pAPb8eiYDLKqqJqqqWu/Wl7OqqhOLek5CCCFEUevatSsLFy4kIyOD2NhY6tev/0jjJCcn07dvX5YsWcK+ffu0bigTJ06kadOmREZGsmnTJv6PvfMOi+J62/BNky427AWw0ZZdUBBEFMUuFuwdNUaNvQdjFE2IGjH2GNTYYo/dGHvBrggKiIgdewHsNIE93x98O2EFFI35Rc3c18WV7JRzzpyZHXfeed/nGTNmDMnJ2Q4/kZGRrF+/nvPnz7N+/Xpu377NtGnTpDeOq1evzrMve3t7SpcuTb169XBzc8Pe3p6mTZty+/ZtAMLCwpg3bx4LFy6kdu3aPHv2DICkpCS2bNnChQsXiI6O5ttvv6VkyZLUrFmT4OBgihQpwpMnT4BsN5nExEQGDRpEhw4dKFq0KJaWluzatYtRo0ZRp04d/Pz8ePXqFa6urty/fx/ILmEaP348CoWCFy9e4OTkRMeOHfHx8SE1NfW95lamYHxujlIyMh8TH/L79ba2PpbvcpMmTVi6dKmURXn37t3/t2vOnwYNGrBhwwaSkpKAbMvq1zl48KBk3fzixQuuXbtGxYoVAXB3d2f27NlSgGXGjBlaIr8aXnf9adSoEQsXLpQCKHn1K/Pp8lEGWGRkZD5+7ty5Q+vWralatSqVK1dm2LBhvHr16t8elhbp6ek0bNgwVx3v1q1b0dHRkWpzIdtO0M7O7q1tNm/enKdPn2oti4+Px9jYGJVKhb29PT179iQjIwPQzhjISX56GfmRn3ZGfu3nR2hoKCdOnJD6zKlnYWVlRWJiYr77Pn36lAULFhSoHzMzWbD0n8DJyYn4+HjWrl1L8+bN37udU6dOUbduXaytrYG/0pP37t3LtGnTUKlUeHt7k5aWxq1btwDw8fHBwsICIyMj7O3tuXnzZoH66tWrF6NHj+b8+fMsXbqUo0ePsnv3bsqWLQuAra0tAwcOpH///nz33XecPXsWQOrriy++YPPmzZiYmOTbR5s2bQC4dOkSlpaWXL58mY0bN7JmzRqioqI4c+YMjo6OXLlyhevXr2NjYyPtGxoayi+//EJcXBynTp2iVKlSGBgYsGnTpnebVJl34nN0lJKR+Vj4kN+vt7X1Ift6XYMlICCgwPs2btyYrl274uHhgUKhoH379m+1MnZwcGD8+PHUq1cPpVLJyJEjc20TERFBzZo1cXJywsPDg759+0qOYl5eXmRmZlKlShVcXFx4/PhxngEWJycn9PT0UCqVzJo1i759+1KxYkWcnJxQKpWSFbbM58FHqcEiIyPzcSOEoG3btnz11Vds27aNrKws+vXrx/jx4wkODv7H+y+ozsK5c+cActXzrl27lsKFC7Ny5Urq1q37Tn3v3Lkzz+WVK1cmMjKSrKwsGjVqxO+//55vyQQUTC8jJx9KOyM0NFQr+LF161Z8fX2xt7d/676aAMvAgQM/yFhk3o9WrVoxevRoQkNDpbduHwohBJs2baJ69epay0+fPq2Vkv0+qcuVK1fGzMyMDh060KZNGzQuhs+ePWPFihUkJiayadMmKYCpr69PWFgYBw4cYOPGjcyfP196a/g6r6d/N2rUSKum3cHBAWNjY/T09OjSpQtbt27VOuZffvmFAQMGcOnSJQB+/PFH4uPj3+n4ZN4Njf35645Ssv25jMzf50N+v97W1ofsKysrK8/lOe/HvXr1olevXnmuGzZsGMOGDcu1f0xMTL7t+fv74+/vn++YxowZI9lDv84XX3whlSEZGBhIGZ8aNNk0BgYGHDx4UGvdzJkzmTlzZr7jqlmzJqGhofmOS+bjRc5gkZGReWcOHjyIkZERvXv3BrIftmbNmsXSpUtJSUmhRYsWREdHA+Ds7Mx332VrVE+cOJHFixcTGhqKt7c37du3x9bWlm7dukkPWxEREdSrV48aNWrQpEkTKZX/dZ2FnDx+/Jg2bdrg5OSEu7s70dHRPHr0iO7du3PmzBlUKhXXrl0Dsv+x27dvHxkZGaxYsQKVSiWVAiQlJeHi4oKDgwPNmjXD3t5est5zcHDA2dmZkiVLSlkeq1atws3NjebNm3Pv3j2ysrLQ09PDzc2Nu3fvSm36+/vj7OxMw4YNefjwIY8fP8bFxYUSJUrg7u7Ow4cPARg8eDCWlpZ4e3tjY2NDYGAgCoUCAGtraypVqkSdOnWoX78+lSpVwsXFhQsXLrB06VKqVatG4cKFCQsLY9u2bRgZGdGqVSsUCgVGRkZER0cTHx9PSEgIs2bNIiQkhGvXrrF9+3bGjBmDSqUiIyOD8+fP4+7uTtmyZSlcuDB2dnbMnj0bb29vmjRpQmxsLEZGRnTv3p22bdtSokQJypYti5OTk6TkL/PP0qdPH61r431wd3fnyJEj3LhxA/grPblJkybMmzdP+j5qgpRvwsDAQMrYehOPHj3CwMCAQYMGcf36da5evcrDhw/55ptvSElJYeDAgfzxxx/SD+yXL1/y7NkzmjdvzqxZs4iKigKyRRBfvHiBvr4+avX/p6T/v85K9erVSUxMlII/K1euRKlUYmpqSnx8vHQf0ARSAOrXr8+KFSukANK5c+fk2vf/AVbFTd/qKCUjI/N+fMjv19vakr/LMjLayBksMjIy78yFCxeoUaOG1rLChQtTsWJFrl69KlnXVapUCX19fY4fPw7A0aNHCQkJ4f79+5w7d44LFy5QtmxZPD09OX78OLVq1WLIkCFs27YNS0tL1q9fz/jx41m6dCkAr169yrMcJjAwEGdnZ7Zu3crBgwfp2bMnkZGR/Prrr8yYMUNLuX3btm34+flx7do1Hj9+zJIlSzA2Ngay35ifPXuWtm3bEhsbS1xcHF9++SWPHz9m165dVKlSBUtLS5KTk0lISGD9+vUcP36cu3fv4uLiwurVq+nYsSOnT5+WgkAWFhbMmjULV1dXfv31V6ZPn86rV6+oWLEitWvXpm3btnTt2pXRo0dTokQJUlJSCAkJoUSJElSqVImxY8dy5swZEhIS2LNnD+XKlcPOzo4JEybwzTffYGNjw+nTp4mNjaVChQr06dOHpk2bYmFhgaWlJaNGjWLy5MnSnAwYMEByelm8eDGA9DCdkJDA4MGDGTZsGPPmzaNnz568ePGCxYsXY2xsTP369TEwMODLL7/kxx9/5KeffqJo0aLs2bOHAwcO0Lt3b44cOfLOWUEy70b58uUZOnTo32rD0tKSRYsW0bZtW9RqNSVLlmTfvn1MmDCB4cOH4+TkhFqtxtraWuv7kxf9+vXDyckJFxeXPNcvX74cfX19li5dypgxY2jXrh2tWrVi2bJl1KpVi5cvX0rBouXLl0v7vXjxgtatW5OWloYQgpkzZ3Lo0CE8PT0JDg7m4cOH7N6drX9/4MABAKmkaNmyZSgUClxdXWnVqhVLlizhl19+oXnz5ty/f18rhXvUqFF8/fXXXL16FQcHB6ytrfH29v4bsytTEDT25+/iKCUjI1MwPuT3621tvW297BYm819DDrDIyMh8cLy8vJg7dy7W1ta0aNGCffv2kZKSwo0bN6hevTr379/Hzc2N8uXLA6BSqYiPj6dIkSLExMTQqFEjIDtVtEyZMlK7nTp1yrO/Y8eOSXoJDRo0ICkpiefPn+e57dq1axk2bBg//PADjRs3Zu3atVKwqHDhwkB21olG7+HcuXMUKlSIrl27YmJighCCu3fvcvbsWSIiInB1deXVq1c8ffqUsWPHMmTIEFq0aIGTkxOQ/WZ98ODBpKSk8OrVK6ytrXn48CFdunTh1q1bNGjQgNTUVNLS0gCoXbs2W7duJSAggKysLBo0aMDx48cpUaIEhoaGUprr/Pnz+f3333n48CHVq1dHX18fR0dHYmJiOHHiBMbGxhQrVoyjR4/Svn17pk6dmmtORowYQUxMDL6+vrRv356KFSvy7NkzUlNT8fPzw9/fnw4dOtC2bVvWrVtHw4YNOXbsGAqFAgcHByIiIjhw4ABPnz6lTp06ZGVlceXKFTnA8g/xuv0xZGd2aYIBOdOmczry5Axa5Ew3btasGc2aNdNqz9jYmIULF+bq5/WU7JxBlx9//JEff/wRyHZz0HyvAUaOHMnz588xMzNj2LBh1K9fn5UrV0puDwEBAZw8eRJ/f3+2bdtGixYtKFGiBO3btweyBXBzcujQIWxtbaUAaMeOHdHT09PSZ7G3t6dTp07Mnz9fOmZXV1dJyLdr164sWLAAXV1drKysMDY2ZsqUKURHR0vfr7dpIsl8GD4G+3MZmc+VD/n9eltb+a3XOAxpRHA12S1NHUrLQRaZzxY5wCIjI/PO2Nvbs3HjRq1lz58/59atW1SpUgV9fX3Cw8OxsbGhUaNGJCYmsnjxYq2sl7z0HIQQODg4cPLkyTz7/bs2e48fP+bgwYOcP3+ehw8fcvHiRQwNDSXdGB0dHem/mjIFIQQ2NjasWLGCmjVrYmVlRbVq1YiIiMDf35+pU6cSHx+Pr68vMTExJCYm4unpyfbt22nVqhVXrlxhwoQJjBo1itDQ0DytaHNSs2ZNfv/9d9q2bYuOjg4VKlQgIiJCWi+EoFKlSvTt25fRo0fj7e0tWebWrVuX8PBwDAwMMDc3Jzw8XDq+qVOn/q25AyhUqBDwl0Wi5iF57dq1zJgxg5o1a/7tPmQ+bTQlO/lx7NixXMs8PDy4fPmy9DkoKCjf/XMGi2xtbaVSxJz7vR4MguzgaV6ZOJp69xIlSmjV6I8ePfqNxyEjIyMj83bycxiyLW0uB1ZlPltkDRYZGZl3xsfHh5SUFH777TcgO9Nk1KhR9OrVCxMTEwoVKkSFChXYsGEDHh4eknXd2zIbqlevTkJCghRgycjI4MKFC28dj5eXl2QRGxoaSokSJaRslJxs3LiRHj16cPPmTRo1asS6deuwtrbm6NGjWtsplUoSEhIAqFGjBnFxcVIZjcYpycfHh40bN0oWgJmZmdy8eZMSJUowbdo0KaCRmZlJyZIlAVixYoU03lOnTknjNTExwcjICIDixYujp6fH999/j4WFBQCenp4kJSWRnp6Oo6Mj165dk3RgsrKypIyDIkWKkJycjJeXF/Xr1+fq1atcunSJxMREaU5etwrM+VlXV5ciRYpgZmbG1q1bWbp0KbVr12bLli1YWFhgYmKita/GElETjCqIJaKMNmq14HrCS05dT+J6wkvUavFvD0lGRkZGRuaDILuFyfwXkQMsMjIy74yOjg5btmxhw4YNVK1alWrVqmFkZMSUKVOkbby8vChZsiTGxsZ4eXlx586dPK3rclKoUCE2btzI119/jVKpRKVSceLEibeOZ9KkSURERODk5ERAQIAUyHidtWvX4ufnB2S/5R4wYABXr15l5cqVWtu1b9+ejIwM7O3tefjwIUWLFqVbt244ODhIDif29vYEBQXRuHFjmjZtys2bNyVB3jZt2pCSksLRo0exsrKiV69e0rFduHCBSZMmER8fz7p16wgICJAsZjV06tSJVatWSQEWV1dXihcvTteuXenZsyceHh6sW7cOJycnzp07R0pKCs7OzoSEhCCEoG7dukyaNAk9PT2SkpIYN26cNCctW7Zky5YthISEcP36dTp37kxwcDDOzs5kZGQwb948Fi9eTGJiIvPmzePAgQP07dsXMzMzihQpgqenJ7179+bixYuSJeLZs2fp3LlzgSwRX0dPTw+VSoVSqcTFxaVA5/vfZvbs2aSkpOS7Pj9LbQ0aq2xN6rT/0jCGrj2H/9Iwdl948LeCLPHx8fnaPb6+bvny5QwePPi9+snKytKy0lSpVJQoUSLfMr5/E29v77fqyMjIyMjIfHg0DkM5kd3CZD53dDRvZT91atasKfISv5SRkZF5V7KyssjIyMDIyIhr167RsGFDLl26JJXI/Bu8fPkSMzMzUlJSqFu3LosWLcpXVPRTQiO4C7Bnzx6mTJnC4cOH/+VRvRkrKyvCw8MpUaJErnUaJ6k3MWnSJMzMzGjrPwD/pWG5rC1X9HHLlTpdUGvy0NDQXMLO+a1bvnw54eHhklZJXhRUnFCjq7Rr1y4cHR3fOk4ZGRkZmc8fWYNFJic6OjoRQojPvp5czmCRkZGReY2UlBTq1KmDUqnEz8+PBQsW/KvBFch2alGpVLi4uNCuXbvPIrjyOs+fP6do0aJAttbMmDFjcHR0RKFQsH79eiA70OTj44OLiwsKhYJt27bl2dbu3btxcXFBqVTi4+MD5G3nDdkBjz59+kj22HPnzgUgOTmZFi1aoFQqcXR0ZP369cydO5d79+5Rv3596tevD2QHiUaNGoVSqeTkyZN4e3tLblevjyOnVXbTeh4kXo0i/ckD4paMIWZeP6IWjSL6UraVsCbLqlatWpLOjob4+Hi8vLxwcXHRyvwJCAjg6NGjqFQqZs2apbVPXuvu3btH06ZNqVq1qlYfe/fuxcPDg2oOTrj5tGDQ8hP5ZtgIIfD395fOF2S7+jg7O6NQKOjTp49ko5zfchkZGRmZzw+Nw9CKPm7M7eLMij5ucnBF5vNHCPFZ/NWoUUPIyMj8N8nKUotrj16Ik9cSxbVHL0RWlvrfHpJMAdHV1RVKpVJUr15dFC5cWISHhwshhNi4caNo2LChyMzMFA8ePBAVKlQQ9+7dExkZGeLZs2dCCCESEhJE5cqVhVqtfb4fPXokypcvL65fvy6EECIpKUkIIcTgwYPFpEmThBBCHDhwQCiVSiGEEIGBgcLDw0OkpaWJhIQEUaxYMfHq1SuxceNG0bdvX6ndp0+fCiGEqFSpkkhISJCWA2L9+vXS53r16okzZ87kO47AwEARHBwsrj16IepMOyAsqrsL67ZjhGvQPlGl3WjRsGkLIYQQ/v7+okWLFiIzMzPXvCUnJ4vU1FQhhBCXL18Wmn8DDx06JFq0aJHnXL++btmyZcLa2lo8ffpUpKamiooVK4pbt26JhIQE4eXlJc7feCDqTDsgyjf+QpRt0FO4Bu0TdaYdENcevdBq96effhLNmjWTzkNqaqooX768uHTpkhBCiB49eohZs2blu1xGRkZGRkbm8wcIFx9B3OCf/pMzWGRkZCQ+RcHNf0LH4lPkwYMHdO7cmcqVK1OjRg2aN2+u5czyT9CrVy/JTeptuiP5YWxsTGRkJHFxcSxbtgxXV1dUKhUDBgzg0qVLZGVlUapUKerVq8eZM2cQQvDNN9/g5OREw4YNuXv3Lg8fPgSyM0kATp06Rd26dbG2tgagWLFiQLaDTY8ePYDcdt4tWrTA0NCQEiVKULJkSR4+fIhCoWDfvn18/fXXHD16VNLEeR09PT3atWuXa3l+49BgVdyUcc3tSL4dSzFlAwz1dfnpmyGcO3NK2qZDhw55lhxlZGTw5ZdfolAo6NChw3vNPWSLNVtYWGBkZIS9vT03b97k1KlTxMbG0rZ5QyJmf0niuX28epotXvy6OGFUVBSzZ89m2bJlkgvXpUuXsLa2plq1agD4+/tz5MiRfJfLyMjIyMjIyHwuyDbNMjIywKdbJytbAGZnIvr5+eHv78+6deuA7Affhw8fSg+zb6Kg+h5v4tdff/1b+wO4uLigq6vL3r17mTp1KgqFIldp1urVq0lISCAiIgIDAwOsrKxIS0v7233nZRterVo1zp49y86dO/n222/x8fFh4sSJufY1MjJ6q+5KXmhSp82N9JndSUXZYmaUK6x9vPlZk8+aNYtSpUoRFRWFWq2WXKjelfzs0hs1asQPcxfnqRGjESdMTU2lW7du/PLLL5QqVeq9+i8oenp6KBQKMjIy0NfXp2fPnowYMQJd3X/mPdEPP/zAhg0bADh//jwKhQKAPn36cPbsWXx9fWnfvv0/0reMjIyMjIzMp4ucwSIjIwPkH6iIT0r+l0f2ZmQLQDh06BAGBgYMGDBAWqZUKvHy8spXyyQ0NBQvLy9atWqFvb09oaGheHt70759e2xtbenWrZtkTR0REUG9evWoUaMGTZo0kdyScpJTd0STSQLZ1ti9evUCYMOGDTg6OqJUKvO07L52LVt7pHjx4nh5ebF+/XqysrIwNTXlyJEjuLm5cfjwYaKjozEwMGDNmjXcvHmTpk2b8u2330rtuLm5sW3bNipXrkyjRo1o1KgRGzduxMvLi+DgYOrVq0e1atV49uwZycn5X9/37t3DxMSE7t27M2bMGM6ePQuQy+o6P9zd3Tly5Ag3btwAsjVgXt9fV1eHOp6e3Ajbh42lGWvXrnmr2xbAs2fPKFOmDLq6uqxcuVKyyn7T2N5l3MePHyfzyX3GNbdDX51OWuIdKehqVTw76DN69Gjq1atHixYttPavXr068fHxXL16FYCVK1dSr169fJcXBE2m04ULF9i3bx+7du1i8uTJBdr3fRg/fjyRkZFERkZKfUdGRjJ06NB/rE8ZGRkZGRmZTx85wCIjIwN8uoEK2QIQYmJiqFGjRp7rNm/eTGRkJFFRUezfv58xY8ZIAZKzZ88yZ84cqZTo3LlzzJ49m9jYWK5fv87x48fJyMhgyJAhbNy4kYiICPr06cP48ePfa5zfffcde/bsISoqiu3btwPZWRAam9/Bgwejp6dHjRo1+O6773j06BFKpZK0tDSmT59O6dKl8fLyIjExEYVCQUBAAGXKlGH37t2UKVNG6ufo0aPY2dlhbm7O3bt3CQ0NBbIfmtevX09CQgLFihXj22+/feOxnD9/Hjc3N1QqFZMnT5aCOP369aNp06aSyG1+WFpasmjRItq2bYtSqZQsjDVW2SqViqNHjzJv3jyWLVuGk5MTK1euZM6cOW+dy4EDB7JixQqUSiVxcXFSpouTkxN6enoolcpcIrdvWvf6uJcvX063bl0J6NaEx2u/poedvpY44b1791iwYAEHDx7Usmru1q0bRkZGLFu2jA4dOqBQKNDV1WXAgAH5Ln9XSpYsyaJFi5g/fz5CCLKyshgzZgyurq44OTmxcOFCIH9B5Pj4eOzs7Pjyyy9xcHCgcePGpKamvtMYjhw5Qu3atbGxsZHK5N4UzKxXrx6tW7fGxsaGgIAAVq9ejZubGwqFQgos/vHHH9SqVQtnZ2caNmwolb4dPnxYml9nZ+d3tkKXkZGRkZGR+R/yb4vAfKg/WeRWRubvoRHcdA3aJ/3lJWj5sZGVpRZ/Rt+Txl5n2gHxZ/S9/5TQ7Zw5c8Tw4cPzXDd8+HCxZMkS6XP37t3Ftm3bxKFDh4S3t7e0/NChQ6Jhw4bS5wEDBoiVK1eK8+fPC3Nzc6FUKoVSqRSOjo6iUaNGQohsEdYNGzYIIf4SdhVCCFNTU6mdDRs2CH9/fyGEEP379xcNGzYUixYtEomJibnGeuPGDeHg4JBreX7tacRohRDi2bNn0nbDhg0TS5culfbx8/MTGzZseOOxyHzc5LwGNFhYWIgHDx6IhQsXiu+//14IIURaWpqoUaOGuH79er6CyDdu3BB6enri3LlzQgghOnToIFauXFngvv39/UX79u1FVlaWuHDhgqhcubIQIn9h5kOHDgkLCwtx7949kZaWJsqWLSsmTpwohBBi9uzZYtiwYUIIIR4/fiwJBS9evFiMHDlSCCGEr6+vOHbsmBBCiBcvXoiMjIz3mUIZGRkZGZl/FWSRWxkZmf8SGsFNTTbI6+UAHysf0gJQT09P6238tGnT3rj99u3b890mZ5lMTlJTU6lXr55U0pGT9xWNdXBwICIiokDbamjWrFkufQ9DQ0MmTpzI/v37tfQ4HBwcpBKJ8+fPs3fv3je2rRE7BSR9lClTphASEkJQUBC3b9+mXLlyJCUlFWisr7d3+PBhrly5kmvd23ifY9GQ83zu3LmTatWqcfPmzQL3/b9mzJgxODg4MGbMGK3loaGhkqUzaF9z/wbLly/n3r170uec172VlRWJiYlvbWPv3r389ttvFCpUiBo1apCUlMSVK1feKIhsbW2NSqUCoEaNGsTHx7/TuNu0aYOuri729vZSm8eOHaNLly7o6elpCTMDuLq6UqZMGQwNDalcuTKNGzcGQKFQSH3fuXOHJk2aoFAoCA4O5uzZs3Tu3JkTJ07QuHFj7O3tOXv27Bv1kmbPnk1KSor0Ob/70N8970+fPmXBggX5rtfcS5VKpZaN+L1792TtGhkZGRmZzxo5wCIjIwN82EDF/xpdXR1sLM1wtymOjaXZe485p9ZCZGQkAQEBb9y+VatWb93mdZYuXUrbtm3fKor666+/Ym9vX6A2GzRoQHp6OosWLZKWRUdHc/ToUS0tk4SEBEnLJD++++47GjZsKH2uXr06CQkJnDx5Esh2r7lw4cIbx1OqVCkuXryIWq1my5YtQHaA5dq1a9SqVYvvvvsOhULB7du3C3R8r7dXvXp1pk+fjqenpyTqu3r1aml7T09PNm3ahFqt5uHDh1KJ0Pscy+scOHCAoUOHsmvXLipVqvRO+/5dMjMzC7ztokWLiI6OJjg4WGv56wGWD0leQcO38XqApaDX/fXr19HT06NkyZIIIZg3bx5ly5YlNDSUGzdu0LhxYy1B5MjISEqVKiUF/PIS930Xcu4vxNsdy3Jur6urK33W1dWV+h4yZAiDBw/m/PnzhISEEBERgbe3N0lJSZw6dYpGjRrRoUMH4uLi8u3n9QDLP0FmZuZbAyyae2lUVBRTp05l3LhxAJQtW/ZfDejJyMjIyMj808gBFhkZGYkPFaj43LCysiIwMFDSctA84CxfvpzBgwcDcOPGDTw8PFAoFFqCq6+zevVqWrduDWQ/mA0ePJjq1avTsGFDHj16JG2nEY3NysqiV69ekq6DRjtj8eLFuLq6olQqad++PWvWrGH//v2Ym5tTrFgx6tWrR9euXSlatKgk1lqtWjVJywQgNjYWBwcHfHx8ePr0KaD9ZjsqKgonJycKFSpE+/btKVy4MCqVioCAAGbMmCGN1dHRUXpwbdOmDWq1GqVSSflK1pgWKUF4eATJycnY2dlRpEgRHB0diYqKolGjRrRo0YIxY8ZQqVIlXF1defbsGYCW6G5qaipubm54eHhQpkwZSpUqxf79+/npp5/4+eefUSgU3L17VxpPu3btKF++PPb29nTv3h0XFxcsLCwoVKgQGzdu5Ouvv0apVKJSqfIMNnh7e1OxYkWtB+e0tDRMTEz48ssv2bFjB5UrVwZg1apVkk5L//79mTFjBra2tlhbW2NqakrJkiVp164dL1++lK6lsWPHolAocHNzkwRfExISaNeuHa6urri6unL8+HEAJk2aRI8ePfD09JQspjWIfDQ/dHR0eP78OWZmZri7u5OSkoKVlRVnz54lJCSEsWPHSvovkLeeCEBwcLCkaxIYGJjn9WxmZsaoUaNQKpWcPHky13xogi5mZmaMGDFCut4SEhLYuHEj4eHhdOvWDZVKRWpqqpZYck4yMzOldnv27En//v0ZPHgwOjo6NGnShF9++UUKtNjb2+Pg4MDly5cpWbIkL168wNPTk5s3b+Ln58fFixeluX39Oo6Pjyc5OZkWLVqgVCpxdHSUAiAasec//viD77//PpfY87sGM1/n2bNnlCtXDoAff/xR0qi5du0aCoWCOXPm4OXlxcaNG/H19ZX2Gzx4MMuXL2fu3Lncu3eP+vXra+kDjR8/HqVSibu7u5RtA7B//35q1qxJtWrV2LFjB0C+ejavi2IHBARw7do1VCpVriyp13n+/DlFixYFsvVvHB0dgez7Z9u2bWnatClVq1Zl7Nix0j5mZmZ5jvttQtkyMjIyMjL/Ov92jdKH+pM1WGRkZP4uurq6kj6HUqkU69atE0IIUalSJTF37lwhhBA///yz+OKLL4QQQixbtkwMGjRICCFEy5YtxYoVK4QQQsyfPz9PzYj09HRRqlQp6fOmTZskzYa7d+8KCwuLXJom4eHhWtooT548EUIILQ2T8ePHS+Pz9/cXnTp1Emq1WmzdulWYm5uL6OhokZWVJVxcXCTdCUCsWrVKCCHE5MmTpePQ6KqkpqaK8uXLi+vXrwshhOjcubNo0aKFEEKIwMBAERwcLPXv4OAgbty4IYQQIiEhUfwZfU94fL9TGJe0ErUmbBZ/Rt8TgFAqlSIlJUUIIYSRkZFQKpXCxcUlX92KwoULi9u3b4usrCzh7u4ujh49KvXZsGFDER4enmuO1Wq1yMrKEi9evJDmycbGRty/fz/XtvlRr149oVAopP6ePHkiAAGIqKgoabvY2Fjh6+sr6cDUrVtXKBQKcfXqVeHl5SUeP34spk6dKiZNmiQmT54shMi+loKCgoQQQqxYsUKa0y5dukj93bx5U9ja2kpz7eLiIs1bTvLT/DA1NZWuv65du4qffvpJVKpUSSQkJIjAwEBRqFAhqY389ET27NkjvvzyS2k+W7RoIQ4fPpxrDIBYv359nvPx1VdfSd+J/K63nNo9r3/WjDk2NlYAwsnJSdjb24vixYuLTp06iaysLCGEEFlZWWLcuHHCwMBAlClTRnh7e4sZM2aIbt26CXd3d1GsWDGhUqmEra2tWL16tbCzsxMODg7SdRwcHCwCAwOl63jjxo2ib9++0phMTU3Fq1evhIeHh3j06JHw9/cXw4cPF71795bWC5F97Y0ePVo4ODgIR0dH6f5x6NAh6Ty/fow5123dulVYW1sLFxcX0aBBA1GuXDkhhBCDBw8WDg4OQqFQiM6dO4s9e/ZotTdo0CCxbNkyrTnLeX62b98uhBBizJgxklaNv7+/aNKkicjKyhKXL18W5cqVE6mpqfnq2Rw6dEiYmJhI94P89JI0aO6l1atXF4ULF5a+qzn3W7ZsmbC2thZPnz4VqampomLFiuLWrVtvHLejo6O4c+eOEOKve6GMjIyMzKcB/xENlvwLeWVkZGT+Y2jS2vOibdu2QLZew+bNm3OtP378OJs2bQKgR48efP3117m2SUxMpEiRItLnI0eOSJoNZcuWpUGDBrn2sbGx4fr16wwZMoQWLVpI2g0xMTF8++23PH36lJcvX9KkSRNpn5YtW6Kjo4NCoaBUqVIoFAogW6slPj4elUqFrq6u5GrTvXt36fg0xMXFYWNjg7W1NQBdunTRKkHKj+9//IlfV61HAK+ePeL5o9tM3WkBQPPmzfnzzz9p3749mZmZdOnShYULFzJo0CBWrlxJeHg49erVo1u3bhQpUgQdHR3q1q3L9OnTUalUxMfHc/LkSX7//XeuXLlCcHAw69atIz4+niZNmlCrVi0iIiLo2LEjv/76K8WLF+fVq1fUr1+foKAg5s+fT5s2bbh9+zZpaWkMGzaMfv365XkcnTt3Zt26ddSpU4fNmzejr6+PEIIlS5YwZ84cfvzxR+bMmUNCQgLlypWjbNmyXLhwgYEDB3Lx4kViY2OlLIJXr17h4eHB2rVruXfvHitWrOD58+cEBQUxYsQIzMzMEEKwZcsWdHV1sbKy4vnz5/z+++/8+uuvZGVl0bJlS1avXk2pUqVISEiga9eunD17FgcHB2xsbKTsCj8/P1JTUxFCsGjRIry8vIiOjkYIwdChQzl8+DAZGRls27aN1q1bo1arSUlJoVatWqSnp3Pnzh0Ahg4dyuPHjwkLCwOyS3IqVKiAp6cnAQEBhIaGkp6ejo6ODu3ateP+/fu0bNmSmzdvUrhwYcqVKyeV8ABvvd7exIEDByhTpgw6OjoYGBhQvHhxbG1t0dXVldqeMmUKa9as4fjx45QrV47Tp0+za9cuTp48ibOzM5s2bcLGxgaAr7/+mgsXLjBz5kwg224akLJ3FAoFo0aN4uuvv8bX15eXL18SExNDTEwMjRo1ArIzPTTOVZrsJB0dHYKDg3OVZXl7e+Pt7S191pSsvb6udevWUnbb3LlzJXvvefPmabWXc/+3UahQISnbpUaNGuzbt09a17FjR3R1dalatSo2NjbExcWxd+9eoqOjpbl49uwZV65coVChQri5uUn3g7eR81568uRJevbsSUxMTK7tfHx8sLDIvj/Y29tz8+ZNKlSokO+4PT096dWrFx07dnyna0hGRkZGRuZ/hVwiJCMjk68Q4pvYunWrlgirRhy1oISGhmJhYSEJyjZs2JDw8HCGDh36zmOBgos2Tpo0iXLlykn9ajRUvL29UavV+e5naGjI7NmzycjIyFevQUdHh0mTJjF37tw811etWlUqpSkIarXgSaYBi7cexM7ZnV9+CaFv375A9vHOnz+f8+fPExgYqNVuTn2H17Uf3jT2gqKvr681V5q+Q0NDCT10ENt+c3AcvBCTMlVQZ2RI9t+aoEVaWhpqtZpatWrl20dSUhKenp7s2LGDgIAA9PT0iIyM5MqVK4SFhdGgQQPi4+M5cuQIAFeuXGHgwIFSkMPQ0JDIyEhiY2O5e/cunTt3BrI1cCIiIggPD2fu3Ln5Cu36+Phw5MgRsrKyWLduHQYGBhgZGREWFoa/vz/btm1j1KhRjB49mri4OI4cOYKZmRlz5sxBCEGjRo0kLZ/Y2Fi+//57vv76a0qVKsWff/7JmTNn2LZtGzo6OiQnJ6Onp8eTJ08YNGgQXbp04e7duzRq1IgvvviCUaNG0blzZ6ZPnw7A5MmTadCgAT179qRGjRrcunVLGveQIUMwNjbG2NiYuXPnsm3bNhQKBc+ePcPLy4svv/wSAwMDxowZQ3JyMlevXqVw4cKcOXOGM2fOkJGRwY0bN6hWrRqVK1cmMjKSsLAwLCwsmDlzJkuWLMHCwkLaXkdHh1u3brFmzRpsbW0ZPXo0L1++5Ny5c1y6dIlJkyblOb/vKk7s7+8vzeeb2tVc7wXRVcnvOq5WrRpnz56Vyv2+++67vyWQ/D68Sbg6v3HnhYGBgTTXr8/J6+dAR0dHKrPSHKdGzwbIJYpdUDw8PEhMTCQhISHXuvy0cPIbd06hbI2gsYyMjIyMzMeEHGCRkZF5L14PsLwujloQvLy8pB/yGj2A/IITH5IRI0ZI/b7NKSgns2fPzvdhJqfg6tmzZ/PcRkdHh6ysLKmNunXrSpoN9+/f59ChQ1rbn7yeRNd5+xjzeyRrE8rQxH+Y1PaLFy8oU6YMGRkZWgKvBUWtVksBqTVr1lCnTh2t9dWrV+f69euSw4lG3wOQ9Dw0x6p50/7s2TNKFC+KiYkJqQm3eHknW+tC40xlZ2dHfHw8a9eulUR+ixYtyvr161Gr1aSmpnLkyBEsLS2pU6cOOjo6Wi4tMTEx7N27F2dnZ3bt2sWDBw8kN6FKlSrh7u4OgKWlJTY2Npw6dYqkpCTi4uLw9PQEsjMDNLoOt2/flvZ/HT09PerUqcO6detITU2VsiX+/PNPduzYQdWqVWnWrBkbN26UHv6EENy8eRN3d3f279+PnZ0dVlZWHDhwgK1bt+Lt7Y2enh6bNm2iW7duLFmyBA8PDwoVKkSLFi2YN2+e5GgTGRnJnTt3WLVqFT/99BPBwcGSIO+xY8fo3LkzXl5exMbGUrRoURITEzly5Ajnzp0jOTmZlJQULl68iJmZGV988QWpqanMmTOHxYsXk5GRQVpaGrdu3eLevXscPnwYlUpFrVq1EEJw5coV+vXrx9mzZ0lKSmLXrl3UrFmTFy9eSI49ObevXLkyv/zyC3v27OGnn35iz549mJub8/jxY8lpKb/rzdzcnBcvXrzxWvXx8WHjxo2SRtHjx48JDAxk+PDh0jb9+/fX0hdZv369pG/j5eUlfUdCQ0MpUaIEhQsXzvc61mgWde/enTFjxnDs2DE6der0twWS34U3CVdXqlSJ2NhY0tPTefr0KQcOHJC2Kch8atiwYQNqtZpr165x/fp1qlevLunZZGRkAHD58mWSk5Nz7fsu/cTFxZGVlUXx4sULtP2byCmUbWlpWWChbBkZGRkZmf8VcoBFRqaAaGwnHR0d6dChAykpKX8r4+JNeHt7U716dZRKJZ6enly6dCnfbV8XDdSIruYkJCSE33777Y19hoaG5imcCBAQEIC9vT1OTk6MHj2aEydOsH37dsaMGYNKpeLatWtaGST5icK+jZxjmDRpEn369MHb2xsbGxutwMtvv/2Gk5MTSqVSS/gzP7HOgpKeno5KpaJy5cqYmppSqlQpOnToIJVb3Lt3jwEDBkip7+fPn2f9+vUolUoSExP5+eef+eWXX7h27Rqpqam5xg3QuHFjjh07RnBwMFOmTCE8PJxSpUrRs2dPSpQoIYlNpmVkMWXGbOIPrSVuyWgiZn/J2MFfMjRgIgDff/89tWrVwtPTE1tb23c+VlNTU8LCwnB0dOTgwYNMnDhRa72xsTELFiygadOm1KhRA3NzcymVv127djx+/BgHBwfmz59PtWrVAGjatCkGOhC/sD/39i3BrLwdBno6jGtuh4GBAU5OTrx69YrRo0dLVrOlS5fGycmJiRMnsnXrVqZPn46xsTGFChWSxpJdtpvNuHHj2LNnj2Rv+8UXX0jHk5POnTvz+++/s2nTJvz8/NDR0SE0NJT9+/dz8uRJoqKicHZ2fuPb/86dOzN06FA6duwoLStWrBjt2rXjzz//5OrVqwQFBdG4cWPq1KlDSkoKERERWFpasn79eszMzHj8+DFffvmllgjvkydPCAwM5Ny5c8yaNQsDAwPmzZtHeHg4Y8eOZePGjYSEhDBkyBDc3NwYNWoUCxcuzDVWPz8/nJyceP78OX5+fvj7+3Pq1ClMTEwwNTXFy8uLQYMGSXO5fPlyDh06hI6ODsWKFSMxMREhBH369JECjiYmJjRu3BhfX1+cnJxwcXHB39+f2NhYXrx4kSvDwcTEBBMTE65evcrNmzepWLEirVu3pkKFCjRq1EgSgn39evv22wlcvv+U2s3a8cWX/SSR27ywt7eX5tnJyYlGjRphZWWlJVAcFRWFWq2WRHWjo6MpXLgwkH0viYiIwMnJiYCAAFasWPHG6/j8+fOSoO7kyZMZPHgwurq6BRJI/lDo6OiwZcsW9u/fT+XKlXFwcGDcuHGULl2aChUq0LFjRxwdHenYsSPOzs7Sfv369aNp06ZaIrf5UbFiRdzc3GjWrBkhISEYGRnRt29f7O3tcXFxwdHRkf79++eZCVS8eHE8PT1xdHTMU+Q2NTVVyhLs1KkTK1aseKtzWkEYM2YMCoUCR0dHateujVKp/NttysjIyMjIfFD+bRGYD/Uni9zK/NPkFC3VCEe+KxkZGQXaLqcI4sKFC0XLli3z3fZ10UCNeOS7YGpqmkuIUSOcmJiYKKpVqybUarUQ4i9hQY0Yqoacn/MThc2JRsRUIygbFBSkNYbAwEDh4eEh0tLSREJCgihWrJh49eqViImJEVWrVpWEHJOSkqT+8xLrfJ3AwEBRtmxZqd/du3cLIf6a84SEBOHl5SVevnwphBBi2rRpWgKlmn4fPXqkJQKrGUd+49bMc0REhPDx8clTQPTGjRvC2dlZCCHE8SuPhGHRMsL5m03CNWif9Hfy2l/itv80GqFYtVotvvrqKzFz5swC7ZeVpRbXHr0QJ68limuPXoisLLX0/bl9+7aYM2eOEEJb4DPntfv6taXZd8+ePcLNzU1MnTpV/Prrr+LOnTvi4cOHeQpuPn78WNjY2Ahvb29x+vRpIUS2iKivr68QQoiLFy8KQ0NDcejQoVzj11wLarVaBAcHS+dcM45du3YJDw8PkZycLIT469z//PPPokmTJtJ3RK1WCx8fH3Ho0CFx7949UbFiRVG+fHnx4MED4ePjI7Zu3arVrhBCbNiwQfj7+wshhFCpVJI4aK9evUS9evWEEEIMHDhQTJs2TZoTQCQkJEjHZ2pqmuv4LCwsRJ8+fYRanX0uzp49K4TIvr+0bt1aukYvXbokXfs7duwQbdq0EeXLlxfp6en5bm9iYiLi4+NFZmam+OWXX0SdOnXEwIEDRe/evYWrq6tQqVTCyMhIOs++vi2Fk6unKGztJFwmbBclazQRlarYCoVCITZu3CiWLFkihg0bJs3JokWLxPDhw7XOUUZGhrCwsBApKSni6dOnwtvbW/Tt21cScdYIpl69elU0adJEuLi4iDp16oiLFy8KIYTYvn27cHNzEyqVSvj4+IgHDx4IIYQIDQ2V7g0qlUo8f/5c6/rKzMwUo0ePFjVr1hQKhUKEhIQIIYTo0aOH2LJlizS+rl27SudXRkZGRkZG5r8jcitnsMjIvAdeXl5cvXpVK+MiOTmZPn364ObmhrOzM9u2bQOy3xq3atWKBg0a4OPjw/3796lbt66UDaOxSs2PunXrcvXqVYTI25I1P/7880+p9j2nHencuXOlbBSNLkVWVhZ9+/blyJEjODs7a6V+W1hYYGRkxBdffMHmzZsxMTEp0BzlFIXVlJm8Ts4SofHjx+da36JFCwwNDSlRogQlS5bk4cOHHDx4kA4dOlCiRAkgO6NAQ5s2bdDV1dUqK8mLnCVCOcVhAU6dOkVsbCyenp6oVCpWrFghlTm8vl3dunUl0cec48hr3BpcXFzQ09Njz549ODs74+LiQlxcHFeuXMHKyorixYtn61dEHMOsXBX0TQpL+xrq61LS/C/Ngn+axYsXo1KpcHBw4NmzZ/Tv379A+73J7rt8+fLvnfXVuHFjunbtyvz585k1axbt27fPt0yhaNGi2NnZcfPmTckqt2nTpmRmZmJnZ0dAQIBUUpQfOjo6jB49WrrWNDRt2pRWrVpRs2ZNVCqV9N366quv8PHxoVatWjg5OeHp6YmzszPOzs6UKVOGadOm8fDhQ7y9valRo4YkaJofkyZNokOHDtSoUUNrDIGBgezduxdHR0c2bNhA6dKlMTc3l44vJSUl1/FZWFiQmZmJk5MTKSkpTJgwAeCNGQuNGzfm8OHDNGzYUMqCyWt7yM4+UyqVfP3119y/fx8hBA0aNCAsLIxDhw6Rnp4ulZqER0Rg3Gw01b/4iXuhq9ApZEKFvj+z9cAJGjRoQMeOHfnjjz+kMpVly5bRp08frbnR19fH2dmZM2fOcOrUKWrVqoW7uzsnTpzg7t27CCGoUKEC/fr1Y968eURERDBjxgwGDhwIQJ06dTh16hTnzp3T0reZMWMGP//8M5GRkRw9ehRjY2Otfl/XoFm8eDE3btzgiy++kDL+nj17xokTJ2jRosUbz6+MjIyMjIzM54fsIiQj845kZmaya9cumjZtqrX8hx9+oEGDBixdupSnT5/i5uYmaZKcPXuW6OhoihUrxk8//USTJk0YP348WVlZpKSkvLG/P/74A4VCwebNm4mMjCQqKorExERcXV2pW7dunvts2bKFmTNnsnPnTooWLaq1btq0ady4cQNDQ0OePn0KZOsJjBw5kh07dvD7779jZGQklSPo6+sTFhbGgQMH2LhxI/Pnz+fgwYNvnad3EZt8WxsFbSfn9kII1GrB4FFj2b9nN/q6OsRER721T/H/AqVr1659rzEXZNyOjo60bds2z4BF3759Wb58OffvP2DIV/3Y/0KX9Ew1hvq6jGtuh1Xx9xOafB9GjBjBiBEjPkhbGqeVnOR0UOnVqxe9evUCkB5U89p32LBhDBs2LFdbeTmUaMqtNBgaGrJr1663jjU/l5ac4wgICJAEkjXo6OgwZsyYPEsmINuJqUuXLm9st3379rRv3x7QdpXJiYWFBXv27EFfX5+TJ09y5swZ6ZrL7/jyChLCXw48U6ZMybXOwMCAx48fv3V7PT09Zs2ahb6+Pj179uSnn36idu3aHDlyRAo+lS9fXhLjrVG7Ho8KZQtrP792jsodvyE9U82jF+nY2GTrdDRo0IAdO3ZgZ2dHRkaG5ISVk9q1a3PixAlSU1Px8PCgatWqTJkyBUtLS2rXrs3Lly85ceIEHTp0kPaJiopCpVKRlpbG3bt3KVu2LIAUKPX09GTkyJH4+fmRlZWVK/CrcdkJDAyUxIOvXLlC48aNGThwIAkJCWzatIl27dpJZXAa1GpBfFIyns72/LH/CC7VKmkFH2VkZGRkZGQ+feQAi4xMAdHUlEN25sUXX3yhVYO/d+9etm/fLj1QaEQkARo1aiRlOLi6utKnTx8yMjJo06aN1ObrdOvWDWNjY6ysrJg3bx4zZ86ULH1LlSpFvXr1OHPmDE5OTlr7HTx4kPDwcPbu3StpEOTEycmJbt260aZNG9q0aQNkPyAtWrSI27dv8/DhQ4oXL86BAweoU6cOL1++JCUlhebNm+Pp6SlZnb6LyOGHpEGDBvj5+TFy5EiKFy/O48ePtbJHcrL7wgPOl25GkW5NMNTXZfeFB1p6Hnnh7u7OoEGDuHr1KlWqVCE5OZm7d+9SrVo16ZhLlCiBu7s7AwcO5MaNG1hbW79xHK/TpEkTJkyYQLdu3TAzM+Pu3bsYGBhQsmRJ/Pz8mDhxoiRe2+NpGo9epFPS3BCr4qbyA9kHRPPA+6nN761bt+jYsSNqtZpChQqxePHif3U8edmbCyHYtGkT1atX11p++vRpilmY80xfV3KXgtzZWX379mXKlCnY2trSu3fvPPv19PQkJCSEtLQ0Bg0ahKWlJbGxsVKARa1WU6RIEa2xmZmZERkZibe3N9OnT6dVq1aEhoZKrkQBAQG0aNGCVatWMWvWLNq1a4eRkZHWcc2bN4927drlOuaePXuyatUq1q1bx7Jly7TWqdWC3RceMHXnRR4nv2LwmnNM7GBIU4fSn8Q1JyMjIyMjI1Mw5BIhGZkConmIiIyMZN68eVoinPDXA4Vmm1u3bmFnZwdoC3DWrVuXI0eOUK5cOXr16pWv+Ozq1auJjIxk69atVKhQocDjrFy5Mi9evODy5ct5rv/zzz8ZNGgQZ8+exdXVlbS0NMzMzFi5ciWOjo7Y2trSokULSTjxxYsXkuBlnTp1mDlzJpAtABocHIyzszPXrl0r8Pj+Lg4ODowfP5569eqhVCoZOXJkntsJAVN3XpQe4tIz1UzdeZGnKRlvbN/S0pLly5fTpUsXnJyc8PDwkER6cwpIWlpasmjRItq2bYtSqaRTp04FPgZNqYuHhwcKhUKr1KVQoULUr1+fjh07YmCgn2+pzceAWi24nvCSU9eTuJ7wErX6zcGrjwnNA6//0jCGrj2H/9Iwdl948NEeQ8651itShoiIs0RFRXHmzBlcXV3/7eHlokmTJsybN08KaJ47d05aZ26kz7jmdhjq61K4sgtJZ/6QsrOePHkCQK1atbh9+zZr1qzJM+sHsu1/T506RUJCAiVLlkRHRwdLS0u2bduGp6cnhQsXxtramg0bNgCarLbs+8GzZ88oV64cL1++pGvXrkRERKBQKAgJCUGhUHDz5k2ysrJo1qyZVraOxmVHQ06XnbJlyxIQEEBMTAxDhw6VSgOTkpKo16AhHRp6ELchGIQgPVPNgOFjCZwyXWpr/PjxzJkz52/PvYyMjIyMjMy/h87b3uZ+KtSsWVOEh4f/28OQ+YwxMzPLVeYQGhrKjBkz2LFjB9988w3Pnz9n3rx56OjocO7cOZydnVm+fDnh4eHMnz8fyE7VL1++PHp6esyfP5+rV68ye/ZsrXa9vb2ZMWMGNWvWlJZt3ryZhQsXsnPnTh4/fkzNmjU5ffo0aWlp+Pr6EhMTI/U1ePBg2rZty4YNG3BwcGDSpEmYmZkxcuRIbt26hZWVFRkZGVSqVIn169czePBgoqKyy2fat29P9+7dpeyWT5VT15MYuvZcruVzuzjjbvP37UL/KdRqNS4uLmzYsIGqVav+28PJl5xv5HOWMH0qb+SvJ7zEf2lYriyKFX3csLE0+xdHlpuPfa7zujempqYyfPhwTpw4gVqtxtramh07dkj3qLlz5xGflEz8gyTmB43j8oVo9PT0CAwMlPSbpk2bRmRkpGR/nhcODg44OzuzatUqAElv6unTp+jr63Pjxg2++uor7t+/T0ZGBnFxcTg5OfHs2TMePXpE9erVqVOnDtHR0WzcuJEqVapQrlw5srKyePDgAQ8fPuT+/fvSPVatVvPtt9/y448/Ymdnh6WlJVu3bsXCwoInT57QuXNn/Pz80NfX5+LFi/z0008MHTqUVD0Toko05Oml01xZ+S2qcRtRv0olbfd0LsVEo1arqVq1KmFhYVp2xnnN7YcmNDSU1q1bY21tTXp6Op07dyYwMJCQkBBMTEzo2bPnP9q/jIyMjMx/Ax0dnQghRM23b/lpI5cIych8ICZMmMDw4cNxcnLSeqB4ndDQUIKDgzEwMMDMzOyt9ska/Pz8OHnyJEqlEh0dHaZPn07p0qXzFJC1tbVl9erVdOjQgT/++ENanpWVRffu3Xn27BlCCGrVqkX//v2pWrUqjo6O6Orq4uDgQLNmzd57Hj4WSpobYviWMoSPjdjYWHx9ffHz8/uogysA8UnJeWYI2ZY2/+gCFHnx6EW61rUB/KUD8pGN/2Of67wCAMbGxixcuDDX8pxaOzaWZthYmtFg/Zo82z127NhbNYAuXLig9XnSpElSuQ9ka6vs3r1b+qwpEdKQkZHBiBEjePz4MQ0bNiQ9PZ0DBw5IgWtDQ0OsrKwkjR+NBs3cuXNz6f5cuXKFo0ePcufOHTIzMyVdlyNHjjB78UriDiZQpHot9IzNAShsWRbz4iU4d+4cDx8+xNnZWSu4kh+ZmZm59F3+Ll5eXuzYsYPk5GRUKhUtW7ZkwIABH7QPGRkZGRmZ/wJygEVGpoC8TaSzIA8UAP7+/vj7+7+xr7xENnV0dAgODiY4OFhrec4f/5q+1GqBRfmqLN1xFB1zQyZODJTedB87duyNfX8uWBU3ZVxzu1xv/f+XIrHvir29PdevX/+3h1EgPqUARV58SgG4T32u3xWNSLhSqcTHx+cf7Wv16tUkJCQQERGBgYEBVlZWksD3u7B//358fX3p3r07v/76q5auC0D5oibS/QiQ7kfPKvZj+fLlPHjwIJdTUk5CQ0OZMGECRYsWJS4ujkWLFhEYGEiRIkU4f/48HTt2RKFQMGfOHFJTU9m6dSuVK1fmjz/+ICgoiFevXlG8eHFWr15NqVKl8u3H1NSUGjVqcPXqVbZv346ZmRmjR4/G29ubWrVqcejQIZ4+fcqSJUvw8vIiKyuLr7/+mt27d6Orq8uXX37JkCFDiIiIYOTIkbx8+ZISJUqwfPlyypQp887z+m/y4MEDhg8fzpkzZyhSpAilSpVi9uzZVKtW7R/rs1evXvj6+tK+fXv69u3LyJEjsbe3/9vtzp49m4CAAB4+fIiFhcU77/8hxyIjIyPzuSMHWGRkPjM+9nKC/xW6ujo0dSiNbWnzT07E9FPgUwpQ5MWnFID71Of6XSlSpEi+GlIfmmfPnlGyZEkMDAw4dOiQ5Lb0riLeDRs2xM7Ojq+++gqAFStWSOvq1q3LunVr+eab8Ty4cJJjqS+Y39UZl2qlyazelkmTAsnIyGDNmrwzeTScPXuWmJgYrK2tCQ0NJSoqiosXL1KsWDFsbGzo27cvYWFhzJkzh3nz5jF79mzJjlpHR4dff/2V6dOn89NPP+XbR1JSEqdOnWLChAnExsZqrcvMzCQsLIydO3cyefJk9u/fz6JFi4iPjycyMhJ9fX0eP35MRkYGQ4YMYdu2bVhaWrJ+/XrGjx/P0qVLCzyf/zZCCPz8/PD395dK1KKionj48GGBAiwfIsvo119//Vv752Tt2rW4urqyefPmfEWj8yMrK+uDjkVGRkbmc0cWuZWR+czIr5wgPin5Xx7Z/x5dXZ2PWiT2Q6Gjo8OoUaOkzzNmzJDenoeEhLyxDC00NBRfX9936s/b25vEGxcloVLgbwcorKysSExMfKcxVKxYUcsVqk2bNpiZZWd03Lt3T7I7zgtNAG5FHzfmdnFmRR+3vxWE1NPTQ6VS4ejoSIcOHd5qv15QateuLQWD3nWuQ0NDtZzO3oVPWcD4XejWrRvh4eEoFAp+++03bG1tAShevDienp44OjrmabudkpJC+fLlpb+ZM2cyadIkOnToQI0aNShRooS0bWBgIEeOHEGhcOTkgV1UrFgRqxLZ96OcotZ6enpvHKubm5tUdgTZjnRlypTB0NCQypUr07hxYwAUCoVUOnrnzh2aNGmCQqEgODg4V0mVhqNHj+Ls7Ezjxo0JCAjAwcEh1zYabZwaNWpI7e/fv5/+/ftLwYRixYpx6dIlYmJiaNSoESqViqCgIO7cufPGY/vYOHToEAYGBlplUkqlEi8vL4QQjBkzBkdHRxQKBevXrweyv29eXl60atUKe3t7QkND8fb2pn379tja2tKtWzfpfhUREUG9evWoUaMGTZo04f79+7nG4O3tjUZbUHNfA9i4caOUFbthwwYcHR1RKpXUrVs3z2O5du0aL1++JCgoiLVr10rLU1JS6NixI/b29vj5+VGrVi2t/kaNGoVSqeTkyZO5xjJixAgcHBzw8fEhISFBGu+wYcOk+2BYWBgAYWFheHh44OzsTO3atbl06dK7nxAZGRmZTwg5g0XmP82natP6Jv5r5QQyYGhoyObNmxk3bpzWgx3wj+kofAwZQkWKFOH48ePUqVOHp0+faj2klC1blo0bN75xf00A7kN8L3JaFXfr1o2QkJB8Ha5y8rY33ZoAyfvMdWhoKGZmZtSuXbvgB8LnnQX3eqlniRIlOHnyZJ7bvimjRONG9DqtW7fOtax48eLs3bs333ZOnTolOR29iZxudJD9vdegq6srfdbV1SUzMxOAIUOGMHLkyFx21K+j0WB5E5r29fT0pPbzQgiBg4NDvvP6KRATE0ONGjXyXLd582YiIyOJiooiMTERV1dXKbjxepbRuXPnuHDhAmXLlsXT05Pjx49Tq1atD5bh891337Fnzx7KlSvH06dP89xm3bp1dO7cGS8vLy5dusTDhw8pVaoUCxYsoGjRosTGxhITE4NKpZL2SU5OplatWnlmOyUnJ1OzZk1mzZrFd999x+TJkyUR/5SUFCIjIzly5Ah9+vQhJiYGW1tbjh49ir6+Pvv37+ebb75h06ZN73ysMjIyMp8KcgaLzH+WT82mtaBoygly8jmXE8iAvr4+/fr1Y9asWbnWaVxVAK5evUrDhg1RKpW4uLhI9tovX77M8y3rgQMHcHZ2RqFQ0KdPH9LT07Xa1tXVIXjiGAZ3bEJL71pMnjxJWhcQEIC9vT1OTk6MHj0617iSkpJo3LgxDg4O9O3bVysTZdWqVbi5uaFSqejfvz9ZWVl5Hnfnzp2l9P3NmzdLb9gB4uPjcXR0BGD58uW0adOGRo0aYWVlxfz585k5cybOzs64u7vz+PFjAObOnSuNuXPnzpKzi+YNrVqtpkqVKtLn/PDy8uLq1as8fvyYNm3a4OTkhLu7O9HR0dI56dGjB56envTo0YPly5fTunVrvL29qVq1KpMnT5ba0ry5PnLkMH06+DJjbH+ae9WkR4/u0pzt3LkTW1tbatSowdChQ/H19SU+Pp6QkBBmzZqFSqXi6NGjxMfH06BBA5ycnPDx8eHWrVtAtu7D0KFDqV27NjY2NvyyfLWcBfc/IDY2lipVquDj4/OPiVpr7KhBu2zpQ9GoUSMWLlwoBVweP35M9erVSUhIkAIsGRkZ+WbOfIocO3aMLl26oKenR6lSpahXrx5nzpwBcmcZubm5Ub58eXR1dVGpVMTHx3/QDB9PT0969erF4sWL871Prl27ls6dO6Orq0u7du2kYN6xY8fo3LkzAI6Ojjg5OUn76Onp0a5duzzb09XVpVOnTgB0795dS9dNY6let25dnj9/ztOnT3n27BkdOnTA0dGRESNGfFbXgoyMjExeyAEWmf8sn2spzfuWE8h82gwaNIjVq1fz7NmzfLfp1q0bgwYNIioqihMnTkiik+fOnWP27NnExsZy/fp1jh8/TlpaGr169WL9+vWcP3+ezMxMfvnll1xt/vDDD4SHhxMdHc3hw4eJjo4mKSmJLVu2cOHCBaKjo/n2229z7Td58mTq1KnDhQsX8PPzkx72L168yPr16zl+/DgHDhxg06ZN2NjYULp0acqVK4dKpUKlUqFWq/Hx8eHIkSNkZWWxbt066Ud/XsTExLB582bOnDnD+PHjMTEx4dy5c3h4eEglVNOmTePcuXNER0cTEhKCrq4u3bt3Z/Xq1UB2OYRSqcTS0lKr7UmTJpGRkQFkZ6Ts2rWL9evXM3bsWJydnTEzM2PKlCladrexsbHs379fStkPCwtj06ZNREdHs2HDBikdPyf5naf+/fuza9cuIiIipOCPlZUVAwYMYMSIEURGRuLl5cWQIUPw9/cnOjqabt26MXToUKnt+/fvc+zYMXbs2MHUyRPzzYKT+XBoRK3fpInyd8mvbOlD0bdvXypWrIiTkxNKpZI1a9ZQqFAhNm7cyNdff41SqUSlUr13qdq/hYODAxEREe+835uyjDSZP5oMn8jISCIjIzl//ny+GU4adHT+yhzLKcIcEhJCUFAQt2/fpkaNGiQlJWntd/78ea5cuSIFl9etW6dVJpQfRkZGby1Zy2tsOf9f83nChAnUr1+fmJgY/vjjj/cSkZaRkZH5lJADLDL/Wd5USvMp86G1JWQ+DQoXLkzPnj2ZO3dunutfvHjB3bt38fPzA7J/QJuYmAD5v2W1traWBB39/f05cuRIrnZ///13XFxccHZ25sKFC8TGxmJhYYGRkRFffPEFmzdvlvrJyZEjR+jevTsALVq0oGjRokB21kxERASurq74+PhQvHhxevfurRUsiIyMRFdXFz09PerUqcO6detITU3FysoKIM/yhfr162Nubo6lpSUWFha0bNkS0NarcHJyolu3bqxatUoq2+nTp48UgFm6dGm+ApEZGRmoVCpq1qxJxYoVMTc35/Tp0/To0YMTJ07QoEEDkpKSeP78OQCtWrXC2NhY2r9Ro0YUL14cY2Nj2rZtm6fbV17nKS4uDhsbG+mtueYNcl6cPHmSrl27AtCjRw+tPtq0aYOuri729vY8TUr4pLLgPme9GE1Jk7e3t1YJz+ufQ0NDqVmzZq51rVu35vr160RERBAcHJynQ93rbWmYNGmSlH2Ws/0SJUpI3xl9fX1mzpxJbGwsUVFRDB48GACVSsWRI0eIioriwoULfPnll39zJv63NGjQgPT0dBYtWiQti46O5ujRo3h5ebF+/XqysrJISEjgyJEjuLm5Fbjt98nwKVWqFBcvXkStVrNlyxZp+bVr16hVqxbfffcdlpaW3L59W2u/tWvXMmnSJOLj44mPj+fevXvcu3ePmzdv4unpye+//w5kB3zPnz9foPGr1Wqp/HLNmjXUqVNHWqfRozl27BgWFhZYWFhoZVEtX768QH3IyMjIfMrIGiwy/1k+Z2eOD6ktIfPpMHz4cFxcXN7ZJSKvt6wF4caNG8yYMYMzZ85QtGhRevXqRVpaGvr6+oSFhXHgwAE2btzI/PnzOXjwYIHaFELg7+/P1KlTtZZrtCM09q9nz55lyJAhjB07lr59+1KsWDGGDx9Oamoqc+bMoVq1aty4cYMaNWqQnp6Oq6srkP0w+ezZM1q2bCmVRmVmZpKVlYW9vT1btmzh8OHDjBo1irt37/Lo0SPi4+OpVq0ad+7cYcaMGdy+fVsK0Gg0bgwMDCQNFoA//vhD+n8zMzNevnyJEIKRI0eydetWihUrxunTpyVr3rt372Jra4upqSl6enokJyczfPhwsrKyUKlUvHz5koSEBF68eIG5ufk7naeCkPMaAPHJOCx9znoxMv8eOjo6bNmyheHDh/Pjjz9iZGSElZWV5Mx08uRJlEolOjo6TJ8+ndKlSxMXF1egtjUZPkOHDuXZs2dkZmYyfPjwPIWFNUybNg1fX18sLS2pWbOmFHgbM2YMV65cQQiBj48PSqVSa79169axc+dOrWV+fn6sW7eOwYMH4+/vj729Pba2tjg4OBTIwtnU1JSwsDCCgoIoWbKkFFSB7MC9s7MzGRkZkqbM2LFj8ff3JygoiBYtWhRojmRkZGQ+ZeQAi8x/lk/JplVGpiAUK1aMjh07smTJEunBXYO5uTnly5dn69attGnThvT09Hxr9iH7LWt8fDxXr16lSpUqrFy5knr16mlt8/z5c0xNTbGwsODhw4fs2rULb29vXr58SUpKCs2bN8fT0xMbG5tc7detW5c1a9bw7bffsmvXLp48eQKAj48PrVu3ZsSIEZQsWZLHjx9LdrlCCEkcskOHDjRu3Jjt27czbtw4tmzZwqtXrzA2Nmbo0KG4u7tToUIFIiIi+Oqrr7Te3Ash2Lt3L2FhYYwZM4b69esTEhLCxYsXpYeVChUq8OTJE4YMGcKMGTP49ttvadiwIRMnTmTp0qVawRRNiVBOkch79+7h7+8vlReFhoZiYGDAvXv3GDRoEEII5s2bR58+fcjIyCA0NJTw8HBsbW0pU6YMCoUCyH67/fPPP5ORkcG0adO0sl405+n69evEx8djZWWl9bBjbm4uZcxAtiNRoUKF6NatGw0bNsTLy4vMzEzWrVvH+fPntVyX3kVU18rKSiqN0NPT4/nz5zg4OPDnn3/muX1BCA8P57fffss3I0tDfqWetqXN8wwwx8fHY2dnR/Xq1aVl27dvZ+TIkW8VRc6PkJAQTExMtErAZD59ypYtK2V4vE5wcDDBwcFay7y9vfH29s73s0YIFv7K8HmdnBkeOe9Z7du3z9MVbfPmzW88huvXr+daNnPmTCDbfnnVqlUYGRlx7do1GjZsSKVKlYDcYtCvZz5p2nid7t27M3v2bK1lHh4eWrbrQUFBbxyzjIyMzKeOHGCR+c/yMbigyMh8aEaNGqX1Qz4nK1eupH///kycOBEDA4M3OpcYGRmxbNkyOnToQGZmJq6urrkciZRKJc7Oztja2lKhQgU8PT2B7HKk1q1bk5aWhhAizx/jgYGBdOnSBQcHB2rXrk3FihWBbF2KoKAgGjdujFqtxsDAgJ9//hmA9PR0SRzy6tWr3LlzBxsbG5YtW8aOHTvo1KkTv/32G5cuXeLy5ctkZmaiUqlITExEV/evkhdNyVKNGjUka+j9+/dz+/ZtnJ2dEUIwfPhwHj58SExMDHPmzOHhw4fExcVJZUiv83oGi5WVFWPHjmXMmDGkpqYSEBCAp6cnPj4+3Lx5E3Nzc+rXrw9k658ULVqUkSNHcufOHZo1ayYFlXR1dRk5ciRubm5kZGTkchwyNjZmwYIFNG3aFFNTUylTB6Bly5a0b9+ebdu2MW/ePObNm8fOnTvZtGkTd+7c4bfffmPfvn15lnDp6upQsahRgbLg0tPTuX//PqdPn0alUrF06VJ279791v00vO6klJmZSc2aNaWSlDfxPq5plStX1jpXwHsHV+Ddnbo+R/c6mU+PlJQU6tevT0ZGBkIIFixYQKFChf7tYcnIyMh8+gghPou/GjVqCJl/Fl1dXaFUKoW9vb1wcnISM2bMEFlZWR+8n23btompU6d+8HZlZGQ+XQIDA8V3330n3N3d81xfr149cebMGSGEENHR0QXaLiEhQVSqVEkIIUTbtm3F3r17tbbVtHPmzBlRp06dN44tODhYa1mlSpVEQkKCEEIIU1NTIYQQw4YNE0uXLpW28fPzExs2bBCTJ08WZcuWlZZv27ZNtGjRQmsc06ZNExUrVhQXL17M1f+LFy+EEEKo1Wrx1VdfiZkzZ+Y7VlNTUzFu3DixYcMGIYQQPXr0ENOmTZP6CwwMFN27dxe1a9cWnTt3FjExMcLV1VUolUqhUCjE5cuXc7VpaWkpHBwcRNeuXYUQQmzYsEH4+/sLIYQ4cOCAKF68uDAyMhIWFhZi//79QgghfH19RbFixYSJiYkoX768+Oabb0T37t2FpaWlqFKlirCzsxPGxsbi0KFDolmzZsLQ0FAULVpUqFQq8fz5c2lOrz16IWy7TRTFnRsJ16B9onLnb4VJKStha+8ovLy8co31xo0bwsHBId9ly5YtE35+fqJJkyaiSpUqYsyYMVpz98033wgnJydRq1Yt8eDBA2nONOc/LCxMKBQKoVQqxejRo6V2b9y4IerUqSOcnZ1FZVtH4fTVXOEatE84fvmTUNT0EG3bthPVq1cXXbt2FWq1Ot/zJyMjIyMj86kChIuPIG7wT//JIrcyBcbY2JjIyEguXLjAvn372LVrl5ad6IeiVatWBAQEfPB2ZWRkPm0MDQ0LJA75PiKS+dnNXr58GV9fX6ZOnfq37WY9PT3ZtGkTarWahw8fSmn3pUuX5vnz55JwaM4yn2vXrqFQKPj6669xdXXNU+dh8eLFqFQqHBwcePbsGf3793/jODT21mlpaURHR1OrVi2t9TkdjkJCQhg2bBiRkZGEh4dTvnz5XO0ZGxsjhGDDhg1069ZNmqOMjAy6detGnz59SE1NZciQIXTs2BEAOzs7rKysSExMxN/fn7NnzxIbG0vjxo2pUaMGP//8Mw4ODrRq1Yrk5GT27duHtbU1P//8s1aZlFVxU/ycy6P3/+4l9w+t5pdVm7hwPprt27fnGmvlypWJjY3F2NgYExMTydr71atXkq13ZGSk5J61fv16STg0OTkZd3d3oqKiqFu3LosXL87Vfu/evdHX1+fXX3/VcmEpWbIk+/btY+OeIxTxHcPVbfOy5yhLcD78FJHR0RgZGbFlyxamTZv2xvMn8/78LwSR9fT0UKlUODo60qFDB1JSUnj69CkLFix467457eVlZGRkZD5N5ACLzHtRsmRJFi1axPz58xFCkJWVxZgxY3B1dcXJyYmFCxcC2XW73t7etG/fHltbW7p160Z2ADM7hT4wMBAXFxcUCoX04LB8+XLJiWDDhg04OjqiVCqpW7fuv3OwMjIyHwW6uroFsn99H5vY/OxmDxw4QLVq1Rg0aNDftptt164d5cuXx97enu7du+Pi4oKFhQX9+vVjzZo1NG3alBo1amBubi6JTc6ePRtHR0ecnJwwMDCgWbNmudrVuCvFxsayevXqPEt+cuLk5ER8fDxr166lefPmudbndDjy8PBgypQp/Pjjj9y8eTOXBgxkC4IePHiQ4cOHExsby6xZs7h69SqXLl3i0aNH/PHHH6hUKrZu3UpycjLPnz/n0aNHJCYm4ubmxurVq0lISKBVq1bo6+vTsmVLdHR0MDc3p1SpUjRr1ozRo0ejq6tLbGysVjmRrq4OqgpFqFO1BHO7ONO6SX1+m/Y1S5b8mqfGkJGREfb29qSmprJly5ZctraQrQOkccKyt7fn5s2bQPZ15evrC2SXl2kCYhqePn3KixcvKFy4MIDk2ATZwaYvv/ySRnXciF01mbSEW3/Nn74BP6/dQWRkJK1bt35n2+Y3aSnJ/IVGENl/aRhD157Df2kYuy88+OBBFs3LqJiYGAoVKkRISEiBAywyMjIyMp8+sgaLzHtjY2NDVlYWjx49Ytu2bVhYWHDmzBnS09Px9PSkcePGAJw7d44LFy5QtmxZPD09OX78uGTrV6JECc6ePcuCBQuYMWMGv/76q1Yf3333HXv27KFcuXI8ffr0f32IMjL/GrJOgzYaFyEgT3HI10UY8xORzLldXnazr+vF5NdOfmPTkPPhWyMYqaury4wZMzAzMyMpKQk3NzdJzLZ+/frExcUhhGDQoEGS/si8efPe2Pf70qpVK0aPHk1oaGiuIINGsBaygwS1atXizz//pHnz5ixcuJAGDRrkak9PT48ffviBLVu20KZNGw4cOIAQAiMjI/78809J6LhChQoAbN26lT59+jBz5kyWL1/O7NmzpX41jkY6OjoYGhoSEBBAixYt6NWrF+PGjaNOnTro6Pz1XXj1Kh1zIwPcbYrjvmIJp0+f5s8//6RGjRpERERQvHjxPOfg+fPnkj3468fSu3dvwsPDuXXrFmfOnKFOnTro6+vTp08fwsPDefnypWRhnpGRwapVq1i8eDEJCQmULl0agC1btnD//n0AZs2axcOHD6nrXZ8rldpwfEJTqT8doIRZtvZFZmamVoCsTZs23L59m7S0NIYNG0a/fv2AbGeq/v37s3//fn7++WfCwsIk15a+ffsyfPhw4uPjadasGXXq1OHEiROUK1eObdu25Rkk+y/wroLIHwIvLy+io6MJCAjg2rVrqFQqGjVqxPTp0xk7diy7du1CR0eHb7/9lk6dOmntm5WVRUBAAKGhoaSnpzNo0CD69+9PaGgogYGBFClShPPnz9OxY0cUCgVz5swhNTWVrVu3UrJkSZycnLh8+TIGBgY8f/4cpVIpfZaRkZGR+eeQM1hkPgh79+7lt99+Q6VSUatWLZKSkrhy5QoAbm5ulC9fHl1dXVQqldaDhyY9O6+3gZCdUt+rVy8WL14sv6WT+c/wv3rTKvMXmrR+BwcHlEolP/30E2q1+u075uDevXt5On3kxNfXF5VKhZeXF2PGjCEwMJDKlStja2uLmZkZNjY2BSrzeRPe3t6Eh4fnWr5hwwZJ2LJPnz4EBgZKAZ78uH79OjY2NgwdOpTWrVvTr1+/XG1nZGRw7do1DAwMGDFiBFu2bMHMzIzq1atjYGAglbzs378fMzMzChcuzKtXryhcuDAZGRmS01J+aMqkFAoFlStXJi4ujlKlSnHx4kXUajVbtmzR2rZWrVp89913WFpaSuU9GtLS0rh27Rq2trb07duXCRMm5Orv/Pnz6OjocP78eZydnZk2bRppaWlkZmZKy4cPH87x48dJS0sjPDycQoUKcenSJcqWLUtERASQLfb84sULMjIyePbsGZcvX2b4wP64ZsXA/19bBno66Ovp0rtDSxwdHdm6dav07yLA0qVLiYiIIDw8nLlz50rBsOTkZGrVqkVUVBTGxsYsW7aM06dPc+rUKRYvXsy5c+cAuHLlCoMGDeLChQsUKVKETZs2vXGu8yOvspd/g5zXtqbErKC0b9mE8Bn+xMzvT8z8/jyOOUJ6phpHq9L/yFgzMzPZtWsXhoaGPHr0SBJXDg4OZvPmzURGRhIVFcX+/fsZM2aMFIzTsGTJEunF1ZkzZ1i8eDE3btwAICoqSnI+W7lyJZcvXyYsLIy+ffsyb948zM3N8fb2lpy81q1bR9u2beXgioyMjMz/ADnA8hmio6ND9+7dpc+ZmZlYWlpKqc35ERoa+tZtcnL9+nX09PQoWbIku3btIigoiMjISCIjI7lx44aUwaJ5GwnZP9I0Ggc5172+XENISAhBQUHcvn2bGjVq5JnOLSPzuZHfm9b4pOR/eWSfL39XYyozM5OyZcu+1Y0mNDRUKucJDQ2lWLFiXLlyhTt37nD+/Hnmz5+vVeYjhHjnQE9+LFmyBCMjIw4dOkT58uUZOnToW4/p999/x9HREZVKRUxMDKVKlcq1nRCCwYMHY29vz4IFC3j16hVKpZJChQqxbds2Nm/ejLGxMa1atZI0WOrXr8/cuXPx9PTE1tb2jePQlElt374dfX19mjVrxrRp0/D19aV27dqUKVNG2nbMmDEoFAocHR2pXbs2SqVSqy0jIyMpSLN792569uwpla1quH//vvRvqJmZGaVKleLy5ctkZWVJy8uVK4epqSmXL1/m5s2buLi4ALB69WoMDAzo2rUrGRkZFC1alB07dtCkSRMePXpEz549MHhxHxMTU+Z2cWZcczv0dHU4dOgQMTExdO7cmVWrVklZT3PnzkWpVOLu7s7t27elFxd6enq0a9cOgGPHjuHn54epqSlmZma0bduWo0ePAmBtbS3Zh+f3IqMg5FX2UhDy+nf936KQni7VO3+D4+CFOA5eSDHHuhjq6/Kh8wJTU1NRqVTUrFmTihUr5lmGd+zYMbp06YKenh6lSpWiXr16nDlzRmubN724cnV1pUyZMhgaGlK5cmXp95ZCoZDOcd++fVm2bBkAy5Yto3fv3h/4SGVkZGRk8kIuEfoMMTU1JSYmhtTUVIyNjdm3bx/lypX7oH0kJCQwYMAABg8ejI6OjvQGzc/PDwMDAy5fvvxB+tS8jaxVqxa7du3i9u3b+aZ7y8h8LryP9eynxMde/qTRmHJ1dWXSpEmkp6fz1VdfER4eLpUS1a9fn+XLl7N582ZevnxJVlYWK1aswNfXl5iYGC5cuEDv3r159eoVarWaTZs2UbVqVamPa9eucfr0aVavXi1ZSFtbW2NtbU18fDxNmjShVq1aREREsHPnTubPn59nOcGPP/7IqlWr0NXVlQIPGtRqNX369KF8+fIUKlSIY8eOUaFCBcaMGcP333+f65ggOytg8+bN7Ny5k6ysLHbv3i29aTc2NubJkye55uvevXv5zmW9evXyzDLQvFl/E97e3vmua9++fZ7ZQps3b35jmzo6OsTExADZ+jKJiYmYmpqyd+9efH196dWrF9u2bZO237FjB15eXkC27XXO/ufMmQOAra2tFDhycHDAzs6ORYsWsX//fry9vVm+fDm2trbMmDGDgQMHAjB9+nQA3G2a8U3JklK7K1eupFatWsTGxpKSksL+/fs5efIkJiYmeHt7k5aWBmQHinKK6ObH6y84UlNT37rP29CUvSQnJzNkyBBiYmLIyMhg0qRJtG7dOtf3YufOnflut337dlJSUrh27Rp+fn7SvOzdu5fAwEDS09OpXLkyy5Ytw8ws/3vfqlWrmDt3Lq9evaJWrVosWLAg1/wYGejRxdOajTd1Sc9UY6ivy7jmdnT8Pnv9y5cvad26NU+ePCEjI4OgoCBat25NfHw8TZs2xd3dnRMnTuDq6krv3r0JDAzk0aNHrF69Gjc3N2k+IPs60xzn6+WLBUUIwbx582jSpInW8tDQUK3zqqurK33W1dWVglqenp7Ex8cTGhpKVlaWLJ4rIyMj8z9CzmD5TGnevLn0A3bt2rV06dJFWhcWFoaHhwfOzs7Url2bS5cu5dr/5cuX9O7dG4VCgZOTE5s2bSI1NZVKlSphZGREhQoVyMjIIDAwEEBKB3d0dMTQ0JC6deuiVCoJCgoiMTERT09PqlatysOHD9/pON72NlJG5nOkpLkhhvrat2dDfV1Kmhvms8enw6dS/pRTY+rnn3+WSkPWrl2Lv7+/9KB79uxZNm7cyOHDh7X2f5v7zoULF1CpVPk+JF+5coWBAwdy4cIFwsPD8ywn2LVrF9u2beP06dNERUUxduxYaf/MzEy6detG1apVCQoKYuLEidSsWZPVq1cTHBxc4GP65ZdfMDEx4eLFi0yePFkqf/kciIuLIysrK1fQ3svLSypbunz5Mrdu3aJ69er5Lq9bty5r1qwBss/7uXPn6NSpE0ePHmX+/Pncvn2bNWvWaP07nB+PHj3ixo0bVKpUiWfPnlG0aFFMTEyIi4vj1KlTee7j5eXF1q1bSUlJITk5mS1btkhBoQ+NpuxFoVDwww8/0KBBA8LCwjh06BBjxowhOTk7yy7nNfSm7fJybEpMTCQoKIj9+/dz9uxZatasmUsbKScXL15k/fr1HD9+nMjISPT09PItO1sQOIyklcN5unoEs9tUpqnDX+VBGhens2fPcujQIUaNGiVlN129epVRo0YRFxdHXFwca9as4dixY8yYMYMpU6YASMdpbGyc6zj19fV58eKF1JeXlxfr168nKyuLhIQEjhw5gpubm9ZYmzRpwi+//EJGRgaQfc1p2isoPXv2pGvXrnL2ioyMjMz/EDmD5TOlc+fOfPfdd/j6+hIdHU2bNm2YO3cuNjY2FC5cGCMjIyZOnIi5uTnffPNNrrrs77//HgsLC86fPw/AkydPuH37tpSm3L59e168eMH27dtp06YNAN9++y3Dhw+nSpUq7Nu3DwcHB1xdXVEqlSxZsoTt27ezbNkyevXqBWiLQNasWVN6y9OrVy9pm7e9jZSR+RyxKm7KuOZ2UpmQ5k2rVXHTt+/8kfNvCE3+XY4dOya9mba1taVSpUpcvnwZyLZ3LlasWK59PDw8+OGHH7hz5w5t27bVyl4pCJUqVcLd3V3qP69ygsOHD9O7d2+MjIy5nvCSRy8EJbOyS0v69+9Px44dGT9+/Hsfk1ot2LXvIK27fcH1hJc4OmYH3D9lNOUbkJ0hsGLFilxBroEDB/LVV1+hUCjQ19dn+fLlGBoa5rv8q6++onfv3tjZ2WFnZ4ebmxs///yzJFTcsWNHIiMj8xTU1VC/fn309PTIyMhg2rRplCpViqZNmxISEoKdnR3Vq1eXrofXcXFxoVevXtIDet++fXF2dn7vcqC8yDlvXl5efPHFF9SuXZvt27czY8YMIFvf5tatbHeknN+LvXv35rudxrEJkBybnj59SmxsLJ6enkC2hbaHh0e+Yztw4AARERG4urpKYy2ZIysoJ6tXr5bOy+sIIfjmm284cuQIurq63L17V3opZG1tLekVOTg44OPjg46OjlZJjuY4U1NTpWwjzXEWKlQIT09PHB0dadasGdOnT+fkyZMolUp0dHSYPn06pUuX1jpnffv2JT4+HhcXF4QQWFpasnXr1nznIS+6devGt99+W6DgnoyMjIzMh0EOsHym5LThbNasGRMmTKBYsWKcP3+e27dv07dvXwYOHEiJEiWktyM52b9/P+vWrQOy31gVLVqUI0eO4O3tjaWlJTo6OjRr1owjR45IARYNBfkhIiMjkz+6ujo0dSiNbWnzj7aM5n35VMqfcmpMvYmcjjs5eZv7joODA1FRUWRlZeWZxZJfu6+jyQjKGYx7lvyK2h4e0lt4IyOjArWVs29Nu2dvPeH2wausv2vBuOZ279TOx0h+YulWVlZS6ZCRkZGkXZGT/JYbGxtL/17mxbFjxxgxYkS+6/P7d9HQ0JBdu3bluU6j0aJh5MiRjBw5UmtZzmMCGD16dL5jeBsaDZacCCHYtGkT1atX11p++vRprev3TdvlpdEmhKBRo0asXbu2QGMTQuDv78/UqVPf8ai00diFR0REYGBggJWVlZTVVZCSnPyOUxOk0WQ5aQgODiY4OFhrWc5zpqury5QpU6QMGQ3e3t5a5XM5S5BeX3fs2DHat29PkSJFCjgLMjIyMjJ/F7lE6DNACEGdOnW0foht2LCBZ8+eMXr0aGxsbNDX16dSpUoATJgwgRYtWnD//n02btzInTt3UCgUfPnll1KtfFJSEgMGDKBBgwb4+PiQmprKjBkz2LZtG35+flp13GvXruXevXt4eXkxbdo06YeHmZkZkZGRjB8/Hnd3d5KSkj4qwbtPjQ/hcrJ8+XIGDx4MZFvLat4obt26FR0dHeLi4t55XJMmTZIcoqpWrUrbtm2JjY196z6avnv16vVGYdDX6+4nTZpEuXLlUKlUqFQqAgICCAkJ4bfffnvnsX/M6OrqYGNphrtNcWwszT6L4Ap8GuVPr2tM5Vca8iZed9+Jjo7WWl+5cmVq1qxJYGCgVIYQHx+fpzZJfuUEjRo1YuGvSwjaeo70TDWZKc9Jz1RzMymFpu260rx5czp27Jjnffdtx6TJNDKtpCAp+iDpmWq+Xboz13HI5M/Tp0+pVq0axsbG+Pj4/NvD+eA0adKEefPmSdevxrnofbfT4O7uzvHjx7l69SqQ7Zikya7KCx8fHzZu3MijR48AePz4MTdv3nzn43n27BklS5bEwMCAQ4cOvXMb73qc/zRDhgwhICAgT6csGRkZGZl/DjmD5TNAR0eHkJAQOnToQP369aU012XLlnH27FlSU1OpVq2aFBR59uwZ5cqVQ60W9O0/ELWAbQdPcuTPTXz11QDS0tJwcHDgyJEj3Lx5k2LFihEUFES5cuW4desWw4cPx8fHByEEX331FV9//TWlSpXi0KFDtG3blufPnwPZP4osLS2ZOHEiYWFhb3zDJ/N2cr5BfPToEV27duX58+fv5HSSH2vXrqVOnTqsXbs2z/YyMzPR18//dmFgYCCNbf369TRo0IDz589jaWlZoP7f1YJ7xIgRf+ttrMy/x8da/qQpgcjIyEBfX58ePXpIGQH5lYa8id9//52VK1diYGBA6dKl+eabb3Jt8+uvvzJq1CiqVKmCsbExJUqUyPVGG8DPzy/PcoKmTZuy/eAJls37Ch09fYpUc6N84y8QQvAk+RUjR47k2bNn9OjRI5cmxduOSZNpVNKtJTc2z+D8nD4YWVakuuPHp4P1sYomFylS5I2BgU+dCRMmMHz4cJycnFCr1VhbW7Njx4733k6DpaUly5cvp0uXLqSnpwMQFBREtWrV8tze3t6eoKAgGjdujFqtxsDAgJ9//ll6qVRQunXrRsuWLVEoFNSsWVNyt1KrBa+y1Jy6nkRJc0NEPnJR73qc/zTz5s371/qWkZGR+S+j87o94adKzZo1RXh4+L89jH+VsWPHYmpqyg8//MCECRNITk6mQoUKZGVlcfToUaKioujXrx8nTpxg27Zt2W9ZdPXQ0Tek9uTt2CUdZdmsILy9vTl//jzJyclUrFgRfX194uLiJNG++/fvI4SgU6dOtGjRgvHjx3P79m2qVauGs7MzO3fuJDExEUNDQzp37kzLli3Jyspi8+bNXLhwQStlWabgmJmZaaWFX79+HVdXVxITE1mxYgXh4eHMnz8fAF9fX0aPHo23tzfLli1j6tSpFClSBKVSiaGhIfPnz2fSpEmYmZkxYMAAqlSpQtWqVTlz5gyurq4sXryY69ev07ZtWxo2bMjly5cJDw+ndOnS2Nrakp6ezrBhw+jXrx+TJk1i6tSpDBw4kL1791K6dGmKFy+Op6cnvr6+ODo6Uq1aNQoXLsywYcOYP38+3t7enDhxglKlSrFnzx6qVavGwoULady4MU+ePEGtVtO6dWvWrVuHubm5dNzBwcHMmjULIQT9+vVj8uTJUgCvYcOGjB49mt69e7Nnzx5KlixJo0aN2LVrFzExMaSkpNCrVy9iYmKoXr069+7d09JJkPnf8bE+EH+KXE94if/SMK2yK0N9XVb0cftbJVf/VLt/Bz09PRQKBZmZmdjZ2bFixQqMjIxzlUiNa25HU4fS/8g1ZWVlhbm5OTo6OpQuXZrffvuN0qVLv33HNxAXF0fnzp3R0dFh48aNVK5c+QONVubvklcJ3j95fcnIyMh8zujo6EQIIT77H95yidBnRGBgIGvWrKF69eqMHTuWTp068fvvv+Pg4MCjR4/Q19enU6dOdOvWjZq1PDAobIm5jTO6+ga8eJLAyafmCCEYO3YsU6ZMwdTUlIULFxIVFYWenh4WFhbcuHGDmTNnYm5uztChQ9mwYQOlS5cmPT2do0ePsnfvXklMzcDAgBUrVtC+fXv09PQwNjaWgysfkJwuJ/lx//59AgMDOX78OMeOHcuzdGfbtm3o6uqydOlSXFxcJH0eExMTsrKyaNmyJZcvX2bdunX06tWLs2fPEh4ezty5c0lKSgKyRQhr1qzJhQsXqFevHvfv3ycuLo5+/fpRrFgxDhw4wIwZM/jxxx+1+o6NjaVJkyYMHz6ckJAQJk6cSEpKCs+fP0dPT0/r7d/evXu5cuUKX375Jbq6usyePZuqVatSuXJloqKigGxb2tWrV7N06VLJTULDggULKFq0KLGxsXz//feflRvKp8bnWv70b6DJCNKUXX2ojKB/qt2/gyaLLyYmhkKFChESEpKvaHJ80ru5rbwLhw4dIjo6mpo1a+bSx3gftm7dSvv27Tl37pxWcEUI8c5loDIfln/j+pKRkZGR+bSRAyyfEaampnTq1IkePXpgaGiIs7Mzjx49wtbWlsePH5Oenk6FChU4duwYrvUagY4OFlVc0DM0IfnOJZIfP0JPT5+6deuiq6tLiRIlJPE9IyMjSZ+lSJEi0oP1lStXCAsLw9HREW9vb54+ffpWbQKZ/x2nT5+WhIkLFSpEp06dcm2zcuVKEhMT6dChAzdv3pQsYAEUCgU7d+4EkMQdlUql5CZ15coVILtMTdN29+7duX79OhkZGZw4cYKEhAS8vb3p37+/dA1paNWqlRQE8fDwICgoiIoVK6JQKDh8+DAXLlyQtt27dy979+5l4cKFkqNCQEAA/v7+GBsbc/fuXTZv3oyBgQFNmzYFsoVGNRw7dozOnTsD4Ojo+Mm7ocjIwF+CyCv6uDG3izMr+rh9kLfr/1S7HwovLy+uXr3KldsPiFkxgZh5/YgNGULKg+ukZ6qZEvQdPXr0wMPDg6pVq7J48WIgWxC0bt26tGjRgurVqzNgwADUajVLly5l+PDhUvuLFy9+ozAtQN26dbl69SppaWn07t0bhUKBs7Mzhw4dArI1r9q0aUOjRo2wsrJi/vz5zJw5E2dnZ9zd3Xn8+DE7d+5k9uzZ/PLLL9SvX5/4+HiqV69Oz549cXR05Pbt2wQHB+Pq6oqTkxOBgYEATJw4kdmzZ0tjGT9+PHPmzCnw/KnVgusJLzl1PYnrCS8/Opv0j4U3iXLLyMjIyMjkhazB8olQ0JR6XV1ddHX/ipt16NCBTZs2Ub9+fY4dO4a1tTWpqamYmBfGutmXmFXz4NGp7dza8TO6evrYK5zyVMc3NzcnLS0NOzs7Spcujbm5OQD6+vpMnTqV5cuXk5mZybBhwyQRVZl/lpwuJ/r6+lpvOjXOB28jJSWFI0eOkJWVxdOnT9HV1cXIyIjY2FgOHz5M2bJliY+PJzQ0lCdPnhAdHc3JkycxMTGRbCjzQqP7U6RIEUxNTTl48CAlS5bk2LFjfPvtt9J2OZ0m2rZty9ChQxkyZAirVq2iYcOGWu0LIRg3bhz379/HzMxMS4PFxcWF8PBw4uPjC+y+IvP5818pRdJkBH3o0p1/qt2/S2ZmJrt27aJp06asXjCDwuWqUqrbZJ5fO8f1jT9SY/hiTAvpcyY6mlOnTpGcnIyzszMtWrQAICwsjNjYWCpVqkTTpk3ZvHkzHTt25IcffiA4OBgDAwOWLVvGwoUL3ziOHTt2oFAo+Pnnn9HR0eH8+fPExcXRuHFjSXslJiaGc+fOkZaWRpUqVfjxxx85d+4cI0aM4LfffmP48OEMGDBAuqfFx8dz5coVVqxYgbu7u5S5FxYWhhCCVq1aceTIEfr06UPbtm0ZPnw4arWadevWERYWVqD5k8teCo5GlPv1UrmPSZRbRkZGRubjQs5g+QTQ/BjyXxrG0LXn8F8axu4LDwr0xqlTp06sW7eO3bt38+eff3Ljxg0WLFhAFWtrgsf2Rz8rDaHOQjX4ZwKD51K2VLYlaa9evahbt67Ujo6ODosXL+bixYsEBwfj4uJCzZo1adKkCTdu3CA6OpqYmBgpQwC0bSTbt2/P8uXLP9yk/Md53eXEysqKyMhI1Go1t2/fln5o16pVi8OHD5OUlERGRgYbNmzQaic6OpoePXpQq1YtgoODuX37NtbW1lpWpD179qRr1654e3tTtGhRTExMiIuL49SpU9I2QgjJCWj8+PHSG11ra2uMjY2JiIhACEFISEi+xxQXF4eenh5jx46lWbNm7N27V2t9kyZNWLp0Ka9evQLg7t27UnmUnZ0dcXFxREVFUbJkSU6fPg2gJazs6enJ77//DmSXJp0/f/7dJl3mk+Lv3DdlPk40QsQ1a9akYsWKfPHFF5yPOM3EkQMw1NelcGVnslJfMKxueYqYGNC6dWtJPLh+/frSfdHNzQ0bGxv09PTo0qULx44dw8zMjAYNGrBjxw7i4uLIyMhAoVDkOY769eujUql4/vw548aN49ixY3Tv3h0AW1tbKlWqJAVY6tevj7m5OZaWllhYWNCyZUsgOzswP3vmSpUq4e7uDvyVuefs7IyLiwtxcXFcuXIFKysrihcvzrlz56T1xYsXL9A8ymUvBedjLJWTkZGRkfm4kTNYPgHy+zFkW9r8rW8WHRwcePHiBeXKlaNMmTLAX44U47o3JUMtmPDdD3Tt0pT482c49o4vrz421fzPmTe5nHh6emJtbY29vT12dna4uLgAUKZMGSZNmoSHhwdFihRBpVJptRkZGcn8+fMJCAjgq6++IigoiIcPH/LLL79IbibdunXj22+/ZfLkyfTq1Qs7OzuqV68uPQBAdgBuyJAh+Pv7U7hwYfbu3YulpSWrV6+mc+fOtGnTBl1dXVxcXDAwMMjz+Hbv3o1araZIkSKYmJjQrFkzrfWNGzfm4sWL/PDDD+jp6bFp0yZWrVpFyZIl0dPTo0qVKtSrVw8/Pz9Jp6VevXpYWFgA2a4p/v7+2NvbY2tri4ODg7RO5vPj79w3PzYePnzIiBEjOHXqFEWLFqVQoUKMHTsWPz+/XNveu3ePoUOHvtH6/H3YunUr1apVw97eHsguf2ncuDFly5Yt0P7Lly/XEuIG8Pb2ZsaMGQUWms7ppJaTysbpPFw+mN/+PIrfgkI0tCtFzJ7sf8yuXLnCiBEjOHz4MMePH6dw4cK5dE10dLK37du3L1OmTCExMZEKFSrk6ic+Pp579+5x79494uPj+e233yhSpMgbx5zTmUlXVzfPDNHXyZmFp8nc69+/f67t+vbty/Lly3nw4AF9+vR54zhy8qayl0/tu/FPoymVsy1t/tlnwsnIyMjIfCCEEJ/FX40aNcTnyslricI1aF+uv5PXEv/tocn8B9iwYYPo3r37vz2MN5KVlSWUSqW4fPmyePHihbR86tSpYujQoUIIITIzM0VqaqoQQoirV68KKysrkZ6e/q+MV+af53O5b6rVauHu7i5++eUXaVl8fLyYO3durm0zMjL+sXH4+/uLDRs2SJ/r1asnzpw5U+D9ly1bJgYNGqS17F3bMDU1zbVsyJAhYsSIEcLBwUEcOnRIqFQqIYQQgYGBQqFQiCpVqoiVK1eKChUqiLt374qlS5cKfX19cf36dZGVlSUaN24sNm7cKLXn7OwszM3NxeTJk3P1dePGDWFgYCAAMXLkSGm5r6+v1O+kSZNEsWLFRFpaWq5jrlSpkkhISMg1H4GBgWLcuHHCwcFB3LhxQzg4OEj77NmzR7i5uUn3tTt37oiHDx8KIYRIT08X1apVE9bW1iIzM1Oa02rVqgmlUimUSqV0znLO3bVHL0SdaQe0vhd1ph0Q1x79de98Vw4dOiRatGjx3vvLyMjIyHz+AOHiI4gb/NN/cgbLJ0BeNcBlLAwx0tfl1PUk+Y2KzD/GkCFD2LVrlyR0+zESGxuLr68vfn5+VK1alfXr1zN16lQyMzOpVKmSVJqWkpJC/fr1ycjIQAjBggULKFSo0L87eJl/jM9FO+HgwYMUKlSIAQMGSMsqVarEkCFDgOzMkM2bN/Py5UuysrJYsWIFvr6+xMTEsHz5crZv305KSgrXrl3Dz8+P6dOnA7BkyRJ+/PHHXPbt8fHx9OnTh8TERCwtLVm2bBl37txh+/btHD58mKCgILp06UJ4eDjdunXD2NiYkydPMnnyZLZv346+vj6NGzdmxowZ73Sce/fuJTAwkPT0dCpXrsyyZcswMzPju+++448//iA1NZX09HSEEOjo6BAREUGfPn3IysoiPT2d27dvExAQwIoVK6Q2TU1NuX//PpMnT2bChAmULVsWa2trPDw8GDx4MJcuXSIrK4vJkycTHBzMokWL6NixI6tWreLKlSt4eHiQmJjI2LFj+fLLL6V2DQ0NWbNmDefPn2fv3r2kpqZy8+ZNTE1NyczMpF+/flqZK38HTeaeh4cHAGZmZlLmXqFChahfvz5FihTRckxbvXr1G7OCNGUvr2uwyGUvMjIyMjIyH4B/O8Lzof4+xwyWrCy1uPbohThxNUEcjHsoWs07IlyD9olW846ItadvSm+g6kw7IP6MvieystQffAze3t5i9+7dWstmzZolBgwYILZt2yamTp36Tu3lfAv6xRdfiAsXLuS77aFDh8Tx48fffdCvMWnSJBEQEKC17Ny5c8LW1lbcvXtXtGvXLs/93rQu55vXZs2aiSdPnvztcX5INNfOyWuJ4tqjF//ItSEj8zGTlaUWf0bf+5/cJzU8ePBAdOnSRVhbWwsXFxfh7u4uNm/enGu7N91bNGgyGebMmSOGDx+e73bLli0T5cqVE0lJSVr7adZZW1sLT09PcezYMVGxYkVx69YtcffuXVGpUiWRlJQkXr16JerUqSNlU/j6+orly5cLIYRYsmSJaN26tRDizRksiYmJolq1akKtzp7bvO6Hy5YtEyVKlJAyK5RKpTA1NRVnzpwRCQkJwsvLS7x8+VIIIcS0adOkDBLNcQkhRPfu3cX27duFEEIoFApx+PBhIYQQo0eP1sr6ECI7K8TLy0vMnj1ba3nOTIvBgweLSZMmCSGEOHDggFAqlaJFixaiR48ewsnJSaSkpIiEhARRvnx5cffuXWluTU1NRd++fUXlypWFEEI0atRIlC9fXqSlpYkxY8YIY2Nj8erVK3HlyhXh4+MjnJychLOzs7h69apQq9XSeB0dHcW6detynbcbN26IOnXqCGdnZ+Hs7Cz9O3jv3j3h5eUllEqlcHBwEKGhoVLmXl7nJSeaDa+47gAA4c5JREFUDJYXL16IBg0aCGdnZ1HNzl78GPKbuPbohbh27bqoXr268Pf3F1WrVhVdu3YV+/btE7Vr1xZVqlQRp0+fFkII8fLlS9G7d2/h6uoqVCqV2Lp1a655lZGRkZGRyQvkDBaZf5O8VP5HNa5GuaImGOjqMGTtuf+JtkCXLl1Yt24dTZo0kZatW7eO6dOnU7duXVq1avXebf/6669vXB8aGoqZmRm1a9d+7z4g+xiaNm3K1KlTpWXr1q2jS5culC1bNk+tgszMzHzXvc7fye74J1xOZIcIGZn/vXaCEII2bdrg7+/PmjVrALh58ybbt2/X2u5d7i15MWjQII4dO0ahQoU4c+YMAI0aNaJYsWJ5bu/j48OVK1cwNDTE3t6emzdvkpiYSL169aR9OnToIImynjx5ks2bNwPQo0cPxo4dq9Xe1q1b8fPzw9XVVVpmYWGBkZERX3zxBb6+vvj6+uY5lk6dOuXSYAE4deoUsbGxeHp6AvDq1SspY+PQoUNMnz6dlJQUYmJiOHDgAN988w2XLl2iYsWK1K5dm5CQELZt24ajoyMxMTH5zp2JiQklSpSQhLKPHTvGpk2bgGwnsgsXLmBlZYWNjQ1WVlYYGxtjbGwsCeTm1LBq06YNq1ev5tmzZwBUrVoVQ0NDTExMMDMz4+HDh3Tr1o2AgAD8/PxIS0tDrVazefNmIiMjiYqKIjExEVdXVy1BeYCSJUuyb98+jIyMuHLlipQxtGbNGpo0acL48eM5f/48LVu2pF27dlStWlVrf01mEcCBAwe0xG+NjIzYsmULhQsXJjExEXd3d8b0687N5ESuXr3Khg0bWLp0Ka6urqxZs4Zjx46xfft2pkyZwtatW/nhhx9o0KABS5cu5enTp7i5udGwYcN851xGRkZGRua/huwi9JGSl0DjT3svU9y0EGmZ6nwF6j407du3588//5R+kGpE/ry8vFi+fLlkydyrVy+GDh1K7dq1sbGxkR4ehBAMHjyY6tWr07BhQ8n1BbJ/XIeHhwPZAqcuLi4olUp8fHyIj48nJCSEWbNmoVKpOHr0KL169dJ6KDEzyw4m3b9/n7p166JSqXB0dOTo0aNax1CtWjWKFi0qOcsA/P7773Tp0oX4+HgcHR2B7FT7Vq1a0aBBA2kMmnWpqal07twZOzs7/Pz8SE1NldqysrIiMTERyP7RXaNGDRwcHFi0aJHWWMePH49SqcTd3Z2HDx/+Yy4nskOEjEw2Gpthd5vi2Fia/aMBxjeV8rzp3rJ8+XJat26Nt7c3VatWZfLkydL+WVlZ7N69m0WLFtG4cWNSU1P5+eefmT17NtHR0Tg5OTFv3jypPCQyMhI/Pz+uXr2Kn58fycnJuURWg4KCWL169Xsf59q1a6lTp47WvVxfX5+wsDDat2/P9u3badq0aYHbu/MkhYv3n+FRtz5nz54jMjKS2NhYlixZQlpaGgMHDmTjxo3/x959x1Vdfw8cf12GoIIb1DRFzMW8TAeiqInm3ltR0nKbpZkNQ9NSozLM0nLnyJUjWy4QXCnoxYkhiJo5cKEoIHA/vz/43c+XyxJzgZ7n49EjPvv9uReQez7nfQ7Hjh3D3NycN954g4iICKpUqYKdnR379u3L87xBQUEEBARw+PBhdZ2trS2LFy+mfv36ufYvV64cVapUYfny5cD/Ct8a5FwuXbo01apVIyQkRH0NDExMTLh16xYXL15UCxFbWlpSqlQp9uzZQ9++fTE1NaVy5co0b95cDZQZpKenM2zYMJydnenZsycnT54EwMvLiyVLlhAUFERmZiYJCQl88cUXue5l5cqV6HQ6dDpdrs5CiqLw/vvv4+LiwquvvsrFixe5cuUKALVq1cLZ2RkTExMcHR1p1aoVGo3GqOPRtm3bmDlzJlqtFj8/P1JTUzl//nye74EQQgjxIpIASxFVUJV/Q22B7J5UbYEKFSrg7e3N77//DmRlfvTq1SvXH5uQFejYs2cPW7du5b333gNg48aNnD59mpMnT7J8+fI8/xhOTExk2LBhbNiwgejoaNatW4ednR3Dhw9n/Pjx6HQ6fH198x2j4ame4algzk458L9MHMh6WlqhQoVcT/0ADh8+zPr169m9e7fR+u+++45SpUpx6tQppk6dSlRUVJ5jWbx4MVFRUURGRhISEsL169cBuHv3Lo0aNSI6OppmzZrxww8/0KRZc96ds9woEDL6/ekMDByW57kLq6DvncKys7PD2dkZZ2dnHBwc+PDDD0lNTX2kcRlkD8wJ8bw4ceKE2r0rL/n9bgE4ePAgGzZs4OjRo6xbt04NPMfGxjJjxgycnJy4fv26mm0xcuRIypcvz9GjR6levbr6AX3QoEFMmjSJV155BWdnZzZv3qxeIyMjA51OR/Xq1ZkzZw67d+/m5s2bZGRkqOcFaNKkifq7cuXKlervXmtraxITE9mzZw+LFi3i2rVr3LlzB4Dff/+d5s2bM3/+fPbs2YNOp2PkyJHUr1+f1q1b065dO3WMhoC0Xq/wz9UbDBg8lFVnLfhz2w5qvlIXrVaLq6srhw8fVn/nVKpUSa0xA1nBkHLlyqntlXMGjDIzM5kwYQJffvklP/30E2+88Ya6bcWKFURFReHs7Iyjo6N6bFhYGJUqVaJMmTIAbN68mdTUVK5fv05YWJhRxo5BrVq1WLRokfoA4nH56quvqFy5MtHR0URGRqrnb9asGeHh4VSrVo3BgwerwaCHsXLlShITE4mKikKn01G5cmX1dS5MxyNFUdiwYYMawDl//jwNGjR41FsWQgghnhsSYCmiCgqiGArUGbY/6QJ12YMThqk1eTG04nVwcFCfiIWHh6tP61566SVatmyZ67gDBw7QrFkzatWqBZBvqnt+sj/VO3bsGNbW1rn26d27N+vXr0ev1xd4D/ml2oeHhzNgwAAAXFxccHFxyfP4kJAQNUvlwoULxMbGAlCiRAk1bd7Dw4OEhAT8XuvClSO7jI6/qttF07adC3Xfhg8bOT2uAFxoaCjHjh3j4MGDxMfH59km9L+MT4gXwahRo3B1dVU/mBc0jad169ZUrFiRkiVL0q1bN/bs2QNkfYB3c3Nj06ZNZGRkMGbMGNzd3Tl79ixff/01kNWi/d9//yUpKYlbt26p7dMDAgI4ffq0eo0333wTKysrBgwYQLVq1Xj//ffx9vbGx8cHOzs7tWX53LlzWbJkCS4uLvz444/qdfr06cP06dNJTU3F1NRU/ZCv1Wq5d+8ehw4d4u+//6ZkyZL069ePhIQETp48yY8//sj+/ftz3XPC9btcTkpFQcG8dDlKVKjK9eQ0Uu9nkJGRwblz5yhXrhzDhg3DycmJNm3aoCgK8+fPR6vVUrFiRUaNGkVKSgpZ07r/5/vvvychIYHo6Giio6OJj4/H3t6eS5cuceDAATZu3MiIESPUYrkuLi65CuS6uLjQokULGjVqpBbIzalEiRL06tWLI0eO5NpmZWVF9erV2bRpEwBpaWncu3cPX19f1qxZQ2ZmJomJiYSHh+Pt7W10bFJSElWrVsXExIQff/xR/V167tw5KleuzLBhwxg6dKhRdk5hJSUlYWtri7m5OaGhoZw7d+6hjm/Tpg1z585VX/O87l0IIYR4kUmApYgqKIhiqC2wLNCbkL5uLAv0fqL1NTp37szOnTs5fPgw9+7dw8PDI8/9sj/9yvkH7+NgZmaGXp+VmaHX6x/qqd7LL79MrVq12L17Nxs2bKB37955XqN06f8epAoLC2PHjh3s37+f6Oho3Nzc1CeD5ubmataPqakpGRkZ9OrZg6S/D6LPSAcg7eZlMu7cwL+lH9u2baNx48a4u7vTs2dPkpOTgaynv5MmTcLd3V3N9Pn4449xd3fH2dmZmJgY7CqWZrRPFeJWfczxuW8Qs2AsfV5RsKtYmqCgIAIDA/Hz88Pe3l5Nby+IlZUV8+fPZ9OmTdy4cYOwsDCjGgujR49WO/XkHF9ISAgODg64uLjQp0+fXOdOTEyke/fueHl54eXlxd69e9Hr9dSpU4fExEQg671+5ZVX1GUhiiJHR0ejD7zz5s1j586d6vdtQb9b8puOYvidWrVqVQYOHMi4ceMIDQ3F1tZW/R3WvXt3Xn75ZfVYOzs7tQ5JxYoV1ZonTZo04eWXX1YDMP369SM2Npa9e/dy48YNtetMzZo12bVrF0ePHmXnzp3UqFEDyArkuLm58dNPP1G7dm1GjRpFz5491WkozZo1IyYmhmPHjmFmZkbPnj0xMTGhSpUqtGjRghYtWhjVX7l6J42ancdhWqIUAOXrN8HEojTtevTnzz//VKfWTJ8+nbi4OPbu3UupUqW4fPkyOp2O0NBQoqOjKVmyJLNnz2bbtm3quXfs2MGbb76JmZkZ9evXZ8eOHcTHx1O1alV27tzJq6++ioeHB5cuXWLTpk0cPXqUAwcOqIHzoKAgli9fzv79+4mNjVU7CGV/bf38/Ni6dSvvvPMO6enpRrXCJkyYgJ2dHT/++CMhISG4uLjQpEkTLl++TNeuXXFxccHV1ZWWLVsye/ZsqlSpYvT+jxw5kmXLluHq6kpMTIz6vRMWFoarqytubm6sWbOGcePG5fs9lZ/+/fsTGRmJs7Mzy5cvz3O6VEE++ugj0tPTcXFxwdHRkY8++uihxyCEEEI8z6TIbRH1oAKNhtoCj7uobV6srKxo0aIFgYGB+WZ+5KdZs2YsWLCAgIAArl69SmhoKP369TPap1GjRowcOZKzZ89Sq1Ytbty4QYUKFbC2tub27dvqfnZ2dkRFRdGrVy+2bNlCenpWYOLcuXNUr16dYcOGkZaWxuHDhxk0aFCusfTt25fx48djb29P9erVH/o+Vq1aRcuWLTl+/DhHjx7NtU9SUhLly5enVKlSxMTEcODAgQLPqX3lZbQeniTHRWJVrzFJJ3bTrnNXrEll+vTp7Nixg9KlSzNr1iy+/PJLpkyZAmR9aDJ8kHvvvfeoVKkShw8f5ttvvyU4OJiFCxcS8dO3DGzvR5/hb3NGd4Dgae8wqrsOgJiYGEJDQ7lz5w716tVjxIgRmJubFzjWMmXKUKtWLTUjpyDZx/fSSy9x9uxZLCwsuHXrVq59x40bx/jx42natCnnz5+nTZs2nDp1igEDBrBy5UreeustduzYgaurKzY2Ng+8thDPSsuWLXn//ff57rvvGDFiBJDVGrwwtm/fzo0bNyhZsiSbNm1i8eLF+e5btmxZypcvT0REBL6+vvz44480b9483/UGr7/+OuHh4fTq1Yuff/6ZoKAgduzYQWpqKv7+/nTp0qXAMd64cYNdu3Zx7NgxNBoNmZmZaDQaPv/8c6DwwWlDoNzWuhSmSoa6vmrzPtg4NsJc+RcfHx/+/PPPh/7wXxiGoJUh0P1fGALeAJUrVzZ6n4OCgtSv69Spw65dxlmKAJ9//rn6uhlkD97UqVPH6N+YWbNmAVlZSQEBAQWOLSwsrMAxV6pUKc+MIsCoQLAhaJ5zbCVLlmTBggW5jvXz81OLFgshhBAvMslgKcKeZoHGB+nbty/R0dEPHWDp2rUrderUwcHBgUGDBqmdIbKzsbHh+++/p1u3bri6uqpPZjt27MjGjRvVIrfDhg1j9+7duLq6sn///od+qtezZ09OnDjx0PcAMGLECJKTk2nQoAFTpkzJM4unbdu2ZGRk0KBBA9577z31SXF+TEw0jBkaQO3ko4T0daPUhb+YPHooBw/+pXbU0Gq1LFu2zCiNO2f2Tbdu3YD/TT0C2Lt3L2OHv04j+4oM6Nae69evq8Gq9u3bY2FhQaVKlbC1tVWncz1IYbOSso/PxcWF/v37s2LFCqMikAY7duxg9OjRaLVaOnXqxO3bt0lOTiYwMFDNRFq8eDFDhgwp1LXFi8fU1BStVoujoyOurq588cUXaqZbYeUsoP1f9tFoNGzatIndu3dTq1YtvL29CQgIUD8cZx9vu3btOHPmDA0cnVm5fjOOru50796devXqUbJkSTWbJD/Lli1j4sSJuLi4oNPp1OBrzZo1ef3113OtN3j77bdxc3Nj4MCBzJ49G51OR0xMDCEhIXnW1cpu/fr1DBw4kHPnzpGQkMCFCxeoVatWrqLikJXtsmHDBvR6PVeuXDH60G8IlNtVLI198gn1uvqky0wPbM9nUz/Cy8uLmJiYAsdTkNatW7NgwQI1gHLjxo3/fC4hhBBCiIfyrPtEP67/PDw8FCGKmzt37ig2NjZKVFSUUqdOHUVRFGXLli1Knz598ty/Zs2aSmJiYp7Lhw4dUpo3b64oiqJotVolLi5O3a969epKUlKS8vHHHyuff/65ut7R0VE5e/bsA69z+/ZtpUyZMsqNGzeUiIgI5bXXXlO3vf7668qSJUvyPC4jI0PZtWuXMn78eKV+/fpKenq6smTJEmXUqFGKoihKxYoVlZSUlDzvtW3btsrOnTuVWrVqKRkZGXnuI0Tp0qXVr69cuaK0atVKmTJlykOdIyAgQFm3bt0j71MYpUuXVjIz9cqvR/9VvD9cr1ja1FCsqtdTfj36r5KZqX+kcz+uMebFz89P+f33343Wff3118rw4cOV0NBQpX379ur6zMxM5c0331Tq1aunvPrqq0qrVq2Ubdu2KYqiKOHh4UqdOnUUDw8P5e2331YaNmmq7I+7pgx8/U3F0dFRcXZ2Vvr06aOkpqbmGkP29zrnurNnzyqOjo6KoihKenq6Mn78eKVBgwaKi4uLMnfuXEVR8v99KYQQQognD4hUikDc4En/JxksQjxDeU2/atSoEXv37uXMmTNAVgeiv//++6HO6+vrm293jIeVnJzMyJEj6dKlC+XLl6dmzZqcPHmStLQ0bt26xc6dO/M8Tq/Xc+HCBVq0aMGsWbNISkoySq0H8Pf3Z+7cueqyTqdTvx46dCgDBgygZ8+eahtaIQpia2vL999/zzfffIOiKGRmZjJx4kS8vLxwcXFRpzYoBbSPnzZtGl5eXjg5OfHGG2/kmbmVvTV7ZGSkOjVi9+7daLVatFotbm5uapednAyt1BXLslRyb8PdS/F8+utJftryh1rfKDExkdatW+Po6MjQoUOpWbOmes1PPvmEevXq0bRpU/r27UtwcHCua0RFRdG8eXM8PDxo06YNly5d+u8vLFlFr3O2Xx47dizfffedWo/EwMTEhODgYGJiYvjpp584e/Yszs7OQNbvpr///pvIyEi++OILDuyNoJF9RZYvnK9Ov1y9erVRTS+DnL8/sq/LPo3FzMyML7/8kpMnTxIdHa12LUtISKBSpUoAeHp6GmXW6PUK8YnJHIi/TnxiMnr9468jJoQQQojnnwRYXlDyx2TRkXP6lY2NDUuXLqVv3764uLjQuHHjh06XDwoKyrc7RmG1aNECJycnvL29qVGjhvrh9OWXX6ZXr144OTnRq1cv3Nzc8jw+MzOTAQMG4OzsjJubG2PHjqVcuXJG+4SEhBAZGYmLiwsODg7Mnz9f3dapUyeSk5NlepB4KPb29mRmZnL16lUWLVpE2bJlOXToEIcOHeKHH37g7NmzBbaPHz16NIcOHeL48eOkpKQYBQ4eJDg4mHnz5qHT6YiIiKBkyZJ57pe9lXpV316YmJfgbtINbt37X7vfqVOn0rJlS06cOEGPHj04f/48AIcOHVJb2v/+++9qS+fs0tPTGTNmDOvXrycqKorAwEA++OCDQt/H49ChQwe0Wi2+vr589NFHuQq5FiV6vcIfJy4TsPggY1cfIWDxQf44cVn+XRRCCCHEQ5Mity8gwx+Tn/12irQMvdqh6El2IhL569KlS66n5C1btuTQoUO59jXUWMlrOfsTWRsbG5ydndHr9bz88su88sorgHEBRsgqaqjT6fjtt99o165dvtfJafbs2cyePVtdnjJlCjt27DA6ztzcXG03m93gwYNJSEigWrVq2NjYcPfuXZydnZk+fToODg7qftHR0bi6uv6nQpdWVlZ5Pu0WL5Zt27Zx9OhRtXZKUlISsbGxBbaPDw0NZfbs2dy7d48bN27g4OCAY6MWJN5J48rt1AI/dPv4+PD222/Tv39/unXrlm8xbUMrdUOQBaCEqYZypUqoy3v27GHjxo1AVn2n8uXLA1n1lTp37oylpSWWlpZ07NhRPWb58uWEhYXx4YcfEhsbS/Pmzbl//z5Xr159YE2okJAQvvvuO9zd3Vm8eDHt27fn2rVrTJ48Od+uawXJr9hqUWTIKDK8H2kZej777RT1q1g/lULyQgghhHh+SAbLCyi/PyYTrt99xiMTj0vJkiXR6XQcP36cEiVKGGWG5GQIsDyKadOm8eqrrz7UMePHj0en0xEbG0vv3r1p2bKl2tJ25syZdO/enc8++yzf4/9rBxDxfIuPj8fU1BRbW1sURWHu3LnodDp0Oh1nz57F398/32NTU1MZOXIk69ev59ixYwwdOpTj568RsPggf529zje7YvnjxGWjlvGGVuyQ1dVr4cKFpKSk4OPjk2/mmV3F0kxu1wALMxNSb1xCY2LClF5NqFLG8pHu3dTUlODgYNatW4e3tzcnT55k4cKFNGvWzKiNcXaGbMYvvp7Lwp828eOPKzhy5AiQ9bvhvwRXipvsGUUGaRl6rt5Je0YjEkIIIURxJQGWF5D8Mfli8fX15cyZM9y9e5fAwEC8vb1xc3Nj8+bN3L9/nylTprBmzRq0Wi1r1qwhKCjIqKaDk5MTCQkJJCQk0KBBA4YNG4ajoyP+/v6kpKQAxh1WClPDIqfevXvj7+/PqlWrAJg/fz5RUVE0bdrUqMZFUFAQAwcOxMfHh4EDB3LixAm8vb3RarW4uLjk2Ub6888/V2twfPzxx0BWxs2cOXPUfT744AO+/vrr//T6iqIjMTGR4cOHM3r0aDQaDW3atOG7775TW7r//fff3L17l2bNmrFmzRoyMzO5dOkSoaGhwP+CJZUqVSI5OZnVa9cREXtN/X2Znqnw2W+nqPzSy0RFRQGwYcMG9fpxcXE4OzszadKkAjvhmJhoaOtYhS871aLkwcWMGDGK15yqGmUQ+vj4sHbtWiArE+fmzZvq+l9++YXU1FSSk5PznMJUr149EhMT1Xa8iqJw4sSJPH+2l207hE/Hvlw4l4B/m9d4/Z0PGTBgAIcOHUKr1bJo0SLeeust9ZgffviB8ePHP8S7UvQZMoqyszAzwdY6dx0YIYQQQoiCSIDlBSR/TD5ZRam+TUZGBr///jvOzs7MmDGDli1bcvDgQUJDQ5k4cSLp6elMmzaN3r17F+ppdWxsLKNGjeLEiROUK1fO6MOlwX+tYeHu7l6oWjMnT55kx44drF69mvnz5zNu3Dh0Oh2RkZG5pmRs27aN2NhYDh48iE6nIyoqivDwcKM20Hq9np9++okBAwYUapyiaElJSVHbNL/66qv4+/urgbShQ4fi4OCAu7s7Tk5OvPnmm2RkZOTbPr5cuXIMGzYMJycn2rRpQ11HLZk5fn7TMvQMHPUO48aNw9PT06gA85w5c3BycsLFxQVzc3Nee+21fMfr7OzE0D5d6Nm5PXNmz8g1PfPjjz9m27ZtODk5sW7dOqpUqYK1tTVeXl506tQJFxcXXnvtNZydnSlbtiyQVfdowoQJat2kSZMm8frrrxMeHm5UZ8bgfqaeb0PP8HLHcZhbV6Ru4OecqdKKacFz8fX1VX8n/PLLL2qQasmSJQQGBj7CO1b0ZM8oAtRps3YVSz/jkQkhhBCiuJEaLC8gwx+TOWuwyB+Tj66o1LcxfIiDrAyW119/nSZNmrBlyxb1CXZqaqpaOLOwatWqpZ7Xw8Mjz1otOWtYODo6GtWJyE9hMl0gq/itoXho48aNmTFjBv/88w/dunWjTp06Rvtu27aNbdu2qYV4k5OTiY2NpVmzZlSsWJEjR45w5coV3NzcqFixYqGuL4qWzMzMfLeZmJjw6aef8umnn+ba9s033+R5zPTp05k+fToA8YnJBCw+SFqGHvvu7wJZH779W/oxvHfuzl7ZO2L9l/H6+fmp2Vply5blzz//xMzMjP3793Po0CG1s86ECRMICgri3r17NGvWDA8PDwBKlSqV62cyLCyM4OBghg0blqsGU2amwv1MPdlD62kZeqNiu1ZWVrRs2ZKtW7fSoEED0tPT1Y5AT4qpqanRNTZt2oSdnd0Tu54ho6h+FWuu3knD1toCu4qlpSaZEEIIIR6aBFheQPLH5JNTVIolGmqwZKcoChs2bKBevXpG6//66y+j5ez1JcC4xkT21qmmpqbqFKHs+44cOZLIyEhefvllgoKCjI4vyJEjR/D09Mw1hpzHly79v0Bgv379aNiwIb/++ivt2rVjwYIFRgVLFUVh8uTJvPnmm7muN3ToUJYuXcrly5efuyfy4vF4lsHo8+fP06tXL/R6PSVKlOCHH35Qt73xxhucPHmS1NRUAgICcHd3L9Q5c/5sZ6Tfp4Rp7mzG7MV2Ietn5dNPP6V+/fpPpatXXr+/njQTEw32NlZS1FaIB0hISKBDhw5qW3TImr5rZWXFhAkT8jwmMjKS5cuXExIS8rSGKYQQz4xMEXpBGf6YbGRfEXsbKwmuPCZFub5NmzZtmDt3rpopYihkaW1tzZ07d9T97OzsOHz4MACHDx/m7Nmzhb5GzhoWhrosD7Jhwwa2bdumtqq2s7PLs8ZFTvHx8djb2zN27Fg6d+7M0aNHjba3adOGxYsXqx2FLl68yNWrVwHo2rUrf/zxB4cOHaJNmzaFvkfx5BWVaXaGYPSyQG9C+rqxLND7qWWj1alThyNHjhAdHc2hQ4fw8vJSt61atQqdTkdMTAyTJ08u9Dlz/mz/cz6BkS1eyTU1Jmex3YYNG3LhwgVWrVql/ow+TcnJybRq1Qp3d3ecnZ3ZvHkzQIF1oQ4dOoSLiwtarZaJEyfi5OT01McthMji6en5WIIrBWUACiFEUSEBFiEeo6Jc3+ajjz4iPT0dFxcXHB0d+eijjwBo0aIFJ0+eVIvcdu/eXZ3a880331C3bt1CXyNnDYvsHwpz+uqrr9BqtdSpU4cVK1awa9cubGxsgKz6E3nVuMhp7dq1ODk5odVqOX78OIMGDTLa7u/vT79+/WjcuDHOzs706NFDDSaVKFGCFi1a0KtXrwKvIZ4uwzS7gMUHGbv6CAGLD/LHicvPNMjyvASj8/rZbl7XhmWB3lQoXYJv+rnlG0Dq1asXPj4+arvoJ8kwxVGr1dK1a1csLS3ZuHEjhw8fJjQ0lHfeeUcNFOdXF2rIkCEsWLAAnU4nP99CPCV+fn5MmjQJb29v6tatS0REBJA1VbFDhw5AVsB0yJAhODs74+Liov7Mrl69GmdnZ5ycnJg0aZJ6TisrK9555x1cXV3Zv38/VlZWfPDBB7i6utKoUSOuXLny9G9UCCEKoCls3YOiztPTU4mMjHzWwxAvuKJSg0U8mF6vx93dnXXr1uWq3SKenex1TwwszExYFugt0zeeoQ4dOjB+/HhatWr1xK9lZWWlZp0BpKenM378eMLDwzExMeH06dOcPXuW1NRUWrdurXYPmzVrFunp6YwePRpXV1fOnTsHwNGjR+nXr5/RlAYhxH9T0BShrVu34uHhwRdffMFvv/3Gl19+yY4dO9RaUFu3bmXSpEmkpaWpnfxu3rxJSkoKjRo1IioqivLly+Pv78/YsWPp0qULGo2GNWvW0KtXLwA0Gg1btmyhY8eOvPvuu5QpU4YPP/zwWbwUQoiHpNFoohRF8XzW43jSpAaLEI+R1LcpHk6ePEmHDh3UbjKi6Chomp0EWJ6+W7du4e3tjaur61MJruRl5cqVJCYmEhUVhbm5OXZ2dup0xAfVhRJCPF4aTd5/zxjWd+vWDci/EP6OHTv46aef1OXy5csTHh6On5+fmsXav39/wsPD6dKlC6ampnTv3l3dv0SJEmo2jIeHB9u3b38s9yWEEI+LTBES4jF7ElMKikpNiueFg4MD8fHxfPHFF896KCKHojzN7kVUrlw5/v77b9atW/fMxpCUlIStrS3m5uaEhoaqmSn5KVeuHNbW1moB7+wf5sSzM2PGDBwdHdXaOIb3Z+jQoZw8eTLPYwraVlgJCQmULFkSrVaLq6srTZo04fTp04Dx1JWHZWdnx7Vr1x5pbMVRxYoVuXnzptG6GzduUKlSJeB/QU9TU1MyMjIe+XqWlpZG0/zMzc3VYM7juoYQQjxOEmARoograjUphHiSDJ17chZefVHbyEtwNetpdmRkJM7Ozixfvpz69es/8JhFixYxbNgwtFotd+/epWzZsrn20Wg0vPPOO+pycHBwrlbWhTV//nyWL18OwODBg9UC335+fjzM9OXsxz4JD3t+nU7Hb7/9pi6HhYWxb9++h77u/v372bp1K4cPH+bo0aPs2LGDl19+GYCFCxfi4OCQ65jMzMx8tz2s2rVro9PpiI6OJiAgIM/W7aJwrKysqFq1Krt27QKygit//PEHTZs2LdTxrVu3Zt68eeryzZs38fb2Zvfu3Vy7do3MzExWr15N8+bNn8j4hRDiSZMAixBFXH6tnxOu333GIxPi8XuWnXuKmhc1uJq9/gpkdSXbv38/x44dY8mSJZw6dQo7Ozvs7OyM6kBMmDBBDZA4Ojpy9OhRdDodVatWVVvAZ2dhYcHPP//8WLIQhg8fnqvI9vPgcQVYLl26RKVKldTshkqVKvHSSy8BxkGonAVNc24zWL9+PYMHDwZg3bp1ODk54erqSrNmzR44ltu3b+dZrPngwYM0btwYNzc3oyyXzMxMJkyYgJOTEy4uLsydO9fouJSUFF577TWjVurPu+XLl/PJJ5+g1Wpp2bIlH3/8MbVr1y7UsR9++CE3b95U37PQ0FCqVq3KzJkzadGiBa6urnh4eNC5c+cnfBdCCPFkSA0WIYo4qUkhXjSGaXYv+vd3fsHV+lWsX/jX5kF+/fVXPvvsMzIyMqhZsyZLly7NtY+ZmRlvvPEGX331FTNmzDDalpiYyPDhwzl//jwAc+bMoXHjxtjb26PT6ShXrhyQ1U57z549fPfdd1hZWTFhwoR8x7Rt2zY+/vhj0tLSqF27NkuWLDEKGuQnNTWVESNGEBkZiZmZGV9++SUtWrRg6dKlbNmyhXv37hEXF0fXrl2ZPXs2kJXBM2vWLMqVK4erqysWFhZ88803QFYNjJkzZ3L79m2+/PJLOnTokOc1fHx8mDJlCikpKezZs4e+ffsyf/58TE1NWbFiBXPnzuXll18mMDCQa9euYWNjw5IlS6hRowaDBw+mZMmSHDlyhKtXrzJv3jz27dtHiRIlsLe3Z8GCBXlmKNy9e5eGDRs+1PTNadOm8eeff1KtWjVu3bqV5z5xcXFotVru3LnDvXv31OlJ2dWvX5+IiAjMzMzYsWMH77//Phs2bOD7778nISEBnU6HmZkZN27cUI9JTk6mT58+DBo06LkMsOXHwcGB0NDQXOvDwsLUrytVqqTWYPHz88PPzw/ICpQtW7Ys17F9+/bNsw18zoBr9uUePXrQo0eP/3AHQgjx5EiARYgizlCTImdXFalJIcTz7XkJrur1CgnX7z7Vwt+9e/emd+/eD9xv1KhRuLi48O677xqtHzduHOPHj6dp06acP3+eNm3acOrUKTp37szGjRsZMmQIf/31FzVr1qRy5coPvM61a9eYPn06O3bsoHTp0syaNYsvv/ySKVOmPPDYefPmodFoOHbsGDExMfj7+/P3338DWRkmR44cwcLCgnr16jFmzBhMTU355JNPOHz4MNbW1rRs2RJXV1f1fAkJCRw8eJC4uDhatGjBmTNn8r3GtGnTiIyMVIMzKSkpRoGkjh07EhAQQEBAAIsXL2bs2LFs2rQJyJr6sX//frZs2ULv3r0JDw/nxo0b9O/fn+7duxMcHKxmoRjkLGhaGD4+PgwePJhevXqpBVZzMkwRAlizZg1vvPEGf/zxh9E+SUlJBAQEEBsbi0ajIT09HcgKSA0fPhwzs6w/mStUqKAe07lzZ95991369+//UGMWQgjx/JIpQkIUcVKTQogX0/NQ8LeoT3MqU6YMgwYNIiQkxGj9jh07GD16NFqtlk6dOnH79m2Sk5Pp3bs3a9asAbKK5+YM4piamrJlyxbGjx+Pq6srFy5cQK/Xc+DAAU6ePImPjw9arZZly5Y9sFivwZ49exgwYACQlWVRs2ZNNcDSqlUrypYti6WlJQ4ODnz33XdUq1aNunXrUqFCBczNzalXrx7z5s1Ta6/06tULExMT6tSpg729PTExMezZs4eLFy+yfv166tevT/ny5XF0dGTKlCkFFhHdv38//fr1A2DgwIHs2bNH3daxY0c0Gg3Ozs5UrlxZnU7SunVrAgMD2bBhQ67z5Sxoml327jWGLlKQVf9m+vTpXLhwAQ8PD65fv17g69mpUyfCw8Nzrf/oo49o0aIFx48f55dffjG6Rn58fHz4448/UJSi8f38X0mtJyGEeHwkwCJEESc1KYR4MT0PwdXiUEPqrbfeYtGiRdy9+78xGYIiOp0OnU7HxYsXsbKyonHjxpw5c4bExEQ2bdqUK2OiZMmSdOrUia+++ort27dz48YNfvjhBxRFoXXr1ur5jh49yqJFix557DnbVOv1emrUqMHZs2fV9VFRUVSsWFFdztlmN6+2u1evXuX1119n2rRpaubGfx2biUnW929sbKy6HBcXR82aNR/qfJUrV+bUqVPo9Xo2btyoro+Li6Nhw4ZMmzYNGxsbLly4UOB59uzZk2e9kKSkJKpVqwZgNKWsdevWLFiwQA00ZZ8iNG3aNMqXL8+oUaMe6l6KkqIeBBVCiOKmyAZYNBpNW41Gc1qj0ZzRaDTvPevxCPEsPYnWz0KIou15CK4WNM2pqKhQoQK9evUyCnj4+/sbFTM1TC/RaDR07dqVt99+mwYNGhgFLnKytbWlXr16rF27loYNG7Jt2zZatWpFy5Yt8fPz48iRI7Rq1Qp3d3ecnZ3ZvHmzeuzy5ctxcXHB1dWV8+fPs3LlShISEmjUqBF//fUX48aNyzdTw8/Pj3PnznH16lVu3brFmTNn1Ba6AJ999hmenp7UrVuXw4cPU7duXXx9fYmPjwdg+vTpXL16le+//55FixZx584dJk6ciJOTEwsWLODAgQMADBo0CHt7e7UNdrNmzXjllVfyHJNerycgIAAHBwe2bNnCP//889Adm2bOnEmHDh1o0qQJVatWVddPnDgRZ2dnnJycaNKkidF0KANDDRZXV1fef/99Fi5cmGufd999l8mTJ+Pm5maUtTN06FBq1Kihvh+rVq0yOu7rr78mJSUl1zSz4qI4BEGFEKI4KZI1WDQajSkwD2gN/AMc0mg0WxRFOflsRyaEEOJFYWVlZVRQcenSpUb1KArDzs6OyMhIow+4AFeuXGH8+PEcOHCA8uXLU6JECdLS0ti1a5daQBUevuBvkyZNCuzy4ufnR3BwcJ5ddQzu37/Pu+++y9atW9FoNDg4ODBv3jyqV68O/O91SUhIoEOHDhw/fpzIyEiWL1+ea6rN46whFRQU9MBCsv/VO++8Y/S+hoSEqPVZMjIyaNasGfPnzwey6rt4eXnlWTg3J0tLSzIzM1EUhddff505c+ZQp04dTE1NSUhIYOPGjZQpU4Zr167RqFEjmjZtytChQ7l79y42NjbUrFmTDRs28MEHH+Di4kL58uX5888/OXv2LN988w1NmjTJdU1ra2uaNWuGVqulVKlS1K5dG73+f6+/j48Px44dA8DLy4sdO3YwcuRIvv32W95++20qVqzIq6++yrBhw2jZsiXe3t5cuXKF77//npo1a+Ln54ejoyPDhw/n8uXLLFmyhJkzZxIfH8+JEyfyfB1Kliypfl8OHjyYDh06qD8T2Quj5ixomn1bfgVNf/755wLfAzs7O1JSUvLclr34auPGjdWpV5AVaALUor9ffvml0bGGAq4AS5YsKXAMRdnzUutJCCGKiiIZYAG8gTOKosQDaDSan4DOgARYhBBCFGuKotClSxcCAgLUp+Hnzp1jy5YtRsGVgmRkZBhN3TAs/5cWujm9//773Llzh9OnT2NqasqSJUvo1q0bf/31V57TSQA8PT3zDNoYpjkZnpA/zWlOOV+jnLJ/mK9cuTL37t1TlytVqqTWWsnJ09MzV80NQzZGUFCQUeAlLCxMfU8dHBzo37+/+mE8PT2d8ePHEx4ejomJCRcvXmTmzJl4eHhw+fJlo85GS5Ys4ZdffuHMmTOYm5vTtGlT3n33XQ4fPqzus3XrVjUI+OGHH7Jw4UJu3rxJSkqKOt6lS5eyYcMGTp48iYWFBX///TcnTpygY8eONG3alA4dOtCjRw+1+GyFChXo2LEjzs7OaoeX3r1707NnTzp16sT8+fMJCwtjw4YNnDlzBnt7e/U6BjnbaRcmMCWeHimkL4QQj1dRnSJUDcg+ifaf/19nRKPRvKHRaCI1Gk1kYmLiUxucEEKIF1tiYiLdu3fHy8sLLy8v9u7dC8D169fx9/fH0dGRoUOHqh9sP//8czW7o0ePHpw6dYrhw4eza9cu+vfvT82aNfniiy+4du0aCQkJ1KxZE0tLS6ysrGjdujXBwcGEhYXh6+tLp06dcHBwyLUMGLX9nTVrFs7Ozri6uvLee8YzbfV6PYMHD+bDDz80Wn/v3j2WLFnCV199pRYbHTJkCBYWFuzatSvf1yMsLIwOHTqg1+uxs7NT2+WamGgY160ZX3Swo6ftFe6sncQHg9rh79+aK1euAFlBicDAQPz8/LC3tzfKgpkxYwZ169aladOmnD59Wl0fFxdH27Zt8fDwwNfXl5iYGCArO2L48OE0bNiwSEzZiI+Px9TUFFtbWwBKl/5fYGnlypUkJiYSFRWFTqejcuXKhSqsWhhbt25lw4YN7Nq1CycnJ2rUqAFkFYcdOXIk69ev59ixYwwbNuyRrjlo0CBWrFjBkiVLCAwMfCxjF0/X81DrSQghipKiGmApFEVRvlcUxVNRFE8bG5tnPRwhhBDPkZSUFLRarfpf9pa6hja+hw4dYsOGDQwdOhSAqVOn0rRpU06cOEHXrl05f/48AL6+vkRERABZ9TwsLS1JT08nIiKCZs2aGV33woULlC1bllu3bhEREaEeB3D48GG+/vprdSpDzmWD33//nc2bN/PXX38RHR1tFGzIyMigf//+1KlTR50GsWnTJjQaDdu3b6dGjRqUKVOGhIQEnJycAChVqlShamaYmJiorYwBtZWxt6M9Q3u040jkQY4cOUKfPn0YM2YMZcuWZf78+axevZqMjAw++eQTpk6dSnp6OlFRUfz000/odDp+++03Dh06pF7njTfeYO7cuURFRREcHMzIkSPR6xXupKZz7O94VmzexvXrN9TOOdkZgkEPw8/Pj8jIyIc6JjExkeHDhzN69Og8M3+SkpKwtbXF3Nyc0NBQtatQy5YtWbdunVpjxVBUtUmTJmq9k5UrV+Lr65vvtYODg/n555/57bffCAkJUa9vCKZUqlSJ5OTkPF+fnHx9fVmzZg2ZmZkkJiYSHh6Ot7c3AIMGBRD85Vckp2VgaVNDCqMWQ89DrSchhChKiuoUoYvAy9mWq///OiGEEOKpKFmypFrcFP5XgwWy2viePPm/WauGNr7h4eFqTYj27dtTvnx5ADw8PIiKiuL27duYmZlRtWpVIiMjiYiIwMbGhm+//ZZLly4BqK1uvby8MDU1JTMzU72Ot7c3tWrVynfZYMeOHQwZMoRSpUoBWVM9DN5880169erFBx98oK5bvXo1TZs25ffff/9vL1Y2vXv3Ztq0aQwZMsSolfE///xD7969uXTpEvfv36ds2bL4+vri6emJubk57du3p0uXLlhZWXHlyhUiIiLo2rWreg+dOnUCsqb27Nu3j549e6rXTEtL448Tl9kTe43SdloCl0VhcSvlqX/gNwTl0tPTMTMzY+DAgbz99tt57tu/f391+o2npyf169cHwNHRkQ8++IDmzZtjamqKm5sbS5cuZe7cuQwZMoTPP/8cGxubB9b9eO2113KtK1euHMOGDcPJyYkqVarg5eX1wHvq2rUr+/fvx9XVFY1Gw+zZs6lSpQp6vcKRawr3SlXBvGZjAhYfZHK7BvLhvBh62FpPQggh8ldUAyyHgDoajaYWWYGVPkC/ZzskIYQQIouhja+lpWWh9jc3N6dWrVosXboUb29voqKiCA0N5cyZM2zfvp3r169TpUoVAHbv3k3p0qXZu3cver2eEiVKqOfJPsUkr+XCaNKkCaGhobzzzjtYWlqSnJzMnj17CA0NpX379ty4cYM7d+4YHZOQkEDFihXx8/Pj3r17TJ06lYCAANLT03FyclILxAYHB3Pnzh3OnDnDp59+yrx583jllVfYuXMnly9f5u2336ZTp06EhYXx1ltvqee3sLBQs4TeeustMjIyWLVqlTq1BWDu3Ll89tln7N69G71eT82aNTl27Bi9evWics069G7XgpRr/2BZtS5pGXr+/ucWm379g9mzZ3H79m2+/PLLXJkrd+/eZcyYMRw/fpz09HSCgoLo3LkzKSkpDBkyhOjoaOrXr29UJHX16tV8+umnKIpC+/btmTVrFpA1Peutt95ix44dLFiwgISEBEJCQlixYgUNGzbk22+/VWubQFYWyf79+/N8jwICAggICDBaV7NmzQKnaUHWFKns1zDIXvdk+vTpauZSfvtk/1qj0fD555/z+eefG+2fcP0u0zcdISXxH2r1aql2n6lfxVo+qAshhHhhFckpQoqiZACjgT+BU8BaRVHyLk0vhBBCPGX5tfFt1qyZWrj2999/5+bNm+o+vr6+BAcHM2jQICwtLQkODsbNzQ2NRmNUYLV8+fKcP3+e+/fv88MPP+QqqFoYrVu3ZsmSJep5DdNMAF5//XXatWtHr169yMjIYPPmzbRt25a6detiY2ND27Ztefvtt9XMmeXLl3P//n3i4+PZsGEDpUqVYt26dRw9ejTPaxtaGU+fPp2WLVty8uRJ5s+fT1JSEtWqZZVTW7ZsWZ7Huru7k5aW1cK5cuXKHDp0iJSUFO7cuaOOp3Tp0mRmZtK+fXtOnTrF8uXL2R0eToPh32BRsTpJsQcByFQU4s8mcPDgQX799VeGDx+eq97IjBkzaNmyJQcPHiQ0NJSJEydy9+5dvvvuO0qVKsWpU6eYOnUqUVFRAPz7779MmjSJXbt2odPpOHToEJs2bQKygjUNGzYkOjqaihUrsmbNGvbu3YtOp8PU1JSVK1c+9PtYlG39YxtRXwzBtnEXzCyzAn1FrQW3EEII8bQVyQALgKIovymKUldRlNqKosx48BFCCCHE0xESEkJkZCQuLi44ODioLXw//vhjwsPDcXR05OeffzbKwPD19eXSpUs0adKEX3/9lfT0dLWeRUBAgDqdaNq0aWRkZFC2bFlmzJiBqakpZcuWfajxtW3blk6dOuHp6YlWqyU4ONho+9tvv42bmxsDBw5k1apV9OnTB4A+ffpgY2ODpaUlLVu2JDY2lnXr1jF69Gj8/f2pWLEiAN26dSuwJknv3r1JSUnh+vXrrFixAjMzM4KCgujZsyceHh652lYbZA8mVaxYkSZNmuDq6sprr72Gicn//mRp1KgRP//8M97e3ty6dYsSJlnFOc1KWpF+9xYAphoNXbt3x8TEhDp16mBvb68WwzXYtm0bM2fORKvV4ufnR2pqKufPnyc8PJwBAwYA4OLigouLCwCHDh3Cz88PGxsbzMzM6N+/P+Hh4VnXMzWle/fuAOzcuZOoqCi8vLzQarXs3LmT+Pj4gt+0YqZDW3+8J6+mSpNu6jrpPiOEEOJFV1SnCAkhhBDPVPY2vmA8/SK/Nr4VK1Zk27ZteZ6vVatWpKenA1lZGDmn4RhUqlSJuLg4rKysuHfvHs2aNcPDwwN3d3f8/PzU/fz8/IyWc475vffey9U9KCwsTP166tSp3Lhxg+rVq3P8+HE0Gg2ZmZloNBrOnTvHO++8Q4cOHfjll19YunSpWig1OTmZKVOmULFiRXbu3Im/v786FsPUE09PTzIyMggPD+eXX35hxowZHDt2jM6dOxuNJTg42Kh47pEjR2jfvj12dnaYmZnRrl07Vq9ejV6vx9LSkgkTJqitj7du3aq+DhPGjeZayepMiuvHhfC1WJiZ4Fy9HJWsjKdw5Sw2qygKGzZsoF69enm+FwB6vcL9DD3H/rnF/dsp5JdQZGlpqXZeUhSFgIAAPvvss3zPW9w9yxbcQgghRFFVZDNYhBBCiBfVG2+8gVarxd3dne7du+Pu7v5ErrN+/XoGDhzIuXPnSEhI4MKFC9SqVcuoc5HB9u3buXHjBikpKWzatAkfHx8qV67M1atXuX79OmlpaWrQQ6/Xc+HCBVq0aMGsWbNISkrKFbDK6ejRo3zyySeMGjUKADs7O3VqzpYtW9TgVF4MnVAmt2uA40tlWBboTbVyJdmwYT16vZ64uDji4+NzBVLatGnD3Llz1cyZI0eOAP+b6qXXK8zfFMaJE8cI3naaxadN+XPnLq5eTSQzM5PVq1fTvHnzXONp1aoV69ev5+rVq0DWFC1Dl6DnhXSfEUIIIXKTDBYhhBDiMdDrFRKu3+XqnTRsrS2wq1j6P3/YNNRxedJWr17NpEmTjNZ17949z/Xe3t50796df/75hwEDBuDp6QnAlClT8Pb2plq1amonnMzMTAYMGEBSUhKKojB27FjKlSuX6/oRERG4ublx7949bG1tCQkJoVWrVgAMGzaMzp074+rqStu2bR9Y0NfERMNL5UpSvlQJ7G2s0GigRo0aeHt7c/v2bebPn5+rKPFHH33EW2+9hYuLC3q9nlq1arF161ZGjBjBkCFDqFu/PrdK2FL6pboAKKXKU6H5YHz9/DA30dC+fXujrBwDBwcHpk+fjr+/P3q9HnNzc+bNm0fNmjULvIfiRrrPCCGEEMY0/6V4XlHk6empFDQfXAghxIvtcQZA8jr3Hycu55ouIU/0i7cD8dcZu/pIrvUhfd1oZF/xGYxICCGEKJ40Gk2Uoiiez3ocT5pksAghhHjuPekASML1u+q5AWlZ+5ywtbbAwsxEfV9BCrkKIYQQIn9Sg0UIIcRzL78ASML1u4/l/FfvpBl9CDdcQ1rWFm+GQq4WZll/LkkhV/G8unLlCv369cPe3h4PDw8aN27Mxo0bCzwmISEBJycnIKtodYcOHR7qmgkJCQVOh4yNjaVDhw7Url0bDw8PWrRooXbtyikyMpKxY8c+1PWDgoJydVj7L/s8yNKlSxk9enSe26ysJAAvxPNGMliEEEI89woKgDyODJOilunwJKdDvUgMhVzrV7GW11I8txRFoUuXLgQEBKgBj3PnzrFly5Ynds2MjAw1wNKvX79c21NTU2nfvj3BwcF06tQJgOPHjxMZGUmzZs1yncvT01OtCyWEEM+SZLAIIYR47hkCINk9zgDI08x0MDU1RavV4uTkRMeOHbl165bRdsN0qIDFBxm7+ghtR06jc/9A9PonX3Mt+xPtGTNm4OjoSOXKlXnppZf466+/Hss1mjRpkuf6wYMHs379+v90zq1bt+Lm5oarqysODg4sWLBA3WYo5NrIviL2NlYSXBHPnV27dlGiRAmGDx+urqtZsyZjxowBsopWT5w4ES8vL1xcXIx+PvJy9+5dAgMD8fb2xs3Njc2bNwNZmRydOnWiZcuWtGrVivfee4+IiAi0Wi1fffWV0TlWrlxJ48aN1eAKgJOTE4MHDwayMksGDhyIj48PAwcONMqgCQoKIjAwED8/P+zt7QkJCVHPMWPGDOrWrUvTpk05ffq0uj4uLo62bdvi4eGBr68vMTExRuO5evUqHh4eAERHR6PRaDh//jwAtWvX5t69e/zyyy80bNgQNzc3Xn31Va5cuZLrtTl79iyNGzfG2dmZDz/8sMDXUQhRPEkGixBCiOeeIQCSswbL4wqAPM1Mh5IlS6LT6QAICAhg3rx5fPDBB+r2nNOhMvQKUeduknD97lOrB7N//362bt3K4cOH+eyzz9BoNLz88suPdM6MjAzMzMzYt29fntv+q/T0dN544w0OHjxI9erVSUtLIyEh4RFGKkTxcuLEiQJbwS9atIiyZcty6NAh0tLS8PHxwd/fH40m799vM2bMoGXLlixevJhbt27h7e3Nq6++CsDhw4c5evQoFSpUICwsjODgYLW9+8OMCeDkyZPs2bOHkiVLEhYWZrQtJiaG0NBQ7ty5Q7169RgxYgRHjx7lp59+QqfTkZGRgbu7uxo0eeONN5g/fz516tThr7/+YuTIkezatUs9n62tLampqdy+fZuIiAg8PT2JiIigadOm2NraUqpUKZo2bcqBAwfQaDQsXLiQ2bNn88UXXxiNa9y4cYwYMYJBgwYxb968Au9PCFE8SQaLEEKI554hALIs0JuQvm4sC/R+7B1+nkWmQ+PGjbl48SIAfn5+REZGcvVOGslJN4kOHqDul3LzKj06tqFOnTpMnTpVXb9ixQq8vb3RarW8+eabZGZmAsZ1AdavX68+NV63bh1OTk64urrmStPP7tKlS1SqVAkLi6wModKlS/PSSy/xww8/4ODggJWVFeXLl+fVV1/l0qVLbNu2DSsrK/WpbqlSpXB2diYsLAw3NzcqVqyIlZUVbdq0oVSpUur9urq6YmlpSYMGDdixYwf79+9Xx2C4h0uXLtGsWTM16yciIsJorHfu3CEjI4OKFbO6AllYWFCvXj0gKytm7NixNGnSBHt7ezVDJjk5mVatWuHu7o6zs7P6hD4hIYH69evTv39/GjRoQI8ePbh37x4AUVFRNG/eHA8PD9q0acOlS5ce/AYL8QyYm5vj6uqKl5cXAD/88APBwcFotVoaNmzI9evXiY2NNTrmjz/+4Pjx4wBs27aNmTNnotVq8fPzIzU1Vc32aN26NRUqVHjoMXXt2pXSpUtjbW2Nq6sr33//Pd7e3pQsWTLP/du3b4+FhQWVKlXC1taWK1euEBERQdeuXSlVqhRlypRRs2OSk5PZt28fPXv2VH8X5vXz2aRJE/bu3Ut4eDjvv/8+v/76Kz4+Pvj6+gLwzz//0KZNG5ydnfn88885ceJErnPs3buXvn37AjBw4MCHfh2EEEWfBFiEEEK8EJ63qR6ZmZns3LnTKIUe8p4OdffiaX5YtoqjR4+ybt06IiMjOXXqFGvWrGHv3r3odDpMTU1ZuXJlgdecNm0af/75J9HR0fnWZ4iLi+Pjjz9mx44dWFhYMHv2bOLi4gDo2LEj5cqV4+zZs4waNYqXX36ZDz74gJCQECpVqsSWLVuoXr06GRkZ9O7dm4yMDI4ePcqff/5JamoqgYGBpKenA3Dt2jVu3LjB3bt32b17N1evXs1zPKtWraJNmzbodDqio6PRarVG2ytUqECnTp2oWbMmffv2ZeXKlej1/6ulc+nSJfbs2cPWrVt57733ALC0tGTjxo0cPnyY0NBQ3nnnHRQlawrW6dOnGTlyJKdOnaJMmTJ8++23pKenM2bMGNavX09UVBSBgYFGWUdCPEuOjo4cPnxYXbawsGDnzp0kJiYCWTVamjVrhk6nQ6fTcfbsWfz9/fM9n6IobNiwQd3//PnzNGjQAMgKtv6XMW3cuJH69etTt25doqOj8fLyYufOnfkebwjuQta0yoKy3PR6PeXKlVPHq9PpOHXqVK79mjVrRkREBOfOnaNz586cOnWKe/fuqQGWMWPGMHr0aI4dO8aCBQtITU3N83r5Zf4IIZ4PMkVICCGEKEZSUlLQarVcvHiRBg0a0Lp1a6PtdhVLM+7VOgyZm7VsZqLBt3lL3OrUwMREQ7du3dizZw9mZmZERUWpT6lTUlKwtbUt8No+Pj4MHjyYXr160a1btzz3qV27NseOHSMzM5OIiAg+/vhjVqxYQcOGDVEUhYMHD1KjRg0yMzOxtrbGw8ODqKgoxo8fz5o1axg5ciSjRo2id+/e7NmzB41Gw9ChQ4GsoJIh+HHr1i369++PqakpL730ElWrVs1zPF5eXmpgpkuXLrkCLAALFy7k2LFj7Nixg+DgYLZv387SpUsB6NKlCyYmJjg4OKg1FRRF4f333yc8PBwTExMuXryobnv55Zfx8fEBYMCAAYSEhNC2bVuOHz+uvleZmZn5jleIp61ly5a8//77fPfdd4wYMQJAzbyCrNon4eHhpKenqz93165dIyMjw2g/A19fX9q1a0f58uXRaDSMHDmSIUOGsGnTJk6fPo2fnx/nz5+ne/fu3LlzB8j6Obtw4QKpqamMGzeOgQMH8tlnn7FlyxY1iJyZmYmpqSmQ9XN24MABICsD5e233yYuLg5nZ2ccHR3x9PTkvffeM5qaeOrUKbZs2cLkyZMJDg7m22+/pXz58ty5c4datWoxb948vvnmG3x8fAgNDaV27drq78czZ84wf/58Dh06hJWVFWfPnqVcuXKcOHGCpk2bkpCQQGRkJO+++y5BQUHqz/eoUaMwM8v6uGXIwvnpp5+4f/8+a9eufazvoxCiaJAMFiGEEKIYMdRgOXfuHIqiqPP4zczM0Ov1mJho8LErSyVrC0L6ujG0mT3VypcyytjRaDQoikJAQID6xPb06dMEBQWp2w2yP4WdP38+06dP58KFC3h4eHD9+vV8x2lqaoqfnx8tWrSga9eubNiwgQ8//BBHR0dSUlL4/vvv6dixI9u2bQOgZ8+erF27ljNnzgBQp04dFEXB2tpaHeOxY8eMpgRkf0ptuCfIeiJ9//59IOupc3h4ONWqVWPw4MEsX748z/E6Ozszfvx4tm/fzoYNG/K8huH8K1euJDExkaioKHQ6HZUrV1Zfp5xPpw3jcnR0NLoPw30L8axpNBo2bdrE7t27qVWrFnfv3sXBwQFFUdBqtezcuZPy5cvj7u5OnTp1uHbtGqGhoXz33XfqFMXs/v33X5ycnEhLSyMpKUktlgtw8+ZN/vzzTw4ePMiiRYswMTFRpyNFRUURGRlJSEgI9+7dY+vWrcyfPx97e3saN27M+fPnCQwMBLICHoaC2paWlnzyySf4+voSGhrKtm3bUBSF3r17GwUxIiIiGDhwIHXq1GHevHl069aNt99+m6ioKMaNG8fatWuJiYlh165dBAQEUK5cOTWTpX///kyYMIHKlSvzySefULVqVTw9PTExMaF8+fLY2tqyZMkS7t+/z/3794mKigKygk1///03ABcvXqRChQrMmzePd955h/Llyz+ZN1QI8UxJgEUIIYQohkqVKkVISAhffPEFGRkZ2NnZqX/U//zzBsxMNDSyr4ittSU7dmznxo0bpKSksGnTJnx8fGjVqhXr169Xp9bcuHGDc+fOAVC5cmVOnTqFXq9n48aN6jXj4uJo2LAh06ZNw8bGhgsXLuQ5ttOnTxvVaPj333+pWbOmUZFIw1ScEydO0KhRI3Wa0siRI42eUt+/f1+trZKenq5msJQrV45t27apT7XPnz/PwoUL6dixI6tXr1anEp07d47KlSszbNgwhg4dajTtALKefmcvkKnT6ahZs6bRPtm7IwEkJSVha2ur1qowvG4A58+fZ9asWXTp0oVVq1bRtGlTNm3aRGRkpHofGzdupEWLFgW+vw8je80cIf6LqlWr8tNPP3H27FlKly5NcnIy586dQ6fT8cknn9C4cWOOHTtGiRIl0Ov1NG/enFGjRlGpUiWSk5OpX7++2sUnLCyMc+fOYWpqSqlSpShbtizJyclotVrGjBmj1kapXLkyP/74I9HR0aSnp+Pq6kqjRo24cOECsbGx1K9fn99++434+Hj279+Pi4sLISEh1KpVi6ioKDVYqigKv//+O+fPn+fVV18lJSWFgQMH4ubmxtWrV9m2bRtJSUmUL1+e2bNn06dPHywtLTl58iQrV64kJiaG5ORkli1bxiuvvEJ8fDxTpkzBw8MDd3d33nzzTS5evEjXrl25cOECo0aNolSpUowaNYpXXnkFyPrdtGXLFkqXLo2ZmRm3b98mLCwMX19fbt68yciRI3FwcKBmzZr8/PPPVK5cme+//57k5ORn9p4LIZ4MmSIkhBBCFFNubm64uLiwevVqJkyYQK9evfj+++9p37690X7e3t50796df/75hwEDBuDp6QnA9OnT8ff3R6/XY25uzrx586hZsyYzZ86kQ4cO2NjY4OnpqX4ImDhxIrGxsSiKQqtWrXB1dc1zXMnJyYwZM4Zbt25x/fp1bG1t+emnn3B0dOSTTz6hXbt2WFhYcOjQIXx9fZkzZw4DBgzgn3/+4fLly+pUJXNzc9zd3Zk0aRJJSUlkZGSohXgNxSsdHBzQaDT4+flx4cIF9u7dS1JSklrrISwsjM8//xxzc3OsrKxyZbAoisLs2bN58803KVmyJKVLl1anB+Wnf//+dOzYEWdnZxITE7Gzs1O31atXj0OHDrF161Y6d+7MiBEj6NOnD7Vr1+btt9/m3r17/Pvvv2rdBiGKE71ez4EDB7C0tPxP++RVGyUsLEwtUl2qVCm1MG5eVq5ciYeHBxMnTmTMmDH8/PPPRhll5ubm2NnZqcf37NmT9evXc/nyZXr37g1k/cxPnjyZN9980+jcCQkJucaXkpJSqNflq6++onLlykRHR6PX69V7r1atGrdu3eKPP/6gWbNm3Lhxg7Vr12JlZYW1tXWhzi2EKF4kwCKEEEIUIzmfeP7yyy/q10ePHlW/nj59OpDVCcfQBSin3r17qx86suvRowc9evTItf7nn38ucGx2dnZqJ5G82imPGDFCrfGQ3b1799T2pj/99BOrV68GsjoF5ez6Y5A968TKykoteDl//nyOHj1KeHg4Op2O7777DhMTE+zs7Fi8eDHly5fHz8+Phg0bEhoayq1bt1i0aBG+vr4kJCQwcOBA3njjDQC++eYbmjRporZtTk5OJiUlhdGjR3Pr1i3q169PqVKlmDdvHnZ2diQkJGBmZsb69eupW7cus2bNolSpUly8eJGBAwfi6OhIly5daN68OePHjycxMZHhw4erHVbmzJmDj48PBw8eZNy4caSmplKyZEmWLFlCvXr1OHHiBEOGDOH+/fvo9Xo2bNhAnTp1jF6Xzz//nLVr15KWlkbXrl2ZOnUqU6ZMoUKFCrz11lsAfPDBB9ja2jJu3LgC308hcvL392fu3LlMnDgRyMr4ylnXqDD7ZGfILilVqhQxMTFqbZX8aDQaPvnkE2rXrk1MTIxRRlloaKhRRlnv3r0ZNmwY165dY/fu3QC0adOGjz76iP79+2NlZcXFixcxNzfP93rW1tZUr16dTZs20aVLF9LS0tRAb/Z7qF69OiYmJixbtsxoe6NGjZgzZw67du3i+vXr+f5+FUI8H2SKkBBCCCGeqaioKLRaLS4uLnz77bd88cUX/+k8OTsrDRo0iFmzZnH06FGcnZ2NWlRnZGRw8OBB5syZo663tbVl+/btHD58mDVr1jB27Nhc1/juu+8oVaoUp06dYurUqeq0rJx8fHzYt28fp0+fpk6dOjRq1Ih9+/aRkZGhdkEZN24c48eP59ChQ2zYsEEt5lu/fn0iIiI4cuQI06ZN4/333weygkfjxo1Dp9MRGRlJ9erVja65bds2YmNjOXjwIDqdjqioKMLDwwkMDFQzd/R6PT/99BMDBgxAPN/0eoX4xGQOxF8nPjEZvV555HOGhIQQGRmJi4sLDg4OzJ8//z/tk13btm3JyMigQYMGvPfeezRq1OiB4yhZsiTvvPMOn3/+Of379ycyMhJnZ2eWL19O/fr11f0cHR25c+cO1apVUwvP+vv7069fPxo3boyzszM9evRQi+3m58cffyQkJAQXFxeaNGnC5cuXjbaPHDmSZcuW4erqSkxMjFG3JF9fXzIyMnjllVdwd3fnxo0bksEmxHNMYyjYVtx5enoqkZGRz3oYQgghxHNLr1dIuH6Xq3fSsLW2wK5i6SLR7trU1BRnZ2e1s1JoaCjJyck4Ozur2SFxcXH07NmTw4cP4+fnx4wZM/Dx8eHKlSv4+Phw5swZkpKSGD16tFoP5u+//+bevXskJCTQoUMHjh8/TpcuXRg7diwtW7YEwN3dne+//16ddmXwww8/EBUVRcOGDbl9+zaBgYF06NCB4OBgxowZw4EDB7C1teWll15Sj0lMTOT06dPcvHmTsWPHEhsbi0ajIT09nZiYGFatWsWMGTMYNGgQ3bp1U7NXrKysSE5OZsKECaxfv55y5coBWRk3kydP5vXXX6d169bMnj2bK1eusHDhQtavX/8U3hnxrOj1Cn+cuMxnv50iLUOPhZkJk9s1oK1jlSLxMyuEePFoNJooRVE8H7xn8SZThIQQQohnrKgGLrIryh/YDJ2V7t27R5s2bZg3bx4BAQEFHmOotWCoAwH511H4L3x8fJg7dy6ZmZkMGzYMa2trUlNTCQsLo0mTJkD+tSpGjx5NixYt2LhxIwkJCfj5+QHQr18/GjZsyK+//kq7du1YsGCBGuiB/GtLAAwdOpSlS5dy+fJltROLeH4lXL+r/qwCpGXo+ey3U9SvYo29jRRFFkKIJ0WmCAkhxFOi0WiM0vIzMjKwsbFROy8UJCEhgZIlS6LVanFwcGD48OFqNxVRvBkCFwGLDzJ29RECFh/kjxOXH0s6/+OU3we2hOt3n/HI/id7Z6XSpUtTvnx5tYbLjz/+SPPmzQs8PikpiapVq2JiYsKPP/6Yq84CZLV9XrVqFQDHjx83qnuTXYMGDfj333/Zs2cPbm5uAGi1WubPn4+Pjw/wv1oVBjqdTh1HtWrVAIwK7sbHx2Nvb8/YsWPp3Llzrmu3adOGxYsXq3V6Ll68qHaJ6tq1K3/88QeHDh2iTZs2Bb4Oovi7eidN/Vk1SMvQc/VO2jMakRBCvBgkwCKEEE9J6dKlOX78uNqVYPv27eqHqJwMT9Szq127NjqdjqNHj3Ly5Ek2bdr0JIcrnpLiELiA4vOBLXtnpWXLljFx4kRcXFzQ6XRMmTKlwGMLqqNgMGLECJKTk2nQoIHayjUvGo2Ghg0bUrFiRbWAZuPGjYmPj1czWPKrVfHuu+8yefJk3NzcjH4XrF27FicnJ7RaLcePH2fQoEFG1yyotkSJEiVo0aIFvXr1Uttgi+eXrbUFFmbGf+abmWjQK8pjq8cihBAiN6nBIoQQT4mVlRVjx47F3d2dHj16MGjQIBwdHYmIiGDr1q0EBQURFxdHfHw8NWrUUDupAEY1IADee+89KlSoQPny5fn++++5f/8+r7zyCj/++CMWFha88sorxMfHk5SURMWKFQkNDaVZs2Y0a9aMRYsW8e+//6odRDQaDeHh4dIy8hk5EH+dsauP5Fof0teNRvYVn8GI8hafmEzA4oNGQRYLMxOWBXrLlINiQK/X4+7uzrp163J1HhLPn5xT+gD6NazBn8cvk5yWUWSm9wkhXhwvSg0WyWARQoinqE+fPvz000+kpqZy9OhRGjZsaLT95MmT7Nixwyi4ktO9e/fYuXMnzs7OdOvWjUOHDhEdHU2DBg1YtGgRpqam1KtXj5MnT7Jnzx7c3d2JiIggLS2NCxcuUKdOHYKDg5k3bx46nY6IiAhKliz5pG9d5COvJ80WZibYWls8oxHlza5iaSa3a6CO1VCDxa5i7iwPUbScPHmSV155hVatWklw5QVhYqKhrWMVlgV6M7O7M709q/Pn8ctcv3u/yGbJCSHE80ACLEII8RS5uLiQkJDA6tWradeuXa7tnTp1yjfYERcXh1arxcfHh/bt2/Paa69x/PhxfH19cXZ2ZuXKlZw4cQLIagsZHh5OeHg4kydPZs+ePRw6dAgvLy8gqwDn22+/TUhICLdu3cLMTGqePywrK+OsjaVLlzJ69OiHPs/DBi7CwsIoW7YsWq2WBg0aGLUezsvSpUv5999/1eU5c+Zw7969hx5n9g9sIX3dWBbo/USfgD+JFrMvKgcHB+Lj45kzZw5arRYnJyc6duzIrVu3nvXQxBNkYqLB3saKUiXMWBP5D9fv3le3FcXpfUII8TyQAIsQQjxlnTp1YsKECfTt2zfXtrxqPhgYarAcOXKEoKAgAAYPHsw333zDsWPH+Pjjj0lNTQWyCnFGRERw8OBB2rVrx61btwgLC8PX1xfImmK0cOFCUlJS8PHxISYm5vHfqCiQobaGIXCxaJB7oQMXvr6+6HQ6IiMjWbFiBYcPH85335wBluDgYLp3706dOnWwt7dn9OjRpKUV/EErMzOTdu3acft2EvY2VjSyr4i9jZU6RsP32OOSs/Bv/2930bpzL1555RVq165N//79uXnz5gPPM3ToUE6ePPlIY7Gzs+PatWtA7qBacWPotnT8+HEqVKjAvHnznvWQxFNQXLLkhBDiefDAAItGoyk6E8CFEOI5EBgYyMcff4yzs/Mjn+vOnTtUrVqV9PR0Vq5cqa739vZm3759mJiYYGlpiVarZcGCBTRr1gzIyoZxdnZm0qRJeHl5SYDlMfvll19o2LAhbm5uvPrqq1y5cgWAoKAgBg4ciI+PDwMHDlSXfX2b8vHbI3h3cFduXzyjBi6aNm1KdHR0vtcpXbo0Hh4enDlzBp1OR6NGjXBxcaFr167cvHmT9evXExkZSf/+/dFqtcyZM4d///2XY8eOUb16dWJjYzlz5gx2dna4u7vTs2dPtQONnZ0dkyZNUut2/Pbbb5QrV87o+oqioNfr89z2KHIW/j29LpjYlFJs268jLi6OV155hcGDBz/wPAsXLsTBwSHX+pzdgfLqFvS8a9y4MRcvXgTI83sHwM/Pj0mTJuHt7U3dunXVjkwJCQn4+vri7u6Ou7s7+/btA7Kyq/z8/OjRowf169enf//+PC+1/oozmd4nhBBPT2EyWA5oNJp1Go2mnUajkUpYQgjxiKpXr87YsWMfy7k++eQTGjZsiI+PD/Xr11fXW1hY8PLLL9OoUSMgK+Phzp07alBnzpw5ODk54eLigrm5Oa+99tpjGc+LJCUlBa1Wq/6XvUNN06ZNOXDgAEeOHKFPnz7Mnj1b3Zazzk725ddff11ty/v333+TmpqKq6trvmO4fv06Bw4cwNHRkUGDBjFr1iyOHj2Ks7MzU6dOpUePHnh6erJy5Up0Oh3Ozs6UKFECnU5HaGgoN2/e5Pbt26SmphIeHg5Aq1at1PNv2bKFL7/8kj59+qiZHAkJCdSrV49Bgwbh5OTEhQsXjLY1aNCAYcOG4ejoiL+/v9o1y8/PD0Mx+mvXrmFnZwfAiRMn8Pb2RqvV4uLiQmxsrFHHotTrF7l7MZbKzfupUxqmTJlCdHQ0p0+fJiwszKjV+ejRo9XXMPs1rayseOedd3B1dWX//v25llesWKGO480333yugy6ZmZns3LmTTp06AeT5vWOQkZHBwYMHmTNnjrre1taW7du3c/jwYdasWWP0++zIkSPMmTOHkydPEh8fz969e5/uzYlcnvb0PiGEeJEVZtJ9XeBVIBAI0Wg0a4GliqL8/URHJoQQzxlDZkB2fn5++Pn5AajTfvJiZ2endhDKbsSIEYwYMSLPYwxPmwH69etHv3791OW5c+cWctQiP4bpFgZLly5VP8z/888/9O7dm0uXLnH//n1q1aql7pezzk725Z49e/LJJ5/w+eefs3jx4nyzNCIiInBzc8PExIT33nuP6tWrc+vWLZo3bw5AQEAAPXv2zHXciRMnKFGihLp84MABNZDj4eHBnTt3jDJRXnrppTyvHxsby7Jly9QAXs5tq1ev5ocffqBXr15s2LCBAQMG5HkegPnz5zNu3Dj69+/P/fv3yczMxDQ5EwszE9Iy9KRcPUepqrWxLGGuTmkwNTXFzc2NU6dOFTpz5u7duzRs2JAvvvgi1/KpU6eYNWsWe/fuxdzcnJEjR7Jy5cpcbZCLO0NQ8OLFizRo0IDWrVuTlJRU4PdOt27dAPDw8CAhIQGA9PR0Ro8ejU6nw9TUlL///t+fhN7e3lSvXh0ArVZLQkICTZs2fUp3KPJjqMciHb+EEOLJemCARcnK7dwObNdoNC2AFcBIjUYTDbynKMr+JzxGIYQQolgZM2YMb7/9Np06dSIsLMwoeJazzk725VKlStG6dWs2b97M2rVriYqKyvP8vr6+bN26VV1OSkr6T+NUFIXWrVsTExPDkiVL1LouBqampnkeV7NmzTyDKwC1atVCq9UCxh/K89O4cWNmzJjBP//8Q7du3ahTpw52FgqT2zXgs99OAWCi4ZGnNJiamtK9e/c8l3fu3ElUVJRaBDolJQVbW9v/fK2iyhAUvHfvHm3atGHevHkEBAQUeIyFxf+CWoa6QV999RWVK1cmOjoavV6PpaVlrv1zHiOEEEK8CApVg0Wj0YzTaDSRwARgDFAJeAdY9YTHJ4QQQhQ7SUlJVKtWDYBly5Y91LFDhw5l7NixeHl5Ub58+UIdU7ZsWcqXL69mLf34449qRoK1tTV37twBsrrJZGZmqsuNGjUiIiKCixcvUq9ePTIzM7lx44Z63vyK3xZUjDm/D9hmZmbo9f8/7ef/izFDVnbVli1bKFmyJO3atWPXrl1GUxo+DXyNUsn/4N/AVp3SoNfriY6Oxt3d3ei8Oc+dnaWlpVHAKPuyoigEBASg0+nQ6XScPn26wIyy4q5UqVKEhITwxRdfULp06Xy/d/KTlJRE1apVMTEx4ccff3yup1MJIYQQD6MwNVj2A2WALoqitFcU5WdFUTIURYkE5j/Z4QkhRNEmrWRFXoKCgujZsyceHh5UqlTpoY718PCgTJkyDBky5KGOW7ZsGRMnTsTFxQWdTqfWhBk8eDDDhw9Hq9XSpEkTKlasSJMmTWjRogUVKlTA1dUVc3NzGjZsyKeffsrhw4fR6/VkZGQU2J3oYdnZ2akZOevXr1fXx8fHY29vz9ixY+ncuTNHjx4F/jeloWdLL7w83Pn00xnqMdOnT6dVq1bUqFGDmjVrcvLkSdLS0rh16xY7d+586LG1atWK9evXc/XqVQBu3LjBuXPnHuV2izw3NzdcXFxYvXp1vt87+Rk5ciTLli3D1dWVmJiYAgNuQgghxItE86Dq7hqNRqMUsJNGo5mrKMqYxz6yh+Tp6alkT2sWQognzdBK1tDtxNCZQYoHikfx77//4ufnR0xMDCYmhXkO8nAuXLjAqFGjOHXqFImJifTu3ZsFCxYAWZkcAwYMICoqigYNGnDz5k2CgoLw8/PDzs6OyMhIkpOT6dChg1FNoPy2BQcHk5ycTFBQEDExMfTq1QtTU1Pat2/PihUrSEhIYObMmfz444+Ym5tTpUoVVq1aRYUKFYzGfOvWLcaMGcO+ffu4ffs2Xl5e/PLLL2oGyrvvvsvGjRupVasWVlZWdOrUicGDB+Pn50dwcDCenp5YWVkZ1UHKubxmzRo+++wz9Ho95ubmzJs3j0aNGqn3VqlSpVzHCCGEEKJwNBpNlKIons96HE/aAwMsDzyBRnNYURT3xzSe/0wCLEKIpy0+MZmAxQfVbieQ1f5yWaC3FBIU/8ny5cv54IMP+PLLL/MsUvu47du3j759+7Jx40bc3Z/uP+U5gxWGIsHffPNNgcedPn2a9u3bExISQrt27Qp1raFDh/L222/n2bL5cTl48CDvvvsuFy9exNramqpVqzJz5szH0o5dCCGEKO5elABLYboICSGEyEP2VrIGaRl6rt5JkwCL+E8GDRr0VDvXNGnSpNhNhalXrx5nzpx5qOKpCxcufIIjgitXrtCrVy9WrVpFkyZNANizZw9xcXG5AiwZGRmYmT3dP7+exTWFEEKIF5H8ayuEEP+RrbWF2krWwMLMRG0lK4ofvV4h4fpdrt5Jw9baAruKpYvFdK/iOu78JCYmMnz4cM6fPw/AnDlz8PHxISgoiLi4OOLj46lRowb16tXj7NmzxMfHc/78eb766isOHDjA77//TrVq1fjll18wNzc3miq0evVqPv30UxRFoX379syaNQvIyqgZN24cW7dupWTJkmzevJnKlSvnO5bsvvnmGwICAtTgCmDUmnjw4MFYWlpy5MgRfHx86NOnD+PGjSM1NZWSJUuyZMkS6tWrx9KlS9myZQv37t0jLi6Orl27Mnv2bAAWLVrErFmzKFeuHK6urlhYWPDNN99w5cpVAl4fxvnz5zEzNWFeyNf4+jbN9VqtXr36ib5nQgghhHg8AZbi+xecEEI8AruKpdVWstlrsDxKK1nx7BTXmjrFddwpKSlqO2fIKizbqVMnAMaNG8f48eNp2rQp58+fp02bNpw6ldWy+eTJk+zZs4eSJUuqQYTQ0FBOnjxJ48aN2bBhA7Nnz6Zr1678+uuvdOnSRb3Gv//+y6RJk4iKiqJ8+fL4+/uzadMmunTpwt27d2nUqBEzZszg3Xff5YcffuDDDz8scCwGJ06ceGC743/++Yd9+/ZhamrK7du3iYiIwMzMjB07dvD++++zYcMGAHQ6HUeOHMHCwoJ69eoxZswYTE1N+eSTTzh8+DDW1ta0bNkSV1dX9HqF3kPe5EbNllg1dkRJTqRfwBDOnfk712slhBBCiCev0AEWjUZTSlGUe3ls+voxjkcIIYoNQyvZ+lWsn5vMgRdZwvW7apACsqZ7ffbbKepXsS7SU76K67hLliyJTqdTlw01WAB27NjByZMn1W23b99W67V06tTJKGDw2muvYW5ujrOzM5mZmbRt2xYAZ2dnEhISjK556NAh/Pz8sLGxAaB///6Eh4fTpUsXSpQoQYcOHYCsTk7bt28vcCxWVvm/tg0bNuT27dv4+/vz9ddZfyb17NlTLcqblJREQEAAsbGxaDQa0tPT1WNbtWpF2bJlgay22ufOnePatWs0b95cLf7bs2dP/v77bxKu32VfeBhm1kfV4zPvJXHi3JU8XyshhBBCPFkPDLBoNJomwELACqih0WhcgTcVRRkJoCjK0ic6QiGEKMIMrWSL8gdZUTjFtaZOcR13QfR6PQcOHMDS0jLXtpwtgS0ssqbkmZiYYG5ujkajUZcfpk5L9mNNTU3VYwsai4GjoyOHDx+mc+fOAPz111+sX7+erVu35jnujz76iBYtWrBx40YSEhLw8/PLdT85x5GXq3fSUBQ9Dm/OxcS8hLr+rmKe65pCCCGEePIK0//xK6ANcB1AUZRooNmTHJQQQgjxtBlq6mRXHGrqFNdxF8Tf35+5c+eqy9kzXR6Ft7c3u3fv5tq1a2RmZrJ69WqaN2/+yGMZNWoUS5cuZd++feq6e/fySvrNkpSURLVq1YCszJ0H8fLyYvfu3dy8eZOMjAx1OpGttQXl63hy5cAmdd/0q/HF+r0XQgghirPCBFhQFOVCjlWZT2AsQgghxDNjqKljCFYUl5o6xXXcBQkJCSEyMhIXFxccHByYP3/+YzmvoXVyixYtcHV1xcPDQ806eZSxVKlShTVr1jB58mReeeUVmjRpwvr16xk9enSe53z33XeZPHkybm5uhcqyqVatGu+//z7e3t74+PhgZ2dH2bJlsatYmq9Dvib1UizH577B8ZDXqXppT6Hfe1NTU7RaLa6urri7uxsFiIQQQgjx8DSKohS8g0azHvgS+AZoCIwDPBVF6fPkh1d4np6eimHuthBCCPFfFNduPMV13KLwDHVfMjIy6Nq1K4GBgXTt2vWR3nsrKyu1ts2ff/7Jp59+yu7du5/kbQghhHhBaTSaKEVRPJ/1OJ60wmSwDAdGAdWAi4D2/5eFEEKI54qhpk4j+4rY21gVmyBFcR23KLygoCC0Wi1OTk7UqlVL7Y70uN7727dvU758eSArmNOqVSvc3d1xdnZm8+bNACQkJNCgQQOGDRuGo6Mj/v7+pKSkABAXF0fbtm3x8PDA19eXmJiYR79pIYQQoph5YAZLcSEZLEIIIcSzJZk0xYupqSnOzs6kpqZy6dIldu3ahYeHBxkZGdy7d48yZcpw7do1GjVqRGxsLOfOneOVV14hMjISrVZLr1696NSpEwMGDKBVq1bMnz+fOnXq8NdffzF58mR27dr1rG9RCCFEEfGiZLAUpouQDTAMsMu+v6IogU9uWEIIIYQoTvR6hT9OXFZbRhtqwbR1rCJBlkdkCIQYbNq0iX79+j1yzZTsrbL379/PoEGDOH78OIqi8P777xMeHo6JiQkXL17kypWs1s+1atVCq9UCWe2sExISSE5OZt++ffTs2VM9d1pa2iONTQghhCiOHhhgATYDEcAOpLitEEIIIfKQcP2uGlyBrFbRn/12ivpVrIttu+iiInsgxCCv4EpGRgZmZoX50y63xo0bc+3aNRITE/ntt99ITEwkKioKc3Nz7OzsSE1NBXK3kU5JSUGv11OuXLnH1u1JCCGEKK4KU4OllKIokxRFWasoygbDf098ZEIIIYQoNq7eSVODKwZpGXqu3pFMhifByioraBUWFoavry+dOnXCwcGBzMxMJk6ciJeXFy4uLixYsEDdz8/Pjx49elC/fn369++PoijqdJ8GDRpw/fp1KleuTFJSEhYWFnTs2JG6dety7tw54uLi8h1LmTJlqFWrFuvWrQNAURSio6Of/IsghBBCFDGFecyxVaPRtFMU5bcnPhohhBBCFEu21hZYmJkYBVkszEywtbYo4ChRGCkpKeq0nFq1arFx40aj7YcPH+b48ePUqlWL77//nrJly3Lo0CHS0tLw8fHB398fgCNHjnDixAleeuklfHx8SElJYejQoQCUKFGCzp07Y29vT//+/ZkyZQqVK1fGx8eH+/fv89FHH7Fq1ap8x7hy5UpGjBjB9OnTSU9Pp0+fPri6uj6ZF0QIIYQoogrTpvkOUBpIA9IBDaAoilLmyQ+v8KTIrRBCCPHsSA2WJyd7O+Wc68LCwpg6dSqhoaEA9OjRg6NHj1KqVCkAkpKSWLBgASVKlGDGjBls374dgBEjRuDj48OAAQMAWLNmDd9//z3btm0jJSUFGxsb6tWrp14vLS2NU6dOPY3bFUII8RySIrf/T1EU66cxECGEEEIUXyYmGto6VqF+FWvpIvSUlS5dWv1aURTmzp1LmzZtjPYJCwvLVT8lIyMDgOPHjxMUFER4eDimpqZSU0UIIYT4jx5Yg0Wj0fhoNJrS///1AI1G86VGo6nx5IcmhBBCiOLExESDvY0VjewrYm9jJcGVZ6B1a3+C58xlz+nLxCcmExNzmrt37+a7/61bt+jbty/Lly/HxsYGkJoqQgghxH9VmCK33wH3NBqNK/AOEAf8+ERHJYQQQgghHoper1C9cQdiUsvg37wxzs7O9BoUyP376fkes3nzZs6dO8ewYcPQarVqrZeVK1eyaNEiXF1dcXR0ZPPmzU/pLoQQQojiqzA1WI4oiuKm0WimABcVRVmk0WgOK4ri/nSGWDhSg0UIIYQQL7L4xGQCFh/MVWh4WaC3tMoWQgjxTL0oNVgKk8FyW6PRTAYGAL9qNBoTCtd9SAghhBBCPCXSKlsIIYR4tgoTYDlNVgeh1xVFuQxUJ6urkBAvDFNTU7RaLa6urri7u7Nv376HPsenn35qtNykSZOHOt7Ozg5nZ2e0Wi3Ozs4PTNe+desW3377rbqckJBQYItNIYQQxZuhVXZ20ipbCCGEeHoKE2DxVBTlS0VRIgAURTkP3HuywxKiaClZsiQ6nY7o6Gg+++wzJk+eXOhjFUVBr9fnCrD8lyBNaGgoOp2O9evXM3bs2AL3lQCLEEIUTXq9QnxiMgfirxOfmIxeX/B07cKyq1iaye0aqEEWQ6tsu4ryXEwIIYR4GvKd6qPRaEYAIwF7jUZzNNsma2Dvkx6YEEXV7du3KV++vLr8+eefs3btWtLS0ujatStTp04lISGBNm3a0LBhQ6KiovD29iYlJQWtVoujoyMrV67EysqK5OTkfM/xMGP48ssvWbx4MQBDhw7lrbfe4r333iMuLg6tVkvr1q2JiIjg1KlTaLVaAgICGD9+/BN4dYQQQhREr1f448RlPvvtFGkZejUI0taxyiN3XZJW2UIIIcSzVVAtlVXA78BnwHvZ1t9RFOXGEx2VEEWMITiSmprKpUuX2LVrFwDbtm0jNjaWgwcPoigKnTp1Ijw8nBo1ahAbG8uyZcto1KgRAOvWrUOn0+U6d37naNasWa59W7RogaIoxMfHs3btWgCioqJYsmQJf/31F4qi0LBhQ5o3b87MmTM5fvy4es2wsDCCg4PZunXrk3mRhBBCPFDC9btqcAWyaqR89tsp6lexfiyFaA2tsqWorRBCCPH05RtgURQlCUgC+j694QhRNBmmCAHs37+fQYMGcfz4cbZt28a2bdtwc3MDIDk5mdjYWGrUqEHNmjXV4EpB8jtHXgGW0NBQKlWqRFxcHK1atcLPz489e/bQtWtXSpfOSgHv1q0bERERdOrU6THdvRBCiMeloEK0EhQRQgghijfpBiTEQ2rcuDHXrl0jMTERRVGYPHkyb775ptE+CQkJasDjQfI7R0Fq165N5cqVOXny5EONXQghxLNlKESbs5WyFKIVQgghir/CFLkVQmQTExNDZmYmFStWpE2bNixevFitpXLx4kWuXr2a53Hm5uakp6fnWv8w5zC4evUqZ8+epWbNmvj6+rJp0ybu3bvH3bt32bhxI76+vlhbW3Pnzh31mJzLQgghnj4pRCuEEEI8vySDRYhCMNRggayMk2XLlmFqaoq/vz+nTp2icePGAFhZWbFixQpMTU1zneONN97AxcUFd3d3Vq5cqa7P7xy2tra5ztGiRQtMTU1JT09n5syZVK5cmcqVKzN48GC8vb2BrCK3hulGPj4+ODk58dprr/Hpp59iamqKq6srgwcPliK3QgjxDEghWiGEEOL5pVGUx9Ma8Fnz9PRUIiMjn/UwhBBCCCGEEEIIkY1Go4lSFMXzWY/jSZMpQkIIIYQQQgghhBCPSKYIiReWXq+QcP2upGgLIYQQQgghhHhkEmARLyS9XuGPE5f57LdTpGXo1SKDbR2rSJBFCCGEEEIIIcRDkylC4oWUcP2uGlwBSMvQ89lvp0i4fvcZj0wIIYQQQgghRHEkARbxQrp6J00NrhikZei5eiftGY1ICCGEEEIIIURxJgEW8UKytbbAwsz429/CzARba4tnNCIhhBBCCCGEEMWZBFjEC8muYmkmt2ugBlkMNVjsKpZ+xiMTQgghhBBCCFEcSZFb8UIyMdHQ1rEK9atYSxchIYQQQgghhBCPTAIs4oVlYqLB3sYKexurZz0UIYQQQgghhBDFnEwREkIIIYQQQgghhHhEEmARQgghhBBCCCGEeEQSYBFCCCGEEEIIIYR4RBJgEUIIIYQQQgghhHhEEmARQgghhBBCCCGEeEQSYBFCCCGEEEIIIYR4RBJgEUIIIYQQQgghhHhEEmARQgghhBBCCCGEeEQSYBFCCCGEEEIIIYR4RBJgEUIIIYQQQgghhHhEEmARQgghngBTU1O0Wq3638yZM5/Iddq1a8etW7cKtW9YWBj79u1TlwcPHsz69ev/87Xt7OxwdnZW73Hs2LEF7j906FBOnjypHnvt2rX/fG0hhBBCiKLG7FkPQAghhHgelSxZEp1O98TOrygKiqLw22+/FfqYsLAwrKysaNKkyWMbR2hoKJUqVSrUvgsXLnxs1xVCCCGEKGokg0UIIYR4iuzs7Jg8eTJarRZPT08OHz5MmzZtqF27NvPnz1f3+/zzz/Hy8sLFxYWPP/4YgISEBOrVq8egQYNwcnLiwoULRpkgy5cvx8XFBVdXVwYOHGh03YSEBObPn89XX32FVqslIiICgPDwcJo0aYK9vb1RNkte1y+MmJgYvL29ja7r7OwMgJ+fH5GRkQ/5igkhhBBCFA8SYBFCCCGegJSUFKMpQmvWrFG31ahRA51Oh6+vrzpN58CBA2ogY9u2bcTGxnLw4EF0Oh1RUVGEh4cDEBsby8iRIzlx4gQ1a9ZUz3nixAmmT5/Orl27iI6O5uuvvzYaj52dHcOHD2f8+PHqtQEuXbrEnj172Lp1K++9994Dr59TixYt1Hv86quvqF+/Pvfv3+fs2bMArFmzht69ez+mV1WIh3PlyhX69euHvb09Hh4eNG7cmI0bNz7rYeVpzpw53Lt3T122srL6z+e6d+8e/fv3x9nZGScnJ5o2bUpycvLjGKYQQogCyBQhIYQQ4gkoaIpQp06dAHB2diY5ORlra2usra2xsLDg1q1bbNu2jW3btuHm5gZAcnIysbGx1KhRg5o1a9KoUaNc59y1axc9e/ZUp+tUqFChUOPs0qULJiYmODg4cOXKFYB8r9+sWbNcx+c1RahXr16sWbOG9957jzVr1hgFl4R4WhRFoUuXLgQEBLBq1SoAzp07x5YtW3Ltm5GRgZnZk/mzODMzE1NT0wfuN2fOHAYMGECpUqUe+Zpff/01lStX5tixYwCcPn0ac3PzRz5vdk/yNRNCiOJKMliEEEKIp8zCwgIAExMT9WvDckZGBoqiMHnyZHQ6HTqdjjNnzvD6668DULp06ScyFsj6QGr4f37XL4zevXuzdu1a/v77bzQaDXXq1HmsYxaiMHbt2kWJEiUYPny4uq5mzZqMGTMGgKVLl9KpUydatmxJq1atuHv3LoGBgXh7e+Pm5sbmzZuBrGyQXr164eDgQNeuXWnYsKE61W316tVqlsikSZPU61hZWfHOO+/g6urKjBkz6NKli7pt+/btdO3a1WisISEh/Pvvv7Ro0YIWLVqo6z/44ANcXV1p1KiRGgBNTEyke/fueHl54eXlxd69e3Pd+6VLl6hWrZq6XK9ePSwsLEhISKB+/foMHjyYunXr0r9/f3bs2IGPjw916tTh4MGDABw8eJDGjRvj5uZGkyZNOH36dJ6v2dKlS+nSpQutW7fGzs6Ob775hi+//BI3NzcaNWrEjRs3iIuLw93dXR1LbGys0bIQQjxPJMAihBBCFDFt2rRh8eLFakr/xYsXuXr1aoHHtGzZknXr1nH9+nUAbty4kWsfa2tr7ty580Sun13t2rUxNTXlk08+kelB4pk5ceLEAz/IHz58mPXr17N7925mzJhBy5YtOXjwIKGhoUycOJG7d+/y7bffUr58eU6ePMknn3xCVFQUAP/++y+TJk1i165d6HQ6Dh06xKZNmwC4e/cuDRs2JDo6mo8++oiYmBgSExMBWLJkCYGBgUbjGDt2LC+99BKhoaGEhoaq52jUqBHR0dE0a9aMH374AYBx48Yxfvx4Dh06xIYNGxg6dGiu+woMDGTWrFk0btyYDz/8kNjYWHXbmTNneOedd4iJiSEmJoZVq1axZ88egoOD+fTTTwGoX78+ERERHDlyhGnTpvH+++/n+ZoBHD9+nJ9//plDhw7xwQcfUKpUKY4cOULjxo1Zvnw5tWvXpmzZsmpG35IlSxgyZEih3kMhhChuilyARaPRBGk0mosajUb3//+1e9ZjEkKIF9GmTZvQaDTExMSo6xISEnBycgKynmSOHj36ka6RvW1vYRw8eBA/Pz/q1KmDu7s77du3V1Pgn6TIyMgHtiDOKWcNFkN9k8Lw9/enX79+NG7cGGdnZ3r06PHAwIijoyMffPABzZs3x9XVlbfffjvXPh07dmTjxo1GRW4f9frZa7AMGjRIXd+7d29WrFhBr169CnnXQjxZo0aNwtXVFS8vL3Vd69at1el027ZtY+bMmWi1Wvz8/EhNTeX8+fPs2bOHPn36AODk5ISLiwsAhw4dws/PDxsbG8zMzOjfv79aq8jU1JTu3bsDoNFoGDhwICtWrODWrVvs37+f11577YHjLVGiBB06dADAw8ODhIQEAHbs2MHo0aPRarV06tSJ27dv56qvotVqiY+PZ+LEidy4cQMvLy9OnToFQK1atXB2dsbExARHR0datWqFRqPB2dlZvUZSUhI9e/bEycmJ8ePHc+LEiTxfM8j6HWBtbY2NjQ1ly5alY8eOAEbnGzp0KEuWLCEzM5M1a9bQr1+/B96/EEIUR0V14uRXiqIEP+tBCCHEi2z16tU0bdqU1atXM3Xq1Md+/szMzIdq23vlyhV69erFqlWr1DbDe/bsIS4uTu1SY/C4awN4enri6en5UMdkZmbmud7wgQNg8ODBDB48OM9t48aNY9y4cbmOP378eL7nCwgIICAgIN8x1a1bl6NHj6rLhkK3Btk/pOV3/fyundOECROYMGGC0bqwsLBCHSvE4+Do6MiGDRvU5Xnz5nHt2jWjn+XsU+4URWHDhg3Uq1fvka9taWlpVHdlyJAhdOzYEUtLS3r27Fmo30/m5uZoNBogK2CTkZEBgF6v58CBA1haWhZ4vJWVFd26daNbt26YmJjw22+/0b1791zTErNPWTRc46OPPqJFixZs3LiRhIQE/Pz81GNyTlMszPm6d+/O1KlTadmyJR4eHlSsWPGB9y+EEMVRkctgEUII8ewlJyezZ88eFi1axE8//ZTvfhcuXFAzSrIHYVasWIG3tzdarZY333xTDTZkr0uwf/9+o7a9f/zxB+7u7ri6utKqVatc1/rmm28ICAhQgysATZs2VWsbDB48mOHDh9OwYUPeffddgoKCCA7+X6zeycmJhIQEEhISaNCgAcOGDcPR0RF/f39SUlKArDbCkyZNwtvbm7p166pZHmFhYeqT5Bs3btClSxdcXFxo1KiRGrAICgoiMDAQPz8/7O3tCQkJeejXXQjx+LRs2ZLU1FS+++47dV32Lj05tWnThrlz56q1iI4cOQKAj48Pa9euBeDkyZNq1py3tze7d+/m2rVrZGZmsnr1apo3b57nuV966SVeeuklpk+fnu/0mMJO4fP392fu3Lnqcl7FtPfu3cvNmzcBuH//PidPnjTqOvYgSUlJag2XpUuXFvq4/FhaWtKmTRtGjBgh04OEEM+1ohpgGa3RaI5qNJrFGo2m/LMejBBCFDcajYYBAwaoyxkZGdjY2KhBggfZvHkzbdu2pUSJEly4cIGoqCgiIyMJCgoy2u/gwYNs2LCBo0ePsm7dOiIjIzl16hRr1qxh79696HQ6TE1NWblyJWBcl6Bp06bqeRITExk2bBgbNmwgOjqadevW5RpTYeop/PPPP+zbt48vv/yywP1iY2MZNWoUJ06coFy5ckZPuTMyMjh48CBz5szJM3Pn448/xs3NjaNHj/Lpp58aTYuJiYnhzz//5ODBg0ydOpX09PQCxyGEeHI0Gg2bNm1i9+7d1KpVC29vbwICApg1a1ae+3/00Uekp6fj4uKCo6MjH330EQAjR44kMTERBwcHPvzwQxwdHSlbtixVq1Zl5syZtGjRAldXVzw8POjcuXO+4+nfvz8vv/wyDRo0yHP7G2+8Qdu2bY2K3OYlJCSEyMhIXFxccHBwYP78+bn2iYuLo3nz5jg7O+Pm5oanp6c6Zakw3n33XSZPnoybm5uahfKo+vfvj4mJCf7+/o/lfEIIURQ9kylCGo1mB1Alj00fAN8BnwDK////CyAwj33RaDRvAG8A1KhR44mMVQghiqPSpUtz/PhxUlJSKFmyJNu3bzfqKPEgq1evVuurlC1bltWrVxMcHExQUJBRkKZ169Zqqne3bt3Ys2cPZmZmREVFqXUOUlJSsLW1BYzrEmR34MABmjVrRq1atYDCtRhu2LAht2/fxt/fn6+//hqAnj17Fqodaq1atdBqtYBxbQPDfeS1HkCvV9gVFs60uYuJT0zGz68F169f5/bt2wC0b98eCwsLLCwssLW15cqVK1SvXv2B4xFCPBlVq1bNNwsv5xS9kiVLsmDBglz7WVpasmLFCiwtLYmLi+PVV19Vs0H69u1L3759cx2TsyYKZE1pHDZsWL5jHTNmjNrhKOc5evToQY8ePQCoVKnSA1ufDxo0yCj4a2BnZ2c0zTB7dkr2bY0bN+bvv/9Wt02fPh3I/ZoVNM0x57Y9e/YwZMiQQv2OFkKI4uqZBFgURXm1MPtpNJofgK0FnOd74HsAT09P5fGMTgghng/t2rXj119/pUePHqxevZq+ffuqU17u3r3LmDFjOH78OOnp6QQFBdG5c2eWLl3KmjVr2LZtGzt27KBSpUpcu3aNtWvX0r59e/WP7KCgIHbu3ElsbCz29va89dZbQNYTY0VRCAgI4LPPPss1ppx1CR6Go6Mjhw8fVp8Q//XXX6xfv56tW//3z0T22gBmZmbo9Xp1OTU1Vf06e80AU1NTdYpQ9m3Zax4AKAr8ceIy567fY+ovJyn7VxKT2xk/ic553sf15FcI8ezcu3ePFi1akJ6ejqIofPvtt5QoUeKhzuHh4UHp0qX54osvntAoi7auXbsSFxfHrl27nvVQhBDiiSpyU4Q0Gk3VbItdgeP57SuEECJ/ffr04aeffiI1NZWjR4/SsGFDdVt+7UghK5tkwIABpKamsmfPHurVq0etWrWMiqMCXLp0CY1Gw59//snUqVPZuHEjPj4+tGrVivXr16ttfW/cuMG5c+cKHGujRo0IDw/n7Nmz6jE5jRo1iqVLl7Jv3z51XUH1FOzs7Dh8+DCQ1VbUcO7/KiU9g89+O0Xpmk7ciN5JWoaeSXNXU6ZcBcqUKfNI5xZCFJ5erxCfmMyB+OvEJyaj1z/ZZ2zW1tZERkYSHR3N0aNHC9UBKKeoqCjCw8ONgrAvko0bN3L06FEqVar0rIcihBBPVFHsIjRbo9FoyZoilAC8+UxHI4QQxZSLiwsJCQmsXr2adu2MO95v27aNLVu2qEVgDe1IISvLJGfKe/fu3dmxY4fROldXVzIzM3njjTe4c+cOrVu3VrtzTJ8+HX9/f/R6Pebm5sybN6/AAos2NjZ8//33dOvWDb1ej62tLdu3bzfap0qVKqxZs4ZJkyZx8eJFbG1tqVSpElOmTMnznN27d2f58uU4OjrSsGFD6tatW4hXLX9pGXrSM/RUazmQsxu/4PjcNzAxt2B+HlMKhBBPhl6v8MeJy3z22ynSMvRYmJkwuV0D2jpWwcRE86yHJ4QQ4gWnMVRKL+48PT0VQycKIYR40VlZWZGcnMy0adP4+uuvCQsL4/r16wQHB7N161Y8PDxYtWpVrnakS5cuJTIykm+++QbImk/foUMHjh8/TlhYmHp8UFAQVlZWahteJycntm7dip2d3dO+1acmPjGZgMUHScv437QjCzMTlgV6Y29j9QxHJsSLQ34OhRCieNJoNFGKong+63E8aUVuipAQQojHJzAwkI8//hhnZ2ej9fm1IxX5s6tYmsntGmBhlvVPp+HJuV3F0g84UgjxuFy9k2YUXIGs7LKrd9Ke0YiEEEKI/ymKU4SEEEI8JtWrV2fs2LG51n/00Ue89dZbuLi4oNfrqVWrllGxWJGbiYmGto5VqF/Fmqt30rC1tsCuYmmZliDEU2RrbYGFmUmuDBZb6xeztokQQoiiRaYICSHEC0KvV0i4fvc/BwcM044Mck4nelymTJlCs2bNePXVvBvObdq0ibp16+Lg4FDocyYmJtKhQwfu379PSEgIvr6+AGzevJklS5awadMmAD777DMWLVrEmTNnAPjll1/44Ycf2LJlyyPdU87X7r+KiIhg+PDhmJub891333Hz5s1c9XWEeJ5JDRYhhCieXpQpQpLBIoQQL4Di9KFk2rRpBW7ftGkTHTp0eKgAy86dO3F2dmbhwoVG65s0acKbb/6vlvr+/fspU6YMV69exdbWln379tGkSZOHu4FHlJGRgZlZ3v88r1y5ksmTJzNgwAA1wCUBFvEikUwyIYQQRZnUYBFCiGLiUVqTJly/qwZXIKtmwWe/nSLh+t3HMrbExES6d++Ol5cXXl5e7N27F4CgoCACAwPx8/PD3t6ekJAQ9ZhPPvmEevXq0bRpU/r27at2NBo8eDDr168H4L333sPBwQEXFxcmTJjAvn372LJlCxMnTkSr1RIXF2d8nwkJtGzZEhcXF1q1asX58+fR6XS8++67bN68Ga1WS0pKirq/jY0NZcqUUTNWLl68SPfu3dVW0Pv27cPHxyfP8+Z3PYCzZ8/SuHFjnJ2d+fDDD43GOGvWLJydnXF1deW9994DwM/Pj7feegtPT0++/vprdu7ciZubG87OzgQGBpKWlsbChQtZu3YtH330EX379mXKlCmsWbMGrVbLmjVrHsv7KERxYGKiwd7Gikb2FbG3sZLgihBCiCJDMliEEKIYeNQMlIIKQxa280ZKSgparVZdvnHjBp06dQJg3LhxjB8/nqZNm3L+/HnatGnDqVOnAIiJiSE0NJQ7d+5Qr149RowYgU6nY8OGDURHR5Oeno67uzseHh5G17t+/TobN24kJiYGjUbDrVu3KFeuHJ06daJDhw706NEj1xjHjBlDQEAAAQEBLF68mLFjx7Jp0yamTZuW73QmHx8f9u3bR2ZmJnXq1KFRo0b8+eefdOjQgejoaLy8vOjZs2ee583veuPGjWPEiBEMGjSIefPmqdf6/fff2bx5M3/99RelSpXixo0b6rb79+8TGRlJamoqderUYefOndStW/f/2rvz+Jru/I/jr5OEWJJaIkrXhEEi243EUmswyKhRa1EtalB7aek+FW1nOm392qKLtoOgiilKF0xrSNXSknBDQrTobTsomloSJJLc8/sjckYkEiTckPfz8chjcs75nu/5nNsz183nfr+fL4MGDeLdd99lwoQJbNy40br3azVFS0RERESujkawiIjcAEo6AiWvMOSFrrQwZOXKlbHb7dbPhVN51q5dy9ixY7HZbHTv3p1Tp05ZNUfuvfdePD09qVWrFrVr1+bIkSNs2rSJ++67j0qVKuHt7c2f//znAterVq0alSpV4i9/+QvLly+nSpUqxca4ZcsWHnjgAQAeeughNm7cWOw5LVu2ZPPmzWzevJl77rmHZs2a8d1337Fjxw4CAgKoVKnSJfu91P5NmzYxYMAAa/+Fr9PDDz9s3UvNmjWtY/369QNg7969+Pv707BhQwAGDx7Mhg0bir0PEREREXEtJVhERG4AJV2a9FovMex0Ovn222+t5MvBgwfx8sodGePp+b8kjru7O9nZ2ZfVp4eHB1u3bqVPnz58/vnnREdHl0qsF8sbwZKXYPH29iYjI4O4uLgS1V8xjCubtlC1qpZ7FhEREbmRKcEiInIDKOkIlLzCkPOGNmPGgHDmDW1WqgVuO3fuzMyZM61tu91eZPtWrVrx2WefkZGRQXp6eqFLRKenp3Py5Em6du3KG2+8QWJiIgDe3t6kpaUV2m/Lli1ZvHgxkFsQNm+1oKIEBgZy6NAhNm7cSHh4OAA2m41Zs2bRqlWrIvu91P5WrVrl25+nU6dOzJ07lzNnzgDkmyKUp1GjRjgcDqsuzIIFC2jXrl2BdkW9DiIiIiJy/SnBIiJyAyiNESjXsjDkjBkziI+PJzQ0lMaNGzNr1qwi2zdt2pTu3bsTGhrKn/70J0JCQqhWrVq+NmlpaXTr1o3Q0FBat27N66+/DkD//v157bXXCA8PL1DkdubMmcydO5fQ0FAWLFjA9OnTi43dMAyaN2+Oj48PFSpUAOCee+7hwIED1giWS/V7qf3Tp0/n7bffJiQkhIMHD1rXio6Opnv37kRGRmKz2azCvheqVKkSc+fOpW/fvoSEhODm5sbIkSMLtGvfvj27d+9WkVsRERGRMsIwzctfhaIsi4yMNOPj410dhojINeN0mjhST5fK0qS//vorEyZMYNu2bVSvXp1bb72Vp556ihkzZlgr+Fxr6enpeHl5cebMGdq2bcv7779PkyZNrsu1RUREROT6MQwjwTTNSFfHca1pFSERkRtE3giUy13151JM06Rnz54MHjzYmsaSmJjIqVOnCk2uZGdn4+FR+v9cjBgxgt27d5ORkcHgwYOVXBERERGRG5oSLCIi5cz69eupUKECI0Y8woFj6bkjYm6rj7f3MYKDg0lKSiI2Npbly5eTnp5OTk4OX3zxBePGjSM+Ph7DMJgyZQq9e/fmyy+/ZMqUKWRmZlK/fn3mzp1rFbctzkcffXSN71RERERE5PpRgkVEpJxJSkqiSZMmrEn+1Vr62dPDjaFh+RMj27dvZ+fOndSsWZMnn3ySatWqsWvXLgCOHz/Ob7/9xksvvcTatWupWrUqr7zyCq+//jrPP/+8K25LRERERMSllGARESmHTmVkW8kVyF3y+Z31+ziX87+loDt16kTNmjUBWLt2rTWdCKBGjRp8/vnn7N6921pp59y5c9xzzz3X8S5ERERERMoOJVhERMqZoKAg5n64iAp39si3/1yOk5yc/xU+r1q16BWKTNOkU6dOLFq06FqEKSIiIiJyQ9EyzSIi5UyHDh0wc7I5nrDK2nfm1wOY6b/h7l74qkSdOnXi7bfftraPHz9OixYt2LRpE/v27QPg9OnTfP/999c2eBERERGRMkoJFhGRcsYwDD5fuYI6p/ex6/VB7JoxjENfzWFct6ZUdC/8n4XnnnuO48ePExwcTFhYGOvXr8fX15fY2FgGDBhAaGgo99xzDykpKdf5bkREREREygbDNM3iW90AIiMjzfj4eFeHISJyw3A6TRypp3NXEfL2xM+nKm5uhY9gERERERG5WoZhJJimGenqOK411WARESmn3NwM6vl6Uc/38pZVFhERERGRS1OCRUTkJqDRKCIiIiIirqUEi4jIDc7pNFmT/Ku17LKnhxtPdw0kOqiOkiwiIiIiIteJityKiNzgHKmnreQKQGa2k5dX7cGRetrFkYmIiIiIlB9KsIiI3OCOpmVayZU8mdlOjqZluigiEREREZHyRwkWEZEbXG1vTzw98r+de3q4Udvb00URiYiIiIiUP0qwiIjc4Px8qvJ010AryZJXg8XPp6qLIxMRERERKT9U5FZE5Abn5mYQHVSHgDreWkVIRERERMRFNIJFRAAwDIMHH3zQ2s7OzsbX15du3bqVSv+xsbGMHTv2stvHxMRw++23Y7PZCAgIYNSoUTidzuJPvMo4YmJimDZtWpHnDhkyhKVLl5Y4hovFxcWxefPmEvXh5mZQz9eLFvV8qOfrpeSKiIiIiMh1pgSLiABQtWpVkpKSOHv2LABfffUVt99+u0tjmjhxIna7nd27d7Nr1y6+/vrrAm2ys7NdENnVycnJKXR/aSRYRERERETEtZRgERFL165d+eKLLwBYtGgRAwYMsI5t3bqVe+65h/DwcFq2bMnevXuB3BEhvXr1Ijo6mgYNGvDEE09Y58ydO5eGDRvSrFkzNm3aBEBaWhr+/v5kZWUBcOrUqXzbhTl37hwZGRnUqFEDgKioKCZMmEBkZCTTp0/nP//5D+Hh4YSEhDB06FAyM3NXz9m2bRstW7YkLCyMZs2akZaWlq/fL774gnvuuYfffvst3/79+/cTHR1NREQEbdq0ISUlxTq2YcMGWrZsSb169azRLHFxcflG+owdO5bY2FgA/Pz8ePLJJ2nSpAkff/wxM2bMoHHjxoSGhtK/f38cDgezZs3ijTfewGaz8c033xT3n0lERERERMog1WAREUv//v154YUX6NatGzt37mTo0KHWH/wBAQF88803eHh4sHbtWp555hmWLVsGgN1uZ8eOHXh6etKoUSPGjRuHh4cHU6ZMISEhgWrVqtG+fXvCw8Px9vYmKiqKL774gh49erB48WJ69epFhQoVCsTzxhtv8OGHH/LTTz/xpz/9CZvNZh07d+4c8fHxZGRk0KBBA/7zn//QsGFDBg0axLvvvsvo0aPp168fS5YsoWnTppw6dYrKlStb53/yySe8/vrrrFq1ykrc5BkxYgSzZs2iQYMGfPfdd4wePZp169YBcPjwYTZu3EhKSgrdu3enT58+xb6uPj4+bN++HYDbbruNH3/8EU9PT06cOEH16tUZOXIkXl5eTJo06cr+g4mIiIiISJmhESwiYgkNDcXhcLBo0SK6du2a79jJkyfp27cvwcHBTJw4keTkZOtYx44dqVatGpUqVaJx48b89NNPfPfdd0RFReHr60vFihXp16+f1X7YsGHMnTsXyB3l8vDDDxcaT94UoaNHj3L69GkWL15sHcvrb+/evfj7+9OwYUMABg8ezIYNG9i7dy9169aladOmANxyyy14eOTmlNetW8crr7zCF198USC5kp6ezubNm+nbty82m41HHnmEw4cPW8d79OiBm5sbjRs35siRI5f1ul5476GhoQwcOJAPP/zQikdERERERG58SrCISD7du3dn0qRJ+aYHAfz1r3+lffv2JCUl8dlnn5GRkWEd8/T0tH53d3cvti5Kq1atcDgcxMXFkZOTQ3BwcJHtK1SoQHR0NBs2bLD2Va169UsQ169fn7S0NL7//vsCx5xOJ9WrV8dut1s/e/bssY5feK+maQLg4eGRrwDvha/NxbF+8cUXjBkzhu3bt9O0adMbqoaMiIiIiIhcmhIsIpLP0KFDmTJlCiEhIfn2nzx50ip6m1dfpCjNmzfn66+/JjU1laysLD7++ON8xwcNGsQDDzxwydErFzJNk02bNlG/fv0Cxxo1aoTD4WDfvn0ALFiwgHbt2tGoUSMOHz7Mtm3bgNzaL3nJjLvvvptly5YxaNCgfCNxIHeki7+/vxWvaZokJiYWGd/dd9/N7t27yczM5MSJE/znP/8ptJ3T6eSXX36hffv2vPLKK5w8eZL09HS8vb0L1IcREREREZEbixIsIpLPHXfcwfjx4wvsf+KJJ3j66acJDw+/rFEXdevWJSYmhnvuuYdWrVoRGBiY7/jAgQM5fvx4gZEyF8or/BocHExOTg6jR48u0KZSpUrMnTuXvn37EhISgpubGyNHjqRixYosWbKEcePGERYWRqdOnfKNLAkICGDhwoX07duX/fv35+tz4cKFzJ49m7CwMIKCgli5cmWR93rnnXdy//33ExwczP333094eHih7XJycnjwwQcJCQkhPDyc8ePHU716df785z/zySefqMitiIiIiMgNzMgb4n6ji4yMNOPj410dhohcpqVLl7Jy5UoWLFjg6lBEREREROQaMgwjwTTNSFfHca2pwqKIXHfjxo1j9erVrFq1ytWhiIiIiIiIlAolWETkups5c6arQxARERERESlVSrCI3MScThNH6mmOpmVS29sTP5+quLkZrg5LRERERETkpqMityI3KafTZE3yrwyes5Xxi3YweM5W1iT/itNZduouubu7Y7PZrJ9//OMfAERFRZFXU+njjz8mMDCQ9u3bFzj/0KFD9OnT57KvFxsby6FDh6xtPz8/fvvtt6uK3eFwULly5Xzxz58//6r6EhERERGRG59GsIjcpBypp3l51R4ys50AZGY7eXnVHgLqeFPP18vF0eWqXLkydru9yDazZ8/mgw8+oHXr1vn2Z2dnc9ttt7F06dLLvl5sbCzBwcHcdtttVxNuAfXr1y82/tKSnZ2Nh4feskVEREREyiqNYBG5SR1Ny7SSK3kys50cTct0UURX7oUXXmDjxo385S9/YfLkycTGxtK9e3c6dOhAx44dcTgcBAcHA7lLIE+aNIng4GBCQ0ML1HlZunQp8fHxDBw4EJvNxtmzZ4HcejBNmjQhJCSElJQUAE6fPs3QoUNp1qwZ4eHhxS7TfLFRo0YRGRlJUFAQU6ZMsfavWrWKgIAAIiIiGD9+PN26dSvyehffr4iIiIiIlF1KsIjcpGp7e+Lpkf//4p4ebtT29nRRRAWdPXs23xSbJUuW5Dv+/PPPExkZycKFC3nttdcA2L59O0uXLuXrr7/O1/b999/H4XBgt9vZuXMnAwcOzHe8T58+Vl92u53KlSsDUKtWLbZv386oUaOYNm0aAH/729/o0KEDW7duZf369UyePJnTp08XiH///v354v/mm2+s8+Pj49m5cydff/01O3fuJCMjg0ceeYTVq1eTkJDAsWPHrH6Kut6l7lfkWklNTbWe6Tp16nD77bdjs9moXr06jRs3vibX9PK6NqPqDMPg8ccft7anTZtGTExMkeesWLGC3bt3W9sXTy0UERERuRQlWERuUn4+VXm6a6CVZPH0cOPproH4+VR1cWT/kzdFKO+nX79+xZ7TqVMnatasWWD/2rVreeSRR6xpNIW1KUyvXr0AiIiIwOFwAPDll1/yj3/8A5vNRlRUFBkZGfz8888Fzs2bIpT306ZNGwD+9a9/0aRJE8LDw0lOTmb37t2kpKRQr149/P39ARgwYIDVT1HXu9T9ilwrPj4+1jM9cuRIJk6caG27ubn+Y0N2dvZlt/X09GT58uVXVGtJCRYRERG5Wq7/pCQi14Sbm0F0UB3mDW3GjAHhzBvajOigOjf8KkJVq5ZugsjTM3dEj7u7u/WHm2maLFu2zPqj8ueffyYwMPCy+vvxxx+ZNm0a//nPf9i5cyf33nsvGRkZRZ5T1PVK+35FSiInJ4fhw4cTFBRE586dral2+/fvJzo6moiICNq0aWNNt3M4HHTo0IHQ0FA6duxoJQ5//PFH7rnnHkJCQnjuuees/k3TZPLkyQQHBxMSEmKNaouLi6NNmzZ0796dxo0bk5OTw+TJk2natCmhoaG89957hcbr4eHBiBEjeOONNwocKyy2zZs38+mnnzJ58mRsNhuvvPJKoVMLRURERAqjBIvITczNzaCerxct6vlQz9frhk+uFKVTp0689957VpLk999/L9DG29ubtLS0Yvvq0qULM2fOxDRzV1zasWPHZcdx6tQpqlatSrVq1Thy5AirV68GoFGjRhw4cMAaJXPhdKiSXE/kevrhhx8YM2YMycnJVK9enWXLlgEwYsQIZs6cSUJCAtOmTWP06NEAjBs3jsGDB1vT9saPHw/Ao48+yqhRo9i1axd169a1+l++fDl2u53ExETWrl3L5MmTOXz4MJA7XW769Ol8//33zJ49m2rVqrFt2za2bdvGBx98wI8//lhozGPGjGHhwoWcPHky3/7CYmvZsiXdu3fntddew2638+STTxY6tVBERESkMEqwiIjLXFyD5amnnrrqvoYNG8Zdd91FaGgoYWFhfPTRRwXaDBkyhJEjRxb7TfRf//pXsrKyCA0NJSgoiL/+9a+Ftru4BsuMGTMICwsjPDycgIAAHnjgAVq1agXkTod65513rG/5vb29qVat2hVdT25uecuWBwcH07dvX86cOXPZ55ZkyfFLcTgcvPTSS7z++us0btyYZ599Fn9/f2w2G/C/aXXp6els3ryZzp07ExAQwCOPPMLhw4d5/vnn2bBhAw888ABRUVE0btyYjRs3ArBp0yZrmtxDDz1kXXPjxo0MGDAAd3d3br31Vtq1a8e2bdsAaNasmTXF7ssvv2T+/PnYbDaaN29OamoqP/zwQ6H3ccsttzBo0CBmzJiRb/+WLVt44IEHrBjyYhMRERG5WlrzU0RcJicnp9D9cXFxhf4+ZMgQhgwZYm37+fmRlJQE5E4FeP3113n99dcveb3evXvTu3dvaztvNAlAZGSkda3KlStfcsrBhde+VJImNja20P3t27cnJSUF0zQZM2YMkZGRRV7v4vuVm9uFy5YPHDiQWbNm8dhjj7k0ppo1a/LYY48xYcIEWrZsSWbm/1Yhc3d35+zZszidTqpXr067du3o1q0bffr0sdq88847l+zbMK5sRN2F0+VM02TmzJl06dLlss6dMGECTZo04eGHH76ia4qIiIhcCY1gERG5Tj744ANsNhtBQUGcPHmSRx55xNUhSRnVpk0b9u3bx2effUbz5s0JDw/nj3/8I0eOHAFyV/rp3LkzQUFBDBs2zJpe5nA4CAgIYMiQITRs2JCBAweydu1aWrVqRYMGDdi6dSsAW7du5Z577iE8PJyWLVuyd+/eIuPx8PAgIiKCc+fO8cEHH9C0aVNef/11lixZgoeHB7Vq1WLp0qVMnjyZsLAwPv/8c4YMGYKfnx+LFy8GYPXq1VYh6FatWln7Fy5cmO++lyxZQk5ODseOHWPDhg00a9asQDxdunTh3XffJSsrC4Dvv/++0JW+8tSsWZP777+f2bNnW/tatmyZL4a82C6eSni5UwtFRERElGARkVLjdJocOJbOtwdSOXAsHafTdHVIZUreaiy7d+9m4cKFVKlSxdUhSRmUnZ3N6tWrCQkJoXXr1nz77bfs2LGD/v378+qrrwIwdepUWrduTXJyMj179sy3ytW+fft4/PHHSUlJISUlhY8++oiNGzcybdo0/v73vwMQEBDAN998w44dO3jhhRd45plniozpzJkzbNq0iUqVKtGrVy+2bdvGY489hq+vL7Nnz+bTTz+lWrVqmKZJVlYW27dvB+Avf/kLc+fOJT4+nlWrVjF9+nQApk+fzttvv01ISAgHDx60rtOzZ09rml+HDh149dVXqVOnToF4hg0bRuPGjWnSpAnBwcE88sgjxa4u9Pjjj+ebRjVz5kzmzp1LaGgoCxYssGLr378/r732GuHh4ezfv/+ypxaKiIiIGHnfet3oIiMjzfj4eFeHIVJuOZ0ma5J/5eVVe8jMdlrLQt8MKxeJXA/u7u6EhIQAuSM5/u///o+9e/fy+OOPc/jwYc6dO4e/vz9r1qzBZrOxfPly6tWrB+SO0Pj+++9JT0+nU6dOVj2SQYMG0aVLFwYOHMiBAwfo1asXdrudX375hfHjx/PDDz9gGAZZWVnWyj95HA4HgYGBNGrUCMMwuO+++4iJieHrr7/mueee48SJE6Snp9OlSxdmzZrFkCFD8k0RunA7KiqKadOmWdPiREREpHwxDCPBNM2b/oOAarCISKlwpJ62kisAmdlOXl61h4A63tTz9XJxdCJl34U1WPKMGzeOxx57jO7duxMXF0dMTEyx/eQtPQ7g5uZmbbu5uVmjPP7617/Svn17PvnkExwOB1FRUYX2Vb9+/QIxDRkyhBUrVhAWFkZsbGy+OkkiIiIi5ZmmCIlIqTialmklV/JkZjs5mpZ5iTNEpDgnT57k9ttvB2DevHnW/rZt21orZa1evZrjx48X25fTaXIux8m3B1I5dDSVunVvAy5dlPlS0tLSqFu3LllZWfnqp6hWiYiIiJR3SrCISKmo7e2Jp0f+txRPDzdqe3te4gwRKU5MTAx9+/YlIiKCWrVqWfunTJnChg0bCAoKYvny5dx1111F9uN0mnz9/TEOHj/L+EU7OOLXmQmTnyQ8PLzY2iUXe/HFF2nevDmtWrUiICDA2n9x7RIRERGR8kY1WESkVKgGi0jZdeBYOoPnbM03yszTw415Q5tpCp+IiIhcc6rBIiJyBdzcDKKD6hBQx5ujaZnU9vbEz6eqkisiZUBRU/iUYBEREREpHUqwlGGpqal07NgRgF9//RV3d3d8fX0B2Lp1KxUrViz0PIfDQbdu3UhKSrpusYpAbpKlnq+X/mATOc/pNHGknnZ50jFvCt/FI1g0hU9ERESk9KgGSxnm4+OD3W7HbrczcuRIJk6caG1fKrkiIiJlQ960ucFztjJ+0Q4Gz9nKmuRfcTqv/9RcP5+qPN010KqTlDeFz8+n6nWPRYrncDgIDg7Oty8mJoZp06YV2n7WrFnMnz//svo+ceIE77zzjrUdFxdHt27drj5Y4P333ycgIICAgACaNWvGxo0bC21X1LX8/Pz47bffCr334gwZMoSlS5cCEBUVhaaMi4iIq2gEyw0mISGBxx57jPT0dGrVqkVsbCx169YlISGBoUOHAtC5c2cXRykiImVp6fLSnMLn7u5OSEgI2dnZBAYGMm/ePKpUqXINoi5cVFQUhw8fplKlSnh5eTFnzhwaNWp0WedeaoRnfHw88+fPZ8aMGdci5GsqOzubkSNHXnb7vATL6NGjS+X6n3/+Oe+99x4bN26kVq1abN++nR49erB161bq1KlTKtcQERG5UWgEyw3ENE3GjRvH0qVLrYTKs88+C8DDDz/MzJkzSUxMBGD37t0cOnSIPn36XPX1YmJiMAyDffv2WfvefPNNDMMo9tuhNWvW0KxZMwICArDZbPTr14+ff/652GsOGDCA0NBQ3njjDVJSUrDZbNaKFC1btrzqexERud7K2tLleVP4WtTzoZ6v11VPVapcuTJ2u52kpCQqVqzIrFmzSjnS4i1cuJDExEQGDx7M5MmTL+ucolZLioyMvKGSK1FRUUyYMIHIyEimT5+eb3TLvn37+OMf/0hYWBhNmjQpsKLTU089xf79+7HZbNZrl56eTp8+fQgICGDgwIHkLYCQkJBAu3btiIiIoEuXLhw+fLhALK+88gqvvfaatcpVkyZNGDx4MG+//TaQ+3kgICCAJk2asHz5cuu81NRUOnfuTFBQEMOGDePCRReys7MZOHAggYGB9OnThzNnzgDwwgsv0LRpU4KDgxkxYgQ3y0INIiJy81CC5QaSmZlJUlISnTp1wmaz8dJLL/Hf//6XEydOcOLECdq2bQvAQw89BMBtt91mDZm9WiEhISxevNja/vjjjwkKCirynKSkJMaNG8e8efNISUnBbrczcOBAHA5Hkef9+uuvbNu2jZ07dzJx4kRWrFhBnz592LFjB/Xr12fz5s0luhcRkeupPCxd3qZNG/bt28dnn31G8+bNCQ8P549//CNHjhwBchP1Q4cOJSoqinr16llJjNOnT3PvvfcSFhZGcHAwS5YsYd26dfTo0cPq+6uvvqJnz55FXr9t27bs27cPh8NBmzZtaNKkCU2aNLH+vYiLi6NNmzZ0796dxo0b5zv3wIEDhIeHs23btnxTV64kZoD//Oc/hIeHExISwtChQ8nMzE2g+fn5MWXKFJo0aUJISAgpKSklfLXzO3fuHPHx8Tz++OP59g8cOJAxY8aQmJjI5s2bqVu3br7j//jHP6hfvz52u53XXnsNgB07dvDmm2+ye/duDhw4wKZNm8jKyrrklzoXSk5OJiIiIt++yMhIkpOTycjIYPjw4Xz22WckJCTw66+/Wm2mTp1K69atSU5OpmfPnvm+hNm7dy+jR49mz5493HLLLdaUprFjx7Jt2zaSkpI4e/Ysn3/+ecleRBERkVKmBMsNxDRNgoKCrDosu3bt4ssvv7xk+wvnMcfGxtKjRw86deqEn58fb731Fq+//jrh4eG0aNGC33//vdA+evTowcqVKwHYv38/1apVs76lgtxvppo0aUJYWJhVkPeVV17hmWeeITAw0GrXvXt3KwF04fzo3377DT8/PyB3atPBgwex2WxMnTqVN998k3fffZf27dsD4OWVO6Q+Li6OqKioQr9tExEpK272uifZ2dmsXr2akJAQWrduzbfffsuOHTvo378/r776qtUuJSWFf//732zdupWpU6eSlZXFmjVruO2220hMTCQpKYno6Gjat29PSkoKx44dA2Du3LnW1NdL+eyzzwgJCaF27dp89dVXbN++nSVLljB+/Hirzfbt25k+fTrff/+9tW/v3r307t2b2NhYmjZtWqDfy405IyODIUOGsGTJEnbt2kV2djbvvvuu1U/elJlRo0Zdsn5KYQyj8NFFF+7v169fgeNpaWkcPHjQSkxVqlTpsqZvNWvWjDvuuAM3NzdsNhsOh4O9e/cW+qXOlUhJScHf358GDRpgGAYPPvigdWzDhg3W9r333kuNGjWsY3feeSetWrUC4MEHH7Rquqxfv57mzZsTEhLCunXrSE5OvqJ4RERErjXVYLmBeHp6cuzYMbZs2cI999xDVlYW33//PUFBQVSvXp2NGzfSunVrFi5cWOj5SUlJ7Nixg4yMDP7whz/wyiuvsGPHDiZOnMj8+fOZMGFCgXNuueUW7rzzTpKSkli5ciX9+vVj7ty5ABw7dozhw4ezYcMG/P39rSRNcnIykyZNuuL7+/TTT+nWrRt2ux3ITSh5eXkV2teOHTtITk7mtttuo1WrVmzatInWrVtf8TVFRK6Vm3Xp8rNnz2Kz2YDcESx/+ctf2Lt3L/369ePw4cOcO3cOf39/q/29996Lp6cnnp6e1K5dmyNHjhASEsLjjz/Ok08+Sbdu3WjTpg2QOwLzww8/5OGHH2bLli2XLNw6cOBAKleujJ+fHzNnziQrK4uxY8dit9txd3fPl0xp1qxZvniOHTvGfffdx/LlywuMarnSmBMTE/H396dhw4YA1tSYvH9Pe/XqBUBERES+6THF8fHx4fjx4/n2/f777/nuo2rV0kvUeXr+b1SVu7s72dnZ1pc6W7ZsKfLcxo0bk5CQQIcOHax9CQkJxY52LcrFCSbDMMjIyGD06NHEx8dz5513EhMTQ0ZGxlVfQ0RE5FrQCJYbiJubG0uXLuXJJ58kLCwMm81mDYOeO3cuY8aMwWazXXI0R/v27fH29sbX15dq1arx5z//GcidBlTU9J3+/fuzePFiVqxYkW+49rfffkvbtm2tD3w1a9YscG5qaio2m42GDRte0bd3xSns2zYRkbKmtOqelCV5NVjsdjszZ86kYsWKjBs3jrFjx7Jr1y7ee++9fH/4FvbHe8OGDdm+fTshISE899xzvPDCC0BuPbEPP/yQRYsW0bdvXzw8Cv8eaOHChdjtdlasWMGdd97JG2+8wa233kpiYiLx8fGcO3fOantxIqJatWrcddddl1zp5kpjLkpeP3l9XC4vLy/q1q3LunXrgNzkypo1a4r9IsHb25s77riDFStWALlTi/Pql1zYJi0trdgYGjVqZH2pA5CVlVXoiJEnnniCJ598ktTUVADsdjuxsbGMHj2agIAAHA6HVQdm0aJF1nlt27blo48+AmD16tX5Eko///yzdd2PPvqI1q1bW89UrVq1SE9PL/EUaBERkWtBI1huEDExMdbvGzZsKHA8IiLCKnAL5FuCMc+FHxjd3NysbTc3tyI/+HXr1o3JkycTGRnJLbfcUmysQUFBbN++nbCwMGup6WnTppGeng6Ah4cHTmdu4cer/fapsA+/IiLiGidPnuT2228HYN68ecW2P3ToEDVr1uTBBx+kevXq/POf/wRya4fddtttvPTSS6xdu/aKrp+XdJ83bx45OTmXbFuxYkU++eQTunTpgpeXFw888MBlXaOwmJ944gkcDgf79u3jD3/4AwsWLKBdu3aXHXdR5s+fz5gxY3jssccAmDJlCvXr1y/2vAULFvDII4/w/PPPU6FCBT7++GPq1atnHffx8aFVq1YEBwfzpz/9iXvvvbfQfipWrMjSpUsZP348J0+eJDs7mwkTJhQYmdK9e3cOHjxIy5YtMQwDb29vPvzwQ6v2y/vvv8+9995LlSpVaNOmjZXcmTJlCgMGDCAoKIiWLVty1113WX02atSIt99+m6FDh9K4cWNGjRpFlSpVGD58OMHBwdSpU6fQqV0iIiKupgSLFKtKlSq88sor1hDoPC1atGD06NH8+OOP1hShmjVr8sQTT9CzZ09atGhh1WG58Bs0Pz8/EhISaNasmb6BEhEhd8RCXhI6z6xZs6hSpQqDBg1iyJAhdOvW7bJXhouKiuLAgQP89NNP1nSLHj16sHbt2gLXKQ0xMTH07duXGjVq0KFDB3788cci2+/atYvJkyfj5uZGhQoV8tUtGThwIMeOHctXx6s4o0ePpnfv3syfP5/o6Ohip89UrVqVzz//nE6dOuHl5XVZXx4UFnOlSpWYO3cuffv2JTs7m6ZNm17RkslFady4MevXry/0WFxcXL7tC7+EadCggTXy5VLyRo7kiYqKsn5/6623rN9tNluhX+pcbNSoUYwaNarQY9HR0YUW+PXx8Sm0jlytWrUuWRD4pZde4qWXXiqwPzY21vr94tdGRETkelKCxQWcThNH6ulrNic/Ozs73wiP0tC/f/8C+3x9fXn//ffp1asXTqfTKjIYEhLC9OnTGTRoEKdOnaJWrVrcddddTJ06FYBJkyZx//33W99qiYhIQSX9Q7169epWfaoTJ04UusTu1SgsQXPfffdx3333Fdh/4R/+kFsLDHIT7V26dCm0/40bNzJ8+PBLXr+wP6AbNGjAzp07re1XXnkFyE0cXJg88PPzs2KoXr0627Zts47ltbvSmDt27MiOHTsK7L9w6mpkZKT+8BcRESkHjJtl9ZXIyEgzb2WasszpNFmT/Csvr9pDZrbTWlUiOqhOqSVZEhMTGT58OFu3bi2V/kRE5NoqbARLTEyMVeg7bwRLzZo1mTFjhlVj46uvvuKdd97hk08+yXduVFQUnTt35tChQ7z11lvMmTOHY8eO8eKLL5Keno5pmjzxxBOsXr0awzB47rnn6Nev3yX3x8XFERMTQ61atUhKSiIiIoIPP/zwkqvdXK2IiAiqVq3KV199VepfFIiIiIjrGIaRYJpmpKvjuNY0guU6c6SetpIrAJnZTl5etYeAOt7U8/Uqcf+zZs1ixowZvPnmmyXuS0REypb27dszevRojh07hq+vb5FLGXfs2JHhw4eTk5PD4sWLef/993nxxRcBWL58OXa7ncTERH777TeaNm3K3UERrN+wkS1bE9ixw87vv6fStGlT2rZtC1yf1dsSEhJKtb+y5FqPXhURERHX0ypC19nRtEwruZInM9vJ0bTMUul/5MiR7N69m86dO5dKfyIiUnYYhmEtZXzixAm2bNnCn/70p0Lburu707p1axYvXszZs2fx8/Ozjm3cuJEBAwbg7u6Or29t/hDWjKGvLWb6ws844hvBVynH8PWtTbt27axpNFq97erljV4dPGcr4xftYPCcraxJ/hWn8+YYRSwiIiK5NILlOqvt7Ymnh1u+JIunhxu1vYseCq1vvkREBHKXMv7zn/9MpUqVilzKGHLrZ/Xs2bNAXZELOVJPk3TwJNWq5f67lO00rZGVF9LqbVfvWo9eFRERkbJBI1iuMz+fqjzdNRBPj9yXPq8Gi5/PpVc80DdfIiKS58KljB9++OEi27Zp04ann36aAQMGFNi/ZMkScnJy2Os4yMkDO/G6IwCvu4P5fVccGeey2Os4yIYNG2jWrNk1vJvy4VqPXhUREZGyQSNYrjM3N4PooDoE1PG+7NEo+uZLROTmdubMGe644w5r+7HHHiuy/eUuZWwYBpMmTSqwv2fPnmzZsoWwsDCynCb+XUdQwbsmNRq35vQve9j99kgmLKrCq6++Sp06dS65bK5cnqsdvSoiIiI3Fq0idAP49kAq4xcVXAJyxoBwWtTzcUFEIiLiSmPHjiU8PJy//OUvJe7reqxuV97pNRYRkfJOqwhJmaFvvkREJE/eUsb/93//Vyr9Xc3IypvRr7/+yoQJE9i2bRvVq1fn1ltv5c0336RXr14kJSURHx/P/PnzmTFjxmX36efnR3x8PLVq1dJrLCIiUg4owXIDyKvbcvE3X0XVbRERkZvTtVjK2M3NoJ6vV7mddmqaJj179mTw4MEsXrwYgMTERI4cOWK1iYyMJDLy6r94K++vsYiISHmgIrc3gLxvF+cNbcaMAeHMG9pMw4pFRMo4p9PkwLF0vj2QyoFj6SpMXoatX7+eChUqMHLkSGtfWFgYd955p7UdFxdHt27dAPj999/p0aMHoaGhtGjRgp07dwKQmppK586dCQoKYtiwYeRNw3Y4HAQGBjJ8+HCCgoLo3LkzZ8+eBeCDDz6gadOmhIWF0bt3b86cOXO9bltERERKmRIsN4i8b75a1POhnq+XkisiImWYVn+7sSQlJREREXHZ7adMmUJ4eDg7d+7k73//O4MGDQJg6tSptG7dmuTkZHr27MnPP/9snfPDDz8wZswYkpOTqV69OsuWLQOgV69ebNu2jcTERAIDA5k9e3bp3pyIiIhcN5oiJCIiUsq0+tvNbePGjVaCpEOHDqSmpnLq1Ck2bNjA8uXLAbj33nupUaOGdY6/vz82mw3IraPjcDiA3OTOc889x4kTJ0hPT6dLly7X9V5ERESk9GgEi4iISCk7mpaZrzA55CZZjqZluigiKUpQUNA1qW1zIU/P/xWmd3d3Jzs7G4AhQ4bw1ltvsWvXLqZMmUJGRsY1jUNERESuHSVYRERESlne6m8X0upvZVeHDh3IzMzk/ffft/bt3LmTX375pdD2bdq0YeHChUBubZZatWpxyy230LZtWz766CMAVq9ezfHjx4u9dlpaGnXr1iUrK8vqU0RERG5MSrCIiIiUsrzV3/KSLFr9rWwzDINPPvmEtWvXUr9+fYKCgnj66aepU6dOoe1jYmJISEggNDSUp556innz5gG5tVk2bNhAUFAQy5cv56677ir22i+++CLNmzenVatWBAQElOp9iYiIyPVl5FW4v9FFRkaa8fHxrg5DREQEyC1060g9zdG0TGp7e+LnU1UFykVERKRcMgwjwTTNSFfHca2pyK2IiMg1kLf6m4raioiIiJQPSrCIiIjITUcjiEREROR6U4JFREREbipOp8ma5F+tpbLzauBEB9VRkkVERESuGRW5FRERkZuKI/W0lVyB3CWyX161B0fqaRdHJiIiIjczJVhERETkpnI0LdNKruTJzHZyNC3TRRGJiIhIeaAEi4iIiNxUant7Wktk5/H0cKO2t6eLIhIREZHywGUJFsMw+hqGkWwYhtMwjMiLjj1tGMY+wzD2GobRxVUxioiIyI3Hz6cqT3cNtJIseTVY/HyqujgyERERuZm5sshtEtALeO/CnYZhNAb6A0HAbcBawzAamqaZc/1DFBERkRuNm5tBdFAdAup4axUhERERuW5clmAxTXMPgGEU+LBzH7DYNM1M4EfDMPYBzYAt1zdCERERuVG5uRnU8/Winq+Xq0MRERGRcqIs1mC5Hfjlgu3/nt8nIiIiIiIiIlImXdMRLIZhrAXqFHLoWdM0V5ZC/yOAEQB33XVXSbsTEREREREREbkq1zTBYprmH6/itIPAnRds33F+X2H9vw+8DxAZGWlexbVEREREREREREqsLE4R+hTobxiGp2EY/kADYKuLYxIRERERERERuSRXLtPc0zCM/wL3AF8YhvFvANM0k4F/AbuBNcAYrSAkIiIiIiIiImWZK1cR+gT45BLH/gb87fpGJCIiIiIiIiJydcriFCERESlDDMPgwQcftLazs7Px9fWlW7duAHz66af84x//ACAmJoZp06aV6HoOh4PKlStjs9kICwujZcuW7N27F4C4uDjrupdit9tZtWpVsdfx8ip8+d7SuAcRERERKX+UYBERkSJVrVqVpKQkzp49C8BXX33F7bffbh3v3r07Tz31VKles379+tjtdhITExk8eDB///vfL/vcy02wiIiIiIiUJiVYRESkWF27duWLL74AYNGiRQwYMMA6Fhsby9ixYwucs3//fqKjo4mIiKBNmzakpKQA8PHHHxMcHExYWBht27Yt9tqnTp2iRo0aBfafPn2aoUOH0qxZM8LDw1m5ciXnzp3j+eefZ8mSJdhsNpYsWUJ6ejoPP/wwISEhhIaGsmzZMquPZ599lrCwMFq0aMGRI0cu6x7S0tLw9/cnKyvLiu/CbREREREpn5RgERGRYvXv35/FixeTkZHBzp07ad68ebHnjBgxgpkzZ5KQkMC0adMYPXo0AC+88AL//ve/SUxM5NNPPy303P3792Oz2ahfvz6vv/46jz32WIE2f/vb3+jQoQNbt25l/fr1TJ48maysLF544QX69euH3W6nX79+vPjii1SrVo1du3axc+dOOnToAOQmaFq0aEFiYiJt27blgw8+uKx78Pb2Jioqyko4LV68mF69elGhQoXLfj1FRERE5ObjsiK3IiJy4wgNDcXhcLBo0SK6du1abPv09HQ2b95M3759rX2ZmZkAtGrViiFDhnD//ffTq1evQs/PmyIEsGTJEkaMGMGaNWvytfnyyy/59NNPrXopGRkZ/PzzzwX6Wrt2LYsXL7a280bDVKxY0arnEhERwVdffXXZ9zBs2DBeffVVevTowdy5cwtNzoiIiIhI+aIEi4iIXJbu3bszadIk4uLiSE1NLbKt0+mkevXqVpLkQrNmzeK7777jiy++ICIigoSEBHx8fIq87sMPP1xgv2maLFu2jEaNGuXb/913313W/VSoUAHDMABwd3cnOzv7su+hVatWOBwO4uLiyMnJITg4+LKuKSIiIiI3L00REhGRyzJ06FCmTJlCSEhIsW1vueUW/P39+fjjj4HcZEhiYiKQO/2nefPmvPDCC/j6+vLLL78U2dfGjRupX79+gf1dunRh5syZmKYJwI4dOwDw9vYmLS3NatepUyfefvtta/v48ePFxl/cPQAMGjSIBx54oNDkj4iIiIiUP0qwiIjIZbnjjjsYP378ZbdfuHAhs2fPJiwsjKCgIFauXAnA5MmTCQkJITg4mJYtWxIWFlbg3LwaLGFhYTzzzDP885//LNDmr3/9K1lZWYSGhhIUFMRf//pXANq3b8/u3butIrfPPfccx48ftwrrrl+/vsT3ADBw4ECOHz+er+CviIiIiJRfRt43fze6yMhIMz4+3tVhiIhIObF06VJWrlzJggULXB2KiIiISJlmGEaCaZqRro7jWlMNFhERkSs0btw4Vq9ezapVq1wdioiIiIiUEUqwiIiIXKGZM2e6OgQRERERKWOUYBERKYecThNH6mmOpmVS29sTP5+quLkZrg5LREREROSGpQSLiEg543SarEn+lZdX7SEz24mnhxtPdw0kOqiOkiwiIiIiIldJqwiJiJQzjtTTVnIFIDPbycur9uBIPe3iyEREREREblxKsIiIlDNH0zKt5EqezGwnR9MyXRSRiIiIiMiNTwkWEZFypra3J54e+d/+PT3cqO3t6aKIRERERERufEqwiIiUM34+VXm6a6CVZMmrweLnU9XFkYmIiIiI3LhU5FZEpJxxczOIDqpDQB1vrSIkIiIiIlJKlGARESmH3NwM6vl6Uc/Xy9WhiIiIiIjcFDRFSERERERERESkhJRgEREREREREREpISVYRERERERERERKSAkWEREREREREZESUoJFRERERERERKSElGARERERERERESkhJVhEREREREREREpICRYRERERERERkRJSgkVEREREREREpISUYBERkTJrxYoVGIZBSkrKJdtERUURHx9f6LFhw4axe/fuEscRFxdHtWrVsNlsBAYGMnXq1BL3KSIiIiI3FyVYRESkzFq0aBGtW7dm0aJFV3xuTk4O//znP2ncuHGpxNKmTRvsdjvx8fF8+OGHbN++vVT6FREREZGbgxIsIiJSJqWnp7Nx40Zmz57N4sWLrf1nz56lf//+BAYG0rNnT86ePWsd8/Ly4vHHHycsLIwtW7bkG90yatQoIiMjCQoKYsqUKdY5fn5+TJkyhSZNmhASElLkaBmAqlWrEhERwb59+4iJiWHatGnWseDgYBwOBwDz588nNDSUsLAwHnroIQCOHTtG7969adq0KU2bNmXTpk04nU4aNGjAsWPHAHA6nfzhD3+wtkVERETkxqAEi4iIlEkrV64kOjqahg0b4uPjQ0JCAgDvvvsuVapUYc+ePUydOtXaD3D69GmaN29OYmIirVu3ztff3/72N+Lj49m5cydff/01O3futI7VqlWL7du3M2rUqHwJk8Kkpqby7bffEhQUdMk2ycnJvPTSS6xbt47ExESmT58OwKOPPsrEiRPZtm0by5YtY9iwYbi5ufHggw+ycOFCANauXUtYWBi+vr5X9oKJiIiIiEspwSIiImXSokWL6N+/PwD9+/e3pglt2LCBBx98EIDQ0FBCQ0Otc9zd3endu3eh/f3rX/+iSZMmhIeHk5ycnK82S69evQCIiIiwRqBc7JtvviE8PJzOnTvz1FNPFZlgWbduHX379qVWrVoA1KxZE8hNnowdOxabzUb37t05deoU6enpDB06lPnz5wMwZ84cHn744WJfHxEREREpWzxcHYCIiMjFfv/9d9atW8euXbswDIOcnBwMw+C1114r8rxKlSrh7u5eYP+PP/7ItGnT2LZtGzVq1GDIkCFkZGRYxz09PYHcBE12dnahfbdp04bPP/883z4PDw+cTqe1fWGfhXE6nXz77bdUqlQp334vLy9uvfVW1q1bx9atW63RLCIiIiJy49AIFhERKXOWLl3KQw89xE8//YTD4eCXX37B39+fb775hrZt2/LRRx8BkJSUlG+qz6WcOnWKqlWrUq1aNY4cOcLq1atLJU4/Pz+r2O327dv58ccfAejQoQMff/wxqampQG7CCKBz587MnDnTOt9ut1u/Dxs2jAcffJC+ffsWmiQSERERkbJNCRYREbkmClti2eFwEBwcDEB8fDzjx48v9NxFixbRs2dPunbtyokTJwDo3bs3ixYtYtSoUaSnpxMYGMjzzz9PRESEdV5OTg7h4eGEhYXRuHFjDh06BEBYWBjh4eEEBATwwAMP0KpVKyuGvOTH1ejduze///47QUFBvPXWWzRs2BCAH374gSFDhtCuXTvCwsJ47LHHAJgxYwbx8fGEhobSuHFjZs2aZfXVvXt30tPTNT1IRERE5AZlmKbp6hhKRWRkpJm3UoSIiLhev379OHToEB06dGDq1KlAboKlW7duJCUllfr1srKyuPvuu9m6dSt33HEHmZmZOBwOGjVqVOrXKs6QIUPo1q0bffr0uexz4uPjmThxIt988801jExERETk+jMMI8E0zUhXx3GtaQSLiIiUukstsXyhuLg4unXrZrV/+OGHCQkJITQ0lGXLlgG5U3B+++03AHr06EFERARBQUG8//77BfpLS0sjOzsbHx8fILeuSl5yZciQIYwcOZLIyEgaNmxo1VK5MIaYmBiGDh1KVFQU9erVY8aMGUBuUigwMJDhw4cTFBRE586draWh9+/fT3R0NBEREbRp04aUlBQ2b97Mp59+yuTJk7HZbOzfv7/Y1+sf//gHvXv35uWXX768F1hEREREyhwVuRURkVJX2BLL4eFN+Dn1NGfP5XDgWDpO5/9GUL744otUq1aNXbt2AXD8+PECfc6ZM4eaNWty9uxZmjZtSu/eva1kCuSu1NO9e3fuvvtuOnbsSLdu3RgwYABubrnfJTgcDrZu3cr+/ftp3749+/btK3CNlJQU1q9fT1paGo0aNWLUqFFA7pSfRYsW8cEHH3D//fezbNkyHnzwQUaMGMGsWbNo0KAB3333HaNHj2bdunV07979ikawPPXUUzz11FOX/wKLiIiISJmjBIuIiJS6RYsW8eijjwK5Syx/9NFHHKl4G1P+lcjhkxkMnrOVe32PkzdLde3atflGutSoUaNAnzNmzOCTTz4B4JdffuGHH37Il2AB+Oc//8muXbtYu3Yt06ZN46uvviI2NhaA+++/Hzc3Nxo0aEC9evXy1YbJc++99+Lp6Ymnpye1a9fmyJEjAPj7+2Oz2YD/LeWcnp7O5s2b6du3r3V+Zmbm1b1gIiIiInLDU4JFRERKVWFLLOeY8J1vV87l5C5pnJntZOG3P+GbVfiSyBeLi4tj7dq1bNmyhSpVqhAVFXXJJZFDQkIICQnhoYcewt/f30qwGIaRr93F2/C/5Zoh/5LNF+8/e/YsTqeT6tWr51sJSERERETKL9VgERGRUlXYEsu33n4nqfsS87XLyjHJzM5NuHTq1Im3337bOnbxFKGTJ09So0YNqlSpQkpKCt9++22B66anpxMXF2dt2+127r77bmv7448/xul0sn//fg4cOFDi4re33HIL/v7+fPzxxwCYpkliYu49ent7k5aWVqL+RUREROTGogSLiIiUqrwlli/05/t6ciIpLt++H+Y/g6dH7j9DTZs2Zc6cOTRs2JCwsDDWr1+fr210dDQHDx6kXr16PPXUU7Ro0YI5c+awdu1aq41pmrz66qs0atQIm83GlClTrNErAEePHqVSpUo0btwYgIkTJ+J0Oou8lzfffNMqqDtkyBCWLl2a7/jChQuZPXs2YWFhBAUFsXLlSiB3WtRrr71GeHj4ZRW5FREREZEbn5ZpFhGRa87pNFmT/Csvr9pDZrYTTw834qf+mdPp6axfv45HHnmEf//739SvX/+SfVzN0scXnnvmzBmaNWvGpEmTcDqdtG3blhdffJH27dtf8ryYmBi8vLyYNGlSia4vIiIiUp5pmWYREZFS4uZmEB1Uh3lDmzFjQDjzhjbD3c1g48ZvGD58OJ9//rmVXPnggw9o2rQpYWFh9O7dmzNnzhS69PGFI0oSEhJo164dERERdOnShcOHDxcZz7lz58jIyLCK6Ra23LKIiIiIyJVQgkVERC6L02ly4Fg63x5ILbDM8uVwczOo5+tFi3o+1PP1IjMzkx49erBixQoCAgKsdr169WLbtm0kJiYSGBjI7NmzadmyJd27d+e1117DbrfnG+mSlZXFuHHjWLp0KQkJCQwdOpRnn30237VjY2Np3Lgxb7zxBjabjbp169KwYUNrZaARI0Ywc+ZMEhISmDZtGqNHj776F0pEREREyiWtIiQiIsUqbIrP010DiQ6qg5tbwdV4LkeFChVo2bIls2fPZvr06db+pKQknnvuOU6cOEF6ejpdunQpsp+9e/eSlJREp06dAMjJyaFu3bqFtp04cSKTJk0iKyuLPn36sHjxYrp166bllkVERESkxJRgERGRYjlST1vJFchdZvnlVXsIqONNPV+vq+rTzc2Nf/3rX3Ts2JG///3vPPPMM0BuvZQVK1YQFhZGbGxsvpWBCmOaJkFBQWzZsuWyr12hQgWio6PZsGEDXbt21XLLIiIiIlJimiIkIiLFOpqWaSVX8mRmOzmaVrKRHlWqVOGLL76wVuMBSEtLo27dumRlZbFw4UKr7aWWPm7UqBHHjh2zEixZWVkkJycXeV3TNNm0aRP169cvcrllEREREZHLpQSLiIgUq7a3p7Wkch5PDzdqe3uWuO+aNWuyZs0aXnrpJT799FNefPFFmjdvTqtWrfLVZrnU0scVK1Zk6dKlPPnkk4SFhWGz2di8eXOh18qrwRIcHExOTo5Va+VSyy2LiIiIiFwuLdMsIiLFuhY1WERERESkfCgvyzSrBouIiBQrb5nlgDreHE3LpLa3J34+VZVcERERERE5TwkWERG5LHnLLBdV1NbpNHGknlYSRkRERETKHSVYRESkVGgakYiIiIiUZypyKyIipeJSSzk7Uk+7ODIRERERkWtPCRYRESkV12opZxERERGRG4ESLCIiUiqu5VLOIiIiIiJlnRIsIiJSKvx8qvJ010AryZJXg8XPp6qLIxMRERERufZU5FZEREqFlnIWERERkfJMCRYRESk1l7OUs4iIiIjIzUhThERERERERERESkgJFhERERERERGRElKCRURERKSE3N3dsdls1o/D4Si03YkTJ3jnnXdK1E/Xrl05ceJE6QQuIiIipcYwTdPVMZSKyMhIMz4+3tVhiIiISDnk5eVFenp6se0cDgfdunUjKSnpivsxTRPTNHFzu7Lvx3JycnB3d7+ic0REREqTYRgJpmlGujqOa00jWERERERKWXp6Oh07dqRJkyaEhISwcuVKAJ566in279+PzWZj8uTJxfbjcDho1KgRgwYNIjg4mF9++QU/Pz9+++03AHr06EFERARBQUG8//771nleXl48/vjjhIWFsWXLlmtzkyIiIpKPRrCIiIiIlJC7uzshISEA+Pv78/HHH3PmzBluueUWfvvtN1q0aMEPP/zATz/9VOQIlov7eeONN6hXrx6bN2+mRYsWAPj5+REfH0+tWrX4/fffqVmzJmfPnqVp06Z8/fXX+Pj4YBgGS5Ys4f77778+L4CIiEgRyssIFi3TLCIiIlJClStXxm63W9tZWVk888wzbNiwATc3Nw4ePMiRI0euuB+Hw8Hdd99tJVcuNmPGDD755BMAfvnlF3744Qd8fHxwd3end+/eJbonERERuTKaIiQiIiJyhby8vPJtZ2dnM3bsWGt74cKFHDt2jISEBOx2O7feeisZGRlXda2qVasW2Dd27FimTp3K2rVr2bJlC4mJiYSHh1vXqFSpklV3ZcWKFRiGQUpKinV+XFwc3bp1u6x7K05sbCyHDh2ytt98803OnDlzRX2IiIjcDJRgERERESllJ0+epHbt2lSoUIH169fz008/AeDt7U1aWlqpXOPMmTPUqFGDKlWqkJKSwrfffltou0WLFtG6dWsWLVpUKte9mBIsIiIiuZRgERERESlFn332GfPmzWPOnDl4eXnx3nvvERAQwJtvvsnkyZPJyMigYsWKdOzYEcidBhQYGMjw4cM5c+YMnTt35uzZs0BucmT//v2EhYXRu3fvfImL9PR0Nm7cSMWKFRk0aFCh04jy2syePZvFixfnO3bq1CnuvfdeGjVqxMiRI3E6ndaxiRMnEhQURMeOHTl27BgAdrudFi1aEBoaSs+ePTl+/DhLly4lPj6egQMHYrPZmD59OocOHaJ9+/a0b9++1F9bERGRskwJFhEREZErdPbsWWw2m/VTu3Zt61jr1q1JSEjg9OnTvPnmm9x+++3s2bOH6tWrk5KSws8//8yhQ4ew2+1kZWUB8MMPPzBmzBicTifVq1dn2bJlAIwYMYKzZ8+SmJhIYGAgs2fPxuFwUKlSJY4ePUpqaip2u53ff/+duLg4oqKiAKylnleuXEl0dDQNGzbEx8eHhIQEK86tW7cyc+ZMdu/ezf79+1m+fDkAp0+fJjIykuTkZNq1a8fUqVMBGDRoEK+88go7d+4kJCSEqVOn0qdPHyIjI1m4cCF2u51HH32U2267jfXr17N+/fpr/t9BRESkLFGRWxEREZErdHEx2tjYWPJWM/zvf/9Lv379OHz4MOfOncPf399qd++99+Lp6Ymnpye1a9e2Ct/6+/tjs9kAiIiIwOFwAJCUlMRzzz3HiRMnSE9Pp0uXLlZfPXr0wM3NjcaNG1+ygO6iRYt49NFHAejfvz+LFi0iIiICgGbNmlGvXj0ABgwYwMaNG+nTpw9ubm7069cPgAcffJBevXpx8uRJTpw4Qbt27QAYPHgwffv2LclLKCIictNRgkVERESkEE6niSP1NEfTMqnt7YmfT1Xc3Ixizxs3bhyPPfYY3bt3Jy4ujpiYGOuYp6en9bu7uzvZ2dmF7s+bIjRkyBBWrFhBWFgYsbGxxMXFFdqXaZoF4vj9999Zt24du3btwjAMcnJyMAyD1157DQDDyH8vF28Xt19ERETy0xQhERERkYs4nSZrkn9l8JytjF+0g8FztrIm+VeczoKJjIudPHmS22+/HYB58+aVKI60tDTq1q1LVlYWCxcuvKJzly5dykMPPcRPP/2Ew+Hgl19+wd/fn2+++QbInSL0448/4nQ6WbJkCa1btwbA6XSydOlSAD766CNat25NtWrVqFGjhnXuggULrNEsFxfuLc1CviIiIjcSJVhERERELuJIPc3Lq/aQmZ1b+DUz28nLq/bgSD1d7LkxMTH07duXiIgIatWqVaI4XnzxRZo3b06rVq0ICAi4onMXLVpEz5498+3r3bu3tZpQ06ZNGTt2LIGBgfj7+1ttq1atytatWwkODmbdunU8//zzQG6yaPLkyYSGhmK32639Q4YMYeTIkdhsNs6ePcuIESOIjo5WkVsRESl3jMKGlN6IIiMjzby5zyIiIiIl8e2BVMYv2lFg/4wB4bSo5+OCiERERG5chmEkmKYZ6eo4rjWNYBERERG5SG1vTzw98n9M8vRwo7a35yXOEBERkfJOCRYRERGRi/j5VOXproFWksXTw42nuwbi51PVxZGJiIhIWaUEi4iIiLhMamoqNpsNm81GnTp1uP32263tc+fOlfr1YmJirGsEBAQwatQonM7cOitOp8mBY+l8eyAVR+ppElbM5sjcMfy+4FFSF0ygRvpP+VYRio2N5dChQ6Ue4+XGKyIiImWLlmkWERERl/Hx8cFutwO5yQQvLy8mTZpU7HnZ2dl4eHhccrsoEydOZNKkSTidTtq2bcvXX39Nu3ZRrEn+1Spsm3lwD+c2rSBxxw4qV67Eb7/9ViDhExsbS3BwMLfddtvl3/BVKCxeFZAVEREpezSCRURERMqUhIQE2rVrR0REBF26dOHw4cMAREVFMWHCBCIjI5k+fXq+7b/97W/4+/uTlZUFwKlTp/JtF+bcuXNkZGRQo0YNHKmnefafn7HjrTEkzRzB/s/e5vBZg8Pp2djtdrp160Z0dDQ9e/bkzjvvZM6cOcTHx9O7d2+8vLw4e/YsX3/9tTX6Jjw8nLS0NNLT0+nYsSNNmjQhJCSElStXAuBwOAgMDGT48OEEBQXRuXNnzp49W+TrcmG8AHa7nRYtWhAaGkrPnj05fvy49To9+eSTNGvWjIYNG1pLK+fk5DB58mSaNm1KaGgo7733HgCHDx+mbdu22Gw2goODrfYiIiJyZZRgERERkTLDNE3GjRvH0qVLSUhIYOjQoTz77LPW8XPnzhEfH8/jjz+eb3vKlClERUXxxRdfALB48WJ69epFhQoVClzjjTfewGazUbduXRo2bIjNZuNoWiZ7l/yDO7oMI3jc+3j720g/+D1RzcLo2LEjAwYMYOfOnYSEhHDy5Em6d+9OZGQkL774IpGRkVSuXJlp06bx9ttvY7fb+eabb6hcuTKVKlXik08+Yfv27axfv57HH3+cvBUcf/jhB8aMGUNycjLVq1dn2bJlhb4mhcULMGjQIF555RUrrqlTp1rnZGdns3XrVt58801r/+zZs6lWrRrbtm1j27ZtfPDBB/z444989NFHdOnSBbvdTmJiotW/iIiIXBklWERERKTMyMzMJCkpiU6dOmGz2XjppZf473//ax3v169fvvYXbg8bNoy5c+cCMHfuXB5++OFCrzFx4kTsdjtHjx7l9OnTLF68mMpmBs6M09ziHwaAb2RXKlWvzfMvvUJ2djYvv/wysbGxDB48mMzMzEL7bdWqFY899hgzZszgxIkTeHh4YJomzzzzDKGhofzxj3/k4MGDHDlyBAB/f38rmREREYHD4bjseE+ePMmJEydo164dAIMHD2bDhg3WOb169SrQ75dffsn8+fOx2Ww0b96c1NRUfvjhB5o2bcrcuXOJiYlh165deHt7FxqHiIiIFE0JFhERESkzTNMkKCgIu92O3W5n165dfPnll9bxqlXzr+Jz4XarVq1wOBzExcWRk5NDcHBwkdeqUKEC0dHRbNiwgbtqVuWWyh7WqkEVPdyoc0slenf9I9WqVeOtt97KN8Ikr9DshXVZnnrqKf75z39y9uxZWrVqRUpKCgsXLuTYsWMkJCRgt9u59dZbycjIAMDT839LPru7u5OdnX3Z8RYnr+8L+zVNk5kzZ1qv7Y8//kjnzp1p27YtGzZs4Pbbb2fIkCHMnz+/2P5FRESkICVYREREpMzw9PTk2LFjbNmyBYCsrCySk5Mv+/xBgwbxwAMPXHL0yoVM02TTpk3Ur1+fGjWqU7d2LcY2zmLGgHAap35D6+YR1KhRnRo1avDpp59y9913s2DBAm699VYSEhLw9vZmzZo1Vn/79+8nJCSEJ598kqZNm5KSksLJkyepXbs2FSpUYP369fz0009X/qIUEm+1atWoUaOGVS9lwYIF1miWS+nSpQvvvvuuVZfm+++/5/Tp0/z000/ceuutDB8+nGHDhrF9+/arjlFERKQ80ypCIiIiUma4ubmxdOlSxo8fz8mTJ8nOzmbChAkEBQVd1vkDBw7kueeeY8CAAZds88Ybb/Dhhx+SlZVFaGgoo0ePBmDevHmMHDmSM2fOULNmTc6cOUPjxo3Jysri888/p27dujRo0IBZs2bx6KOPkpOTw/Hjxzl37hxnz57lzTffZP369bi5uREUFMSf/vQn0tLS+POf/0xISAiRkZEEBARc8WtyOfHWq1fPmh51KcOGDcPhcNCkSRNM08TX15cVK1YQFxfHa6+9RoUKFfDy8tIIFhERkatk5BVau9FFRkaa8fHxrg5DREREXGjp0qWsXLmSBQsWuDoUEREROc8wjATTNCNdHce1phEsIiIiclMYN24cq1evZtWqVa4ORURERMohJVhERETkpjBz5sxi2zidJo7U0xxNy6S2tyd+PlVxczOuQ3QiIiJys3NZgsUwjL5ADBAINDNNM/78fj9gD7D3fNNvTdMc6YoYRURE5OqUxUSG02myJvlXXl61h8xsJ54ebjzdNZDooDouj01ERERufK4cwZIE9ALeK+TYftM0bdc3HBERESkNZTWR4Ug9bcUEkJnt5OVVewio4009Xy+XxSUiIiI3B5ct02ya5h7TNPcW31JERERuJJdKZDhST7s0rqNpmVZMeTKznRxNy3RRRCIiInIzcVmCpRj+hmHsMAzja8Mw2rg6GBEREbl8ZTWRUdvbE0+P/B99PD3cqO3t6aKIRERE5GZyTRMshmGsNQwjqZCf+4o47TBwl2ma4cBjwEeGYdxyif5HGIYRbxhG/LFjx67FLYiIiMgVKquJDD+fqjzdNdCKLW/qkp9PVZfGJSIiIjeHa1qDxTTNP17FOZlA5vnfEwzD2A80BOILafs+8D5AZGSkWbJoRUREpDTkJTIursHi6kSGm5tBdFAdAup4l6niuyIiInJzKHPLNBuG4Qv8bppmjmEY9YAGwAEXhyUiIiKXqSwnMtzcDOr5eqmorYiIiJQ6Vy7T3BOYCfgCXxiGYTdNswvQFnjBMIwswAmMNE3zd1fFKSIiIldOiQwREREpb1yWYDFN8xPgk0L2LwOWXf+IRERERERERESuTlldRUhERERERERE5IahBIuIiIiIiIiISAkpwSIiIiIiIiIiUkJKsIiIiIiIiIiIlJASLCIiIiIiIiIiJaQEi4iIiIiIiIhICSnBIiIiIiIiIiJSQkqwiIiIiIiIiIiUkBIsIiIiIiIiIiIlpASLiIiIiIiIiEgJKcEiIiIiIiIiIlJCSrCIiIiIiIiIiJSQEiwiIiIiIiIiIiWkBIuIiIiIiIiISAkpwSIiIiIiIiIiUkJKsIiIiIiIiIiIlJASLCIiIiIiIiIiJaQEi4iIiIiIiIhICRmmabo6hlJhGMYx4KeLdtcCfnNBOHJj0PMhRdHzIUXR8yFF0fMhRdHzIUXR8yFFuZGfj7tN0/R1dRDX2k2TYCmMYRjxpmlGujoOKZv0fEhR9HxIUfR8SFH0fEhR9HxIUfR8SFH0fJR9miIkIiIiIiIiIlJCSrCIiIiIiIiIiJTQzZ5ged/VAUiZpudDiqLnQ4qi50OKoudDiqLnQ4qi50OKouejjLupa7CIiIiIiIiIiFwPN/sIFhERERERERGRa04JFhERERERERGRErrpEiyGYfQ1DCPZMAynYRiRF+z3MwzjrGEY9vM/s1wZp7jGpZ6P88eeNgxjn2EYew3D6OKqGKXsMAwjxjCMgxe8b3R1dUziWoZhRJ9/j9hnGMZTro5HyhbDMByGYew6/34R7+p4xPUMw5hjGMZRwzCSLthX0zCMrwzD+OH8/9ZwZYziOpd4PvTZQzAM407DMNYbhrH7/N8uj57fr/ePMu6mS7AASUAvYEMhx/abpmk7/zPyOsclZUOhz4dhGI2B/kAQEA28YxiG+/UPT8qgNy5431jl6mDEdc6/J7wN/AloDAw4/94hcqH2598vIotvKuVALLmfKy70FPAf0zQbAP85vy3lUywFnw/QZw+BbOBx0zQbAy2AMec/c+j9o4y76RIspmnuMU1zr6vjkLKpiOfjPmCxaZqZpmn+COwDml3f6ESkjGsG7DNN84BpmueAxeS+d4iIFMo0zQ3A7xftvg+Yd/73eUCP6xmTlB2XeD5EME3zsGma28//ngbsAW5H7x9l3k2XYCmGv2EYOwzD+NowjDauDkbKlNuBXy7Y/u/5fSJjDcPYeX4Yr4Zhlm96n5DimMCXhmEkGIYxwtXBSJl1q2mah8///itwqyuDkTJJnz3EYhiGHxAOfIfeP8q8GzLBYhjGWsMwkgr5KeqbxMPAXaZphgOPAR8ZhnHL9YlYrqerfD6knCrmeXkXqA/YyH0P+T9XxioiZV5r0zSbkDuNbIxhGG1dHZCUbaZpmuQm5kTy6LOHWAzD8AKWARNM0zx14TG9f5RNHq4O4GqYpvnHqzgnE8g8/3uCYRj7gYaAitDdZK7m+QAOAndesH3H+X1yk7vc58UwjA+Az69xOFK26X1CimSa5sHz/3vUMIxPyJ1WVlhNOCnfjhiGUdc0zcOGYdQFjro6ICk7TNM8kve7PnuUb4ZhVCA3ubLQNM3l53fr/aOMuyFHsFwNwzB884qWGoZRD2gAHHBtVFKGfAr0NwzD0zAMf3Kfj60ujklc7Pw/XHl6klskWcqvbUADwzD8DcOoSG5h7E9dHJOUEYZhVDUMwzvvd6Azes+Qwn0KDD7/+2BgpQtjkTJGnz0EwDAMA5gN7DFN8/ULDun9o4wzckcW3TwMw+gJzAR8gROA3TTNLoZh9AZeALIAJzDFNM3PXBaouMSlno/zx54FhpJbtXuCaZqrXRWnlA2GYSwgd4iuCTiARy6Y9yrl0PnlMt8E3IE5pmn+zbURSVlx/subT85vegAf6fkQwzAWAVFALeAIMAVYAfwLuAv4CbjfNE0VOi2HLvF8RKHPHuWeYRitgW+AXeT+7QrwDLl1WPT+UYbddAkWEREREREREZHrrdxMERIRERERERERuVaUYBERERERERERKSElWERERERERERESkgJFhERERERERGRElKCRUREREqdYRjVDcMY7eo4RERERK4XJVhERETkWqgOKMEiIiIi5YYSLCIiInIt/AOobxiG3TCMDwzD2HD+9yTDMNoAGIaRbhjG3wzDSDQM41vDMG49v9/XMIxlhmFsO//T6lIXMQxjumEYz5//vcv56+jzjYiIiFx3hmmaro5BREREbjKGYfgBn5umGWwYxuNAJdM0/2YYhjtQxTTNNMMwTKC7aZqfGYbxKnDKNM2XDMP4CHjHNM2NhmHcBfzbNM3AS1ynCrANGAvMArqaprn/etyjiIiIyIU8XB2AiIiI3PS2AXMMw6gArDBN035+/zng8/O/JwCdzv/+R6CxYRh5599iGIaXaZrpF3dsmuYZwzCGAxuAiUquiIiIiKtoCK2IiIhcU6ZpbgDaAgeBWMMwBp0/lGX+byhtDv/74scNaGGapu38z+2FJVcuEAKkArddg/BFRERELosSLCIiInItpAHeAIZh3A0cMU3zA+CfQJNizv0SGJe3YRiG7VINz/f9OBAO/MkwjOYlC1tERETk6miKkIiIiJQ60zRTDcPYZBhGElAVOG0YRhaQDgwq+mzGA28bhrGT3M8qG4CRFzcycucQzQYmmaZ5yDCMv5A7QqapaZoZpXk/IiIiIsVRkVsRERERERERkRLSFCERERERERERkRLSFCEREREp8wzDeBh49KLdm0zTHOOKeEREREQupilCIiIiIiIiIiIlpClCIiIiIiIiIiIlpASLiIiIiIiIiEgJKcEiIiIiIiIiIlJCSrCIiIiIiIiIiJSQEiwiIiIiIiIiIiWkBIuIiIiIiIiISAn9Pxq3t2PrJo0CAAAAAElFTkSuQmCC\n",
+ "text/plain": [
+ "
"
]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from karateclub.node_embedding.meta import NEU\n",
+ "\n",
+ "\"\"\"\n",
+ "L1 (float): Weight of lower order proximities. Defauls is 0.5\n",
+ "L2 (float): Weight of higer order proximities. Default is 0.25.\n",
+ "T (int): Number of iterations. Default is 1.\n",
+ "seed (int): Random seed value. Default is 42.\n",
+ "\"\"\"\n",
+ "\n",
+ "model = NetMF()\n",
+ "meta_model = NEU(T=3)\n",
+ "meta_model.fit(G, model)\n",
+ "\n",
+ "embedding = meta_model.get_embedding()\n",
+ "results = []\n",
+ "for name,embedding in zip(character_mapping['character'].to_list(), embedding):\n",
+ " results.append({'character': name, 'embedding': embedding}) \n",
+ "df = pd.DataFrame.from_dict(results)\n",
+ "tsne(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "sdzt_FjjeBDB"
+ },
+ "source": [
+ "Another node embedding category of algorithms is the structural role embedding category. Instead of capturing the similarity between nodes close in the network (neighbors), we want to capture the similarity between nodes with similar structural roles. One such algorithm is the Role2Vec algorithm.\n",
+ "\n",
+ "The default walk_length is 80. Given that our example graph has only 100+ nodes, I have decided to use a smaller walk_length value. Other than that, there is room for more hyper-parameter tweaking."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 675
},
+ "id": "RKFabIOmnL6O",
+ "outputId": "8f94df1c-7ed4-47c3-aeb3-df8fc3cc0323"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 675
- },
- "id": "RKFabIOmnL6O",
- "outputId": "8f94df1c-7ed4-47c3-aeb3-df8fc3cc0323"
- },
- "source": [
- "from karateclub.node_embedding.structural import Role2Vec\n",
- "\n",
- "\"\"\"\n",
- "walk_number (int): Number of random walks. Default is 10.\n",
- "walk_length (int): Length of random walks. Default is 80.\n",
- "dimensions (int): Dimensionality of embedding. Default is 128.\n",
- "workers (int): Number of cores. Default is 4.\n",
- "window_size (int): Matrix power order. Default is 2.\n",
- "epochs (int): Number of epochs. Default is 1.\n",
- "learning_rate (float): HogWild! learning rate. Default is 0.05.\n",
- "down_sampling (float): Down sampling frequency. Default is 0.0001.\n",
- "min_count (int): Minimal count of feature occurrences. Default is 10.\n",
- "wl_iterations (int): Number of Weisfeiler-Lehman hashing iterations. Default is 2.\n",
- "seed (int): Random seed value. Default is 42.\n",
- "erase_base_features (bool): Removing the base features. Default is False.\n",
- "\"\"\"\n",
- "\n",
- "model = Role2Vec(walk_length=20)\n",
- "model.fit(G)\n",
- "embedding = model.get_embedding()\n",
- "\n",
- "results = []\n",
- "for name,embedding in zip(character_mapping['character'].to_list(), embedding):\n",
- " results.append({'character': name, 'embedding': embedding}) \n",
- "df = pd.DataFrame.from_dict(results)\n",
- "tsne(df)"
- ],
- "execution_count": 15,
- "outputs": [
- {
- "output_type": "stream",
- "name": "stderr",
- "text": [
- "/usr/local/lib/python3.7/dist-packages/sklearn/manifold/_t_sne.py:783: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.\n",
- " FutureWarning,\n",
- "/usr/local/lib/python3.7/dist-packages/sklearn/manifold/_t_sne.py:793: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.\n",
- " FutureWarning,\n"
- ]
- },
- {
- "output_type": "display_data",
- "data": {
- "text/plain": [
- "
"
- ],
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABDsAAAJNCAYAAAA/GH7EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeVxVdfrA8c8FFwRcEVxGE21EhHvhgoAgoojrmBsobrggv2xxTMu0pjLB0rHMyrTSsVFRMzE3qknNBUhxic0rAqK4YLYpYiqgInDP7w+GMyKguIHi8369esU995zveQ7I5Z7nfr/Po1EUBSGEEEIIIYQQQoiawqS6AxBCCCGEEEIIIYR4kCTZIYQQQgghhBBCiBpFkh1CCCGEEEIIIYSoUSTZIYQQQgghhBBCiBpFkh1CCCGEEEIIIYSoUSTZIYQQQgghhBBCiBqlVnUH8KA0bdpUsbW1re4whBBCCCGEEEIIcZPExMQLiqJYV+U5a0yyw9bWloSEhOoOQwghhBBCCCGEEDfRaDRnqvqcsoxFCCGEEEIIIYQQNYokO4QQQgghhBBCCFGjSLJDCCGEEEIIIYQQNYokO4QQQgghhBBCCFGjSLJDCCGEEEIIIYQQNYokO4QQQgghhBBCCFGjSLJDCCGEEEIIIYQQNYokO4QQQgghhBBCCFGjSLJDCCGEEEIIIYQQNYokO4QQQgghhBBCCFGjSLJDiCrSo0cPfvjhh1LbFi5cyIsvvlhNEf2Pra0tOp0OnU6Hg4MDM2fO5Pr167c9RqPRMGbMGPVxYWEh1tbWDBgwoNR+4eHhTJ48WX0cExNTZp+7ifPChQv3dKwQQgghhBDiySHJDiGqyKhRo4iIiCi1LSIiglGjRlXq+KKioocRlio6OpojR44QFxfHqVOneP7552+7v4WFBSkpKVy7dg2A7du385e//OWhxiiEEEIIIYQQlSHJDiGqyLBhw/j++++5ceMGAJmZmfz222/4+PiwY8cOvLy8cHV1JTAwkNzcXKB4JsPrr7+Oq6srGzZswNbWltDQUFxdXdHpdKSnpwNw8eJFhgwZgpOTE56eniQnJwMQFhZGSEgIvr6+tGvXjkWLFt0xTktLS5YuXUpkZCQXL14sMxNj8uTJhIeHq9cwatQoXF1def/993nqqaf48ccfcXJyonfv3nh5eTFr1iw2btzIsWPHyMrKYtasWcTGxuLu7s7OnTsJDg6mbt26ODg4sGnTJoxGI82bN6djx45otVpef/31MjFmZmZib29PcHAwdnZ2BAUFsWvXLry9vWnfvj1xcXH39bMSQgghhBBCPN4k2SFEFWnSpAkeHh5s27YNKJ7VMXz4cLKzs5kzZw67du0iKSkJNzc3PvroI/U4KysrkpKSGDlyJABNmzYlKSmJF198kQULFgAQGhqKi4sLycnJ/POf/2TcuHHq8enp6fzwww/ExcUxe/ZsCgoK7hhrgwYNaNu2LRkZGbfdz8LCgpMnT7J//35ycnLYv38/Xbt2JTk5meXLl7N3717eeecdOnfuzJtvvsnUqVMJDAyka9eubNq0iZEjR9KoUSPefPNNnnvuOfz8/Fi/fj1Xrlxhz549GAwG4uPjiYyMLHPuEydO8Oqrr5Kenk56ejpfffUVsbGxLFiwgH/+8593/oEIIYQQQgghaqxa1R2AEE+SkqUsgwcPJiIiguXLl3Pw4EHS0tLw9vYG4MaNG3h5eanHjBgxotQYAQEBAHTq1InNmzcDEBsby6ZNmwDw8/MjOzubK1euAPDMM89Qt25d6tati42NDefOnaNVq1Z3jFVRlDvuU7t2bQDWrVtH//792bVrFwaDgS+//BI3NzcCAwOJjIzE1NQUU1NTioqK2LFjBzdu3GDQoEHk5OQQHByMlZUVgwcP5uWXX+bzzz/H09MTa2trAIKCgliyZAm7du0CYP78+dSqVYu2bdui0+kAcHR0pGfPnmg0GnQ6HZmZmXeMPSwsjC+++AJra2vy8vLQ6XTMmTMHBweHOx5bGZaWluoMHSGEEEIIIUTVkpkdQlShwYMHs3v3bpKSkrh69SqdOnVCURR69+6NwWDAYDCQlpbG8uXL1WMsLCxKjVG3bl0ATE1NKSwsvOM5S/a/m2NycnLIzMzEzs6OWrVqYTQa1eduLVzav39/pk+fzqhRo5g3bx5t2rQhKSkJT09PunXrRp06dRg9ejQtWrSgYcOGtG7dmubNm2MwGNDpdFhYWNC6dWuaNWtGVFQUGRkZtGzZ8q6uy8TERH1sYmJSqWsEeOWVVzAYDGRkZDBixAj8/PzIysqq1LFApc8jhBBCCCGEqFqS7BCiCllaWtKjRw9CQkLUwqSenp7s27ePEydOAJCXl8fx48fvalwfHx/Wrl0LFHc7adq0KQ0aNLinGHNzc5k0aRJDhgyhcePGtGnThrS0NPLz87l06RK7d+8utX9QUBChoaE4OjqSlZVF06ZNef/998nPz8fKygpArS3St29fOnbsSGZmJoqiYG5uzrBhwwB49tln6d+/P56enuzdu5dFixbRvn17pk2bVuEsk5MnT9KvXz++++473n77bdLT08nNzeX48ePqcp0rV67Qtm3bOy7fGTFiBH369OGrr74CSnd+SUhIwNfXFyieETJ27Fi8vb0ZO3YsqampeHh4oNfrcXJyKnfpzwcffIC7uztOTk6EhoYCMGvWLBYuXKju89Zbb/HJJ5/cNkYhhBBCCCFE5cgyFiGq2KhRo/D391c7s1hbWxMeHs6oUaPIz88HYM6cOdjZ2VV6zJJCpE5OTpibm7Nq1aq7jqtHjx4oioLRaMTf35+3334bgNatWzN8+HC0Wi1t27bFxcWl1HEtW7ZkypQpFBQUMHfuXM6cOYOLiwvBwcHMmTOHgoICdWbIokWLCAwMpKCggA4dOtC8eXPy8/PRarWYmJhQUFBAQEAAffr04eWXX+bpp59m4sSJHDhwoNyYn3vuOZYuXcrcuXPp0KEDkyZNYsWKFVhYWPD9998zZMgQIiIiCAgIUJfc3I6rq6uamLmdtLQ0YmNjqVevHi+99BJTp04lKCiIGzdulOmas2PHDjIyMoiLi0NRFAYNGsSePXsICQkhICCAl19+GaPRSEREhBRWFUIIIYQQ4gGRZIcQVWzIkCFlZir4+fkRHx9fZt9ba0/c/NjNzY2YmBiguPhpeUU8w8LCSj1OSUkpN6Y71biYP38+8+fPL7UtODi41OPatWtz5MiRMsdaWlqSkJCgPo6OjqZRo0bs3buXbdu2kZCQwKeffkpCQgJ9+vThqaee4tKlS4wcOZLVq1cDxUmS48ePk5mZSVhYGJaWlhw8eBBra2sCAwMBMBgM5OfnY2try3/+8x/mz5/PkCFDWLlyJV988cVtr69EZeqUAAwaNIh69eoB4OXlxdy5c/nll18ICAigffv2pfbdsWMHO3bsUJNEubm5ZGRk0K1bN6ysrDh06BDnzp3DxcVFnQkjhBBCCCGEuD+yjEUIUaVOnTqFqakpNjY2aj2Q9957j6FDh9KuXbtKj2M0GmnUqJFa68RgMHD06FEAvL29yczMJCYmhqKiIrRabaXGPHToEB07dgQoVavk1jolN9dRGT16NN9++y316tWjf//+REVFldpXURTeeOMNNcYTJ07wf//3f0Dx0p3w8HBWrlxJSEhIpa9dCCEeZ6ampuj1ehwdHXF2dubDDz8sVRvqYQsPD0ej0aiFrwEiIyPRaDRs3LjxtscGBwer++zduxdHR0f0ej3Xrl17qDELIYS4e5LsEOIBMRoVTmXlcvBUNqeycjEaKzdL4FH0sK4lKyuLF154gcmTJ6PRaLC1tcVgMPDaa68RGxur1irp3LkzP/74I9nZ2RQUFLBhw4YyY5W0xy15TlEUDh8+rD4/btw4Ro8ezYQJEyoV26ZNm9ixY4daS8XW1pbExET1uYqcOnWKdu3aMWXKFAYPHkxycnKp5/v27cuKFSvUziy//vor58+fB8Df35/t27cTHx9P3759KxWnEEI87urVq4fBYCA1NZWdO3eybds2Zs+eXWa/h1kEWqfTqctJobirmLOz812NsXbtWjWZXTLbTwghxKNDkh1CPABGo8L21D8YvyKOKesOMX5FHNtT/3gsEx4P+lquXbumfoLXq1cv+vTpoxbp9Pb2pm3btjg4ODBlyhRcXV0BaNGiBWFhYXh5eeHt7a3OtrjV2rVrWb58Oc7Ozjg6OvLNN9+ozwUFBfHnn3+qyYvyfPzxx+j1etq3b8+XX35JVFSU2vI2NDSUqVOn4ubmhqmpaYVjfP3112i1WvR6PSkpKYwbN67U83369GH06NF4eXmh0+kYNmwYOTk5ANSpU4cePXowfPjw255DCCFqKhsbG5YtW8ann36KoiiEh4czaNAg/Pz86NmzJ7m5ufTs2RNXV1d0Ol2p1/nVq1fj5OSEs7MzY8eOBYqXZfr5+eHk5ETPnj35+eefyz2vj48PcXFxFBQUkJuby4kTJ9Dr9erz77zzDu7u7mi1Wp577rkyyxz//e9/8/XXX/P2228TFBSEoijMmDEDrVaLTqdj/fr1QHHi/eZlpkFBQaWuQQghxMOjqewa9Uedm5ubcnNdACGq0qmsXMaviCO/8H/TcOvWMmFViAftrC2rMbK7V1OuZePGjXzzzTesWbOmukOpkNFoxNXVlQ0bNpSp9SGEEDWVpaWlOtutRKNGjTh27Bjbtm1j5syZJCcn06RJEwoLC7l69SoNGjTgwoULeHp6kpGRQVpaGv7+/uzfv5+mTZty8eJFmjRpwsCBAxk2bBjjx49nxYoVfPvtt2VqWoWHh5OQkECdOnXw8/Pj8uXLnDhxgtOnTzNgwACGDRumjgcwduxYhg8fzsCBAwkODlb3ufnrTZs2sXTpUrZv386FCxdwd3fnp59+4vjx43z88cdERkZy+fJl9Ho9GRkZ1KolZfOEEE8WjUaTqCiKW1WeU2Z2CPEAnM/JL5UcAMgvNHI+J7+aIrp3d3Mtj+rSnZdeeol//OMfakeZR1FaWhp//etf6dmzpyQ6hBDiJr1791YTDYqi8Oabb+Lk5ESvXr349ddfOXfuHFFRUQQGBtK0aVMAdf8DBw4wevRooDhJERsbW+F5Ro4cSUREBBEREWVmAUZHR9O5c2d0Oh1RUVGkpqbeNubY2FhGjRqFqakpzZo1o3v37sTHx9O9e3cyMjLIyspi3bp1DB06VBIdQghRReTVVogHwKZ+XerWMikzG8Kmft1qjOreVPZaSpa7zNt6lPxCI3VrmfBG/470c2yOiYmmqsMuZfHixdV6/spwcHDg1KlT1R2GEEJUu5sLV0PpItBr164lKyuLxMREateuja2tbZmi0ffKw8ODI0eOYG5uXqrd+/Xr15k0aRIJCQm0bt2asLCw+zrnuHHj+PLLL4mIiGDlypUPInQhhBCVIDM7hHgAbK0seKN/R+rWKv6VKrnxt7WyuMORj57KXktmdp6a6IDi2R/zth4lMzuvymMWQgjxeLq1cPWtLl++jI2NDbVr1yY6OpozZ84AxS3bN2zYQHZ2NgAXL14EoEuXLmrh0bVr1+Lj43Pb87/33nv885//LLWtJLHRtGlTcnNz79ihBYprgKxfv56ioiKysrLYs2cPHh4eQHEHl4ULFwLFiW4hhBBVQ2Z2CPEAmJho6OfYHPvm9Tmfk49N/brYWllU+wyHe1HZa7ndcpfHqbaHEEKIqlVSuLqgoIBatWoxduxYpk2bVu6+QUFBDBw4EJ1Oh5ubG/b29gA4Ojry1ltv0b17d0xNTXFxcSE8PJzFixczYcIEPvjgA6ytre84k+Jvf/tbmW2NGjVi4sSJaLVamjdvjru7+x2vyd/fnwMHDuDs7IxGo2H+/Pk0b94cgGbNmtGxY0eGDBlyx3GEEEI8OFKgVAhxT2pKIVMhhBDiYbp69So6nY6kpCQaNmxY3eEIIUS1kAKlQojHRk1auiOEEOLBeFQLV1eXXbt20bFjR1566SVJdAghRBWTmR1CiHtmNCpkZuc99kt3hBBC3L9HuXC1EEKI6lUdMzukZocQ4p6ZmGhoZ20py1aEEEJUWLjavnl9+TshhBCiyskyFiGEEEIIcd9uV7haCCGEqGqS7BBCCCGEEPfNpn5dtY5Tibq1TLCpX7eaIhJCCPEkk2SHEEIIIYS4b1K4WgghxKNEkh1CCCGEEOK+mZho6OfYnFUhHiwa5cKqEA8pTirEfTp37hyjR4+mXbt2dOrUCS8vL7Zs2VLdYXHp0iWsrKwoaXZx4MABNBoNv/zyCwCXL1+mSZMmGI3G2w1Tab6+vkgzCnG3JNkhhBBCCFHNLC3LFvBcunQpq1evBiA4OJiNGzdWejxfX1+eeuopbu66N2TIkHLP8yCVFK72bGdFO2tLSXQIcR8URWHIkCF069aNU6dOkZiYSEREhJpQuB+FhYX3dXyjRo1o0aIFR48eBWD//v24uLiwf/9+AA4ePIiHhwcmJnK7KaqP/OsTQgghhHgEvfDCC4wbN+6ej2/UqBH79u0Dij+F/f333x9UaEKIKhAVFUWdOnV44YUX1G1t2rThpZdeAqCoqIgZM2bg7u6Ok5MT//rXv4DiJMmMGTPQarXodDrWr18PQExMDD4+PgwaNAgHBweMRiOTJk3C3t6e3r17079/fzWpmpiYSPfu3enUqRN9+/Yt9/WjS5cuanJj//79vPLKK6Uee3t7Vxhjbm4uPXv2xNXVFZ1OxzfffANAXl4ezzzzDM7Ozmi1WjX2m+3YsQMvLy9cXV0JDAwkNzeXqKgohgwZou6zc+dO/P397+8HIB57kuwQQgghhHgEhYWFsWDBglLb7uYN/ciRI4mIiABg8+bNBAQEqM9VdDN0u5skX19fhg0bhr29PUFBQaVmjQghHrzU1FRcXV0rfH758uU0bNiQ+Ph44uPj+eKLLzh9+jSbN2/GYDBw+PBhdu3axYwZM9RkRVJSEp988gnHjx9n8+bNZGZmkpaWxpo1azhw4AAABQUFvPTSS2zcuJHExERCQkJ46623ypzf29tbTW6cOnWKwMBAdanJ/v376dKlS4UxmpmZsWXLFpKSkoiOjubVV19FURS2b99Oy5YtOXz4MCkpKfTr16/UOS9cuMCcOXPYtWsXSUlJuLm58dFHH9GjRw/S09PJysoCYOXKlYSEhNz/D0E81mpVdwBCCCGEEKJyevTowaRJk8jKysLa2vq2b+h79uzJxIkTKSoqIiIigmXLlvHuu+8ClLoZunDhAu7u7nTr1o39+/eXux3g0KFDpKam0rJlS7y9vdm3bx9du3atsmsX4kn397//ndjYWOrUqUN8fDw7duwgOTlZnY1x+fJlMjIyiI2NZdSoUZiamtKsWTO6d+9OfHw8DRo0wMPDg7Zt2wIQGxtLYGAgJiYmNG/enB49egBw7NgxUlJS6N27N1A8g6RFixZl4unSpQvz5s3j9OnT2NraYmZmhqIo5ObmkpiYSOfOnVmyZEm5MbZq1Yo333yTPXv2YGJiwq+//sq5c+fQ6XS8+uqrvP766wwYMAAfH59S5zx48CBpaWl4e3sDcOPGDby8vNBoNIwdO5Yvv/ySCRMmcODAAXUZoHhySbJDCCGEEOIxcTdv6E1NTenatSsRERFcu3YNW1tb9bmKbobudJPUqlUrAPR6PZmZmZLsEOIhcnR0ZNOmTerjzz77jAsXLuDm5gYUz8RavHgxffv2LXXctm3bKhzTwuLO3ZEURcHR0VGd6VGR9u3bc+nSJb777ju8vLwA6NSpEytXrsTW1hZLS8sKYwwPDycrK4vExERq166Nra0t169fx87OjqSkJLZu3crMmTPp2bMns2bNKhVb7969WbduXZl4JkyYwMCBAzEzMyMwMJBateRW90kny1iEEEIIIR4jEyZM4Msvv2TdunV3fEM/cuRIpkyZwvDhw+/7vHXr1lW/NjU1ve8Ch0KI2/Pz8+P69essWbJE3Xb16lX16759+7JkyRIKCgoAOH78OHl5efj4+LB+/XqKiorIyspiz549eHh4lBnf29ubTZs2YTQaOXfuHDExMQB06NCBrKysUstaUlNTy43R09OTTz75RE12eHl5sXDhQnXmRUUxXr58GRsbG2rXrk10dDRnzpwB4LfffsPc3JwxY8YwY8YMkpKSypxv3759nDhxAiiu8XH8+HEAWrZsScuWLZkzZw4TJky4i++0qKkk2SGEEEII8Ri5mzf0Pj4+vPHGG4waNarM9vJuhip7kySEePg0Gg2RkZH8+OOPtG3bFg8PD8aPH8/7778PwLPPPouDgwOurq5otVqef/55CgsL8ff3x8nJCWdnZ/z8/Jg/fz7NmzcvM/7QoUNp1aoVDg4OjBkzBldXVxo2bEidOnXYuHEjr7/+Os7Ozuj1erU2x628vb05e/asOtvEy8uLU6dO0aVLl9vGGBQUREJCAjqdjtWrV2Nvbw/AkSNH8PDwQK/XM3v2bGbOnFnqfNbW1oSHhzNq1CicnJzw8vIiPT1dfT4oKIjWrVvTsWPH+/8BiMeepqYUl3Jzc1Ok97IQQgghHkcmJia0bNlSfTxt2jSuXLmCpaUl06dPJzg4mAEDBjBs2DAAIiIiWLhwIQcPHix3PF9fXxYsWKDegJSwtLQkNzcXRVF47bXX2LZtGxqNhpkzZzJixIgKt8fExLBgwQL+85//ADB58mTc3NwIDg5+ON8QIUSVyM3NxdLSkuzsbDw8PNi3b1+5iZHHxeTJk3FxceH//u//qjsUcQuNRpOoKIrbnfd8gOeUZIcQQgghxONF3tALIR4EX19fLl26xI0bN3jttdce6wRmp06dsLCwYOfOnaWW3YlHgyQ77oMkO4QQQgjxJJA39ELUDEajQmZ2Hudz8rGpXxdbKwtMTDTVHZYQD0V1JDukZocQQghRxUxNTdHr9Wi1WgIDA7l69SqZmZlotdq7GsfX15eSRL+trS0XLlwAUNdK3yo4OFht/1cZx44dw9fXF71eT8eOHXnuuefuKj5RzGhUOJWVy8FT2ZzKysVovL8PmhITE9mzZ48kOoR4jBmNCttT/2D8ijimrDvE+BVxbE/9475fH4QQ/yP9eIQQQogqVq9ePQwGA1BcTG3p0qUEBAQ8sPErKiR3t6ZMmcIrr7zC4MGDgeLCcfdLURQURcHE5Mn4vKXkhmbe1qPkFxqpW8uEN/p3pJ9jc/kEV4gnWGZ2nvq6AJBfaGTe1qPYN69PO2vLao5OiJrhyXinIYQQ4olUMoPC2dkZV1fXOyYBLl26xOeff64+jomJYcCAAeXu++yzz5KWlgaUnlVxs7CwMBYsWHDbc/r4+Kgt9C5evIiZmRlmZmZYWlri7+9PSkoKrq6u6v4ZGRmlHpfH0rL4jbKiKEyePJkOHTrQq1cvzp8/z4svvsiFCxd45513cHd3R6vV8txzz1Hestbff/+dP/74Q/2+6XQ6AMLDwxk8eDC+vr60b9+e2bNnq8d89NFHaLVatFotCxcuBCAzM5MOHTowbtw4tFotZ8+e5YMPPsDd3R0nJydCQ0Nvez2Ps4puaDKz86o5MiFEdTqfk6++LpTILzRyPie/miISouaRZIcQQogaq2QGxeHDh5k3bx5vvPHGbfe/NdlxO//+979xcHC4r/gKCwvZtm2bmkQ4d+4cgwcP5vr16/Tv358//viD+Ph4GjZsqM4EWbly5R3bjZbYsmULx44dIy0tjdWrV5dK9kyePJn4+HhSUlK4du2a2mXjZq+88gpTp04lJCSEjz/+mEuXLqnPxcXFsWnTJpKTk9mwYQMJCQkkJiaycuVKfvrpJw4ePMgXX3zBoUOHgOIkzaRJk0hNTeXYsWNkZGQQFxeHwWBQl2XURHJDI4Qoj039utStVfpWrG4tE2zqy/I0IR4USXYIIYR4Ily5coXGjRsDxa32evbsiaurKzqdjm+++QaAf/zjH5w8eRK9Xs+MGTPUfYcNG4a9vT1BQUHqDIib62XcbO7cudjZ2dG1a1eOHTumbv/iiy9wd3fH2dmZvLw8nJyccHNz46mnnlI7ajRt2hRra2sAXFxcuHTpEo0bN+bZZ59l1qxZeHh48OGHH7Jx40bOnTsHwJ9//knv3r357bffePnll2nTpg2KopCXl8err75Keno6zs7O7N27Fz8/PwAWL16Mm5sb5ubm2NnZERUVRXx8PEOGDMHJyQlPT0+Sk5Pp0aMH9evX59y5c4SFheHs7Ex+fvFNeu/evbGysqJevXoEBAQQGxtLbGws/v7+WFhYYGlpSUBAAHv37gWgTZs2eHp6ArBjxw527NiBi4sLrq6upKenk5GR8QB/2o8OuaERQpTH1sqCN/p3VF8fSpa42VpZVHNkQtQcUrNDCCFEjXXt2jX0ej3Xr1/n999/JyoqCgAzMzO2bNlCgwYNuHDhAp6engwaNIj33nuPlJQUdRZFTEwMhw4dIjU1lZYtW+Lt7c2+ffvo2rVruedLTEwkIiICg8FAYWEhrq6udOrUCYCAgAAmTpwIQJ06dZg4cSIvvfRSqeNr167N+vXriY2N5eTJkzRu3JiBAwdSUFBAaGgoCxYs4KuvvqJPnz7Mnz8fKE6i+Pn5kZGRwcCBA1m7di3m5uZs374dCwsLpk2bRkhICJcvX2b9+vUANGzYkLy8PN566y1Onz5Nq1at2Lp1K8888wyRkZFERUUxbtw4DAYDf//737G0tGT69OlotVpSUlIA0GhK15u49fGtLCz+9wZeURTeeOMNnn/++Tv/EB9zJTc0t9bskBsaIZ5sJiYa+jk2x755fenGIsRDIjM7hBBC1Fgly1jS09PZvn0748aNUwtkvvnmmzg5OdGrVy9+/fVXdabErTw8PGjVqhUmJibo9XoyMzMrPN/evXvx9/fH3NycBg0aMGjQIPW5lJQUfHx80Ol0FBYWkpqaWu4YI0aMwGAwMGvWLJo1a8YHH3yAmZkZHh4ejBgxgri4OD744AP1eIPBwMiRIwHo2bOnOntFp9Nx/vx53n33XWJiYrh69SrR0dEA9OvXD4CuXbty4sQJNm7cyM8//8zYsWMB8PPzIzs7m82bN1NUVATAH3/8QXZ2Nn/5y18A2LlzJxcvXuTatWtERhi4jeAAACAASURBVEbi7e2Nj48PkZGRXL16lby8PLZs2YKPj0+Za+zbty8rVqwgNzcXgF9//ZXz589X+H19nJXc0KwK8WDRKBdWhXhIcVIhBFD8+tDO2hLPdla0s7aU1wUhHjCZ2SGEEOKJ4OXlxYULF8jKymLr1q1kZWWRmJhI7dq1sbW15fr16+Ued3N7T1NTUwoLC+/p/MHBwURGRuLs7IyZmVmF5yuh0Wiws7Njz549/OMf/yA9PZ369etz8uRJ9u7dS1hY2G2Pt7Oz4+jRo4wcOZL+/fvTokULvLy8iI+Px8bGhokTJxIUFEROTg4BAQFs27atzBhRUVFERERQp04d1qxZwwcffEDz5s2B4iTQ0KFD+eWXXxgzZgxubm7qdXp4eADFRVxdXFzKJIj69OnD0aNH8fLyAooLqn755ZfY2NhU5lv52Cm5oZEOC0IIIUTVkZkdQgghngjp6ekUFRVhZWXF5cuXsbGxoXbt2kRHR3PmzBkA6tevT05Ozj2fo1u3bkRGRnLt2jVycnL47rvv1OdycnJo0aIFBQUF5c52sLW1Zc6cOerj6dOnY2try9NPPw0UFy8dMmQIpqamrFq1CiheZtO7d2++/vprMjMzSUpK4s8//+TMmTP89ttvWFhYsHPnTr7++mt0Oh1bt25Vl5PMmTOHyMhIXFxcWLlyJcOHD2ft2rXquE2bNuXTTz/ljTfeYOLEiRw+fJgxY8ao8bVq1Yro6GgyMjJKdVOZNm0aKSkppKSk8PLLL6vXVrL8pcTUqVM5cuQIR44c4cCBA+p1iqqj0WhK/UwLCwuxtrausAPRwxIcHIy5uXmp372XX34ZjUZTbpejOwkPD8fa2hoXFxfat29P3759H1g75sqqqKaPEEKIqiMzO4QQQtRYJTU7oLhOxKpVqzA1NSUoKIiBAwei0+lwc3PD3t4eACsrK7y9vdFqtfztb3/jmWeeuavzubq6MmLECJydnbGxscHd3V197t1336Vz585YW1vTuXPnCpMqJTU7jEYjrVq1Ijw8HH9/f2rXrs3OnTvp1KkTfn5+nD59GoDQ0FBGjRrFmjVr8PLyonnz5tSvX5+YmBhmzJiBiYkJtWvXZsmSJbeNPSwsjJCQEJycnDA3N1cTKgMHDmTYsGF88803LF68uNxEjXg8WVhYqN146tWrx86dO9VlSpVVWFhIrVr3/3byr3/9K9988w1jxozBaDQSFRV117HcbMSIEXz66acAREdHExAQQHR0NB07drzvWIUQQjweNCVV5R93bm5uimTQhRBCVDejUSEzO6/KCs7l5+djampKrVq1OHDgAC+++KJaYFWI27G0tGTKlCm4uroybNgwxo0bh6OjI3v37uU///kPFy9eJCQkhFOnTmFubs6yZctwcnIiLCyMkydPcurUKZ566inmzZvH2LFjycvLA+DTTz+lS5cuGI1GJk+eTFRUFK1bt6Z27dqEhIQwbNiwUnEEBwdjZ2fHgQMH+O6774iKimLDhg1s27aNhIQEmjZtypAhQzh79izXr19n6tSpPPfccwBs376dN998k6KiIpo2bcru3bsJDw8nISFBTXYAzJo1i5ycHD7++GMMBgMvvPACV69e5emnn2bFihU0btwYX19fFixYgJubGxcuXMDNzY3MzEyuXr1KcHAwKSkpdOjQgd9++43PPvsMNzc3XnzxReLj47l27RrDhg1j9uzZAKXGEkIIARqNJlFRlCp9UZSZHUIIIcQDYjQqbE/9o0znjYdZkPLnn39m+PDhGI1G6tSpwxdffPFQziNqppEjR/LOO+8wYMAAkpOTCQkJUdsFh4aG4uLiUqZDD0BaWhqxsbHUq1ePq1evsnPnTszMzMjIyGDUqFEkJCSwefNmMjMzSUtL4/z583Ts2JGQkJBy47Czs+Pbb7/lzz//ZN26dYwZM6ZUHZkVK1bQpEkTrl27hru7O0OHDsVoNDJx4kT27NlD27ZtuXjxYoXX6erqyr/+9S8Axo0bx+LFi+nevTuzZs1i9uzZLFy4sMJjP//8cxo3bkxaWhopKSnqbDEobjXdpEkTioqK6NmzJ8nJyTg5OVX+ByCEEOKhkWSHEEKIx1JVz6CojMzsPDXRAZBfaGTe1qPYN6//0IpTtm/fnkOHDj2UsUXN5+TkRGZmJuvWraN///6lnouNjWXTpk3A/zr0XLlyBYBBgwZRr149AAoKCpg8eTIGgwFTU1OOHz+uHh8YGIiJiQnNmzenR48et40lICCAiIgIfvrpJzUxUWLRokVs2bIFgLNnz5KRkUFWVhbdunWjbdu2ADRp0qTCsUtmMl++fJlLly7RvXt3AMaPH09gYOBt44qNjWXq1KkAaLXaUsmMr7/+mmXLllFYWMjvv/9OWlqaJDuEEOIRIckOIYQQj53qmEFRGedz8tVER4n8QiPnc/KlE4d4ZA0aNIjp06cTExNDdnZ2pY4pKXQL8PHHH9OsWTMOHz6M0WjEzMzsnuIYMWIEnTp1Yvz48ZiY/K+GfkxMDLt27eLAgQOYm5vj6+t7x25Gtzp06NAd63XUqlULo7H497cy458+fZoFCxYQHx9P48aNCQ4Ovuu4hBBCPDzSjUUIIcRjp6IZFJnZedUal039utStVfpPa91aJtjUr1vBEUJUv5CQEEJDQ9HpdKW2+/j4lOnQ06BBgzLHX758mRYtWmBiYsKaNWsoKioCwNvbm02bNmE0Gjl37hwxMTG3jaNNmzbMnTuXSZMmlRm/cePGmJubk56ezsGDBwHw9PRkz549arHeipax/PjjjyxbtoyJEyfSsGFDGjdurC7VWbNmjTrLw9bWlsTERAA2btyoHu/t7c3XX38NFC/fOXLkCABXrlzBwsKChg0bcu7cuXLbNwshhKg+MrNDCCHEY+dRnUFha2XBG/07lplxYmtlceeDhagmrVq1YsqUKWW2V9Sh51aTJk1i6NChrF69mn79+qmzPoYOHcru3btxcHCgdevWuLq60rBhw9vG8vzzz5fZ1q9fP5YuXUrHjh3p0KEDnp6eAFhbW7Ns2TICAgIwGo3Y2Niwc+dO4H9dja5evUrbtm3ZtGmTOrNj1apVaoHSdu3asXLlSqC43fPw4cNZtmxZqU5MkyZNYvz48Tg4OGBvb4+joyMNGzakffv2uLi4YG9vT+vWrfH29r7Tt1oIIUQVkm4sQgghHjunsnIZvyKuVMKjbi0TVoV4VPtykUexlogQ1SU3NxdLS0uys7Px8PBg3759NG/evLrDuitFRUUUFBRgZmbGyZMn6dWrF8eOHaNOnTrVHZoQQjw2pBuLEEIIUQmP8gwKExMN7awtqz3pIsSjYMCAAVy6dIkbN27w9ttvP3aJDoCrV6/So0cPCgoKUBSFzz//XBIdQgjxGJCZHUIIIR5LMoNCiIrJ74cQQohHiczsEEIIISpJZlAIUb5HtVuREEIIUZWkG4sQQgghRA3yqHYrEkIIIaqSJDuEEEIIIWqQ23UrEkIIIZ4UkuwQQgghhKhBbOrXpW6t0m/x6tYywaZ+3WqKSAghhKh6kuwQQgghhKhBSroVlSQ8HqVuRUIIIURVkQKlQgghhBA1iImJhn6OzbFvXl+6sQghhHhiSbJDCCGEEKKGkW5FQgghnnSyjEUIIYQQQgghhBA1iiQ7hBBCCCHEE83U1BS9Xo9Wq2XgwIFcunTptvuHh4czefLkKoktMzMTrVZbaltYWBgLFix4YOfo0qVLuduDg4PZuHHjAzuPEEJUJUl2CCGEEEKIJ1q9evUwGAykpKTQpEkTPvvss+oOqUoUFhYCsH///mqORAghHjxJdgghhBBCCPFfXl5e/PrrrwD4+vqSkJAAwIULF7C1tVX3O3v2LL6+vrRv357Zs2er27/88ks8PDzQ6/U8//zzFBUVAWBp+b/6KRs3biQ4OBiADRs2oNVqcXZ2plu3bncd7xdffIG7uzvOzs4MHTqUq1evAnDy5Ek8PT3R6XTMnDlTPX9MTAw+Pj4MGjQIBweHUrEpisLkyZPp0KEDvXr14vz583cdjxBCPCok2SGEEEIIIQRQVFTE7t27GTRo0B33jYuLY9OmTSQnJ7NhwwYSEhI4evQo69evZ9++fRgMBkxNTVm7du1tx3nnnXf44YcfOHz4MN9++225+5w8eRK9Xq/+t3TpUvW5gIAA4uPjOXz4MB07dmT58uUATJ06lalTp3LkyBFatWpVarykpCQ++eQTjh8/Xmr7li1bOHbsGGlpaaxevVpmfAghHmvV2o1Fo9GsAAYA5xVF0f53WxNgPWALZALDFUX5s7piFEIIIYQQNdu1a9fQ6/X8+uuvdOzYkd69e9/xmN69e2NlZQUUJxxiY2OpVasWiYmJuLu7q+Pa2Njcdhxvb2+Cg4MZPnw4AQEB5e7z9NNPYzAY1MdhYWHq1ykpKcycOZNLly6Rm5tL3759AThw4ACRkZEAjB49munTp6vHeHh40LZt2zLn2bNnD6NGjcLU1JSWLVvi5+d3x++DEEI8qqp7Zkc40O+Wbf8AdiuK0h7Y/d/HQgghhBBCPBQlNTvOnDmDoihqzY5atWphNBoBuH79eqljNBpNmceKojB+/HgMBgMGg4Fjx46piYmb9795rKVLlzJnzhzOnj1Lp06dyM7OvqvYg4OD+fTTTzly5AihoaFl4iyPhYXFXZ1DCCEeR9Wa7FAUZQ9w8ZbNg4FV//16FTCkSoMS4iGztLTkt99+Y9iwYfc8RlhYGBqNhhMnTqjbFi5ciEajUdcWV2T79u14eHhgb2+PXq9nxIgR/Pzzz3c856hRo3BycuLjjz8mPT0dvV6Pi4sLJ0+erLCKuxDi3kVGRqLRaEhPT69wn5vrCVRmn5trBtyLmJiYcqe1K4pC06ZN+fPP4omYv//+OxqNhtjYWHUfa2vr297ELVq0iI4dOxIUFER+fj69evVCr9ezfv36UtfQv3//O3bKEOJemZubs2jRIj788EMKCwuxtbUlMTERoExXkp07d3Lx4kWuXbtGZGQk3t7e9OzZk40bN6q1Li5evMiZM2cAaNasGUePHsVoNLJlyxZ1nJMnT9K5c2feeecdrK2tOXv27F3FnJOTQ4sWLSgoKCi1ZMbT05NNmzYBEBERUamxunXrxvr16ykqKuL3338nOjr6rmIRQohHSXXP7ChPM0VRfv/v138AzaozGCEehpYtW953KzedTlfqzcuGDRtwdHS87TEpKSm89NJLrFq1ivT0dAwGA0FBQWRmZt72uD/++IP4+HiSk5N55ZVXiIyMZNiwYRw6dIinn35a1vQK8RCsW7eOrl27sm7duuoOBSju2lBRskOj0eDp6cmBAweA4s4OLi4u6r7Hjh3DyspKnfJfns8//5ydO3eydu1aDh06BIDBYGDEiBGl9tu6dSuNGjV6UJclRBkuLi44OTmxbt06pk+fzpIlS3BxceHChQul9vPw8GDo0KE4OTkxdOhQ3NzccHBwYM6cOfTp0wcnJyd69+7N778Xv6197733GDBgAF26dKFFixbqODNmzECn06HVaunSpQvOzs53Fe+7775L586d8fb2xt7eXt2+cOFCPvroI5ycnDhx4gQNGza841j+/v60b98eBwcHxo0bh5eX113FIoQQjxRFUar1P4prc6Tc9PjSLc//eZtjnwMSgISnnnpKEeJxYGFhoZw+fVpxdHRUFEVRVq5cqQwePFjp1auX0qZNG2Xx4sXKhx9+qOj1eqVz585KdnZ2mTFCQ0OVt99+W3Fzc1MURVFOnDih/O1vf1O6d++uxMfHK4qiKNu2bVNcXFwUJycnxc/PT1EURRkzZoyyYsWKCmO7+fisrCylTZs2iqIoik6nU8zMzBRnZ2clLCxMadasmdKyZUvF19dXvSZFUZTo6Gile/fuytChQ5UOHTooo0ePVoxG4wP4rgnxZMnJyVFatmypHDt2TLGzs1O3X716VRkxYoRib2+vDBkyRPHw8FB/Z1944QWlU6dOioODgzJr1iz1mJt/ry0sLJSXX35ZcXBwUPz8/JTz588rilL8GtK3b1/F1dVV6dq1q3L06FFFURRl/PjxyvPPP694eHgo/v7+6u++s7OzsmfPnlIxz507V3nrrbcURVGUadOmKatXr1aGDBmiKIqirFixQgkJCVFycnIUPz8/xcXFRdFqtUpkZKSiKIry/PPPK7Vr11a0Wq3y3nvvKU8//bTSoEEDxdnZWTlx4kSpa2jTpo2SlZWlnD59WrG3t1eeffZZxcHBQendu7dy9epVRVEUJS4uTtHpdIqzs7Myffp09fVWiCdJXl6e+jd43bp1yqBBg6o5IiHEkwxIUKo41/Aozuw4p9FoWgD89/8V9rxSFGWZoihuiqK4WVtbV1mAQjxoKSkpbN68mfj4eN566y3Mzc05dOgQXl5erF69utxjGjRoQOvWrUlJSSEiIqLUp59ZWVlMnDiRTZs2cfjwYTZs2ABAamoqrq6udx3ft99+qxZHCw0N5YUXXuCVV14pd3rroUOHWLhwIWlpaZw6dYp9+/bd9fmEeNJ988039OvXDzs7O6ysrNRp9EuWLMHc3JyjR48ye/ZsdTvA3LlzSUhIIDk5mR9//JHk5OQy4+bl5eHm5kZqairdu3dX22U+99xzLF68mMTERBYsWMCkSZPUY3755Rf279/P5s2b1d99g8GAj49PqbG9vb3VmRxxcXH4+/ur0/H3799Ply5dMDMzY8uWLSQlJREdHc2rr76KoigsXbqUli1bEh0dzeuvv86///1vfHx8MBgMPP300xV+nzIyMvj73/9OamoqjRo1UqfsT5gwgX/9619qNwzxZDMaFU5l5XLwVDansnIxGpXqDqlKJCYmotfrcXJy4vPPP+fDDz+s7pCEEKJKPYrJjm+B8f/9ejzwTTXGIkSV6NGjB/Xr18fa2pqGDRsycOBAoHipyu2WmIwcOZKIiAgiIyPx9/dXtx88eJBu3bqpldabNGlS5tjs7Gz0ej12dnYsWLDggV2Lh4cHrVq1wsTEBL1ef8clMkKIstatW8fIkSOB4t/zkqUse/bsYcyYMQA4OTnh5OSkHvP111/j6uqKi4sLqamppKWllRnXxMRETYyOGTOG2NhYcnNz2b9/P4GBgej1ep5//nl12j1AYGBgpRIG7u7uHDp0iLy8PAoKCrC0tKRdu3acOHGC/fv34+3tjaIovPnmmzg5OdGrVy9+/fVXzp07d8/fp7Zt26LX6wHo1KkTmZmZXLp0iZycHHX6/ejRo+95/PtlamqKXq9Hq9USGBjI1atXq/T8vr6+dOjQAWdnZ7y9vTl27Filj83MzESr1ZbZnpCQwJQpUx5kmA+V0aiwPfUPxq+IY8q6Q4xfEcf21D+eiISHj48Phw8fJjk5mT179vDXv/61ukMSQogqVd2tZ9cBvkBTjUbzCxAKvAd8rdFo/g84AwyvvgiFqBp169ZVvzYxMVEfm5iYUFhYWOFxAwYMYMaMGbi5udGgQYM7nsfR0ZGkpCScnZ2xsrLCYDCwYMECcnNzgdtXnb+XazE1Nb1t/EKIsi5evEhUVBRHjhxBo9FQVFSERqPhgw8+qPCY06dPs2DBAuLj42ncuDHBwcGV+h3WaDQYjUYaNWpUqq3lzSrbtcHc3Jz27duzYsUKdQaZp6cnW7du5fz583To0IFVq1aRlZVFYmIitWvXxtbW9p5fa6Ds6821a9fueayHoaTDB0BQUBBLly5l2rRpVRrD2rVrcXNzY9myZcyYMYNvv/32jsfc7nXbzc0NNze3BxniQ5WZnce8rUfJLyz+25ZfaGTe1qPYN69PO+v7K9grhBDi0Vbd3VhGKYrSQlGU2oqitFIUZbmiKNmKovRUFKW9oii9FEW5tVuLEOK/zM3Nef/993nrrbdKbff09GTPnj2cPn0aKL55AnjttdeYO3cuR48eVfe9+ZPG21WdF0JUjY0bNzJ27FjOnDlDZmYmZ8+epW3btuzdu5du3brx1VdfAcXL30qWqly5cgULCwsaNmzIuXPn2LZtW7ljG41G9Xf7q6++omvXrjRo0IC2bduqy90UReHw4cPlHl+/fn1ycnIqjL1Lly4sXLhQnVXh5eXFJ598gqenJxqNhsuXL2NjY0Pt2rWJjo5Wu1Q8SI0aNaJ+/fr89NNPQOW7UDxsPj4+nDhxgu+++47OnTvj4uJCr1691JktYWFhhISE4OvrS7t27Vi0aBFQvPTomWeewdnZGa1Wy/r164mKimLIkP81q9u5c2ep2X3l6datGydOnCAzMxMfHx9cXV1xdXVVlx7FxMTg4+PDoEGDcHBwKHXsqVOncHFxIT4+npiYGAYMGHDXMQPs3r0bFxcXdDodISEh5OfnA8V/e0JDQ3F1dUWn0922A9HdOp+TryY6SuQXGjmfk//AziGEEOLR9CguYxGixiosLCz1SeSDMHLkyDJ1OKytrVm2bBkBAQE4Ozur09Z1Oh2ffPIJ48aNo0OHDnh7e3P06FF1mvftqs4LUeKXX35h8ODBtG/fnnbt2jF58mT1puVBurXzx9KlSyusYXOrI0eOoNfr0ev1NGnSRF3u0KtXr1L73c2YUPHUfqhcG9jKWLduXZkb16FDh7Ju3TpefPFFcnNz6dixI7NmzaJTp04AODs74+Ligr29PaNHj8bb27vcsS0sLIiLi0Or1RIVFcWsWbOA4k//ly9fjrOzM46OjnzzTfkrSAcOHMiWLVvQ6/Xs3bu3zPPe3t6cOnVKTXa4urryyy+/qO2pg4KCSEhIQKfTsXr16lKdIx6k5cuXM3HiRPR6PXl5eZXqQvEwFRYWsm3bNnQ6HV27duXgwYMcOnSIkSNHMn/+fHW/9PR0fvjhB+Li4pg9ezYFBQVs376dli1bcvjwYVJSUujXrx89evQgPT2drKwsAFauXElISMhtY/juu+/Q6XTY2Niwc+dOkpKSWL9+faklKUlJSXzyySccP35c3Xbs2DGGDh1KeHg47u7uZcatbMzXr18nODiY9evXc+TIEQoLC1myZIk6TtOmTUlKSuLFF198oEsrberXpW6t0m9369Yywab+g/1bLIQQ4hFU1RVRH9Z/nTp1qkwRWCGqlcFgUNzd3as7DCHumdFoVNzd3dWuPoWFhUpISIgyZcqUB36u0NBQ5YMPPrjvccaPH69s2LChzPaCgoK7HuvmTkq3urljiKheOTk56tfz5s17KP8+K8PExERxdnZWnJ2dlcmTJyv5+flKcnKy0rt3b0Wr1Sp2dnZK3759FUUp/vc+Z84c9Vh7e3vl7NmzyrFjx5Q2bdoor732WqkOOHPmzFE++ugj5c8//1RsbW3L/ffcvXt3xc7OTnF2dlYGDx6s/Pzzz8qlS5eUMWPGKFqtVnF2dlbq1aunKEpxN62SDluKUvxv3cbGRunQoYOSmpqqbo+OjlaeeeaZu47ZYDAoPj4+6r67du1S/P39FUUp7rDzyy+/KIqiKAcPHlR69ux5j9/xsoqKjMr3yb8pXd/brbjP2al0fW+38n3yb0pRkXQKE0KIqkQ1dGOp1podQtQ0RqNCZnYe53PysalfF1srC0xMNEDxJ8iLFi1i4cKF1RylqGrZ2dn07NkTgD/++ANTU1NKOkjFxcVRp06dco/LzMxkwIABpKSkVFmsdxIVFYWZmRkTJkwAiuskfPzxx7Rp04a5c+eyceNGEhIS+PTTT4HiujLTp0/H19eXHTt2EBoaSn5+Pk8//TQrV67E0tISW1tbxo8fz3fffUdBQQEbNmzAzMyMpUuXYmpqypdffsnixYvZvXs3lpaW6nidO3cmOjqaS5cusXz58jLdQcrj6+uLXq8nNjaWUaNGkZOTU2pMFxcX9u7dS15eHqtXr2bevHkcOXKEESNGMGfOHKD4U/qgoCCSkpJwdHRk9erVmJublzpPRdcqqsb333/PvHnzKCwspE2bNoSHh1dLHDfX7Cjx0ksvMW3aNAYNGkRMTAxhYWHqc+XVPLKzsyMpKYmtW7cyc+ZMevbsyaxZs5gwYQIDBw7EzMyMwMBAatUq/y1dSc2OEmFhYTRr1ozDhw9jNBoxMzNTn7u1PkvDhg156qmniI2NLbO05W5jHjx48G2/VyXjPOhaTyYmGvo5Nse+ef1y/zYLIYSouWQZi6hxzp07x+jRo2nXrh2dOnXCy8uLLVu23PN4lZ2afqeK7y+88AJpaWn06dPnnmMRj6eSYrAGg6FU606DwVBhouNRlZqaqi6dKNGgQQNsbW05ceJEhcdduHCBOXPmsGvXLpKSknBzc+Ojjz5Sn791Crutre1t25xCcdIhLi6OhQsXqi1UK+PGjRskJCTw6quvlnmuTp06JCQk8MILLzB48GA+++wzUlJSCA8PJzs7Gyie1j9p0iSOHj1KgwYN+Pzzz+/qWp/UNphVacSIERgMBlJSUvj+++95lNrTX758mb/85S8ArFq16o77//bbb5ibmzNmzBhmzJhBUlISAC1btqRly5bMmTNHTT5W9vwtWrTAxMSENWvWUFRUVOG+derUYcuWLaxevVqtFVMZ5cXcoUMHMjMz1deJNWvW0L1790qPeT9MTDS0s7bEs50V7awtJdEhhBBPCJnZIWoURVEYMmQI48ePV9+YnTlzplLV56H45qmiT8fuRCq+i7uRmJjItGnTyM3NpWnTpoSHh9OiRQsSExPVtfc1KTF28OBB0tLS1FoSN27cUOs6AAQEBADF7UM3b95cqTFvPuZuWhyX1LApz6BBg4Di+jaOjo60aNECgHbt2nH27FkaNfp/9u48rKpyffj4dwOKJOQEZqaJnlRk2GxkFkHUHCJySBGRVDQtzSlnzZOSR8vSyhxOZkfFTAnDLGf9mQOoqAxuEBAVFTVxQM0BBRNY7x+8rNgxhDngcH+uy+tqTc961mLHZt3rfu6nJg0bNlSv46233mLevHmMGzdObaO8ay0Kihb9rjA1MWKyXws629WTC9l3OwAAIABJREFUB7BnRGhoKAEBAdSqVYt27dqphaTLcvjwYcaPH4+RkRFVqlQxqHMRHBxMVlYWLVq0qPD533vvPXr06MF3331H586d/3a2nerVq7NhwwY6dOiAubl5hWb+Kq3P1apVY9myZQQEBJCXl4erqytDhgypcL+FEEKIeyXBDvFU2bFjB1WrVjX4A6pRo0aMGDGC3Nxchg4dSlxcHCYmJnzxxRe0bduWsLAwfvrpJ7Kzs8nPz2fLli0MGDCAxMREbGxsDKYyDA8P5+OPP0ZRFF5//XU+/fRTAMzNzenZ7x3i1/6CkUlVmr41nSrmtdSK7xLsEMUpisKIESP45ZdfsLKyIiIigilTprB06VIGDBjAggUL8PHxYfz48ZXd1RJsbW1LzNRz48YNLly4QPPmzUlOTlanL4Y/pzBWFIUOHToQHh5earv/JIX9n6a9l/dwV3za579OCV10Do3GMCjx1+XyrlWCos+Womm9i+vatWupQzqKD2cB1OFr1tbWdOrUqdT29+zZw+DBg8s8/65du0qsa9q0qTqLD6B+j/n6+uLr66uut7a2VvtQs2ZNYmNj1W1F+91rn9u3b8+hQ4dKrC8erHRxcSm130IIIcS9kmEs4qmSkpJSYmaSIgsXLkSj0XD48GHCw8Pp37+/+iCWkJBAZGQku3fv5uuvv+a5557jyJEjfPTRR+pUrJmZmUycOJEdO3ag1+uJjY3l559/Bgqn2fNq5YHz+99iYa0lK3YTIBXfRenu3LlDcnIyHTp0QKfTMWPGDH777TeuXbvGtWvX8PHxAaBv376V3NOS2rdvz+3bt9UZTPLz8xk7dizDhw/HzMwMa2tr9Ho9BQUFnD17loMHDwKF0yHv3btXTWG/deuWwYwPpfm7aU4ry5kzZ4iJiQH+nL61uPKuVabBFA+Ks7MzSUlJvPXWW5XdFSGEEOKxJMEO8VQbNmwYjo6OuLq6smfPHvWPQhsbGxo1aqQ+gHTo0IHatWsDEBUVpe6n1WrRarUAxMbG4uvri5WVFSYmJgQHBxMVFQUUjmseGNSTyX4tqNGwGXeuXVDT063rlJ8iLJ49iqJgZ2en1u04fPgw27Ztq+xuVYhGo2Ht2rVERkbStGlT6tSpg5GREVOmTAEKpx5t3Lgxtra2jBw5Ug0+WllZERYWRlBQEFqtFk9PT9LS0so9199Nc1pZmjdvzsKFC2nRogW///47Q4cONdhe3rXKNJhPj8quvRIfH09UVNQDn85cCCGEeFrIMBbxVLGzs2PNmjXq8sKFC7l8+TIuLi40aNCgzOP+bszy36lSpQrGxkZ0tqvHqVebs+lOOvMHuknFd1EqU1NTsrKyiImJwdPTk7t373Ls2DHs7OyoWbMme/bsoXXr1qxcubKyu1qqhg0bqnVw9u3bR1BQEAkJCbRs2RKNRlNmv9u1a2eQCl+krBT2Zs2aGaTbFy9SWjzN3dLSstyaHcVn4vhrenzxNPzi2/6a0l98W1lBmuL7lHWt1nWqM9mvRYmaHRIUfbJI7RUhhBDi8SeZHeKp0q5dO3Jzcw0KuN2+fRsofFAqegg7duwYZ86coXnz5iXa8PHxUYubJicnqw9bbm5u7N69m8uXL5Ofn094eHiJSvJGRhpeeL4aVhamUvFdlMnIyIjIyEgmTpyIo6MjOp2Offv2AbBs2TKGDRuGTqejcEryx1urVq04ffp0mcPHhKGiaTCXD3RjXpATywe6yQPyE6is2isZV25Vcs+EEEIIUUQyO8RTRaPR8PPPPzN69Gg+++wzrKysqF69Op9++ildu3Zl6NChODg4YGJiQlhYWKnpv0OHDmXAgAG0aNGCFi1aqNNsvvjii8yaNYu2bduqBUpLKzInRHmKZxIUDYMqztnZmcTERHX5s88+exTdUhUUKGRcucWlm3eoa2Eq2UkPQdE0mFKQ9MlVXu0V+bkKIYQQjwfNk/DmsCJcXFyUuLi4yu6GEEI8sSQ1X4iKOZmVTf+lBw0CHqYmRiwf6CbBDiGEEKIUGo0mXlEUl0d5ThnGIp4olV0QTojSPC2fS0nNF6JiimqvFBWbldorQgghxONHhrGIJ4a8dRaPo6fpcymp+X/SaDSMGTOGzz//HIA5c+aQnZ1tMAzpXun1ejIzM/Hz83sgfVy6dClffvklGo2GgoICZs6c+dgOrQsLCyMuLo4FCxZUdlceiKLaKzb1LGTIlxBCCPGYkswO8cSQt87icfQ0fS5lWtQ/mZqa8tNPP3H58uUH1qZer2fTpk0PpK3ffvuNmTNnsmfPHpKSkti/f786TfaDYGxsjE6nU//NmjXrgbVdnJ+fH9euXSuxPi8vr8S6ixcv4u/vj6OjI7a2tvcUNGrVqhVQOPNPUQHq8lhbW//tz76o9opHkzpSkFoIIYR4DEmwQzwxynvrLERleZo+l5Ka/ycTExPeeecdvvzyyxLbsrKy6NGjB66urri6urJ3714AHBwcuHbtGoqiUKdOHb777jsA+vXrx9atW5k6dSoRERHodDoiIiK4evUq3bp1Q6vV4uHhoc78FBoaysCBA/H19aVJkybMmzevRB8uXbqEhYUF5uaFGTfm5uY0btwYgPT0dF599VUcHR1p2bIlJ06cIDs7m/bt29OyZUscHBz45ZdfgMKHfxsbG0JCQmjWrBnBwcFs374dgFu3brF48WL0ej3t2rXD09MTJycnWrVqxdGjR4HCjI0333yTzp0707RpUyZMmKD2cdmyZTRr1gw3Nzf1Hv31/mVlZZGSkqJed9++ffHy8qJv374lrnnq1Kl06NCBxMREUlNT7ykAUzTbUUWDHUIIIYR48kmwQzwx5K2zeBw9TZ9LmRbV0LBhw1i5ciXXr183WD9q1ChGjx5NbGwsa9asYdCgQQB4eXmxd+9eUlJSaNKkCdHR0QDExMTQunVrpk+fTmBgIHq9nsDAQKZNm4aTkxNJSUl8/PHH9OvXTz1HWloaW7du5eDBg3z00UfcvXvXoA+Ojo688MILNG7cmAEDBrB+/Xp1W3BwMMOGDSMxMZF9+/bx4osvUq1aNdauXUtCQgI7d+5k7Nix6tTG6enpjB07lrS0NNLS0li1ahXVqlVjzpw5fPzxxwDY2NgQHR3N77//TqNGjXB3d8fFxYWMjAy2bNnC0aNHGTlyJBEREZw9e5YPP/yQIUOGYGJiQseOHUlNTeXGjRs0b94cNzc3EhISiIyM5Pz58wwYMACAxMREIiMjuXHjBiYmJUfZnj9/ngYNGqjLRZksw4YNY926dQB0796dgQMHAoXDfKZMmQKgBoUmTZpEdHQ0Op2OL7/8kvz8fMaNG4e9vT1arZb58+er7c+fP18NDqWlpVXgEyOEEEKIx4kEO8QTQ946P1xFaev29vYEBARw+/Zt4uLiGDly5AM/l6+vL82bN8fR0REvLy/1LXFpMjIysLe3BwrfIg8fPrzEPosWLVLfoj9qT9vnUlLz//T888/Tr1+/EpkV27dvZ/jw4eh0Orp06cKNGzfIzs7G29ubqKgooqKiGDp0KIcPH+bcuXPUqlWL6tVLfh727NmjZjC0a9eOK1eucOPGDQBef/11TE1NsbS0pG7duly8eNHgWGNjY7Zs2UJkZCTNmjVj9OjRhIaGcvPmTc6dO0f37t0BqFatGs899xyKovDBBx+g1Wp59dVXOXfunNpm48aNcXBwwMjICDs7O9q3b09ubi6TJk1i69at6HQ6VqxYQUBAAJmZmURFRVGvXj28vb1ZsmQJvXr14uDBg8yYMQNbW1t+/PFHDhw4QGBgIMnJyej1enUK7+PHj3P9+nVq1KhB165duXTpEjdv3iQ2NpaoqChGjhzJ4cOH+eqrr0rcr2HDhvH222/Ttm1bZs6cSWZmJgDe3t5qYOncuXOkpqYCEB0djY+Pj0Ebs2bNwtvbG71ez+jRo1m8eDEZGRno9XqSkpIIDg5W97W0tCQhIYGhQ4cyZ86cinxkhBBCCPEYkQKl4okhBeEeLjMzM/R6PVD4ZnjRokWMGTMGF5eKzxCVl5dX6hvZ0qxcuRIXFxcWL17M+PHj1Tez/8SQIUP+8bH3Sz6XT7f333+fli1bqtkHAAUFBezfv59q1aoZ7Ovj48PChQs5c+YMM2fOZO3atURGRuLt7X3P5zU1/TMzyNjYuNQaFhqNBjc3N9zc3OjQoQMDBgxg7Nixpba3cuVKsrKyiI+Pp0qVKlhbW5Obm1viXEZGRpiammJmZsbmzZvx9/dHr9cTEhJC27ZtOXToED/88AO9e/fGwcGBhIQEzM3NsbKywtTUlIKCAg4cOIBerycvL4+WLVuSnZ2NhYUFVapUoVGjRty8eVO9f9bW1sTFxREeHo6trS1WVlYA1K5du8Q1dOrUiZMnT7JlyxY2b96Mk5MTycnJeHt7M3fuXFJTU7G1teX333/n/PnzxMTElDoEqLjt27erGSh/Pe+bb74JgLOzMz/99FO57QghhBDi8SOZHeKJIm+dHw1vb2/S09PZtWsX/v7+QOH4/YEDB+Lm5oaTk5M65j8sLIwuXbrQrl072rdvz/nz5/Hx8VGzRIreuJbFx8eH9PR0FEVh/Pjx2Nvb4+DgQERERLnHbdy4EU9PTy5fvkxoaKj65nXevHnY2tqi1Wrp3bs3ALt371YLLTo5OXHz5s37vUUG5HP59Kpduza9evViyZIl6rqOHTsaDHcoChI2bNiQy5cvc/z4cZo0aULr1q2ZM2eOml1gYWFh8Nnz9vZm5cqVAOzatQtLS0uef/75CvUrMzOThIQEgz40atQICwsLGjRowM8//wzAnTt3uH37NtevX6du3bpUqVKFnTt3cvr06Xu6D9evX+ell14CUB/8jYyMDIKbRkZGKIqCoiiMGzcOCwsLfv31V44cOcJvv/0GQPXq1Uvcv8OHD1e4H7Vr16ZPnz6sWLECV1dXoqKieOmll7h27RpbtmzBx8cHb29vVq9ejbm5ORYWFvd0ncUVBYHKCjYJIYQQ4vEmwQ4hhIG8vDw2b96Mg4ODwfqZM2fSrl07Dh48yM6dOxk/fjy3bhXOOFI0/n737t2sWrWKTp06odfrSUxMRKfTlXu+9evX4+DgwE8//aQes337dsaPH8/58+dLPWbt2rXMmjWLTZs2YWlpabBt1qxZHDp0iKSkJBYtWgQUThu6cOFC9Ho90dHRmJmZ/dPbI55BY8eONZiZY968ecTFxaHVarG1tVU/ZwDu7u40a9YMKAxmnDt3jtatWwPQtm1bUlNT1QKloaGhxMfHo9VqmTRpEsuXL69wn+7evcu4ceOwsbFR2ysa+rFixQrmzZuHVqulVatWXLhwgeDgYOLi4nBwcOC7777Dxsbmnu7BhAkTmDx5MpmZmX/74O/q6sqaNWuYNGkSnp6euLq6Ym1trW4vfv8yMzNZvnw57dq1IzU1Vf2dcvXq1RLt7tixg9u3bwNw8+ZNTpw4wcsvvwyAh4cHc+fOVYMdc+bMKTWj5q8Bpw4dOvDNN9+o11TaeYUQQgjxZJJhLEIIAHJyctTAhLe3N2+//bY6gwHAtm3bWLdunZpBkZuby5kzZ4DCB4ai9G9XV1cGDhzI3bt36datW5nBjuDgYMzMzLC2tmb+/Pl88cUXBAUFYWxszAsvvECbNm2IjY0tMZ3mjh07iIuLY9u2baW+BddqtQQHB9OtWze6desGFBaOHDNmDMHBwbz55psGRQ6FKE12drb63y+88IL6kA2FtRzKyjxasWKF+t+tWrWioODPmXpq165NbGyswf5FGRjFhYaGGiwnJyeX2KdRo0bs2LGj1D40bdq01G0xMTGl7l+8/bCwMAACAwPp1q0bJiYm6HQ6OnfuzLFjx7C2tuaDDz7giy++ICwsjBYtWrBgwQL1+FWrVmFpaUnVqlX573//qw6JCQ0NxdjYGH9/f4P7Z21tzZw5c7C0tOSLL75g9uzZ/PTTTzg5Oal9KRIfH8/w4cMxMTGhoKCAQYMG4erqChT+ztq2bRuvvPIKjRo14urVq6UGO7RaLcbGxjg6OhISEsKIESM4duwYWq2WKlWqMHjw4FLrAgkhhBDiyaMpqsb+pHNxcVHi4uIquxtCPLHMzc0NHvCgMLV+zpw5bNiwAWdnZ1atWkXz5s0N9gkLCyMuLs7ggSczM5ONGzeycOFCxowZYzDLBBQWKJ0zZ45BPZDRo0fj4OCgzqTQt29fAgIC0Gq1+Pv7k5ycTFhYGGvWrOHkyZMsX75cPT40NBRzc3PGjRtHfn4+UVFRrF+/ns2bN3P48GFMTEw4fPgwmzZt4r///S9bt2695zfb4ulQUKCQceWW1FcRQgghhHiENBpNvKIoFS8G+ADIMBYhRIV06tSJ+fPnq9NVHjp0qNT9Tp8+zQsvvMDgwYMZNGiQQV2B8nh7exMREUF+fj5ZWVlERUXh5uZWYr9GjRqxZs0a+vXrR0pKisG2goICzp49S9u2bfn000+5fv062dnZnDhxAgcHByZOnIirq6tMI/mMKihQ2JJygf5LDzIy/BD9lx5kS8oFCgqejqB/RRUUKJzMymb/ySuczMp+5q5fCCGEEM8GGcYihKiQDz/8kPfffx+tVktBQQGNGzdmw4YNJfbbtWsXs2fPpkqVKpibm1d4Stju3bsTExODo6MjGo2Gzz77jHr16pGRkVFiXxsbG1auXElAQADr169X1+fn5/PWW29x/fp1FEVh5MiR1KxZkw8//JCdO3eqU2u+9tpr//g+iCdXxpVbfLLpCHfyCoeW3Mkr4JNNR7CpZ0ETK/NK7t2jURTwKboPRVMld7arJxkuQgghhHiqyDAWIYQQz4T9J68wMrxkRtK8ICc8mtSphB49eiezsum/9KAa8AEwNTFi+UC3ZybgI4QQQohHT4axCPEMatu2LVu3bjVYN3fuXIYOHcq6deuYNWvWPbUXEhJCZGQkAIMGDSI1NbXMtPVdu3YZFCH9pz766CMmT55ssE6v19OiRQsyMzPp2bNnqceVt83X15eiAKafnx/Xrl27736KZ1tdC1NMTQy/9kxNjKhrYVpJPXr0Lt28YxDogMIMl0s371RSj4QQQgghHg4JdghRyYKCgvjhhx8M1v3www8EBQXRpUsXJk2a9I/b/t///oeNTYsy6xQ8qGBHUFBQidkpiq6hfv36avCluLy8vDK3/dWmTZuoWbPmffdTPNus61Rnsl8LNeBRNITDuk71Su7ZoyMBHyGEEEI8KyTYIUQl69mzJxs3buSPP/4AICMjg8zMTLy9vQkLC1OnQQwJCWHkyJG0atWKJk2aqEECRVEYPnw4zZs359VXX+XSpUtq276+vqz7NZpPNh3hUuoBUhYOJX7uYPp0f509h1JZtGgRX375JTqdjujoaIOsECicoQXg/Pnz+Pj4oNPpsLe3Jzo62uAamjVrRq1atThw4IC6bvXq1QQFBZGRkYG9vT1QOHNLly5daNeuHe3btzfYlpOTQ+/evWnRogXdu3cnJydHbcva2prLly8D0K1bN5ydnbGzs2Px4sUGfZ0yZQqOjo54eHhw8eLF+/zJiKeNkZGGznb1WD7QjXlBTiwf6PbM1aqQgI8QQgghnhVSoFSISla7dm3c3NzYvHkzXbt25YcffqBXr15oNCUfwM6fP8+ePXtIS0ujS5cu9OzZk7Vr13L06FFSU1O5ePEitra26vStAL/f+oPs69c49fOXtBj0Oaa1XyTv9g2q1qrHkCFD1ClbAZYsWVJqH1etWkWnTp2YMmUK+fn53L59u8Q+RRkq7u7u7N+/n9q1a9O0adMSBUYTEhJISkqidu3aBtu+/vprnnvuOY4cOUJSUhItW7YstS9Lly6ldu3a5OTk4OrqSo8ePahTpw63bt3Cw8ODmTNnMmHCBL799lv+/e9//93tF88YIyMNTazMn9n6FEUBH5t6FjL9rhBCCCGeapLZIcRjoPhQlqLhH6Xp1q0bRkZG2NraqpkLUVFRBAUFYWxsTP369WnXrp3BMbWqV+XOuTQsrB0wrf0iANWfr3lPaeuurq4sW7aM0NBQDh8+jIWFRYl9AgMDiYyMpKCgoNxr6NChA7Vr1y6xPioqirfeegsArVaLVqst9fh58+ap2Rtnz57l+PHjAFStWhV/f38AnJ2dS53FRQjxZ8DHo0kdmliZS6BDCCGEEE8lCXYI8Rjo2rUrv/76KwkJCdy+fRtnZ+dS9zM1/TNAUdGZlOrXMCPApSHG//+Bpry0dRMTEwoKCosXFhQUqENrfHx8iIqK4qWXXiIkJKTU6WQbNmxI48aN2b17N2vWrCEwMLDU/lSv/s/T5Xft2sX27duJiYkhMTERJycncnNzAahSpYqaDWNsbExeXt4/Po8QQgghhBDiySbBDiEeA+bm5rRt25aBAweWmRFRFh8fHyIiIsjPz+f8+fPs3LnTYLuRkYb3er2G8aU0JrWuzfKBbri9WBUjIw0WFhbcvHlT3dfa2pr4+HgA1q1bx927dwE4ffo0L7zwAoMHD2bQoEEkJCSU2pegoCBGjx5NkyZNaNCgwT1fx6pVqwBITk4mKSmpxD7Xr1+nVq1aPPfcc6SlpbF///57OocQQgghhBDi2SDBDiEeE0FBQSQmJt5zsKN79+40bdoUW1tb+vXrh6enZ4l9XnihLkv/9y3/ef9tur/qRVBQbwDeeOMN1q5dqxYoHTx4MLt378bR0ZGYmBg1C2PXrl04Ojri5OREREQEo0aNKrUvAQEBpKSk3PM1AAwdOpTs7GxatGjB1KlTS81u6dy5M3l5ebRo0YJJkybh4eFxz+cRQgghhBBCPP00FU2Ff9y5uLgocXFxld0NIYQQQgghhBBCFKPRaOIVRXF5lOeUzA4hhBCVytjYGJ1Oh52dHY6Ojnz++edq7ZgHad26dcyaNeuBtyuEEEIIIR4/ktkhxENWUKCQceWWTPMoRBnMzc3Jzs4G4NKlS/Tp0wcvLy8++uijSu6ZEEIIIYR4ECSzQ4inTEGBwpaUC/RfepCR4Yfov/QgW1IuUFDwdAQZhXjQ6taty+LFi1mwYAGKopCfn8/48eNxdXVFq9XyzTffAIV1ZHx9fenZsyc2NjYEBwerMxRZW1szbdo0WrZsiYODA2lpaQCEhYUxfPhwAH788Ufs7e1xdHTEx8enci5W3LOZM2diZ2eHVqtFp9Nx4MCBcvcPCQkhMjISAF9fX+71pcjly5epUqUKixYt+sd9vhfW1tY4ODig1Wrp2LEjFy5cqPCxGRkZ2NvbP8TeCSGEEE8WCXYI8RBlXLnFJ5uOcCevMCX/Tl4Bn2w6QsaVW5XcMyEeX02aNCE/P59Lly6xZMkSatSoQWxsLLGxsXz77becOnUKgEOHDjF37lxSU1M5efIke/fuVduwtLQkISGBoUOHMmfOnBLnmD59Olu3biUxMZF169Y9smsT/1xMTAwbNmwgISGBpKQktm/fTsOGDR/qOX/88Uc8PDwIDw9/qOcpbufOnSQlJeHi4sLHH39coWNkqm0hhBCiJAl2CPEQXbp5Rw10FLmTV8Clm3cqqUdCPFm2bdvGd999h06nw93dnStXrnD8+HEA3NzcaNCgAUZGRuh0OjIyMtTj3nzzTQCcnZ0N1hfx8vIiJCSEb7/9lvz8/EdxKeI+nT9/HktLS0xNTYHCgFb9+vWBwuCVq6sr9vb2vPPOO5Q3RHfp0qW8//776vK3337L6NGjS903PDyczz//nHPnzvHbb7+p683NzZkyZQqOjo54eHhw8eJFoDCTZOTIkbRq1YomTZqoWSUAs2fPVjOUpk2b9rfX6+PjQ3p6ernZTd7e3nTp0gVbW1uDY0+ePImTkxOxsbGkpKTg5uaGTqdDq9Wq//8IIYQQTzsJdjxlzM3NDZaLp20/SFOnTmX79u1lbv/5559JTU29pzazsrJwd3fHycmJ6Ohodf0vv/xCt27d1OVPPvmEV155RV1ev349Xbp0uadzleav9+6fio6Oxs7ODp1Ox29pem6lxxpsNzUxoq6F6QM5lxBPo5MnT2JsbEzdunVRFIX58+ej1+vR6/WcOnWKjh07AqgPvVBY5LT42+2ibX9dX2TRokXMmDGDs2fP4uzszJUrVx7yVYn71bFjR86ePUuzZs1477332L17t7pt+PDhxMbGkpycTE5ODhs2bCiznV69erF+/Xru3r0LwLJlyxg4cGCJ/c6ePcv58+dxc3OjV69eREREqNtu3bqFh4cHiYmJ+Pj48O2336rbzp8/z549e9iwYQOTJk0CCoN2x48f5+DBg+j1euLj44mKiir3ejds2ICDg0O52U0JCQl89dVXHDt2TD3u6NGj9OjRg7CwMFxdXVm0aBGjRo1Cr9cTFxdHgwYNyj2vEEII8bSQYIf4R6ZPn86rr75a5vZ/Euz49ddfcXBw4NChQ3h7e6vrW7Vqxf79+9XlmJgYnn/+eS5dugTAvn37aNWq1T1ewf0pL2V45cqVTJ48Gb1ez40LZ2iSewxTk8L/1UxNjJjs1wLrOtUfVVeFeKJkZWUxZMgQhg8fjkajoVOnTnz99dfqg+mxY8e4dev+h4GdOHECd3d3pk+fjpWVFWfPnr3vNsXDZW5uTnx8PIsXL8bKyorAwEDCwsKAwqEf7u7uODg4sGPHDlJSUsptp127dmzYsIG0tDTu3r2Lg4NDif0iIiLo1asXAL179zYYylK1alX8/f2BktlD3bp1w8jICFtbWzXjY9u2bWzbtg0nJydatmxJWlpamRkWbdu2RafTcePGDSZPnvy32U2NGzdWj83KyqJr166sXLkSR0dHADw9Pfn444/59NNPOX36NGZmZn93q4UQQoingklld0A8OkUPEWfOnAFg7ty5eHl5ERoaypkzZzh58iRnzpzh/fffZ+TIkQD85z//4fvvv8fKyoqGDRvi7OzMuHHjCAkJwd/fn549ezJp0iTWrVuHiYkJHTt25M0332TdunXs3r2bGTNmsGYCPXyHAAAgAElEQVTNGv71r3+p/cjIyGDgwIFcvnwZKysrli1bxtWrV5kwYQI5OTnExcURExOj/kFmZWXF888/T3p6Oq+88grnzp2jR48e7Nu3j27durFv3z5mzJhRarsvv/xymetPnTpFnz59yM7OpmvXrgb36tNPP+X777/HyMiI1157jVmzZuHr64tOp2PPnj0EBQWh0+kYN24ceXl5uLq68vXXX7NixQpWr17N1q1b2bhxI3v37iUnJwerw/H0eWckfYJ6y2wsQvxFTk4OOp2Ou3fvYmJiQt++fRkzZgwAgwYNIiMjg5YtW6IoClZWVvz888/3fc7x48dz/PhxFEWhffv26oOheLwZGxvj6+uLr68vDg4OLF++nN69e/Pee+8RFxdHw4YNCQ0NJTc3t9x2Bg0axMcff4yNjQ0DBgwAYMqUKWzcuBEAvV5PeHg4Fy5cYOXKlQBkZmZy/PhxmjZtSpUqVdBoNGqfSssqAtThNIqiMHnyZN59992/vcadO3diaWlp0Mb8+fPp1KmTwX67du2ienXDwHmNGjV4+eWX2bNnjzq0pU+fPri7u7Nx40b8/Pz45ptvaNeu3d/2QwghhHjiKYryVPxzdnZWhKIYGRkpjo6O6r+GDRsqw4YNUxRFUYKCgpTo6GhFURTl9OnTio2NjaIoijJt2jTF09NTyc3NVbKyspTatWsrf/zxh3Lw4EHF0dFRycnJUW7cuKG88soryuzZsxVFUZT+/fsrP/74o3L58mWlWbNmSkFBgaIoivL7778bbC+Nv7+/EhYWpiiKoixZskTp2rWroiiKsmzZMrWvfxUSEqIsX75cSUtLUwIDA5Xt27cr48ePV+7evavUqFFDycnJKbPdsta/8cYbyvLlyxVFUZQFCxYo1atXVxRFUTZt2qR4enoqt27dUhRFUa5cuaIoiqK0adNGGTp0qKIoipKTk6M0aNBAOXr0qKIoitK3b1/lyy+/LHHt5V2TEEJUBkAJDg5Wl+/evatYWloqr7/+uqIoivLLL78on3zyyUM59z/5nXjgwAGlTZs2SqNGjRRbW1vFz89PSUpKUqZMmaIMGzZM+f3335W6desqt2/fVm7evKnY2dkp06ZNUxTF8Pdx8+bNlYCAALVdJycnpUGDBsrVq1dLnPPo0aNKs2bNDNZNnTpV+eijjxRFUdTvizZt2iizZs1S+vfvX+J8xffbunWr4ubmpty8eVNRFEX57bfflIsXL5Y4b6NGjZSsrCyDdd98843StWtX5Y8//lD7lp2drezcuVP9mSmKopw6dUqxs7NTsrOzFS8vL2XlypWKoijKiRMn1O/osWPHqt9VQgghxKMExCmPOEYgmR1PGTMzM/R6vbocFhamTrW3fft2g6ElN27cIDs7G4DXX38dU1NTTE1NqVu3LhcvXmTv3r107dqVatWqUa1aNd54440S56tRowbVqlXj7bffxt/fX03rLU9MTAw//fQTAH379mXChAl/e0yrVq3Yt28f+fn5eHp64ubmxvTp0zl06BA2NjZUq1atzHbLWr93717WrFmjrp84caJ6nwYMGMBzzz0HQO3atdV+BAYGAoVjohs3bkyzZs0A6N+/PwsXLjQoeifEs66gQCHjyi0u3bxDXQtTyWp6TFSvXl2tbWFmZsb//d//8dJLL6nbu3TpUmodpLy8PExMHu2fDRcvXqRXr16sWrUKU1NTRowYQUpKCv7+/jg7O7N48WJq1qzJ4MGDsbe3p169eri6ulao7V69eqHX66lVq1aJbeHh4XTv3t1gXY8ePQgMDGTq1Kn3fB0dO3bkyJEjeHp6AoVDab7//nvq1q37t8fea3ZT9erV2bBhAx06dMDc3JzU1FRWrFhBlSpVqFevHh988ME9918IIYR4Ekmw4xlSUFDA/v37qVatWolt5RX6K4+JiQkHDx7k119/JTIykgULFrBjx44H1uciXl5ezJ8/n/z8fAYPHoyFhQW5ubns2rXrvup1FKUhV9RfU4aFEKUrKFDYknJBnXq5qF5NZ7t6EvB4DPj5+bFx40Z69uxJeHg4QUFBamHooiD5ggULCAkJoVq1ahw6dAgvLy969+7NqFGjyM3NxczMjGXLltG8eXPCwsJYt24dt2/f5sSJE3Tv3p3PPvsMKCwA+sknn1CzZk0cHR3V75v169czY8YM/vjjD+rUqcPKlSt54YUXDPq5YMEC+vfvr/6e37dvn8H2jIwMevXqxeXLl7G2tlaHKf7444/Y29tjbGzMyZMnDYZcdu7cmRMnTlBQUMDixYsBGDp0KLGxseTk5NCzZ08++ugjYmNjefPNN/npp5/45Zdf6N27N9evXyc3N9cgSNG+fXvGjx9PSEgIDRo0oGfPnuq2ohcKAKNGjWLUqFHl/lxKmznIyMiIjz/+uMQ0tEXDeYpYW1uTnJwMQM2aNYmNLSyO3aVLF7VQqhBCCPEskQKlz5COHTsyf/58dbl4BkhpvLy8WL9+Pbm5uWRnZ5da3T47O5vr16/j5+fHl19+SWJiIgAWFhbcvHmz1HZbtWrFDz/8ABQW8yxejLQsLVq0IDMzkz179uDk5ASATqdj0aJFeHl5ldtuWeu9vLwM1hfp0KEDy5Yt4/bt2wBcvXq1RH+aN29ORkYG6enpAKxYsYI2bdqU2K+8+yDE0yzjyi010AGFUy5/sukIGVfuv7iouH+9e/fmhx9+IDc3l6SkJNzd3cvc97fffmPfvn188cUX2NjYEB0dzaFDh5g+fbpBloBeryciIoLDhw8TERGhzmYybdo09u7dy549ewyyC1u3bs3+/fs5dOgQvXv3VoMjxaWkpNCyZcsy+zZixAj69+9PUlISwcHBar2p6dOns3XrVhITE1m3bp1BH7/55hsUReHChQtqdt7MmTOJi4sjKSmJ3bt3k5SUhJOTk/o9GR0djb29PbGxsRw4cMDgfuXl5REcHEzTpk2ZMWPG3916IYQQQjwiEux4hsybN4+4uDi0Wi22trYsWrSo3P1dXV3p0qULWq2W1157DQcHB2rUqGGwz82bN/H390er1dK6dWu++OILoPAP6dmzZ+Pk5MSJEycMjpk/fz7Lli1Dq9WyYsUKvvrqq7/tu0ajwd3dnTp16lClShWgsML8yZMn1Td+ZbVb1vqvvvqKhQsX4uDgwLlz59Rzde7cmS5duuDi4oJOp2POnDkl+lOtWjWWLVtGQEAADg4OGBkZMWTIkBL7tW3bltTUVHQ6ncG0hUI87S7dvKMGOorcySvg0s07ldQjUZxWqyUjI4Pw8HD8/PzK3TcgIABjY2MArl+/TkBAAPb29owePdpg1pP27durQxttbW05ffo0Bw4cwNfXFysrK6pWraoOBYTCIEqnTp1wcHBg9uzZxB5KYv/JK5zMyqagQCm1L+7u7rRo0ULNkIiJiaFPnz5A4XDEPXv2AIXB7JCQEL799lvy8/MN+tioUSPS09Px8fHh9OnTAKxevZqWLVvi5ORESkoKqampmJiY8K9//YsjR45w8OBBxowZQ1RUFNHR0QZB+nfffRd7e3umTJlS4fsvhBBCiIdPhrE8ZYqnzAKEhIQQEhICgKWlZakP3KGhoQbLRWmwAOPGjSM0NJTbt2/j4+ODs7MzgDrdH8DBgwdLtOnl5VXm1LONGjUqdahL8b6WpqhKfln7l9VuWesbN25MTEyMulz8jdykSZNKpP3u2rXLYLl9+/YcOnSoRLvF703t2rXVVGIhniV1LUwxNTEyCHiYmhhR18K0nKPEo9SlSxfGjRvHrl27uHLlSpn7FR++9+GHH9K2bVvWrl1LRkaGwTCKex0OOWLECMaMGYO//xt8FvYTn8z4DyPDDxkMebKzsyMhIUGdMevAgQNERkaWmmlY3KJFizhw4AAbN27E2dmZ+Pj4Mvt46tQp5syZQ2xsLLVq1SIkJESdzcXHx4fNmzdTpUoVXn31VUJCQsjPz2f27NlqO61atWLnzp2MHTu21GGiQgghhKgcktnxBCkoUDiZlf23b74epHfeeQedTkfLli3p0aNHuenEQghRxLpOdSb7tcDUpPBrpugB1rqO1L15XAwcOJBp06bh4OBQ4WOuX7+uFjMtHtgti7u7O7t37+bKlSvcvXuXH3/8sURbGVdu8eV/v1WnaS0+5GnYsGGEhYUZ1OooGmIIZQ9TPHHiBO7u7kyfPh0rKyvOnj1bZh9v3LhB9erVqVGjBhcvXmTz5s3qNm9vb+bOnYunpydWVlZcuXKFo0ePYm9vr+7z9ttv4+fnR69evSpc70oIIYQQD59kdjwhKqvY36pVqx5a20KIp5eRkYbOdvWwqWchs7E8pho0aKDWuKioCRMm0L9/f2bMmMHrr7/+t/u/+OKLhIaG4unpSc2aNdHpdOq20NBQAgICqPqcBUa1mgPn1W1FQ548mtQjIiKCiRMncu7cOerWrYulpaU6I8r8+fMZMGAAs2fPxsrKimXLlgEwfvx4jh8/jqIotG/fHkdHxzLrVDk6OuLk5ISNjQ0NGzZU60BBYbDm4sWL+Pj4AIXDfy5cuFCiuPWYMWO4fv06ffv2ZeXKlRgZybskIYQQorJpit6kPOlcXFyUoilWn0Yns7Lpv/RgiZTw5QPdaGJlXok9E0IIcS9+/vlnunfvzpEjR7CxsXmo54qLi+O7775j3rx599VOSEgI/v7+9OzZk0GDBjFmzBhsbW0fSB/l+00IIQrrGA0bNozU1FTy8/Px8/Pj888/Nxh+Vxo/Pz9WrVpFzZo172nbg3D9+nVGjBjBvn37UBQFDw8PFixYUOqU3sU9iO8Ra2tr4uLisLS0xNzcvMRQfvH40Wg08YqiuDzKc8qrhyeEFPsTQoinQ3h4OK1btyY8PLzU7fczFOKvwx1btnS+70DHX/3vf/97YIEOKDnkqaqxhomdm8uQJyHEM0NRFN588026devG8ePHOX78ODk5OUyYMOFvj920aVOJYIaiKBQUFJS67UF6++23adKkCenp6Zw4cYJXXnml3Pp7Rcr6HileULq0ZSHulQQ7nhBFxf6Kk2J/QgjxZMnOzmbPnj0sWbJErTUBhQWQvb296dKlC7a2tty6dYvXX38dR0dH7O3t1eLS8fHxtGnTBmdnZzp16sT584VDP3x9fZkwYQItHFtiZ2vDgE++o//Sg3wW9hOvv+4PFA4bKT67lL29PRkZGWWeqyy+vr4UZVIuWbKEZs2a4ebmxuDBgxk+fDhQWDPDw8MDBwcH/v3vf2Nu/meGxuzZs3F1dUWr1TJt2jSMjDTYVM/l3LfvUifuWy6FDcfu+bsy5EkI8czYsWMH1apVY8CAAUBhAeUvv/yS7777juzsbMLCwtTfrwD+/v5q4Xxra2suX75MRkYGzZs3p1+/ftjb23P27FmDbS1atGDw4MHY2dnRsWNHcnJyAMPf6ZcvX8ba2hoonPrbzc0NnU6HVqvl+PHjBn1OT08nPj6eDz/8UF03depUEhMTOXr0KLt27cLf31/dNnz4cLXWU/FzmpubM3bsWBwdHYmJiSmx/P3336v9ePfddyUAIu6JBDueEFLsTwghnny//PILnTt3plmzZtSpU0edJQQgISGBr776imPHjrFlyxbq169PYmIiycnJdO7cmbt37zJixAgiIyOJj49n4MCBBtOdXr2ZQ923Pqfha0PJ3LGCO3kFrNx/mpy75WeKlHauisjMzOQ///kP+/fvZ+/evaSlpanbRo0axahRozh8+DANGjRQ12/bto3jx49z8OBB9Ho98fHxREVFYWSkIePkCaZNHM2xtCM0bmxdoT486a5cuYJOp0On01GvXj1eeukldfmPP/4osf/48eOxs7Nj/PjxhIWFkZmZWQm9FkI8aCkpKeqMh0Wef/55rK2tSU9Pr3A7x48f57333iMlJYVGjRqV2DZs2DBSUlKoWbMma9asKbetRYsWMWrUKPR6PXFxcQa/ywFSU1PR6XTq1ORQGKRxcnLiyJEjFe7zrVu3cHd3JzExkdatWxss16lTh4iICPbu3Yter8fY2JiVK1dWuG0hpEDpE0KK/QkhxJMvPDycUaNGAdC7d2/Cw8PVP3Dd3Nxo3LgxAA4ODowdO5aJEyfi7++Pt7c3ycnJJCcn06FDB6AwvffFF19U23Zt+xpJxwuo/lIz7ly7CMDdfKXEEMi/Ku1cFXHw4EHatGlD7dq1AQgICODYsWMAxMTE8PPPPwPQp08fxo0bBxQGO7Zt24aTkxNQmOly/PhxXn75ZRo1aoSHh0eFzv20qFOnjlo4NTQ0FHNzc/VelWbx4sVcvXoVY2NjfH19sbe3p379+o+qu0KIx1x5v0cbN26sFol2dnYmIyOj3LY8PT2ZOXMmv/32G2+++SZNmzZ90N0FCgMkPXr0KHX5119/JT4+HldXVwBycnKoW7fuQ+mHeDpJZscTxMhIQxMrczya1KGJlbkEOoQQ4gly9epVduzYwaBBg7C2tmb27NmsXr1anXK1evU/M/WaNWtGQkKCOgxk+vTpKIqCnZ0der0evV7P4cOH2bZtm3rMC7XMC7P/NEYoBYVpvlWMNWpGoImJCQUFfwY+cnNzyzzXw6IoCpMnT1avIT09nbfffrvE9T/LQkJCiIyMVJeLhgB16dKF7OxsnJ2diYiIIC4ujuDgYHQ6HRs3bqRbt27qMf/3f/9H9+7dH3nfhRD/jK2trUGmHxROi33hwgWaN29e5u/vvyrv92jxQqfGxsZqfajibRdvt0+fPqxbtw4zMzP8/PzYsWNHiT7r9XqDfhUUFJCYmEjLli0r3Odq1aoZZIcUX1YUhf79+6vfGUePHiU0NLTMaxTiryTYIYQQQjwCkZGR9O3bl9OnT5ORkcHZs2dp3Lgx0dHRJfbNzMzkueee46233mL8+PEkJCTQvHlzsrKyiImJAeDu3bukpKSox9SvYVZiuGOwRyPMqhQmcVpbW5OQkAAUDpk5depUmeeqCFdXV3bv3s3vv/9OXl6eQUq0h4eHuly8NkmnTp1YunSpWjX/3LlzXLp0qWI38BlX9NCh1+sJDAzExcWFlStXotfr8fPzIy0tjaysLACWLVvGwIEDK7nHQoiKat++Pbdv3+a7774DCjP3xo4dy/DhwzEzM8Pa2loNLJw9e5aDBw8+sHNbW1urgZbigdaTJ0/SpEkTRo4cSdeuXUlKSjI47pVXXsHJyYkZM2ao62bMmEH79u3VbL3U1FTu3LnDtWvX+PXXX++5b+3btycyMlL9nrh69SqnT5/+J5cpnlES7BBCCCEegfDw8BJv23v06FHqrCyHDx9WC7J99NFH/Pvf/6Zq1apERkYyceJEHB0d0el07Nu3Tz2maLjjgj5O1K5eleUD3XCzro1G8+e5rl69ip2dHQsWLKBZs2Zlnuuv8vLySkx/+NJLL/HBBx/g5uaGl5cX1tbW1KhRA4C5c+fyxRdfoNVqSU9PV9d37NiRPn364OnpiYODAz179uTmzZv//KYKADQaDX379uX777/n2rVrxMTE8Nprr1V2t4QQFaTRaFi7di2RkZE0bdqUOnXqYGRkpNZl8vLyonHjxtja2jJy5Ehatmz5wM49btw4vv76a5ycnLh8+bK6fvXq1djb26PT6UhOTqZfv34ljl26dCnHjx/nX//6F1ZWVuzfv59FixYB0LBhQ3r16oW9vT29evVShy/eC1tbW2bMmEHHjh3RarV06NBBLcwtREVoitJnn3QuLi5KUVVfIYQQQjwYBQUFuLq6smLFihJTBWZnZ2Nubk5eXh7du3dn4MCBdO/endu3b2NmZoZGo+GHH34gPDycX375pZKu4MlQVLMjLS2Njh070qtXLwoKCqhWrZparNTc3FzNivH19WXOnDm4uLgAhRk6b7zxBoMGDeLUqVN89tlnlXYtQoj7s2/fPoKCgli7du0DDWw8TEePHuX1119n3rx5+Pn5VXZ3xGNIo9HEK4ri8ijPKQVKhRBCCFGqzMxMXn31Vdq2bVsi0AGFD+jbt28nNzeXjh07qnUj4uPjGT58OIqiULNmTZYuXfqou/7EKkop79WrF+vWrePu3bul7mdhYWGQFVO/fn3q16/PjBkz2L59+6PqrhDiIWjVqtUTN1yjefPm9zRzjBCPggQ7hBBCiAegoEAh48qtp2rGrPr165Oamlrm9jlz5pS63tvbm8TExIfVrafa4MGD6dq1K46OjnTu3LnMgoMhISEMGTIEMzMzYmJiMDMzIzg4mKysLFq0aPGIey2EKM/T+P0gxJNAhrEIIYQQ96mgQGFLygU+2XSEO3kFmJoYMdmvBZ3t6skftOKRGT58OE5OTuoMN0KIyiffD0IUqoxhLFKgVAghhLhPGVduqX/IAtzJK+CTTUfIuHKrknsmnhXOzs4kJSXx1ltvVXZXhBDFyPeDEJVHhrEIIYQQ9+nSzTvqH7JF7uQVcOnmHZpYmVdSr0Rle5Sp60VTRwohHi/y/SBE5ZFghxBCCHGf6lqYYmpiZPAHramJEXUtTMs5SjzNJHVdCAHy/SBEZZJhLEIIIcR9sq5Tncl+LTA1KfxaLXqwta5TenFJ8fST1HUhBMj3gxCVSTI7hBBCiPtkZKShs109bOpZSLV9AUjquhCikHw/PHzm5uZkZ2ery2FhYcTFxbFgwYKHet5du3bRtWtXGjduzJ07d+jduzfTpk0rc/+wsDA6duxI/fr1AZg7dy7vvPMOzz333EPt57NMMjuEEEKIB8DISEMTK3M8mtShiZW5/CH7jCtKXS9OUteFeDbJ98PjLS8vr9zl8nh7e6PX64mLi+P7778nISGhzH3DwsLIzMxUl+fOncvt27fvqa/5+fn3tP+zToIdQgghhBAPmKSuCyGeVsbGxuh0Ouzt7QkICLjnB/Z7odfr2bRpk7q8bt06Zs2aVWK/sLAwrKys0Ol0TJkyhZSUFADWr1+Pu7s7Tk5OvPrqq1y8eBGAzp07ExQUhJeXF3379qVp06YEBgbi5eWFmZkZPj4+6PV6tf3WrVuTmJhYZj+rV6+Os7Mz6enp6PV6PDw80Gq1dO/end9//53IyEji4uIIDg5Gp9Px1VdfkZmZSdu2bWnbti0A27Ztw9PTk5YtWxIQEKBmq1hbWzNx4kRatmzJjz/+eP839RkiwQ4hhBBCiAesKHV9+UA35gU5sXygmxQnFUI8FczMzNDr9SQnJ1O1alUWLVpUoePuJWOiyF+DHV26dGHSpEkG++Tk5DB16lQURVHX7d+/n4sXL9K6dWv279/PoUOH6N27N5999pm6PTU1le3btxMeHk5wcDDp6els374dU1NT3n77bcLCwgA4duwYubm5ODo6ltnPK1eusH//fuzs7OjXrx+ffvopSUlJODg48NFHH9GzZ09cXFxYuXIler2eUaNGUb9+fXbu3MnOnTu5fPkyM2bMYPv27SQkJODi4sIXX3yhtl+nTh0SEhLo3bv3Pd/DZ5kEO4QQQgghHgJJXRdCPO28vb1JT08vM4MiNDSUvn37qhkUHh4eatYFgK+vL3FxcRw8eBBPT0+cnJxo1aoVR48e5Y8//mDq1KlERESg0+mIiIggLCyM4cOHG/TBzMyM6dOn07t3b/R6PTNnzqRGjRqcPn2ad999lxo1alCtWjUmTpxISkoK8+bN4+bNm1y4cAE/Pz+gcEhJ+/btMTMzAyAgIIANGzZw9+5dli5dSkhISKnXHx0djZOTEx07dmTSpEk0aNCAa9eu0aZNGwD69+9PVFTU397HouCLl5cXOp2O5cuXc/r0aXV7YGBgxX8oQiXBDiGEEEIIIYQQ9yQvL4/Nmzfj4OBQZgYFYJBBERgYyOrVqwE4f/4858+fx8XFBRsbG6Kjozl06BDTp0/ngw8+oGrVqkyfPp3AwED0en2FH/gvXbrEjRs3eOWVVzh37hzff/89t27domHDhly+fJmRI0diYWHBe++9x86dO9Xjqlf/c5jhc889R4cOHfjll19YvXo1wcHBpZ7L29ubQ4cOER8fz5AhQ/7JbQRAURQ6dOiAXq9Hr9eTmprKkiVLSu2bqDgJdgghhBBCCCGEqJCcnBx0Oh0uLi68/PLLvP322/z222906tQJBwcHZs+ebZC90aVLFzVjolevXkRGRgKwevVqevbsCcD169cJCAjA3t6e0aNHGxxfUUUZIN988w2+vr7Url2bM2fOMGHCBJycnEhLS7un+iKDBg1i5MiRuLq6UqtWrQodU6NGDWrVqkV0dDQAK1asULM8LCwsuHnzprpv8WUPDw/27t1Leno6ALdu3eLYsWMV7qso3WMb7NBoNBkajeawRqPRazSauMrujxBCCCGEEEI864pqduj1eubPn0/VqlUZMWIEw4cP5/Dhw3zzzTfk5uaq+xfPSnjppZeoU6cOSUlJREREqNkaH374IW3btiU5OZn169cbHF9RRRkgH374IU2aNOHUqVPk5eWRk5NDlSpVeOWVVygoKPj7hv4/Z2dnnn/+eQYMGHBP/Vi+fDnjx49Hq9Wi1+uZOnUqACEhIQwZMgSdTkdOTg7vvPMOnTt3pm3btlhZWREWFkZQUBBarRZPT0/S0tLu6byiJJPK7sDfaKsoyuXK7oQQ4vGjKAre3t5MmTKF1157DYAff/yRJUuWsGXLlkrunRBCCCHEs+P69eu89NJLQOHDfnkCAwP57LPPuH79OlqttsTxRYVBoWQ2RGmys7MNjgkJCSEkJITExETq1q3LoUOHyMrKQqvV8umnnwLQsGFD+vXrpx5Ts2ZNhg0bZtBuZmYmBQUFdOzYsdTz+vr64uvrW2K9Tqdj//79Jdb36NGDHj16qMsjRoxgxIgR6nK7du2IjY0tcVxGRkap5xd/77HN7BBCiPJoNBoWLVrEmDFjyM3NJTs7mw8++ICFCxdWdteEEEIIIZ4poaGhBAQE4OzsjKWlZbn79uzZkx9++IFevXqp6yZMmMDkyZNxcnIymLWlTRtfDiUl05ybwcAAACAASURBVMzWgXnfLqegQCmtyVI5Ojri5OSEjY0Nffr0wcvLS91WPKuiNN999x3u7u7MnDkTIyN5ZH5SaYpP0fM40Wg0p4DfAQX4RlGUxeXt7+LiosTFyWgX8WzQaDQEBwfz/fffA4UFol588UXc3d3ZsGFDmccdPnyYvn37AnDmzBlq1KhBjRo1sLS0ZOTIkaSmpjJp0iRCQkLw9/dXx1EWCQsLIy4ujgULFpRo29zcXJ0P/FGaMGEC1atX59atW1hYWKgFqIqi86GhoZibmzN27FgmTJjA5s2b0Wg0/Pvf/yYwMJBdu3YRGhqKpaUlycn/j71zj8v5/P/4866opDlVcxZGVHfdndFBTjku5JBmFGPGGDO2sZmYmX01M2ZjhhhimGY2W0ypHNZBtyTHaAxfYg4l6XT9/uh7f36lw3IO1/Px6OH+HK7rel+fuz4+1/vzfr/eKTg5ObF27VpUKhWWlpYEBgby888/k5eXx6ZNm2jTpg23bt1iwoQJpKSkkJeXR3BwMH379n3sc5dIJBKJRCJ5ViksFPx25L98+utR7uQXYmigx7RebWUZ76cUlUqVKIRwfpxjVmU3lYcQwhHoCbypUqm87j5BpVK9rlKpElQqVUJGRsbjt1AieUKYmJiQkpLC7du3Adi5c6cS+nc3xb3jarVaybH09fVl/vz5aLVadu3aVWbd8qeBmTNnsn79enbs2MG7775bQuUbisSv/P39+fHHH9FqtRw6dIhdu3YxdepULl68CEBSUhILFy4kNTWV06dPs3fvXqW9mZkZBw8eZOzYsYSEhADwySef0LlzZ+Li4oiMjGTq1KncunXr8U5cIpE8NFQqFa+++qqynZ+fj7m5OX369LmnftLT07G1tQUgISGBt95666HaKZFIJM8T6VdvKY4OgDv5hXz661HSr8pnLknlqLLODiHE+f/9exnYCriWcc63QghnIYSzubn54zZRInmi9OrVi19++QWAsLAwAgIClGN31zSvDHfXLd+1axfOzs60bt26RLTIuXPn8Pb2plWrVsyaNavMvubPn4+Liwt2dnbMnDkTKFKV7t27N/b29tja2rJx48Z7nnNZmJiY4O/vz7BhwzA0NMTBwYHLly9z4cIFDh06RJ06dWjSpAmxsbEEBASgr6/Piy++SMeOHZW8SFdXVxo3boyenh4ajaZEbqSfnx9QJFKl2x8REcG8efPQaDR4e3uTk5PD2bNnH8p8JBLJ4+deHMjlUdyxDODs7MyiRYsemo0SiUTyOCgsFJzOyOLA6auczsi6p7SRh83lzDuKo0PHnfxCLmfeeUIWSZ42qqRAqUqlMgH0hBCZ//vsA8x+wmZJJFWKIUOGMHv2bPr06UNycjIjR45UylxBUU3z2NhYpdTXvZKenk5cXBxpaWl06tRJKYUVFxdHSkoKNWrUwMXFhd69e+Ps/P8RaREREZw8eZK4uDiEEPj6+hIdHU1GRgYNGzZUHDQ3btx4gNmXRE9Pr0Q+5aBBg9i8eTP//e9/K1WT3dDQUPmsr69fYtGiO1Z8vxCCLVu2YGVl9bCmIJFInjA6B/LAgQMVB7Lunlpe6lpoaCg//vgjWVlZFBQUlBDli4qKIiQkhO3btxMcHMzZs2c5ffo0Z8+eZdKkSTLqQyKRVDmqWtqIhakhhgZ6JRwehgZ6WJgaVtBKIvl/qmpkx4tArEqlOgTEAb8IIWR5BYmkGHZ2dqSnpxMWFkavXr1KHS9e0/x+GDx4MHp6erRq1YoWLVoo5a+6detGvXr1MDY2xs/Pj9jY2BLtIiIiiIiIwMHBAUdHR44dO8bJkydRq9Xs3LmT9957j5iYGGrVqnXftv0b/v7+bNiwgc2bNzNo0CAAPD092bhxIwUFBWRkZBAdHY2ra6mAsUrRvXt3Fi9ejE7zKCkp6aHZLpFIngxDhgxhw4YN5OTkkJycjJubm3KsotS1gwcPsnnzZvbs2VNh/8eOHeP3338nLi6OWbNmkZeX90jnI5FIJPdKVUsbsaxnwrRebTE0KFqy6pwvlvVM/qWlRFJElYzsEEKcBuyftB0SSVXH19eXKVOmEBUVxdWrV0scK17T/H5QqVRlbpe3X4cQgmnTpjFmzJhSfR48eJBff/2VDz/8kC5duih1xx82NjY2ZGZm0qhRIxo0aABA//792b9/P/b29qhUKv7zn/9Qv379+6phPmPGDCZNmoSdnR2FhYU0b968QmFYiURS9anIgRwREcG2bdsU3Z7iqWvdunWjbt26/9p/7969MTQ0xNDQEAsLCy5dukTjxo0f/kQkEglQWji9IpH1B2XUqFFMnjwZa2vrh963jri4ON59913Onz+PqakpDRo0YN68eajV6oc2RkVpIy3Maz60cSqLnp6KHjb1aVPflMuZd7AwNcSynokUJ5VUmirp7JBIJJVj5MiR1K5dG7VaTVRU1EPte9OmTQQGBnLmzBlOnz6NlZUVSUlJ7Ny5k3/++QdjY2PCw8NZuXJliXbdu3dnxowZDB06lJo1a3L+/HmqVatGfn4+devW5dVXX6V27dp89913D83W4ODgUvsOHz5cYlulUjF//nzmz59fYv/dNdKLPwQV1+5wdnZWrrGxsTHLli17YLslkqed8PBw+vfvz9GjR2nTps09t7/XKk666kpTpkwpt2pURW2XL1+OTuOrR48eWFpaUqNGDeWc8hzI5aWu/fnnn5V2LFeULieRSKoe+fn5GBhUbqn0MJ9pyuLSpUsMHjyY9evX06FDBwBiY2NJS0sr5ey4F7vv5n7TRh5kzH9DT09FC/OaT8TZInn6kc6OKswnn3zC+vXr0dfXR09Pj2XLlpUIq5VIGjdu/Mjyvps2bYqrqys3b95k6dKlGBkZAUVingMGDODvv//m1VdfLaHXAeDj48PRo0dp3749ULSYWbt2LadOnWLq1Kno6elRrVo1vvnmm0dit0QieXyEhYXh4eFBWFhYmYLFj/IB+H54++23mTJlSqn948aNA8p3IOtS1xYvXoxKpSIpKQkHB4fHZbZEInnIZGRk8MYbbygRWgsXLsTd3Z3g4GDS0tI4ffo0TZs2xcrKSnnpc/bsWb744gsOHDjAjh07aNSoET///DPVqlXD29ubkJAQnJ2dCQsLY+7cuQgh6N27N5999hlQ9Dw0ceJEtm/fjrGxMT/99BMvvvhiubYU56uvviIwMFBxdAB4eHgon4OCgjAyMiIpKQl3d3eGDBnCxIkTycnJwdjYmFWrVmFlZUVoaCjbtm0jOzubtLQ0+vfvz3/+8x8AVqxYwWeffYbK0IQbxg0Rega07j+Rce0smDImkHPnKr5WYWFhj+4Lk0juFyHEM/Hj5OQkniX27dsn2rVrJ3JycoQQQmRkZIjz588/YaskksdHQUGhSLucKfanXRFplzNFQUHhkzZJIpEUIzMzUzRs2FAcP35ctG7dWtkfGRkpPDw8xMsvvyxatWolhBCib9++wtHRUVhbW4tly5Yp55qYmIhJkyYJa2tr0blzZ3H58mUhhBCnTp0S3bt3F46OjsLDw0McPXpUCCHEzJkzxfz584UQQgQGBopNmzYJIYSYNWuWcHZ2FjY2NmL06NGisLD0/aJ427v3mZiYiLi4OKFWq4W9vb2YMmWKsLS0FL179xa3bt0Sfn5+onbt2uKFF14QxsbGwsPDQwghxKpVq8Sbb76p9HfmzBlhY2OjXIfevXuXObaNjY04c+bMfVx1iURSWfT09IS9vb3y06RJE+XvNSAgQMTExAghhPjrr79EmzZthBBFf6uOjo4iOztb2XZ3dxe5ublCq9UKY2Nj8euvvwohhOjXr5/YunWrEEKIjh07ivj4eHH+/HnRpEkTcfnyZZGXlyc6deqknAOIbdu2CSGEmDp1qvj4448rtKU4/fv3F+Hh4eXONTAwUPTu3Vvk5+cLIYS4ceOGyMvLE0IIsXPnTuHn5yeEKLpnNW/eXFy/fl3cvn1bNG3aVJw9e1acP39eNGvWTFy9elXk5NwRzm7txYBhr4m0y5liyJDKXSuJ5N8AEsRj9hFUVYHS556LFy9iZmamhL2amZnRsGFDLC0tmTlzJo6OjqjVakVv4J9//qFfv37Y2dnRrl07kpOTAVCr1Vy/fh0hBPXq1WPNmjUADB8+nJ07d+Ll5YVWq1XG9fDw4NChQ495tpLiVKWSX08KnRp44Mo43gpLInBlHL8d+e9zeS0kkqrKTz/9RI8ePWjdujX16tUjMTFROXbw4EG+/PJLTpw4AcDKlStJTEwkISGBRYsWKSkit27dwtnZmSNHjtCxY0clOuT1119n8eLFJCYmEhISokRelMf48eOJj49XyseWp6HzxRdfoNFo0Gg0/P7778r+rKwsRowYwbJly9Bqtejr62NiYsL27dv5+uuvMTMz49q1a+zdu5fc3Fy++OILoOhtavHUN0tLS1JSUoCiFDmdHcHBwSUiSlJSUrC0tKzUdZZIJPeHsbExWq1W+Zk9+/8LO+7atYvx48ej0Wjw9fXl5s2bSkrd3QLvPXv2pFq1aqjVagoKCujRowdQ9IxdPN0VID4+Hm9vb8zNzTEwMGDo0KFER0cDUL16dfr06QOULGdfkS3l4ebmRtu2bZk4caKyb9CgQejr6wNFFe8GDRqEra0tb7/9NkeOHFHO69KlC7Vq1cLIyAhra2v++usv4uLi6NixI3Xr1sXQsDrDXhlC/ReMaGFekz/+qPy1kkiqGtLZUUXx8fHh3LlztG7dmnHjxpVQeTczM+PgwYOMHTtWEUubOXMmDg4OJCcnM3fuXIYPHw6Au7s7e/fu5ciRI7Ro0UIpo7d//346dOjAa6+9RmhoKAAnTpwgJycHe3upDfukkIv8IqqaGrhEIilNWFgYQ4YMAYoqmRQPYXZ1daV58+bK9qJFi7C3t6ddu3acO3eOkydPAkVlo3XloV999VViY2PJyspi3759DBo0CI1Gw5gxY7h48WKFtkRGRuLm5oZarWb37t0lHux1DuS/r2UzfPQ4Dh5MQqvV0r17d+Wc69evk5mZqaTfvfLKK8qx2NhYZZ62trbY2dnd1/WSSCRVh8LCQg4cOKA4Qs6fP0/NmkWaEHfr8OhePOrScHXC7Hp6evekvVO8bXHdnrJsqV+/fom2NjY2HDx4UNn+888/+fjjj7lx44ayr7jdM2bMoFOnTqSkpPDzzz+Tk5NTaj5323E3cXFxhISE3NO1Kk5UVBS1atVCo9FgZ2dH165duXz58r9eJ4nkYSKdHVWUmjVrkpiYyLfffou5uTn+/v6KU8LPzw8o6RWOjY1l2LBhAHTu3JmrV69y8+ZNPD09iY6OJjo6mrFjx3L48GHOnz9PnTp1MDExYdCgQWzfvp28vDxWrlxJUFDQE5itRIdc5BdRkRq4RCJ58vzzzz/s3r2bUaNGYWlpyfz58/nhhx+UcszFH4CjoqLYtWsX+/fv59ChQzg4OJR48C6OSqWisLCQ2rVrl3gje/To0XJtycnJYdy4cWzevJnDhw8zevRopf/iDuQdh//Lhvhzz6UDWSKRlMTHx4fFixcr28WjnB8EV1dX9uzZw5UrVygoKCAsLIyOHTs+sC1vvvkmoaGh7Nu3T9mXnZ1dbp83btygUaNGAMr6oSJcXFzYs2cP165dIz8/ny1bttyTfUCZThNPT0+0Wi3Jycm4uLiwZMmSSrWTSB4W0tlRhdHX18fb25tZs2bx1VdfKTcenUe2MmruXl5exMTEEBMTo4TVbd68GU9PTwBq1KhBt27d+Omnn/jhhx8YOnToo52UpELkIr8InRp4cSqjBi6RSB4PmzdvZtiwYfz111+kp6dz7tw5mjdvrkQPFufGjRvUqVOHGjVqcOzYMQ4cOKAcKywsZPPmzQCsX78eDw8PXnjhBZo3b86mTZuAIm2xitIrdY4NMzMzsrKylP6gtAM5v1CU6UCuXbs2pqam/PnnnwBs2LBBOebu7s4PP/wAQGpqaqlKTxKJ5Olj0aJFJCQkYGdnh7W1NUuXLn0o/erKwXbq1Al7e3ucnJzo27fvA9tSv359xo8fT48ePTA0NKR27dqsW7eOcePGYWlpSW5urnJuq1atGDVqFFOnTqV27dp8++23XLx4kb179wJFERsjR47E29ub3bt3s2XLFho1asT06dN56aWXqFmzJkePHuXWrVuKfVFRUZiammJsbEzPnj2VNPoNGzbwxhtv4ObmxrvvvlvuHIUQZGZmUqdOHaAotW/YsGG4u7szbNgw0tPT6dy5M3Z2dnTp0oWzZ89SUFBA8+bNEUJw/fp19PX1lZQgLy8vTp48SXBwsDKXFi1asGjRonv4tiTPA1VHIl1SguPHj6Onp0erVq2AIi9qs2bNyn3I8vT0ZN26dcyYMYOoqCjMzMx44YUXeOGFF7hy5Qq5ubm0aNECDw8PQkJCSuQYjxo1ipdffhlPT0/lJiR5Mtxvya9nDct6Jkzr1VZZpBga6DGtV1ss61WuxKNEInm0hIWF8d5775XYN2DAAMLCwpS0FB09evRg6dKltG3bFisrK9q1a6ccMzExIS4ujjlz5mBhYcHGjRsBWLduHWPHjmXOnDnk5eUxZMiQclMsa9euzejRo7G1taV+/fq4uLgoxypyIN9dxnDFihWMHj0aPT09OnbsSK1atYCiSi2BgYFYW1vTpk0bbGxslGMSiaTqcrfuRVBQkBLBbGZmptxvinN3Kfu7t4v3WfxY8epNAQEBBAQEVGjPwIEDlbLZZdmydu3aUu1HjRrFlClTUKlUfPfddxw9ehRXV1f69u2LRqNh4MCB/PnnnzRr1ozevXsrzhAPDw/Onj1L9+7dOXr0KOnp6URERBAZGUlmZiZWVlYsWLCAtm3b0rBhQ/bu3cvgwYMVJ7OZmRk5OTkcPHiQVq1a8eeffzJu3Dh2795Neno6f//9N/v27VP0QooTExODRqPh6tWrmJiYMHfuXOVYamoqsbGxGBsb8/LLLxMYGEhgYCArV67krbfeIjw8HCsrK1JTUzlz5gyOjo7ExMTg5ubGuXPnlDXSsWPHSsxl7NixVKtWrZQtkucT6eyoomRlZTFhwgSuX7+OgYEBL730Et9++225oms6z6adnR01atRg9erVyjE3NzcKCgqAIqfItGnTSpSrcnJy4oUXXmDEiBGPdlKSf0Uu8ovQ01PRw6Y+beqbcjnzDhamhljWM0FPT/WkTZNIJBRpZNxN8TLY3t7eymdDQ0N27NhRZj/lifA1b96c3377rdT+4ouL4qHZc+bMYc6cOaXOL+5AbtSlSMuquAO5eH82NjaKuPe8efOUstpGRkasXbsWIyMj0tLS6Nq1K82aNSvTbolE8ngoLBSkX731XD0j/P333/j7+3Px4kVyc3MVXSR/f39mz57NiBEj2LBhg+Jw3rVrF6mpqUr74sKivXv3xtDQEENDQywsLLh06RIfffQRGRkZuLq64uPjQ9u2bQFK6CjpuHPn/yOOiwuj3o2np6eydvnss8949913lciV4uKm+/fv58cffwRg2LBhSpSILh3/zJkzTJs2jeXLl9OxY8cSTu2y5tK4ceP7vcySZwzp7KiiODk5lcjL01Fc9dnZ2VnxJNetW5fw8PAy+/r++++Vzx06dKCwsORbrgsXLlBYWIiPj8+DGy55IOQi///R01PRwrxmqbevEonk0fOsLCTuxYH8yy+/8Omnn5Kfn0+zZs0UZ0p2djadOnUiLy8PIQRff/011atXf8wzkUgkOnRaPHf/Xfewqf9U3qcqy4QJE5g8eTK+vr5ERUUpztr27dtz6tQpMjIyCA8P58MPPwT+X/jUyMioVF9liZT27dsXT09PpWrN5MmTlX50OkplUZFIaXF8fX0ZMGDAPbXz8vLim2++4cKFC8yePZv58+cTFRWlpOOXNxeJRIfU7HjOWbNmDW5ubnzyySfo6clfh6qAbpHfrkU9WpjXfKb/45ZIJFWPZ6kqlM6BvHqkK4sCHFg90rXcBZG/vz9arZaUlBR++eUXzM3NATA1NSUhIYFDhw6RnJxMz549H/c0JBJJMZ5XMffioqPFI7hVKhX9+/dn8uTJtG3blnr16gH3LsLq5eVFeHg4t2/fJjMzk59//hngnnWUyiM2NpaWLVuW2n/p0iWMjIxo2LAhTk5OtGnTRjnP1dWVffv2oaenh5GRERqNhmXLluHl5XXP4z8M8vPzmT59Oq1atVLKmH/yySf31Vd6ejq2trYP2ULJ3cjV7RNAVwbvwOmrnM7IeqIPkMOHD+fcuXMlQtMkEolE8vzyrC0kpANZInm2eB7E3LOzs2ncuLHys2DBAoKDgxk0aBBOTk6YmZmVON/f35+1a9eW0Ey6VxFWR0dH/P39sbe3p2fPniVSRdatW8eKFSuwt7fHxsaGn376qVLz0Gl22Nvb8/333/P555+XOC6EoF+/fowdOxa1Wk1eXh7169enV69eQFHURpMmTWjXrh35+fl4enqSmZmJWq2u1PiVRZfu/298+OGHXLhwgcOHD6PVaomJiSEvL++h2iJ5uKh0ZeKedpydnUVCQsKTNuNfeV5D7yQSiUTydHDg9FXeCksqtX9RgAPtWtR7AhZJJBLJ/3M6I4vAlXGlxNxXj3SVqa9PGX/88QezZ89mz549ZR4PDQ3lxx9/JCsri4KCAn799VcmTJhASkoKeXl5BAcH07dvX7KzswkKCiIlJQUrKysuXLjAkiVLcHZ2JiwsjLlz5yKEoHfv3nz22WcA1KxZkzFjxrBr1y4GDBjAwYMHFUmAnTt38vXXX7N161bFluzsbJo0aUJ6ejqmpqZl2rtgwQJWrlwJFAnKTpo0iY8++oi6desyadIkAD744AMsLCzo27cvffr0ISUlhYKCAt5//32ioqK4c+cOb775JmPGjHlo17mqoFKpEoUQzo9zTKnZ8Zgp741Zm/qm8gYtkUgkkieOrAolkUiqMlLM/dnhyJEjODo6VnjOwYMHSU5Opm7dukyfPp3OnTuzcuVKrl+/jqurK127duWbb76hTp06pKamkpKSgkajAYp0Cd977z0SExOpU6cOPj4+hIeH069fP27duoWbmxuff/45Qgjatm1LRkYG5ubmrFq1ipEjR5aw49SpUzRt2rRcR0diYiKrVq3izz//RAiBm5sbHTt2ZOTIkfj5+TFp0iQKCwvZsGEDcXFxZGZmKm1XrFhBrVq1iI+P586dO7i7u+Pj46OI0EruH5nG8ph5HkLvJBKJRPL0oltIGBoUPSLIhUTV4ZNPPsHGxgY7Ozs0Gg1//vnnY7chODiYRo0aodFoaNOmDWPHji0lfC6RPEruRYunKlKV0tmrGm+++Sb29vYlUmi6detG3bp1AYiIiGDevHloNBq8vb3Jycnh7NmzxMbGMmTIEABsbW2xs7MDID4+Hm9vb8zNzTEwMGDo0KFER0cDRWKmOsFUlUrFsGHDWLt2LdevX2f//v3/qs+0atUqNBoNTZo04dy5c8TGxtK/f39MTEyoWbMmfn5+xMTEYGlpSb169UhKSiIiIgIHBwdFV0VHREQEa9asQaPR4ObmxtWrVzl58uTDuajPOTKy4zEj35hJJBKJpCojq0JVTfbv38/27ds5ePAghoaGXLlyhdzc3Cdiy9tvv82UKVMoLCzEy8uLPXv20KlTpydii+T55Gmt2CbT2UtiY2PDli1blO0lS5Zw5coVpfQ3lKzaIoRgy5YtWFlZPfDYRkZGJUrmjhgxgpdffhkjIyMGDRqEgUHJZfJLL73E2bNnyczMxNTUlBEjRjBixAhsbW1p2rQp3t7eSpWYkJAQ9uzZw8CBA4GilJbQ0FD++9//looY0c1r8eLFdO/enaVLl1KjRg18fHwICgqiT58+DBw4EG9vb0JCQkpcm4oo3vZRcK/9/08gt5ZuW6VSeQO5QojS5UcfIjKy4zEj35hJJBKJpKojRT2rHhcvXsTMzEwps2hmZkbDhg0BsLS05MqVKwAkJCTg7e0NwJ49e5SKAQ4ODmRmZpKVlUWXLl1wdHRErVYrQoPp6em0bduW0aNHY2Njg4+PD7dv367QptzcXHJycqhTpw5Q9DDbrl077Ozs6N+/P9euXQPA29ub9957D1dXV1q3bk1MTAxQJAo4depUXFxcsLOzY9myZcpcvby80Gg02NraKudLJE87z5oA9IPSuXNncnJy+Oabb5R92dnZ5Z7fvXt3Fi9ejE5zMimpSF/K3d2dH374AYDU1FQOHz4MFFVz2bNnD1euXKGgoICwsDA6duxYZt8NGzakYcOGzJkzhxEjRpQ6XqNGDV577TXGjx9PTk4OUHQPy83NpXr16hw/fpwtW7aQnZ1Nbm4ux44dU5wf/fv357fffiM+Pp7u3buXOa9vvvmGvLw83njjDdq1a8etW8/W78Tdzg7AG+jwqMeVzo7HzNMeeieRSCQSieTx4+Pjw7lz52jdujXjxo0rV9CvOCEhISxZskSpGmBsbIyRkRFbt27l4MGDREZG8s477ygLh5MnT/Lmm29y5MgRateuXeKNa3G++OILNBoNDRo0oHXr1kp+/PDhw/nss89ITk5GrVYza9YspU1+fj5xcXEsXLhQ2V88Tz0+Pp7ly5dz5swZ1q9fT/fu3dFqtRw6dEjpXyJ52pHp7CVRqVSEh4ezZ88emjdvjqurK4GBgYqI6N3MmDGDvLw87OzssLGxYcaMGQCMGzeOjIwMrK2t+fDDD7GxsaFWrVo0aNCAefPm0alTJ+zt7XFycqJv377l2jN06FCaNGlC27Ztyzz+ySef0KBBA2xtbXFwcMDT05PAwEAMDAyYMGECDRo0wNXVlUWLFuHo6IiDgwMZGRkEBARw7do1bt++zYEDBygsLMTDw0OpAjNq1Ciio6Oxs7PDwsKCXr16kZ+fX66dERERtG/fHkdHRwYNGkRWVlalrndOTg4jRoxArVbj4OBAZGQkUCQE6+fnR48ePWjVZ5fJAAAAIABJREFUqhXvvvuu0mbFihW0bt0aV1dXRo8ezfjx45Vju3btwtnZmdatW7N9+/Zyx8jNzeWjjz4CqKNSqbQqleo94A3g7f9te6pUKkuVSrVbpVIlq1SqP1QqVVMAlUoVqlKpvlGpVAdUKtVplUrlrVKpVqpUqqMqlSr03+Ys01ieAE9r6J1EIpFISqKvr49arSY/P5+2bduyevVqatSoUam2lpaWJCQklCoh+CDo3s5bWVmRm5uLl5cXX3/9NXp6Zb/bCA8Pp3Xr1lhbWwPw0Ucf4eXlRdeuXe85ZFbyaKlZsyaJiYnExMQQGRmJv78/8+bNIygoqNw27u7uTJ48maFDh+Ln50fjxo3Jy8tj+vTpREdHo6enx/nz57l06RIAzZs3VxwLTk5OpKenl9mvLo0lLy+PgQMHsmHDBnr27Mn169eVt6aBgYElytr7+fmV6jciIoLk5GQ2b94MwI0bNzh58iQuLi6MHDmSvLw8+vXrJ50dkmcGmc5emgYNGrBhw4YyjwUFBZW4xxkbGysRYMUxMjJi7dq1GBkZkZaWRteuXWnWrBkAAQEBBAQElGpTloMgNjaW0aNHl2trtWrVmDdvHvPmzSux/9NPP+XNN99k2bJlHDp0iOXLlyv9T5w4kYkTJ5KWlsaXX37JqFGjOHr0KAMGDFDubfHx8Tg6OrJr1y6Cg4OpWbMmtWrVKjU+wJUrV5gzZw67du3CxMSEzz77jAULFuicCRWyZMkSVCoVhw8f5tixY/j4+HDixAmgKPIiKSkJQ0NDrKysmDBhAvr6+nz88cccPHgQU1NTOnfujL29vdJfeno6cXFxpKWl0alTJ06dOlXuGLNnz2bEiBHXhBAaAJVKZQxkCSFC/rf9M7BaCLFapVKNBBYB/f43VB2gPeALbAPcgVFAvEql0gghtOXNWUZ2SCQSiURynxgbG6PVaklJSaF69eosXbr0SZtEy5Yt0Wq1JCcnk5qaqpTSK4vw8HBSU1OV7dmzZ9O1a9fHYabkPtDX18fb25tZs2bx1VdfKZEXBgYGikioLrwa4P333+e7777j9u3buLu7c+zYMdatW0dGRgaJiYlotVpefPFFpY0uRUY3VkVvFqHowb9Hjx6K4F9F6Pou3q8uT12r1aLVajlz5gw+Pj54eXkRHR1No0aNCAoKYs2aNfdwlSSSqotMZ380ZGdn4+Hhgb29Pf379+frr7+mevXq99SHk5MTycnJvPrqq/dlwwsvvMDw4cNZtGhRif2//fYb3bp148KFC0ycOJGbN2+SlZWFv78/GzduBGDDhg34+/tXapwDBw6QmpqKu7s7Go2G1atX89dff1WqbWxsrDK/Nm3a0KxZM8XZ0aVLF2rVqoWRkRHW1tb89ddfxMXF0bFjR+rWrUu1atVKOLABBg8ejJ6eHq1ataJFixYcO3aswjH+hfbA+v99/h7wKHbsZ1EUgngYuCSEOCyEKASOAJYVdSojOyQSiUQieQh4enqSnJzMzz//zJw5c8jNzaVevXqsW7eOF198katXrxIQEMD58+dp3769kjqQnp5Ojx49aNeuHfv27cPFxYURI0Ywc+ZMLl++zLp163B1dSUuLo6JEyeSk5ODsbExq1atqlCkzcDAgA4dOnDq1CmWL1/Ot99+S25uLi+99BLff/89Wq2Wbdu2sWfPHubMmcOWLVv4+OOPH6mgmeT+OX78uPJQCUVv4XRvLi0tLUlMTKRnz54lUk/S0tJQq9Wo1Wri4+M5duwYN27cwMLCgmrVqhEZGVnph+SyEEKwd+9eHBwcqFWrFnXq1CEmJgZPT0++//77cnPjdejy1Dt37ky1atU4ceIEjRo14sqVKzRu3JjRo0dz584dDh48yPDhw+/bTomkqvC8CUAXFgrSr9565HM1NTUlISHhgfpITEx8YDsmTZqEo6NjCc0PPT09bty4gZGRUYlz27dvz6lTp8jIyCA8PJwPP/ywUmMIIejWrRthYWEPbG9x7tXZDUVpSBVtP0R0eV6FxT7rtiv0Z8jIDolEIpFIHpD8/Hx27NiBWq3Gw8ODAwcOkJSUxJAhQ/jPf/4DwKxZs/Dw8ODIkSP079+fs2fPKu1PnTrFO++8w7Fjxzh27Bjr168nNjaWkJAQ5s6dCxS9IYmJiSEpKYnZs2czffr0Cm3Kzs7mjz/+QK1W4+fnR3x8PIcOHaJt27asWLGCDh064Ovry/z589FqtbRs2fLRXSDJA5OVlUVgYCDW1tbY2dmRmppKcHAwADNnzmTixIk4OzuXqC6wcOFCpQxjtWrV6NmzJ0OHDiUhIQG1Ws2aNWto06bNPdui0+ywtbWloKCAcePGAbB69WqmTp2KnZ0dWq32X8OqR40ahbW1NY6Ojtja2jJmzBjy8/OJiorC3t4eBwcHNm7cyMSJE+/ZRomkqvK8CEDrKs8ErozjrbAkAlfG8duR/z7TpXbr1q3L4MGDWbFihbLPx8eHxYsXK9v/E+pEpVLRv39/Jk+eTNu2bUuVoy2Pdu3asXfvXk6dOgXArVu3Khs5gaenJ+vWrQPgxIkTnD17tsKXJi4uLuzZs4dr166Rn59fSsdp06ZNFBYWkpaWxunTp7Gysip3DFNTUyjpe8gETItt7wOG/O/zUOChKFPLyA6JRCKRSO6T27dvKzm3np6evPbaaxw/fhx/f38uXrxIbm4uzZs3ByA6Opoff/wRgN69eysVLKBIK0GtVgNFpfi6dOmCSqVCrVYr+gY3btwgMDCQkydPolKpyMvLK9OmtLQ0NBoNKpWKvn370rNnT/bs2cOHH37I9evXycrKKlMNXlK1cXJyYt++siv0eXp6lvmwW/wBW4ehoSH79+8vs5+UlBTl85QpU8o8Jzg4WHGy3I1Go+HAgQOl9kdFRSmfzczMlN9pPT095s6dqzj0dAQGBhIYGFjmGBKJ5OmgvMozbeqbPtO6he+88w5fffWVsr1o0SLefPNN7OzsyM/Px8vLS0l59ff3x8XFhdDQ0Er3b25uTmhoKAEBAdy5UxTkMGfOHFq3bl3q3DFjxjBp0iQAmjRpQmRkJGPHjkWtVmNgYEBoaGiJiI67adSoEdOnT8fV1ZW6devSpk2bEloiTZs2xdXVlZs3b7J06VKMjIwYN25cmWP8rzy5sUql0gKfAj8Dm1UqVV9gwv9+VqlUqqlABlC6JM59IJ0dEolEIpHcJzrNjuJMmDCByZMn4+vrS1RUVLkLw+IUf9jQ09NTtvX09JRQ0hkzZtCpUye2bt1Kenq6Ul70bnSaHcUJCgoiPDwce3t7QkNDSyw+JVWDxxXuLZFIJI+DiirPPGvOjuJipy+++GKJ8rlmZmaKNsfdODs7KymtOoo/MxR3ghT/f7tz587Ex8dXaFN5DpRVq1aV2ne3EKyusgrAK6+8wuuvv05+fj79+/enX79+FfZvZGRU5hh169YFOCqEKK56bnfXaZ3vbieECCr2OR2wLetYecg0FolEIpFIHiI3btygUaNGQFFYvw4vLy/Wry/S3tqxYwfXrl27737v5S0QQGZmJg0aNCAvL08JL4WiPOfMzMx76kvy8Hkew70lEsmzja7yTHGexsozhYWC0xlZHDh9ldMZWc/dfTk4OFhJW2zevLni7HhakM4OiUQikUgeIsHBwQwaNAgnJ6cSZWVnzpxJdHQ0NjY2/PjjjzRt2vSe+n333XeZNm0aDg4OlRIOK87HH3+Mm5sb7u7uJTQahgwZwvz583FwcCAtLe2e+pQ8PMoL906/eusJWyaRSCT3x7NQeUY6oiEkJAStVsuxY8dYtGjRoxQhfSSo7g6deVpxdnYWD6rCK5FIqh41a9YssxZ6RYSHh9O6dWusra0B+Oijj/Dy8qp0Sc2oqCj69u2raC2YmZkxb9481qxZU6qkWGUICgqqVIWL4OBgli9fjrm5OQA9evRg3rx5eHt7ExISgrOzc7ltFy5cyOuvv06NGjUq7L9mzZpl5uLfz3WWSCQPhwOnr/JWWFKp/YsCHGjXonKidRKJRFLVeNrT805nZBG4Mq5EOo6hgR6rR7o+c6k4jwOVSpV4VxrLI0dqdkieOZ70os3S0hJTU1NUKhX169dnzZo11K9fv8xztVotFy5coFevXkDRIrt69ep06NDhvsdPT0+nT58+JYTmnjfCw8Pp06eP4uyYPXv2Pffh6elZImcRqNDZ8LB4++23yxUGrIiFCxfy6quvVujskEgkVRNduPfdD9RPW7i3RCKRFEdXeeZpdQw8T7ojzyoyjeUZQaVS8eqrryrb+fn5mJub06dPn39tm56ejrGxMRqNBmtra9544w0KCwv/tZ2kfCIjI0lOTsbZ2bmUynxxtFotv/76q7IdFRVVrtp+edxrOPvTSFRUVInf5fHjxyuaBe+//75SinHKlCns27ePbdu2MXXqVDQaDWlpaQQFBbF582agyBk1c+ZMHB0dUavVHDt27J5tCA4OZuTIkXh7e9OiRYsS0R5r1qzBzs4Oe3t7hg0bpuyPjo6mQ4cOtGjRQrHlfoiIiKB9+/Y4OjoyaNAgsrKyWLRoERcuXKBTp046tWt+++03HB0dsbe3p0uXLkr71NTUMu0uzvz583FxccHOzo6ZM2cCRdExCxcuVM754IMP+PLLL+97Hk8Dz3ueruTx8SyEe0skEsmzxrOiO/I8I50dzwgmJiakpKRw+/ZtAHbu3KkI2d1NWYtjnXp/cnIyqamphIeHP1J7HzVZWVl06dJFWdD+9NNPQJFjp02bNgQFBdG6dWuGDh3Krl27cHd3p1WrVsTFxQFFNatHjhyJq6srDg4OSvsjR47g6uqKRqPBzs6OkydPVmiHl5cXp06dIicnhxEjRqBWq3FwcCAyMpLc3Fw++ugjNm7ciEaj4bPPPmPp0qV88cUXaDQaYmJiyMjIYMCAAbi4uODi4sLevXuBosX2sGHDcHd3L7Ggft64evUqW7du5ciRIyQnJ/Phhx/SoUMHfH19mT9/PlqtlpYtW5ZqZ2ZmxsGDBxk7diwhISFl9h0TE4NGo0Gj0fDJJ5+UOn7s2DF+//134uLimDVrFnl5eRw5coQ5c+awe/duDh06VMIZcPHiRWJjY9m+fTvvv/9+uXPSff8ajYbff/+9xLErV64wZ84cdu3axcGDB3F2dmbBggW89dZbNGzYkMjISCIjI8nIyGD06NFs2bKFQ4cOsWnTpgrtLk5ERAQnT54kLi4OrVZLYmIi0dHRjBw5kjVr1gBQWFjIhg0bSjhYnzVknq7kcaKnp6KHTX1Wj3RlUYADq0e60sOm/lMV7i2RSCTPGtIR/fQj01ieIXr16sUvv/zCwIEDCQsLIyAggJiYGKBocZyWlsbp06dp2rQpYWFhZfZhYGBAhw4dOHXqFMuXL+fbb78lNzeXl156ie+//x5DQ0NeeuklTp8+zY0bN6hXrx6RkZF4eXnh5eXFihUruHDhAhMnTgSKIk6io6MxNTV9bNcBisoebd26lRdeeIErV67Qrl07fH19ATh16hSbNm1i5cqVuLi4sH79emJjY9m2bRtz584lPDycTz75hM6dO7Ny5UquX7+Oq6srXbt2ZenSpUycOJGhQ4eSm5tLQUFBhXZs374dtVrNkiVLUKlUHD58mGPHjuHj48OJEyeYPXs2CQkJSj3u27dvl9BUeOWVV3j77bfx8PDgzz//pGvXrtSvX5+rV69iYGDAyZMnS9S7ftLcuXOH3r17c+XKFaZNm4a/v79yLDQ0FB8fHxo2bAgURVgkJCSUEHCsLDdv3mT06NFYW1vz119/0apVK+bOnVuhQnR8fDynTp0C4MyZM4SEhODp6cmPP/5Y5vm1atVi/fr1SirM3aU6e/fujaGhIYaGhlhYWHDp0iV2797NoEGDlDn9r8wWAAUFBSxYsIApU6Zw6dKlcq9B8TSW69ev8/XXXyvHDhw4QGpqKu7u7gDk5ubSvn17AM6ePVviPC8vL0VzpLgdZdnduHFj5XhERAQRERE4ODgARY7DkydP4uXlRb169UhKSuLSpUs4ODhQr96zqyVQnmBkm/qmMnRV8kh42sO9JRKJ5FlD54huU9/0qdUded6RkR3PEEOGDGHDhg3k5OSQnJyMm5tbieOpqans2rWrXEcHQHZ2Nn/88QdqtRo/Pz/i4+M5dOgQbdu2ZcWKFejr62NlZUVqaiqxsbE4OjoSExPDnTt3OHfuHK1atSIkJIQlS5ag1WqJiYnB2Nj4UU+9FEIIpk+fjp2dHV27duX8+fPKArN58+ao1Wr09PSwsbGhS5cuqFQq1Go16enpQNGCb968eWg0Gry9vcnJyeHs2bO0b9+euXPn8tlnn/HXX3+VO7dOnTqh0Wi4efMm06ZNIzY2VnkL3qZNG5o1a8aJEyf+dR67du1i/Pjx2Nvb06lTJwwMDEhKSmL8+PE0btyYOXPmPJwL9i9UNlUmKalIYE+r1ZZwdECRs+PChQv3Nb6BgUGJ1Ko7d+5gYWHBoUOH+OeffzAxMWHJkiX06NGj3D5cXFyUiAoDgyI/r76+frlzs7OzUxwdZWFo+P8hjBX1U3wOOnTC0NeuXcPb2xuNRlNmm7udHUIIunXrhlarRavVkpqayooVKyoc917tFkIwbdo0ZYxTp07x2muvATBq1ChCQ0NZtWoVI0eOvKdxnzYqytOVSCQSiUTyfKBzRLdrUY8W5jWlo+MpQzo7niHs7OxIT08nLCxMEbwsjq+vb7mL87S0NDQaDe7u7vTu3ZuePXuSkpKCp6cnarWadevWceTIEaBIuDE6Opro6GhlIR8fH4+LiwsA7u7uTJ48mUWLFnH9+vUSi7zHxbp168jIyCAxMRGtVsuLL75ITk4OUHKxp6enp2zr6ekpCz8hBFu2bFEWfGfPnqVt27a88sorbNu2DWNjY3r16sXu3bvLHD8yMhKtVsuaNWuoXbv2fc+jsLCQAwcOsGDBApydnbl27Ro1a9ZET08PPz8/Vq5cSXZ2Nr179yY5ORkoenN/+fJloEhnYfny5URFReHt7c3AgQNp06YNQ4cOVRbciYmJdOzYEScnJ7p3787FixcB8Pb2ZtKkSTg7O5fSZvjnn3/o168fdnZ2tGvXjuTkZC5fvsyrr75KfHy8opWhY/PmzSQkJDB06FA0Go2SbrV48eJS2hl3pxAVFBTQrFkzUlNTuXPnDtevX1d0TbKyssjKyqJnz5507tyZQ4cO8fPPP7Njxw4mT55M165dFSdXZGQk48ePLzGP9PR0Dh48WGJbrVYDsH//fnQVniIiIhg3bhwxMTEMGjSI3Nxczp07h5+fHwCZmZlYWVnh6enJDz/8QLNmzZTrVBF16tQhKioKrVbLggUL+PrrrwkJCVG0Md5//33S0tJISEjgyy+/pF27dvz222+o1Wrs7OyYNm1aCadZZmYmAO3atSM6OpozZ85Uyo7idO/enZUrVyoiv+fPn1d+n/r3789vv/1GfHw83bt3r3SfTyMyT7fqoK+vj0ajwcbGBnt7ez7//PN71pUqrtvzIOdUhorsTUhI4K233rrvvh+WjRKJ5NngQTT7ysPS0pIBAwYo25s3byYoKOhBzHzge59Ecr9IZ8czhq+vL1OmTCEgIKDUMROT8vPLdJodSUlJBAcHA0UPVV999RWHDx9m5syZirPAy8uLmJgY4uLi6NWrF9evXycqKgpPT0+gaIH23Xffcfv2bdzd3SstAPkwuXHjBhYWFlSrVo3IyEj++uuve2rfvXt3Fi9erDgEdBELp0+fpkWLFrz11lv07dtXcTD8G56enqxbtw6AEydOcPbsWaysrDA1NVUWqECpbR8fHxYvXsyRI0dwcnJCq9Uqx4yMjGjatCmnTp3C09OTmJgYbty4gYGBAdnZ2UCR7oSXl5cyh4ULF5Kamsrp06fZu3cveXl5TJgwgc2bN5OYmMjIkSP54IMPlDFyc3NJSEjgnXfeKTGfmTNn4uDgQHJyMnPnzmX48OFYWFjw3Xff4enpWUorY+DAgTg7O7Nu3Tq0Wq3idCtLO0OXQhQXF8fOnTvJzc2lbt26DB48GFtbWwYPHoyNjQ1QtLjv1asXX331FWvXrmXBggV4eHiwZcsWatasyYkTJ5g+fXq534ulpSWFhYWKU2Djxo2lIlJ0Ohmff/45np6eODs7s3//fho1aqR8H7du3cLKyopbt24xcOBAbty4gb29PZMnTy7Rl06P4/bt22g0GiXSJTExkVWrVjFq1CgmTJjA8uXLSUpKYt68ebRs2RJnZ2cmTpxIUlISHTp0wMjICIAlS5awZcsWAKpVq0aPHj3o1KkT5ubmfPvtt/j5+WFvb19qThXh4+PDK6+8Qvv27VGr1QwcOFD5naxevTqdOnVi8ODB6OvrV7rPpxGZp1t1MDY2RqvVcuTIEXbu3MmOHTuYNWvWkzarXCqy19nZ+b7KV0skEklZPKhmX3kkJiaSmpp6XzbdPU5+fr6890meGNLZ8YwxcuRIZs6cqbydfhAyMzNp0KABeXl5ykIdwNXVlX379qGnp4eRkREajYZly5Ypi+q0tDTUajXvvfceLi4uj9XZkZ+fj6GhIUOHDiUhIQG1Ws2aNWto06bNPfUzY8YM8vLysLOzw8bGhhkzZgDwww8/YGtri0ajISUlheHDh1eqv3HjxlFYWIharcbf35/Q0FAMDQ3p1KkTqampaDQaNm7cyMsvv8zWrVsVgdJFixaRkJDAvHnzWLNmDUuXLi2zf120zd69e+nUqROFhYVkZ2dz5swZrKysgKLvrXHjxujp6aHRaEhPT+f48eOkpKTQrVs3NBoNc+bM4e+//1b6LW+RHBsbqwijdu7cmatXr3Lz5s1KX18dusgIJyenMlOI3N3dMTAw4OzZs/znP//h5MmTREREsHTpUv755x969uzJyZMn8fX15eTJkwQGBvL3338ze/Zs9PX1MTY25vz584SGhiqRR+np6Up5VmdnZ6ZPn87GjRuB/3d2eHt7K39DOp2MadOm8ffff7N69WpatGjBu+++S8uWLTl69CjW1tZMmzaN6OhoTExMmDt3LocOHVIqxoSGhmJtbc3bb7+NVquloKAArVar6JfExsbSv39/5s6dywcffICfn5+itwNFeiHOzs5ERERw5MgR8vLy0NPTw8LCAgsLC6DI2XH8+HEiIyMB6NmzJ0lJSRw6dIidO3cCRdo9xcvapqSkYGlpCVCiXPPEiRM5fPgwhw8fZv/+/YrjShdppEtreZaRgpFVEwsLC7799lu++uorhBAUFBQwdepUpXrQsmXLgKLovPHjx2NlZUXXrl2V6CQoKkXt4uKCra0tr7/+uuLULo6lpSVXrlwBit5Ient7A7Bnzx5FQNjBwaGEc7oy9hav6pSRkUG3bt2wsbFh1KhRNGvWTBnz448/xsrKCg8PDwICAsoUUi4vKk8ikTxf6DT7AEWzT8fdgvaVFdp/5513yhRnLyuyt6xx7t4ufu+71/uoRPIgSIHSZ4zGjRs/tDCxjz/+GDc3N8zNzXFzc1NuRoaGhjRp0oR27doBRQvtsLAwZXG4cOFCIiMjFU2Mnj17PhR7KsORI0do2bIlZmZm7N+/v8xzUlJSlM+6xSgUPdzqjhkbGysPzcV5//33K6ykASiL9uIYGRmxatWqUvvr1q1LfHx8iX13R4ts3LiRXbt2MXv2bMXZERwczM2bN/n000956aWXMDAwICEhgRYtWuDr60t+fj7Lly/HyclJ6acsrQYhBDY2NuVeq4qigR4GOpuKa0foUogiIyNZtGgRP//8M23bti3VVheNdOXKFdzd3dm2bRu+vr5MmDCByZMn4+vrS1RUlBKpVB7+/v4MGjQIPz8/VCoVrVq1KnFcp5NRltaNl5cXO3bsoFq1anTt2pWgoCAKCgqYP3/+fV6RitHpaYwZM+aR9F8Rqamp9OnTh/79+5e6Rs8qUjCyatKiRQsKCgq4fPkyP/30E7Vq1SI+Pp47d+7g7u6Oj48PSUlJHD9+nNTUVC5duoS1tbWiMzN+/Hg++ugjAIYNG8b27dt5+eWXKzW2TpPK3d2drKwsJcqqsvYWZ9asWXTu3Jlp06bx22+/Kfo78fHxSiWlvLw8HB0dS9zLASUq76effsLc3JyNGzfywQcfsHLlykrNQyKRPDsMGTKE2bNn06dPH5KTkxk5cmSJFyY6nT1jY2MmTJhQKaH9wYMH8/XXXyvC7jp0kb3h4eHs3r2b4cOHK1GuxccJDg4usV1c5P1+7qMSyf0iIzueEYq/ldXh7e3N9u3bgdJvdItTfJFfnLFjx3LmzBni4uJYvHhxCcdATEwMc+fOBYoqhly/fh09vaJfp8WLF5OSkkJycjJhYWElFtmPkqVLlxIQEPDYRDsfJ126dCE7O1sp/VlQUMA777xDUFAQNWrUoHr16jRp0oRNmzbRvn17PD09CQkJUaJtysPKyoqMjAzF2aErn/pvFE/LiYqKwszMjBdeeKHCNnen6ACkX8niwOmr/H0tW9mnSyEaM2YMqampmJubV9ivmZkZ8+bN49NPPwWKUph0IZyrV6/+17m0bNkSfX19Pv744zIjWdq1a8fevXuV//Bv3bql6GR4enqycOFC2rdvj7m5OVevXuX48ePY2tr+67jF8fT0JDw8nOzsbG7dusXWrVvx9PQsdc0q0tN41FhbW3P69Gk+//zzxzKeRFIZIiIiWLNmDRqNBjc3N65evcrJkyeJjo4mICAAfX19GjZsSOfOnZU2kZGRuLm5oVar2b17d6XueToepiZVbGwsQ4YMAaBHjx7UqVMHgL1799K3b1+MjIwwNTUt0xHzb1F5Eonk+eFeNPsqK7Svr6/P1KlTlWcrHRVF9t6tDVieVmBV0PaTPD9IZ8dTQGGh4HRG0aLwdEYWhYWlQ26fB/7tOrzxxhukpqbi4+PzhCx8dKhUKrZu3cqmTZto1aoVrVu3xsjISHE4QdGC2cLCAmNjYzz7keldAAAgAElEQVQ9Pfn7778VHZXyqF69Ops3b+a9997D3t4ejUajiH9WRHBwMImJidjZ2fH+++9XyqkQFBTEG2+8gUaj4datbG7nFTB+fRJvhSURvO0I/9zKpbBQlJtCVBH9+vUjOzubmJgYgoODGTRoEE5OTpUua+vv78/atWsZPHhwqWPm5uaEhoYSEBCAnZ0d7du3V1Kz3NzcuHTpkuJUsrOzQ61Wo1LdW6qDo6MjQUFBuLq64ubmxqhRo5TSru7u7tja2jJ16tQK9TQkkueF06dPo6+vj4WFBUIIFi9erIhJnzlzpsL/A3Jychg3bhybN2/m8OHDjB49WtGjKk7xClDFj9+PJlVxex8Wuqg83bwPHz5MRETEQ+tfIpE8XVRWs6+yQvtQFPkWHR3NuXPnKmXD3dHA5UUHVwVtP8lzhBDimfhxcnISzyIFBYXil+QLwmPeH8Jlzk7hMe8P8UvyBVFQUPikTXusyOvwbJF2OVP5LnU/HvP+EGmXM5+0aRKJpIphYmKifL58+bLo1q2b+Oijj4QQQixbtkz07dtX5ObmCiGEOH78uMjKyhJbtmwRPj4+Ij8/X1y4cEHUrl1bbNq0SVy7dk1YWFiI7OxskZmZKWxsbMTMmTOFEEIEBgaKTZs2CSGE6NKli/j111+FEEJMmjRJdOzYUQghxKlTpxRbBgwYILZu3XpP9kZGRorevXsLIYQYN26cmDdvnhBCiN9//10AIiMjQ8TFxQkHBwdx+/ZtkZmZKVq1aiXmz59fwsY7d+6Ili1bin379gkhhMjNzRUpKSkPcJUlEsnTiO5+c+7cOfHll18KIUreZ2bOnKncP4QQIi0tTRQWFj07v/POO+KLL74o1WezZs1ERkaGEEKIJUuWiCZNmojAwEAhhBATJkwQs2fPVsbRaDRljnP3dnGbKnMflTwYenp6wt7eXvk5c+bMkzZJCCEEkCAes49Axg1VcdKv3uLTX49yJ7/oDdOd/EI+/fUobeqbPld55PI6PFtczryjfJc67uQXcjnzjvw+JRJJCXTVi/Ly8jAwMGDYsGFKpaNRo0aRnp6Oo6MjQgjMzc0JDw+nf//+7N69G2tra5o2bUr79u0BqF27NqNHj8bW1pb69esrwsV3M3PmTF577TVmzJihiJNC5TSpKrL37jECAgL4/vvvad++PfXr18fU1BQXFxd8fX2xs7PjxRdfRK1WU6tWrRJtdVF5b7311v+xd+bxMV3//39OFkmIrdailVDZZ5GVRAg+9lRFUGpJpKl9i1bR1lpFya9VuqhdW0LF1iotQUqERhITWdQSBkWJqCUESeb8/sh3bjOySNQScZ+PRx6Pufeec+773mHuue/zfr/e3Lhxg9zcXMaNGydVqpKRkXmxKK1m348//sj333+Pubk59evXL7FiHcDbb79tlB4+ffp0QkJCUKlUVK5cuVSRvQ/yLLX9XhQMVcFkQCGKUCF/HnF3dxfx8fHP2ozHzqHTmYyJOFJo/8J+zWnRpNYzsOjZUNHvg14v0GXe5sqte9StaoFNrSoVuurD6YwsglbEGTk8LMxMWB3iKTs7ZGSeAX///Tfjxo3j8OHD1KhRg3r16rFgwQLs7Oye2DmDg4Px9/enV69ehIaGMn78eJycnP7zuAsWLGDSpElcvny5kJOgNDxOW0ri3r17mJqaYmZmxsGDBxk+fLg0Oc3KysLa2po7d+7QunVrlixZgqur6xO1R0ZGRkamYmBtbW2k55iVlcUbb7zBP//8Q05ODrNmzeKNN95Ap9PRpUsXWrVqRWxsLA0bNmTr1q1YWVlx+PBh3n77bUxMTOjQoQM7duwoUuOxLCgUigQhhPt/vb6yIGt2lHPqVrXAwsz4a7IwM6Fu1acj+lleqMj3Qa8X/Jr6N0Er4hgTcYSgFXH8mvp3hdZmsalVhcldHaXv1MLMhMldHbGp9WSrv8jIyBRGCEFAQAB+fn6kp6eTkJDAnDlzuHz5cqn6Gyop/ReWLVv22JwLEREReHh4sGnTpjL3zcvLe6y2lMS5c+fw8PBArVYzZswYli5dKh0bMmQIGo0GV1dXAgMDZUeHjIyMzBPkk08+wdnZGZVKhUaj4Y8//njWJhXLtm3baN68OWq1GicnpyKrRxoiDDUaDQEBAVhaWrJ582YSExPZu3cv7777rlR2/eTJk4wcOZLU1FRq1KjBxo0bARg8eDDffvstWq0WU1PTp3qNjxPZ2VHOkV8K86nI96G4FB1d5u1nbNmTw8REQWfn+qwO8WRhv+asDvGks3P9Ch3NIiNTXtm7dy/m5uYMGzZM2qdWq/H19UUIwYQJE3BxcUGpVLJ+/XogvwqTr68v3bt3x8nJiejoaPz8/OjVqxcODg70799fmkglJCTQpk0b3Nzc6NSpE5cuXZLOYxCedm3hw5Zd+9DrBdbW/0Z3RUZGEhwcDMCGDRtwcXFBrVYXW2kqPT2drKwsZs2aZVQu+s6dO/Tp0wcnJycCAgLw8vLCEA1qbW3Nu+++i1qt5uDBg/j5+RkdCwsLw9nZmfbt25ORkUFmZibW1tbUqVMHc3NzzM3NsbOzQ6PRcODAAVq2bEnz5s3x9vbm+PHjxd73Zs2aceTIEZKSkjh8+LBRSs3atWvRarX8+eefTJ48uVTf44NMnz6d8PBwo302NjZcvXoVAG9v70caV0ZG5ukgFyh4Ohw8eJBt27aRmJjI0aNHiYqK4pVXXnli5/svCwQ5OTkMGTKEn3/+maSkJI4cOWKUamnAkMai1WrZvHkzQgg++OADVCoV//vf/7hw4YK0oGFra4tGowHAzc0NnU7H9evXuXXrlpQC+tZbbz2yzc8aWbOjnGN4KXSoX/WFSXEoiop8H15U/QoTEwVN6lhX6GuUkXkeSElJwc3NrchjmzZtQqvVkpSUxNWrV/Hw8JAcDYmJiaSkpGBra0t0dDRHjhwhNTWVBg0a4OPjw4EDB/Dy8mL06NFs3bqVOnXqsH79ej788ENWrFiBEKA9f51FK+I4dTmL6T+lUql+s2LtnDlzJr/99hsNGzbk+vXrRbZZt24dffv2xdfXl+PHj3P58mXq1avH119/Tc2aNUlLSyMlJUWa2EF+OWkvL68iyyrfvn0bd3d3Pv/8c2bOnMmMGTP48ssvcXd3p1mzZjRs2JArV66wb98+tFotN2/eZP/+/ZiZmREVFcUHH3wgrZLl5uaWqxKLpam8JSMj82wwRP0aFsMMi3zywtDj59KlS9SuXRsLi/xo8YKV/BISEhg/fjxZWVnUrl2bVatWcePGDQYNGkRcXBwAOp2O119/neTk5CLbv/zyy/j5+aHRaIiJiaFfv34kJydLaZzwb9rJpUuXePPNN7l58ya5ubl88803RpUVb926RW5uLrVq5afwW1hYYG9vD+SnhlarVo34+Hju3LlDZGQkvXr1IisrC09PTy5dukTDhg35+OOPGTt2LKdOnSIoKIjMzEwcHR1xdnbG1dWV3NxctFotly9fliobvv/++0/lu3gSyJEdzwGGl8IWTWrRpI71C/sjV1HvQ0VO0ZF5NhRcGQdYtWoVo0aNKtMYBVeAH0bXrl2LffmUeb4xTMxMTU2pV68ebdq04fDhwwB4enpia2srtfX09KRRo0aYmJig0WjQ6XQcP36clJQUOnTogEajYdasWfz1118AZN3LYfORvyRnb05eflRbcVJiPj4+BAcHs3TpUvLy8opsExERQd++fTExMSEwMJANGzZI19G3b18AXFxcUKlUUh9TU1MCAwOLHM/ExIQ333wTgAEDBhATEyMdM5R4bNKkCVevXsXHxwcfHx8aNmyIvb09YWFh7Nixg3HjxuHu7s4XX3xRbJSLn58fEydOxNPTEzs7O/bv3w/kp9W89957ks2LFi0CSo6WKS2G3wm9Xs+IESNwcHCgQ4cOdO3alcjISAC2b9+Og4MDbm5ujBkzBn9/fwB+//13KUS6efPmcglsGZnHTEWK+jU1NUWj0eDi4kLv3r25c+fOU7fBxsYGpVKJSqWiY8eO/P3339Kxjh07cv78eezs7BgxYgS///47kB9FMXr0aCIjI0lISCAkJIQPP/wQBwcH7t+/T1RUFBqNBm9vbzp06FBsewP3798nPj6ed999t1g7165dS6dOnaRFhoKOeYCXXnqJ7t2707hxY/r168eaNWukMumQ77iJiYnB0tKSSZMmAWBpaUlQUBADBgwgOjqaESNGcPbsWSC/NPpLL73EsWPHqFatGrGxseTl5fHBBx9ga2vL119/TUhISJEi288L5WeJQUbmBcWQovOg974ipOjIvBhs3779WZsg8x9wdnaWXm7LQpUqxr9RhlUxyJ/c5ubmIoTA2dmZgwcPFup/N0dPjsLYs3EvVw8F/Nh3796VPi9evJg//viDX375BTc3NxISEqTVLYDk5GROnjxJhw4dgPyJpa2t7UMdfZaWlqXOR1YoFIU+CyH4559/+O677/j444+BfCfJ1KlTpUlxfHw8OTk5tGnTpsgoF8iP/IiLi2P79u3MmDGDqKgolixZgk6nQ6vVYmZmxrVr16QJdXHjFOTzzz/nhx9+kLYvXrxYqM2mTZvQ6XSkpaVx5coVHB0dCQkJ4e7duwwdOpR9+/Zha2srOXcAwsPD+eqrr/Dx8SErKwtLS8tS3T8ZGZnSUZGifgtWBunfvz+LFy9+Ji/Pe/fupXbt2nzwwQfMnj2bhQsXAvmO34SEBPbv38/evXt58803mTt3Lu7u7pKzHvKdzy+//DIAffr0ITw8nF69erFp0yaGDx9u5Nx/sD0gOc5LwsPDg5CQEHJycujRo0chZwfka1wlJycTFRVFeHg4u3btYtWqVQD06NEDExMTTExMpDQVIQQnTpwgIiKCZcuWkZOTw2uvvQbAyy+/TOXKlYF8h/6YMWN49dVXSUlJoV69elKKTJ06dZ5oas+TRI7skJF5xsj6FTJPk4yMDAIDA/Hw8MDDw4MDBw4AkJmZSceOHXF2diY0NFTSW5g/f740IQgLC6Ndu3YA7Nmzh/79+wPGUSAff/wx9vb2tGrVin79+hXSDJApf7Rr14579+6xZMkSad/Ro0fZv38/vr6+rF+/nry8PDIyMti3bx+enp6lHtve3p6MjAzJ2ZGTk0NqaioAluYmmJsa/85ZmJlQu049jh07hl6vZ/PmzdKx9PR0vLy8mDlzJnXq1OH8+fNGfSMiIpg+fTo6nQ6dTsfFixe5ePEiZ8+excfHhx9//BGAtLQ0kpOTS2W/Xq+XHEFr166lVatW0jGDfsmJEyfIzc0lMDCQzZs3s3fvXv766y9p8mmY4JYU5QLQs2dP4N+caYCoqCiGDh0qpb+89NJLDx2nIGFhYVLetlarpUGDBoXaxMTE0Lt3b0xMTKhfvz5t27YF4M8//6RJkyZS9E5BZ4ePjw/jx49n4cKFXL9+vVyl58jIVAQqatSvr68vp06d4tq1a/To0QOVSkWLFi04evQokK81NHDgQFq2bEmzZs0k4ebo6Ghat25Nt27dsLe3Z9iwYej1elasWMG4ceOk8ZcuXUpYWFiJNrRu3ZpTp05x9+5dBg8ejFKpxN3dHSEEM2bMIDAwkEmTJvHOO+9w7949QkNDGTRoEGZmZty8eZNr165Rr149du/ezaJFizh58iTm5ub4+/tjYWFBTk4OW7duZdCgQfzzzz+oVCp0Oh1VqlRh6tSpLFiwADMzM/R6PR9++CGff/459+/fl2zbt28fDRs2JDg4mO+++67Ia1AqlYSFhbFr1y4pVRL+XXTIysqS5nFr1qwhKyuLGzdukJ2dTaNGjdi1axeNGjXC3NzcqMJKs2bNGD58OM7Ozhw5coTs7Gyys7MZMWIE7u5PtYjKY0N2dsjIlAMqaoqOzLOhoAq3RqNh6tSp0rGxY8cSFhbG4cOH2bhxI6GhoQDMmDGDVq1akZqaSkBAAOfOnQPyJyaGkPr4+HiysrLIyclh//79hUQiDWMmJSWxY8cOKmI58IqIQqFg8+bNREVF0bRpU5ydnZk8eTL169cnICAAlUqFWq2mXbt2zJs3j/r165d67EqVKhEZGcnEiRNRq9VoNBpJK8LawpyA5o2kCb25aX5U2/xP5+Lv74+3t7fRqtiECRNQKpW4uLjg7e2NWq02Ote6desICAgw2hcQEMC6desYMWIEGRkZODk58dFHH+Hs7FyqsrRVqlQhLi4OFxcX9uzZY/R/ydLSksWLF7N161acnJzQarX8+uuvWFhYkJGRIYnQGSJgDFEuBsdDcnIyO3fulMYzTFINUTHF8bBxngaTJk1i2bJlZGdn4+Pjw59//vlUzy8jU9GpiML8ubm57NixA6VSybRp02jevDlHjx5l9uzZDBo0SGp39OhR9uzZw8GDB5k5c6YUkRYXF8eiRYtIS0sjPT2dTZs20adPH37++WdycnIAWLlyJSEhISXasW3bNpRKJV999RUKhYLIyEjmzJlDUFAQd+/e5dy5c2RnZ7Nt2zYaNGjAxIkTqVy5MnFxcdjZ2fHdd9/x9ttvU7duXRo1asSUKVMAOHv2LBYWFixbtozjx49z/PhxVq5ciVar5datWyQmJhISEsJ3332HjY0N8fHxrFu3jtq1a0v2nz17lnr16vHOO+8QGhpKYmKike1ZWVlER0dL21qtlsaNG5d4vTdu3KBu3bqYm5uzd+9eKYUF8quCGRYjDA59wyLF559/jkajwdnZme3bt/PRRx+VeJ5yixCiQvy5ubkJGRkZGRkhqlSpYrS9cuVKMXLkSCGEEHXq1BFqtVr6a9Cggbh165ZQq9UiPT1d6lOzZk2RkZEh7t+/L2xtbcWNGzdE+/btxZgxY0RsbKxo3769SE1NFUII0bhxY5GRkSE+//xzMXXqVGmMsLAwMX/+/KdwxTLPK3l5epF+5ZY4mH5VpF+5JfLy9E/kPLm5uSI7O1sIIcSpU6eEjY2NuHfv3kP7Pfh/yUCbNm3E4cOHxbRp08Snn34qmjZtKmJjY4UQQty/f1+kpKQYtRNCiHv37pWqXUZGhmjcuLEQQohvvvlGBAYGipycHCGEEJmZmSWOU5Bp06YV+v9n+L9a8Np+/PFH0a1bN5GXlyf+/vtvUbNmTbFhwwZx584d0ahRI3HmzBkhhBBvvfWW6Natm3QPDQQGBorNmzc/9F7KyMiUjaf1+/ikMTExkeYco0aNEvfu3RMajcZoztGoUSNx48YNMW3aNDFlyhRp/8CBA8XmzZvF3r17ha+vr7R/+fLlYuzYsUIIIUJDQ8WmTZvEsWPHhLu7e5E2NG7cWLi4uAi1Wi0GDhwo/vnnH9GjRw+xe/duER8fL1q2bCmsrKxEs2bNhKurqxgwYIAQQogjR44ICwsL4ejoKJycnMSgQYOk83bo0EEA4syZM+LMmTPCxsZGHDlyRPj6+oo6deoIc3Nz0ahRI6FWq4WlpaX46KOPhBBC/O9//xO7du0S9vb2onr16uL999+Xfo9XrVolnJ2dhUajEa1atRKnT582uo7r12+INu07ildtmwpHZ6Xw9vaWnh1BQUFiw4YNUlvDmBkZGaJFixbCxcVFBAcHCwcHB8lme3t70b9/f+Hg4CB69uwpbt++LV23r6+vUKlUwsnJSSxZsqSsX3uRAPHiKfsI5LhDGRkZmRcIvV7PoUOHSp1jb25ujq2tLatWrcLb2xuVSsXevXs5deoUjo6OT9hamYrO06rKdOfOHdq2bUtOTg5CCL7++msqVar0WMY2MTEhMjKSMWPGcOPGDXJzcxk3bhzOzs5G7QxRLg9rV5DQ0FBOnDiBSqXC3Nycd955h1GjRpV5nJIIDAxk9+7dODk58corr+Dq6kr16tWxsrLi66+/pnPnzlSpUsWoNO6CBQvYu3cvJiYmODs706VLl0c6t4zM08TU1BSlUiltb9myBZ1OR3h4ONu2bSux78KFC/nmm29wdXVlxYoVdOvWjatXrzJ58uRSaTE8ChWlal1BzY7SUFAbqeB2cftDQ0OZPXs2Dg4ODB48uNhxDZodD+Lm5kZsbCy+vr589dVXJCYmSpGpGo2G+vXrs2/fPqm6iuGYt7c3HTt2xMbGRkpT0Wg07Nu3j3fffRc7OzuGDh1a6HyhoaH8/PPPqNVqPvvsM7p27cqnn34KQFBQEEFBQUXar9cLDpy7TV6HidQroPHn6pwfbWlInTSQlZUF5FeXKUo3S6fTYWZmZqTrZMBwHRUB2dkhIyMj8wLRsWNHFi1axIQJE4D8EEiNRkPr1q1Zu3YtH330ETt27OCff/6R+vj6+hIeHs6KFStQKpWMHz8eNze3QhMPHx8fhg4dyuTJk8nNzWXbtm0MGTLkqV6fjDF6vUCXebvClewuK1WrVn2ktCrDZPFBDGHEBXOYi5oYFgw3huInkAXb1a5dW9LsMDMz47PPPuOzzz4r1TgFmT59eqF9hnHh32szMTEhPDwca2trMjMz8fT0lF4I27Zty59//okQgpEjR0rXa6gKIyPzPFHUS3fB/xMl8fXXXxMVFUWjRo04dOgQQJle4GWM8fX1Zc2aNUyZMoXo6Ghq165NtWrVANi6dSuTJ0/m9u3bREdHM3fuXE6cOEFcXBxnzpyhcePGrF+/XppfeHl5cf78eRITEyXtj7LY0K5dO06cOMG5c+ewt7cvlDryKHTq1IkpU6bQv39/rK2tuXDhAubm5tStW5eAgACmTp1KTk4Oa9euLfWYxVXocahf9bl3iD1JZGeHjIyMzAvEwoULGTlyJCqVitzcXFq3bs3ixYuZNm0a/fr1w9nZGW9vb1599VWpj6+vL5988gktW7akSpUqWFpaGtV9N+Dh4UH37t1RqVTUq1cPpVJZKl0EmSeDXi/4NfXvQpWeZAFkmQfx9/fn+vXr3L9/nylTpki6LEuXLmX16tXcv3+f5s2bF7lKKSNTUZg+fTrW1ta89957QH6Z6m3btjF37lxOnz5Nly5dGDBgAEuXLiUjIwONRsPo0aNJTk5mwYIFQP7/mbS0ND7//PNneSnlnunTpxMSEoJKpaJy5cqsXr1aOqZSqWjbti1Xr15lypQpNGjQgBMnTuDh4cGoUaM4deoUbdu2NdJo6tOnD1qtlpo1axY6l14vyNUL4nXXsBOWktN/xIgRDB8+HKVSiZmZGatWrTKqKvZf6NixI8eOHaNly5ZAfsWXH374gbp161KpUiXatm1LjRo1Sl0JDB5/hR4bGxsjcdKKikIUV9D+OcPd3V3IYngyMjIyz5asrCysra25c+cOrVu3ZsmSJbi6uj5rs15ITmdkEbQizmhyZGFmwuoQT3kVqATkaBgZmYpJwTQWW1tbNm/eTHR0tJTGUpyzw8bGRhKUrF27tlGfrKws1Go1f/75J+bm5nh7e/Ptt98apcvIlJ4HvwMDBe95Ufj7+xMWFkb79u2N9pdHp79er8fV1ZUNGzbQrFmzUverCM90hUKRIIR4qmVd5MgOGRkZmeeI8v4iNmTIENLS0rh79y5BQUGyo+MZ8rhXgV4EyuPEWEZG5vFQVu2I0mBtbU27du3Ytm0bjo6O5OTkyI6Op8j169fx9PRErVYXcnRA+Uv9SEtLw9/fn4CAgDI5OuDfCj0PPp+e5wo9TwPZ2SEjIyPznPA8vIiVJf9U5slSt6oFFmYmhVaB6lZ9PGG6FZHyNjGWkXlUtmzZQkBAAMeOHcPBweGJny8zM1N62UxKSsLMzAwzMzNpOzg4mNjYWHQ6Hf7+/iWGzxeMoniamJmZodf/+3t59+7dUvUrrUBmReNJLL4UpTUE4Ofnh5+fX6H9NWrU4MSJE8WOV96c/k5OTpw+ffqR+pqYKOjsXB+H+lXL7YJXecTkWRsgIyMjU5755JNPcHZ2RqVSodFo+OOPP8rUf9WqVVKNeMifFKWlpT2SLQ++iMVO7cac7cfQZd6WzjVq1KgSx4iOjiY2NvaRzi/zfGFYBbIwy3/Uy6tAD6ekibGMzPNEREQErVq1IiIiosjjubm5j/V8tWrVQqvVotVqMTc3Z86cOWRnZ5OdnY2dnd0Tq+zwOK/DxsZGEqdMTEzkzJkzpepnEMhcu3Yt/fr1e2z2lGcMiy9BK+IYE3GEoBVx/Jr6N3p9+ZJHMDj9C/I8O/0NFXpaNKlFkzrWsqOjFMjODhkZGZliOHjwINu2bZMUvqOionjllVdK3T8vL6+Qs2PZsmU4OTk9kj2P40VMdna8OBhWgVaHeLKwX3NWh3iWqyig8khFmxjLvJhkZWURExPD8uXLWbdunbQ/OjoaX19funfvjpOTE3q9nhEjRuDg4ECHDh3o2rUrkZGRQP6L/9WrVwGIj4+XVtV///13NBoNGo2G5s2bc+vWrWLtCA4OZtiwYXh5eWFlZUV6ejpBQUGkp6fj6+tLamoqo0ePplKlSiiVShYtWsTt27f566+/WLBgAQ4ODlSuXBl7e3sCAgKkKmF+fn6MGzcOd3d3vvjii8d23wIDA7l27RrOzs58+eWX2NnZlbpvnz598PHxKVIgsyJSXBScYfGlvCA7/WXkNBYZGRmZYrh06RK1a9eW1LkLhtTu3r2b9957j9zcXDw8PPjmm2+wsLDAxsaGN998k127djF+/Hji4+Pp378/VlZWHDx4kC5duhAeHo67uzvW1taMHTuWbdu2YWVlxdatW6lXrx7p6en079+f27dv88Ybb7BgwQKysrLKlJbw888/M2vWLO7fv0+tWrVYs2YN2dnZLF68GFNTU3744QcWLVpUZFUVmYqDYRVITsEoHXJOtExFYOvWrXTu3Bk7Oztq1apFQkICbm5uQH7EQkpKCra2tkRGRqLT6UhLS+PKlSs4OjoSEhJS4tjh4eF89dVX+Pj4kJWVhaWlZaE2OTk5fPbZZ9y9e5dKlSpx4cIFqlevzpAhQ5g+fTqjR48mPDycnj17olQq6dy5M2FhYajVaul5WK9ePSpVqsTQoUO5desWDRo0YMvQ1qkAACAASURBVMaMGVLVk/v375e5nHRRpaQLpkdYWVmxc+fOIvsWLFFbVEpFTEwMYWFhZbLneaa8pYcUh5z6ISNHdsjIyEhYWxd+QC1evJjvvvsOyF+lMaz6lAY/P7+HTkamT59Ow4YN0Wg0uLi48NNPP5XYfvbs2dLn69ev8/XXX5fanrLSsWNHzp8/j52dHSNGjOD3338H8vN4g4ODWb9+PcnJyeTm5vLNN99I/WrVqkViYiIDBgzA3d2dNWvWoNVqsbKyMhr/9u3btGjRgqSkJFq3bs3SpUsBGDt2LGPHjiU5OZlGjRpJ7R9codDn3OfCytH07NAKjUbD1KlTpbatWrXi0KFDHDlyhL59+zJv3jxsbGwYNmwYYWFhaLVa2dEhI/MAcjSMTEUgIiKCvn37AtC3b1+jVBZPT09sbW2B/Bf03r17Y2JiQv369Wnbtu1Dx/bx8WH8+PEsXLiQ69evS7ocBTE3N2f8+PF0796dTz/9FFNTU4QQxMbGMnLkSNLT0xk6dCiXLl1i6NCh9O3bl/Xr1/PSSy+xbt06KleuzP/+9z+uX79O37590el0BAUFGaXCvPnmm0bn1OsFpzOyOHQ6k9MZWU8tneL69evY2dlhZWVVpEBmReV5ioKTUz9ebGRnh4yMTIkMGzaMQYMGPdFzGF6+N2zYQEhIiJFA2IP8V2eHEKLE8QtibW1NQkICS5YsoU6dOrz55pusWrWK48ePY2trK4W4PmwSVhyVKlXC398fADc3N2nl6ODBg/Tu3RuAt956S2r/4ItYZSsrTqWlSHnSM2fOlNr+9ddfdOrUCaVSyfz580lNTS2VTTIyLzryxFjmeebatWvs2bOH0NBQbGxsmD9/Pj/++CNC5L/8V6lSuiilgmKdBYU6J02axLJly8jOzsbHx4c///yzxHEKnq9GjRps376dpk2botVq6dChAwDdu3fn119/5dq1ayQkJGBpaSlFVJqamhapy1Fw3GepH2EQyNywYcMTP1d5Qk4PkXlekJ0dMjJlwNTUVIpA6N27N3fu3Cn1C7dOp8PFxeUpWPl4mT59OuHh4Ub79uzZQ48ePaTtXbt2ERAQ8J/P5ejoiJmZGVevXiUiIgKlUomLiwsTJ04E8idZ2dnZaDQa+vfvz6RJk0hPT0ej0TBhwgQA5s+fj4eHByqVimnTpgH5997e3p5Bgwbh4uLC+fPnS22Tqakpfn5+zJgxgy+//JKNGzc+tE9pJ5Pm5uYoFArpPKURWiv4IqZQUOyL2OjRoxk1ahTJycl8++23pVaVl5GRkZF5fomMjGTgwIGcPXsWnU7H+fPnsbW1Zf/+/YXa+vj4sHHjRvR6PZcvXyY6Olo6ZmNjQ0JCAoDRcy89PR2lUsnEiRPx8PB4qLPDgEKhwNbWll9++QXIX3hwdHTk22+/xdLSEg8PD4YNG4a/vz8KhYJq1apRs2ZNjhw5AsD3339PmzZtihz7edGPqEjIUXAyzwuys0NGpgwYarSnpKRQqVIlFi9e/MRTKcojbdu25c8//yQjIwOAlStXPjTPtzT88ccfmJiYkJOTw8SJE9mzZw9arZbDhw+zZcsW5s6dK30Ha9asYe7cudIK0fz589m5cycnT54kLi4OrVZLQkKCFHFx8uRJRowYQWpqKo0bNy6VPcePH+fkyZPStlarpXHjxtjb26PT6Th16hRQ8iSsatWqJQq4FUWLFi2kyWVBcbmycOPGDRo2bAjA6tWr/5M9MjIyMjLPBxEREYUWHwIDA4usyhIYGEijRo1wcnJiwIABuLq6Ur16dQCmTZvG2LFjcXd3x9TUVOqzYMECXFxcUKlUmJub06VLl1LbtmbNGn788UdOnTqFs7MzZmZmvPrqq6hUKuLi4tiwYYNRZOTq1atZuHAh8fHxaLVao1TNgshVlJ4NchSczPOALFAqI/OI+Pr6cvToUaPogg4dOjBv3jzef/99duzYgUKh4KOPPiqU1pCXl8ekSZOIjo7m3r17jBw5kqFDhxIdHc20adOoUaMGycnJ9OnTB6VSyRdffEF2djZbtmyhbt26qFQqTpw4gbm5OTdv3kStVkvbTwOFQsHAgQP54YcfGDx4MAcPHpR0PR6Fzz//nB9++IGqVauyfv16Sfm9Tp06APTv3599+/YZRZMUxc6dO9m5cyfNmzcH8sXITp48yauvvkrjxo1p0aJFmezKyspi9OjRUl7ya6+9xpIlS7C0tGTlypX07t1bEigdNmxYkWMY1OgNAqWlYcGCBQwYMIBPPvmEzp07S5PPsjB9+nR69+5NzZo1adeunVRC7/XXX6dXr15s3bpVFiiVkZGRqWDs3bu30L4xY8ZInwsKa5qYmBAeHo61tTWZmZl4enqiVCqB/DnOiRMnCo21aNGih9pw//79QvsM4qAG7auCfPbZZ0bbhpTO2rVrk5ycXKh9wQgUoEzi3TIyMi8WsrNDRuYRyM3NZceOHXTu3JkuXbqQkpKvmwD54Z5arZakpCSuXr2Kh4cHrVu3Nuq/fPlyqlevzuHDh7l37x4+Pj507NgRgKSkJI4dO8ZLL71EkyZNCA0NJS4uji+++IJFixaxYMEC/Pz8+OWXX+jRowfr1q2jZ8+eT83RYWDw4MG8/vrrWFpa0rt37yJFykpLWFgY7733nrS9devWRxpHCMHkyZMZOnSo0X6dTlfq1JKCuLm5FVumtX379lJ47YPnKkhgYCCBgYHSdsFJWkFl+F69etGrVy8AGjZsyKFDh1AoFKxbt47jx48XacODyvLBwcEEBwcD8MYbb/DGG28U6mNnZ8fRo0eLHE9GRkZG5sXC39+f69evc//+faZMmUL9+vWftUllRq6iJCMjUxyys0NGpgwY9CIgf9Xj7bff5uLFi0ZtYmJi6NevH6amptSrV482bdpw+PBhVCqV1Gbnzp0cPXpUqmxy48YNTp48SaVKlfDw8ODll18GoGnTppITRKlUSis2oaGhzJs3jx49erBy5UqpisfTpEGDBjRo0IBZs2YRFRX1WMf29PRkzJgxXL16lZo1axIREcHo0aOBfJ2LnJwczM3NC6VkdOrUiSlTptC/f3+sra25cOFCsU4gvV6gy7xdLkuRJSQkMGrUKIQQ1KhRgxUrVjxrk2RkZGRkygGP+9n1YJTE0zrv40QuLyojI1McsrNDRqYMGPQi/itCCBYtWkSnTp2M9kdHR0sK5JAfYmrYNjExkQQsfXx80Ol0REdHk5eX99iET+/cuWNU6nT8+PEltu/fvz8ZGRk4OjoWeTw3N1eyPzQ0lGHDhuHu7v5QO15++WXmzp1L27ZtEULQrVs3KUphyJAhqFQqXF1dWbNmDT4+Pri4uNClSxfmz5/PsWPHaNmyJZBfTeWHH34wyjeGf5XbH1wFKi/iWr6+viQlJT1rM2RkZGRkyhHP6tlV3p+Z8K9+RJM61s/aFBkZmXKE7OyQkfmPPBhd4Ovry7fffktQUBDXrl1j3759zJ8/36gaRqdOnfjmm29o164d5ubmnDhxQhKTLC2DBg3irbfeYsqUKY/tWh5WknXVqlVG2zExMbzzzjtFtr137x5nz57l1VdfBWDZsmVFtps+fXqR+/v160e/fv0K7f/000/59NNPpe21a9caHR87dixjx44t1C8lJUX6XJxyu0P9qvJESUbmOeDvv/9m3LhxHD58mBo1alCvXj0WLFgglYN+EgQHB+Pv70+vXr0IDQ1l/PjxODk5PfJ4Op0OR0dH7O3tpX1xcXFUqlSpVP2tra0LpbLJVGye1bNLfmbKyMg8r8jVWGRk/iO1atWSogsmTJhAQEAAKpUKtVpNu3btmDdvXqEc2NDQUJycnHB1dcXFxYWhQ4eWquxoQfr3788///xTpEPgQfR6wemMLA6dzuR0RtZjqT3v5ubG0aNHGTBgQKFj8fHxaDQaRowY8Ujimk8aWbldRub5RQhBQEAAfn5+pKenk5CQwJw5c7h8+XKp+pf1t7Yoli1b9p8cHQYM1aQMf6V1dJQ3tmzZgkKhMCpDWrDc+qpVqxg1atR/OkdoaChpaWmlbh8XF4efnx/NmjXD1dWVbt26FSl2+biJj483EgR9nDyrZ5f8zJSRkXlekZ0dMjJloLhVtLVr15KSksL8+fNRKBTMnz+flJQUkpOTpUosNjY2UnSBiYkJs2fPJjk5mZSUFPbu3Uv16tXx8/Nj27Zt0rjR0dFS2seDx2JiYujVqxc1atQo0WZD+GnQijjGRBwhaEUcv6b+/Z8dHoayrgXTbgy4u7tz7NgxJk+e/J/O8aQwKLcXRFZul5F5Pti7dy/m5uZGFZDUajW+vr4IIZgwYQIuLi4olUrWr18P5P+W+vr60r17d5ycnIiOjsbPz49evXrh4OBA//79ESL/NzEhIYE2bdrg5uZGp06duHTpUiEb/Pz8iI+PB/IjLAxERkZKIsEbNmzAxcUFtVpdSKS6JIob78yZM7Rs2RKlUslHH30ktdHr9YwYMQIHBwc6dOhA165dJT2o0lzL4yAiIoJWrVoVWd70cZCXl1cmB9Ply5fp06cPs2fP5uTJkyQmJjJ58mTS09MLtX0czq+CuLu7s3Dhwsc6poFn9eySn5kyMmXH1NQUjUaDi4sLr7/+OtevX3+s4xd0KD9IwWeUga1btxpVNZwzZw6vvfaatP3zzz/TvXv3x2ZfwWfZs0R2dsjI/B9PIvrhSTF69GgmTZpUqhSW4sJPdZm3n7SZ5RaDcrth8iYrt8u8CGRmZqLRaNBoNNSvX5+GDRtK20WViiyvpKSk4ObmVuSxTZs2SdWwoqKimDBhgvSCn5iYyBdffCGV0zxy5AgLFiwgLS2N06dPc+DAAXJychg9ejSRkZEkJCQQEhLChx9++Eh2zpw5k99++42kpCR++umnItsYypZrNBpGjhxZ4nhjx45l+PDhJCcnSyLWhmvW6XSkpaXx/fffSyWuH+e1lERWVhYxMTEsX76cdevWFdvu/PnzUqTFjBkzpP0//PADnp6eaDQahg4dSl5eHpA/UX733XdRq9UcPHjQaPL+66+/4urqilqtpn379oXO9eWXXxIUFIS3t7e0r1WrVtJE31AS3MvLi/fff5/p06cTHh4utXVxcUGn00mpRu+88w7Ozs507NiR7OxsIP9lYuLEiXh6emJnZ8f+/fuBfMeav78/ANeuXaNHjx6oVCpatGghVcKaPn06ISEh+Pn50aRJk1I7R57Vs0t+ZsqUR9q2bctvv/1mtG/BggUMHz6cn376iblz5z4VO3Q6XaGUavhX52/Tpk0cOXKE1157DVdXV/r06VPqSETD+MU5NU6cOMHVq1dLNY63tzeHDh2Stg8ePEi1atW4cuUKALGxsUa/mRUFWbNDRobnQ3yrIKWpc2+gpPDTFzXXVlZul3kRqVWrliSwPH36dKytrY1KPlcEiquGVa1aNTw9PbG1tZXaenp6SoLMGo0GnU5HjRo1SElJoUOHDkB+REFBx0JZ8PHxITg4mD59+tCzZ88i2xjSWErDgQMH2LhxIwADBw5k4sSJ0jX37t0bExMT6tevT9u2bQE4fvz4Y7uWkti6dSudO3fGzs6OWrVqkZCQUKQzKi4ujpSUFCpXroyHhwfdunWjSpUqrF+/ngMHDmBubs6IESNYs2YNgwYN4vbt23h5efH//t//MxonIyODd955h3379mFra8u1a9cKnSs1NZWgoKAS7f7rr7+IjY3F1NS0WO0ogJMnTxIREcHSpUvp06cPGzdulNI3c3NziYuLY/v27cyYMaNQZbJp06bRvHlztmzZwp49exg0aJD0ff/555/s3buXW7duYW9vz/Dhwx9aQv5ZPbvkZ6ZMeaRfv36sW7fOSOx/3bp1zJs3j9atWz/WKIWSMDg73nrrrULH7t69S7du3SRbvv76a5YtWyb9Ljdt2pQVK1ZQtWpV/ve//+Hl5cXevXu5fv06y5cvx9fXl7/++oszZ87g6uoK5DtzH3RKZGdnM3jwYJKSknBwcJCcsgWpU6cO1apV49SpU7z22mtcuHCBwMBAYmNj6dGjB7GxscyaNYuMjAyGDRvGuXPngHwHko+PD3FxcYwdO5a7d+9iZWXFypUrsbe3JzU1lcGDB3P//n30ej0bN26kWbNmRueeP38+P/74I4CTQqGYIYSYplAoZgLXhBALABQKxSfAFSHEF//l+3gQObJDRoaKHf0gh58WjUG5vUWTWjSpYy1P2mReSHbv3k3z5s1RKpWEhIRw715+Dr6NjQ2TJ09Go9Hg7u5OYmIinTp1omnTpixevPiZ2uzs7ExCQkKZ+1WpYrwKXTAFz9TUlNzcXIQQODs7SxoaycnJ7Ny5s8RxFYp/fzsKClEvXryYWbNmcf78edzc3MjMzCyVncWN9+Cxh/Eo1/IoRERE0LdvXwD69u1bbCpLhw4dqFWrFlZWVvTs2ZOYmBh2795NQkICHh4eaDQadu/ezenTp4H87yQwMLDQOIcOHaJ169aS4+qll156qI1eXl44OjoaiVf37t27UKWuorC1tZVKzru5uaHT6aRjBifWg/sNxMTEMHDgQADatWtHZmYmN2/eBKBbt25YWFhQu3Zt6tatW+qV3mf17JKfmTLljV69evHLL79IkYk6nY6LFy/i6+trpBMUHBzMmDFj8Pb2pkmTJlKaH+SL3iuVStRqNZMmTQLyI+46d+6Mm5sbvr6+khZRceNMmjSJ/fv3o9Fo+Pzzz41sXLt2LS1atCAjI0NyeCxcuJBFixYxfvx4UlNTUalUtG/fnry8PCIiIsjNzeX+/fuS/bVq1aJRo0Y4Ojpy48YNunXrxp07d6RzzJs3jyZNmrB7925+/vlnZsyYQXx8PO+//z4eHh54eHhw4MABIN8JHxsby/Hjx2nWrBktWrQgNjaW3NxckpKS8PDwYOzYsYSFhXH48GE2btxIaGgoAA4ODuzfv58jR44wc+ZMPvjgAyD/WTd27Fi0Wi3x8fFGVR0Bdu7cycmTJ4mLiwNIA9wUCkVrYAUwCEChUJgAfYEfHvGfQ7HIzg4ZGSq2+JYcfiojI1MUd+/eJTg4mPXr15OcnExubi7ffPONdPzVV19Fq9Xi6+tLcHAwkZGRHDp0iGnTpj1Dq/NfGu/du8eSJUukfUePHmX//v34+vqyfv168vLyyMjIYN++fXh6epZ6bHt7ezIyMoxSQVJTU0vsU69ePY4dO4Zer2fz5s3S/vT0dLy8vJg5cyZ16tTh/PnzpbKhuPF8fHykNJE1a9YY7d+4cSN6vZ7Lly8THR39yNdSVq5du8aePXsIDQ3FxsZGWr0z6J8U5EFHjUKhQAhBUFCQ5JA5fvy4FGVhaWlZKmdEUTg7O5OYmCht//HHH3z88cfcuHFD2lfQ+WVmZmZUjaygk6kop9iDxx7cXxpKGldGRubhvPTSS3h6erJjxw4gP6qjT58+RTqFL126RExMDNu2bZOcGjt27GDr1q388ccfJCUl8f777wMwZMgQFi1aREJCAuHh4YwYMaLEcebOnYuvry9arZawsDCpbXZ2NhMnTmTz5s1cvnyZDh06cOPGDa5fv06bNm0AuHnzJjVr1uT333/HxMSEZcuWkZiYyPbt20lLS0MIQU5ODidOnODgwYNSBcivv/5aOk/16tXx8vLi7bffZty4cahUKqpXr85bb71VyGHh7e1NbGwssbGxtGzZEk9PT/744w+OHDmCg4MDlpaWREVFMWrUKDQaDd27d+fmzZtkZWVx48YNevfujYuLC2FhYdLzpGXLlsyePZtPP/2Us2fPYmVlZXTvd+7cyc6dO2nevDmAE+AANBNC6IBMhULRHOgIHBFClG5VoAyUW2eHQqHorFAojisUilMKhWLSs7ZHpmJTkaMfDOGnq0M8WdivOatDPMtteo6MjMzTIy8vD1tbW6lca1BQEPv27ZOOG1ahlEolXl5eVK1alTp16mBhYfHYhdbKgkKhYPPmzURFRdG0aVOcnZ2ZPHky9evXL1U1rJKoVKkSkZGRTJw4EbVajUajITY2tsQ+c+fOxd/fH29vb6M0kQkTJqBUKnFxccHb2xu1Wl0qG4ob74svvuCrr75CqVRy4cIFaX9gYCCNGjXCycmJAQMG4OrqSvXq1R/pWspKZGQkAwcO5OzZs+h0Os6fP4+tra2kX1GQXbt2ce3aNbKzs9myZQs+Pj60b9+eyMhIKWf82rVrnD17tsRztmjRgn379nHmzBmpz4OMHDmSVatWGV1vwZXQB7GxsZGcI4mJidLY/xVfX1/JMRUdHU3t2rWpVq3aYxlbRkbm31QWyHd2FFehsEePHpiYmODk5CRFUUVFRTF48GAqV64M5DtPsrKyiI2NpXfv3pKOUEFh56LGKQ4rKysGDhzItGnTEELw1VdfFWrTqlUrzMzyVSWEECxbtgyVSkWfPn3Iy8vj8uXLUprLqVOniI+PRwhBTEyM0T2A/IUAg3P71q1bzJs3r5DDwhDZYXB2VK1albt37xIdHS2lxuj1eg4dOiQ5oS9cuIC1tTVTpkyhbdu2pKSk8PPPP0tO4bfeeouffvoJKysrunbtyp49e4yuUQjB5MmTDSl8aUKI14QQy//v8DIgGBhMfqTHY6dcanYoFApT4CugA/AXcFihUPwkhCh9zTEZmTJgiH54ULOjokQ/GMJPX1SNDhkZmbJjWHk2MTExWoU2MTF55qvQDRo0MOT/FmL+/PnMnz/faJ+fnx9+fn7Fbn/55ZfSZ41GY+T0MbBq1SrpsyF6AvJDqXv16lWo/aZNm0q8hoIVugpS3Hi2trbSRBZg1qxZQP73ER4ejrW1NZmZmXh6eqJUKku8lsdFRESEpB1iIDAwsMj9np6eBAYG8tdffzFgwACp0tisWbPo2LEjer0ec3NzvvrqKxo3blzsOevUqcOSJUvo2bMner2eunXrsmvXLqM29evXZ/369UycOJELFy5Qt25dateuzdSpU4scMzAwkO+++w5nZ2e8vLwkB+B/xSBEqlKpqFy5MqtXr34s48rIyOTzxhtvEBYWRmJiInfu3ClWvLrgM6yoyDMDer2eGjVqFKulVNpxDDg7O/P777+zcOFCevTowYgRI6hZs6bkED537pwU5XHlyhUsLCxISEjgxo0b1K9fn7t373Lz5k1MTU0xMTFh9erV6PV6o+gVhUJB69atWbduHQqFgpSUFHJzc1m5ciU+Pj5G9jg6OnLx4kViYmKk6BCNRsPixYuZN28eAB07dmTRokVMmDABAK1Wi0aj4caNGzRs2BAwfh6ePn2aJk2aMGbMGM6dO8fRo0dp166ddLxTp05MmTKF/v37G+xtCOQIIa4Am4GZgDlQWPTkcSCEKHd/QEvgtwLbk4HJJfVxc3MTMjL/hbw8vUi/ckscTL8q0q/cEnl5+mdtkswLQpUqVaTPv/zyi2jWrJnQ6XTP0KKSee+994STk5N47733jPbv3btXHDhwQNoOCgoSGzZseNrmSaxcuVJcuHBB2n777bdFamqqEEKIxo0bi4yMjFKPVdb25Z1p06aJjz/+WLzyyivi5MmTQoj872vBggVCCOPrXblypRg5cqTU90nfC/m3uOy0adNGqNVq4ejoKFauXPmszZGRkZF5avTp00eo1WoxdepUaV/B59aDcxHDnGvHjh2iZcuW4vbt20IIITIzM4UQQrRs2VL8+OOPQggh9Hq90Gq1JY4THx8vWrduXciuKlWqiDt37oimTZuKbdu2CX9/f/Hdd9+JZcuWCaVSKRo1aiRsbW3FtWvXhBBCNG3aVPTp00cIIcTmzZsFIM6cOSP27NkjANG0aVPx/vvvCzMzMxEeHi7OnDkjzM3NxZw5c8SdO3eEl5eXqFKliggICBAvvfSSGDNmjGTLkSNHpM9du3YVPj4+RvcKEBcvXhRCCJGRkSH69OkjlEqlcHR0FEOHDhVCCBEbGyuaNWsmNBqN+PDDD0Xjxo2FEELMmTNHODk5CbVaLTp16iTdx4Jz2wULFggXFxcB3AEOAk3Fv+/5i4G54jH7Ewx/5TKyA2gIFExu/Qvweka2yLwgyNEPMs+a3bt3M2bMGH777bcSVzafBLm5uVIo5cNYsmQJ165dK5RPHx0djbW19RMpXZaXl1fm/P1Vq1bh4uJCgwYNAFi2bNljt+t5xtLSkpUrV9K7d29yc3Px8PBg2LBhz9Sm560yVnmhYKTJ40SvF+gyb8sVOGRkZMot/fr1IyAgoMTS10XRuXNntFot7u7uVKpUia5duzJ79mzWrFnD8OHDmTVrFjk5OfTt27fENESVSoWpqSlqtZrg4GBJtyMrKwuAbdu2MW7cONLT05kzZw4qlYpdu3axY8cO4uPjqVmzJpAvvvz666+jVCpxd3fHwcEByI/qs7e3x93dnZ9++onu3bszfPhwKleuTIMGDfjnn3/w8vLCwsICrVbLa6+9xtWrVxk5ciQqlYrc3Fxat24tiYv/8ssvRvYHBwcTHBwsbdeuXZv169cXus6WLVtKpdvh3+jCSZMmSfolBTFcP+SXTh87diwKhSJNCNHSsP//hElbAL2LvcH/lSflRfkvf0AvYFmB7YHAl0W0GwLEA/GvvvqqkJGRkXkeqVKlivj999+Fra2tOHbsmLT/+++/Fx4eHkKtVoshQ4aI3NxcIYQQv/32m2jRooVo3ry56NWrl7h165YQIn/FfcKECcLFxUV4eHhIK/ZXrlwRPXv2FO7u7sLd3V3ExMQIIfJX9wcMGCC8vb1F3759jWzS6/XivffeE87OzsLFxUWsW7dOCCHE66+/LkxMTIRarZb2CSHEmTNnRL169USDBg2EWq0W+/btE0FBQWL06NGiZcuWwtbW1mhFZN68ecLd3V0olUqj1ZgH78v48eOFSqUS+/fvL/Z+VKlSRYwbN044OTmJdu3aiStXrogNGzaIKlWqCDs7O6FWq8WdO3dEmzZtxOHDh6V7ZYhOKG7cgjRu3FhMnTpV0/sbsAAAIABJREFUNG/eXLi4uEjfU2ZmpnjjjTeEUqkUXl5eIikpSbq38+fPl/o7OzuLM2fOiKysLNG1a1ehUqmEs7OzdA8NK0Ourq6iY8eO0grLi0b6lVui1dzdwmPWLumv1dzdIv3KrWdt2gtHXp5e/HL0ovR9tJq7W/xy9KIcaSMjI/PCI0cgPhpAvPj3Pd4JOA38P/EE/QrlVaD0AvBKge1G/7fPCCHEEiGEuxDCvU6dOk/NOBkZGZnHyb179+jRowdbtmyRPPnHjh1j/fr1HDhwAK1Wi6mpKWvWrOHq1avMmjWLqKgoEhMTcXd357PPPpPGql69OsnJyYwaNYpx48YBFFtGDCAtLY2oqKhC5SI3bdqEVqslKSmJqKgoJkyYwKVLlyQRKq1Wy5tvvim1t7GxYdiwYYSFhUkVPKBo5fKCZci0Wi0JCQlF6grcvn0bLy8vkpKSqFWrVpH3w9DO3d2d1NRU2rRpw4wZM+jVqxfu7u6sWbMGrVZbSB3cQHH3uShq165NYmIiw4cPJzw8HIBp06bRvHlzjh49yuzZsxk0aFAJ3zT8+uuvNGjQgKSkJFJSUujcuTM5OTmMHj2ayMhIEhISCAkJ4cMPPyxxnKLQ6wWnM7I4dDqT0xlZ6PUPzycub1TkylgP4++//6Zv3740bdoUNzc3unbtyokTJ3BxcQEgPj6eMWPGlGlMGxsbrl69+kj2VOSS7DIyMjKPiiECMWhFHGMijhC0Io5fU/9+Lp+5zxIhRJoQookQ4t0neZ7ymsZyGGimUChsyXdy9OVJiZbIyMjIPGPMzc3x9vZm+fLlfPHFF0B+SktCQgIeHh5AfgmzunXrcujQIdLS0iTRqfv379OypRQRKKly9+vXTwqljIqKIi3tX31ngyo35FfcKMoREBMTQ79+/TA1NaVevXq0adOGw4cPSxU6SktRyuUPlCEjKyuLkydP0rp1a6O+pqamBAYGlng/IF+g0eB4GTBgAD179iy1fSWN+yCGcd3c3CTxyZiYGDZu3AjkK6FnZmZy8+bNYs+nVCp59913mThxIv7+/vj6+pKSkkJKSgodOnQA8lN2ClbhKA0VJf3DUBmroMOjolTGKgkhBAEBAQQFBUmh2ElJSUZq/+7u7pKo59OgJMeTnO4pIyPzpCmvaXTFOYId6leVfxvLIeXS2SGEyFUoFKOA3wBTYIUQ4vEWh5eRkZEpJ5iYmPDjjz/Svn17Zs+ezQcffIAQgqCgIObMmWPU9ueff6ZDhw6FIjEMPKjQDf+WEbO0tCzUvkqVJ1txqCjlciHyy5ANHTq0xL6WlpaSTkdx96MoCt6Dh1GWcQ3XYmpq+tBqJGZmZuj1/74oGkq02dnZkZiYyPbt2/noo49o3749AQEBODs7G1XaKCsVZfJV0StjFcfevXsxNzc30kxRq9XodDppOzo6mvDwcLZt28a1a9cICQnh9OnTVK5cmSVLlqBSqcjMzKRfv35cuHCBli1bSv/ndDodXbp0oVWrVsTGxtKwYUO2bt2KlZUVS5cuZcmSJdy/f5/XXnuN77//nsqVK7+wjicZGZlnT3l24MuO4OeL8prGghBiuxDCTgjRVAjxybO2R0ZG5umgUCh4991/I9rCw8OZPn06AIsXL+a7774rtm90dDT+/v5lOp+fnx/x8fGPZGtxlDV0PDs7GwcHB7Zt28aaNWtYvnw5W7Zs4dNPP+XKlStcvHiR7t27c/bsWVq0aMGBAwc4deoUkJ/CUVAwyiAqtX79einiw1BGzEBxJdUMmJqasmXLFsaMGUOvXr04e/Ys+/btw9PTs8R+VatW5datWyVeJ+SXIVuxYoUUXXLhwgWuXLny0LG///57qd21a9c4e/YskO/MiYyMBGDt2rW0atWqVPYAtG/fnsjIyCLHLQ2+vr5S2kt0dDS1a9emWrVq2NjYkJiYCEBiYiJnzpwB4OLFi1SuXJkBAwYwYcIEEhMTsbe3JyMjQ3J25OTkkJpaNv9+RUn/MDFR0Nm5PqtDPFnYrzmrQzzLxeT2SZOSklJsycSiKC59asaMGbRq1YrU1FQCAgI4d+6c1OfkyZOMHDmS1NRUatSoIUUk9ezZk8OHD5OUlISjoyPLly8H/nU8WZjlTxVfFMeTjMzzhkKhYMCAAdJ2bm4uderUKfN86HGj0+mwsrJCo9FIf/fv32fVqlWMGjUKKH5eV9CBf+fSKS6nHiw3aXQGR3BBZEdw+aVcRnbIyMi8uFhYWLBp0yYmT55M7dq1jY4960oRT5IaNWpw7Ngxfv31V3x8fLC0tKRSpUp07NgRvV6Pubk5ly5dokWLFqxatYp+/fpx717+i+ysWbOws7MD4J9//kGlUmFhYSFFfyxcuLBYVe6isLKy4vTp07z//vssXbqUFi1asGDBAurXr1/iNXTp0oW+ffvy/9k777AorrYP37uLCoqxorEjvorI7gICogIBNSrGrhgxGsESY2+RJKaBJUajicYSNX4qxoIt9hIrikYNRToWQkmMmohGUBSUcr4/eHdeFlhAxRbnvq69LubMnDKz7MyZ5zzP79m9e7eecaVgu5BvfLlw4YJkjDE1NWXDhg0Gw0cgf9Lk7u6udz2WLVtGkyZNqFKlCiEhIcyePZs6depIBh8fHx9Gjx6NiYmJQa+JVq1aMXv2bKndmJgYmjdvToUKFTAyMmLo0KFSOFBx+Pv7M3z4cLRaLZUrV2bdunUA9O/fnx9//BFra2ucnJyk7ycmJgZfX1+USiUVKlTA0dGRNm3aoFKpaN++PcbGxggh6NOnD8bGxvTo0QNPT88Srzv8u8I/5MxYpWMofCo4OFgKserevbuk8g/5iv62trZAfiiWzmskNjaWzz77jLS0NDIyMujatSvwP8NTy9ervnBu5DIyMv+jSpUqxMbGkpmZiYmJCUeOHKFBgwaP1MajZGR7FJo1a1biAouheV1BA/7964ncu3qZ6pZOL4T3xKvqgfiyIhs7ZGRkXiiMjIwYNWoUCxcu5Msv9Z26/P39MTU1Zdq0afz222+MHj2a1NRUVCoV27ZtA/L1Hzw9PaWV0g0bNqBQKDh27BjTpk2TUmwuX75cL8QCYMyYMYSGhpKZmYmnpyczZswA8tNq7dmzByMjI7p06SKJU+ow5DoOsGHDBhYvXszDhw9xcnLi+++/L5JC1dXVlS5durB582aWLl2Kv78/qampzJo1i8jISFJSUujRo4dk6Ni1axfVq1cnISFBuhZ2dnZcv36dkSNHMm/ePBYvXkyvXr0wMjKiVatWBAYGYmlpyZkzZzAzMyMvL48NGzYYNAIoFArmz59Ps2bNiI6OpnPnzvTp04ekpCTUajXR0dFotVr8/f1JTEwkKSmJxo0bM3XqVHbu3Mnnn3/O1atXadq0aZGX9RMnTrBz504sLS2JjY3FwsICCwsLAA4cOMDUqVOpUqUKw4cPp0ePHixdupQVK1agUqkwMzNj2bJlNGrUiOHDh3Pz5k0yMzOZPHky3377LT4+PsyaNYuwsDD++usvvv76a6n/guk5C4YHDBw4UNL8MDU1lTxlbty4wTvvvMOdO3f0jndwcJDaqlmzJrt27Spy/UxMTDh8+HCRcnNzc+llsjCmpqZ6qdoKpoIrDXny9XJjbW0teSc9LQre71QqleRp5ePjw65du7CxsSEgIEDvdyIbnmRkXg7eeust9u/fj6enJ4GBgQwaNIhTp04BEBISwqRJk8jKysLExIS1a9diaWlJQEAAO3bsICMjg9zcXPbv38+ECRMICwtDoVDg5+dH//799Z5N27dvZ9++fQQEBLBt2zZmzJiBSqWiWrVqxQqNl0bBeZ27uztOTk4EBQWReusfqnYeT8V6llw9to687Ifc+yOOkDqf09bCu1yv3aMiG4JfLl7YMBYZGZlXl3HjxrFx40bS09MNHjN48GDGjRtHVFQUZ86ckQQdIyIiWLRoEfHx8SQlJfHLL7+QlZWFj48PW7ZsISYmhpycHJYvX16kzS+//JKwsDCio6M5efIk0dHR3Lp1i507dxIXF0d0dDSfffZZkXqGXMcfJdNHp06dCA4OJjc3l82bN+tlOilMbGwsO3bsIDQ0lE8//ZTKlSsTERFBpUqVJK+GuXPnEhERQXR0NCtWrECpVDJkyBCp/6NHj2JjY0NJmaxycnI4ePAgGo2mxKwjhTO6hISE8NNPPxEdHc22bduKDRMy9D29//77HDx4kPDwcFJTU4HiM71MmDABb29voqOjMTIy0stSUVwGmMehTp06/PDDDyxduhQhBLm5ufj6+uLo6IhWq2XlypVAvoGtU6dOtG7dGo1Gw+7du4F8g4qVlRXvvfce1tbWdOnSRXrBLCvBwcG0b98eCwsL6WVYCIGvry9qtRqNRsOWLVtQKhUYp17k4e4vMD7xDb9/P4KTGxYRGLiJNm3aoNFoSExMBPJ1X5ycnLCzs+PNN9+URDBPnjwpuRrb2dmVGgIkU3507NiRBw8e8MMPP0hl0dHRXLlypdjjDYVPvfHGG2zatAmAgwcPcvv27VL7vnv3LvXq1SM7O9vg/UlGRubFxsvLi82bN5OVlUV0dDROTk7SvpYtW3Lq1CkiIiKYOXMmn3zyibTv/PnzbN++nZMnTzJr1iwpo1t0dDQdO3Yssc+ZM2dy6NAhoqKi2LNnT7HHJCYmSs+VcePGlXoeOTk5hISEsOS771BG/oSJcSUadPLGzMadrYdOMX5EyRnPnhU6Q3Bbi1pYmJnKho4XGNnYISPziqJSqbC1tUWtVjNgwADu37//vIck8dprrzF06FAWL15MXl4eBw8eRK1Ws3z5cr777jtiYmK4evUqffv2BfKFLCtXrgxAmzZtaNiwIUqlEltbW1JSUrh06RJNmzaVQgm8vb2LXYHYunUrrVu3pnnz5kRGRhIfH0+1atUwNjZmxIgR7NixQ+qnIMHBwVK8bEHX8aNHjxISGoa1TWtaqbUcO3aMpKSkYs9ZpVLh4uLC5s2byczMxNzc3OD16dChA1WrVsXMzIxq1arRs2dPABYtWiRphWi1WgYPHsyGDRsk19Thw4dLsbFr1qxh2LBhxbafmZmJra0tDg4ONG7cmBEjRnD69GneffddoGjWkcIZXTp37kytWrUwMTGhX79+nD59ukgfxX1PFy9exMLCgqZNmwL/yyxTHGfPnuWdd/KTdGVkZOj1UVwGmMfFwsKC3Nxcbty4werVq6lWrRqhoaGEhoayatUqkpOTMTY2ZufOnZw/f56goCA++OADybvHkE5CWSnOcGMoLbBSqeBSfCxbflxDwuWLbNiwgcuXLxMSEsLIkSOl0CIXFxfOnTtHREQEXl5efP3110C+Ps6yZcuIjIzk1KlTBtP1ypQ/CoWCnTt3cvToUZo1a4a1tTXTp083GDrm7+9PeHg4Wq2Wjz/+WAqf8vPzIzg4GGtra3bs2EHjxo1L7XvWrFk4OTnh7Owspb6WkZF5udBqtaSkpBAYGMhbb72lty89PZ0BAwagVquZMmWKniZU586dqVmzJpA/ZylokCgYBlcczs7O+Pj4sGrVKnJzc4s9RhfGEhkZybJly0o9D13WM0dHBzJuXmfd8DYMdmrCm1Z1Xwn9JpnyRw5jkZF5RTExMZHiKAcPHsyKFSuYOnXqcx7V/5g8eTKtW7fGwcGBu3fvEhsby8yZM8nJyaFatWoG6xV21dbpWpRGcnIyCxYsIDQ0lO+++459+/aRlZWFkZERISEhHDt2jO3bt7N06VKOHz9eant5eYK4a+lUtOpA9TeH6ymJG8LLy4u+fftKgqxlOUelUiltK5VKKUvI/v37CQ4OZu/evXz55ZfExMTQqFEj6taty/HjxwkJCWHjxo1cuXJFMpaMHj1a0rgoTcS0IIUzuhTOhlJcdpTC31Np2U0eheIywJQHhw8fJjo6WvKwSE9PJyEhgYYNG/LJJ58QHByMUqnk6tWrkpHFkE5CWSnOcGMoLfBrr72Go6Oj5OXUrFkzunTpAuSnvA0KCgLgzz//ZODAgVy/fp2HDx9KxiVnZ2emTp3K4MGD6devHw0bNnyyCybzSNSvX5+tW7cWKY+NjQXyxZTd3d0Bw+FTtWrVKjZ8qnbt2lI7ANOmTZP+HjNmDGPGjHnS4cs8JiqVCo1GgxAClUrF0qVLad++vRS+WPB7e1zc3d1ZsGBBmVMXm5ubU7VqVVQqFbm5ucyePZvevXs/8Thkni69evVi2rRpnDhxglu3bknln3/+OR06dGDnzp2S/pWOsmRkK/gM12UWg3xx0V9//ZX9+/djb29PeHg4tWrVeqJzKJz1zMLMlGZ1TLn9RwXZ0CHzWJTq2aFQKJ7sv1ZGRuaFx9XVld9++41//vmHPn36oNVqadu2LdHR0UD+KqK3tzeurq40adKEHTt28OGHH6LRaPDw8CA7OxuAY8eOYWdnh0ajYfjw4ZKhwdzcHD8/P8nN/+LFi0B+uEO7du2ws7Ojffv2XLp0SRpTzZo1efvttzl27BimpqYolfm3q+rVq9O4cWMaNmyIiYkJU6ZMoVWrVri7u5OWlgbkT+wmT57M1q1bOXLkCNeuXePcuXNYWloyfPhwAgICcHNzw9zcXBr72bNn+euvv7h9+zbff/89ERERfPHFFxw6dIj09HTeeustFi5cSFRUVJHrV5zr+B//3CP0QX1SY06SnXGbBzl5zNz+K79EXijxe5g+fXqJHg1lIS8vjytXrtChQwfmzZtHenq6FG87cuRIhgwZwoABA1CpVDRq1EhadSlJANaQ23xxHDlyhH/++YfMzEx27dqFs7NzmcZtaWlJUlKSZBDQheRA0cwq7du3Z/PmzQBs3LgRV1fXMvXxqCQlJaFSqahTpw5CCJYsWSJdr+TkZLp06cLGjRtJTU0lPDycyMhI6tatK00In9So86iGm7IYwiZMmMD48eOJiYlh5cqV0lg//vhj/u///o/MzEycnZ2l36mMjMzTQ2dcjoqK4quvvmL69OnPe0hAfjrkyMhItm/frhcmWBYMrfLLPF2GDx+On58fGo1Grzw9PV0SLA0ICDBYv3PnznreF7owuLp163LhwgXy8vLYuXOntD8xMREnJydmzpyJmZmZwbC7J6UsmdVkZAxRljCWcwqFYptCoXhLUdzynIyMzEtNWXUZEhMTOX78OHv27GHIkCF06NCBmJgYTExM2L9/f6m6GLVr1+b8+fOMGTNGEvgsKY4U4IMPPiArK4vLly9ja2vLoUOHuHr1KgDr168nKyuL7du3Y2Jigp2dneTKDfDw4UPefvttOnXqxKhRo1i1ahWVK1dm586dXL58uciLfYsWLTA1NcXDw4MqVarQqlUrZs6ciVarpUePHmi1WlxcXPj222+LXMPiXMdvZjxEVasxDd4cxqWAj4ldMoqY//uQS8mGJwMKhYJp06YVyULzqOTm5jJkyBA0Gg12dnZMnDiR6tWrA/krPxkZGQZDWAxhyG2+ONq0aUP//v3RarX079+/zKuJJiYmfP/993h4eGBvb0/VqlUlL56ePXuyc+dObG1tOXXqFEuWLGHt2rVotVrWr1/Pd99990jnUxZSU1MZPXo048ePR6FQ0LVrV5YvXy4ZyC5fvsy9e/dIT0+nTp06VKhQgaCgoEdKXfs4uLq6smXLFnJzc0lNTS1TWuCCFJz4FvweExMT0Wg0fPTRRzg6OsrGjnIkL0+QlJrBuaRbJKVmkJdXfh5HMv8e7ty5U2zoQFZWFsOGDZPu6TovLUPlmZmZeHl5YWVlRd++fSWtoDVr1jB58mSp3VWrVpWYbaq4MfXp0wd7e3usra31NGZMTU354IMPsLGx4ezZs3z77beo1WrUajWLFi0CykfHSMYwDRs2LNYw9eGHHzJ9+nTs7OxKNLh/9tln3L59G7VajY2NjfT/NHfuXHr06EH79u0lz0EAX19fNBoNarWa9u3bY2NjU/4nRX7obnx8PLa2tnqLIDIyZUIIUeIHUACdgUDgN2AO0KK0es/6Y29vL2RkZMqOUqkUNjY2wsbGRowfP148ePBA2NraisTEROmYhg0bivT0dOHn5ydmz54thBAiNzdXVKxYUeTl5QkhhPj888/FwoULRWRkpHB1dZXqHj16VPTt21cIIUSTJk3En3/+KYQQ4ty5c6JTp05CCCH++OMP0adPH2FtbS3UarWwtLQsdqxZWVniwIEDYtq0aaJGjRri6NGj0jlkZ2cLIYRITEwUNjY2Qggh3NzcxIkTJ4QQotRxpaamCiGECA0NFW5ubkIIIfz8/MT8+fMf67rqSLxxV7jMPSYcZx+RPi5zj4nEG3efqN0nJTQ0VLi4uDy19teuXSvGjRv32PXv3s2/Pnl5eWLMmDHi22+/La+hlQnd76JVq1ZCq9WK+fPni9zcXCFE/v/+9OnThVqtFtbW1sLd3V2kpaWJ1NRU0bZtW6FWq4WPj49o2bKlSE5OFsnJycLa2lpqe/78+cLPz89g31WqVNHb9vb2Ftu2bSuyPy8vT0ybNk363WzevFkIIURQUJDo3r27dLybm5sIDQ0tsm/Xrl2iadOmonXr1mLatGnS//348eOFtbW10Gg0wsvLS2RlZT3mVZQpSG5untgffU26H7jMPSb2R18Tubl5z3toMi8AunuOpaWleO2110RYWJgQQujdPxYsWCCGDRsmhBDiwoULolGjRiIzM9Ng+TfffCOVR0VFCZVKJUJDQ8Xdu3eFhYWFePjwoRBCiHbt2ono6OgiY2rSpIl0nzMxMRF79+6V9t26dUsIIcT9+/eFtbW1uHnzphBCCEBs2bJFCCFEWFiYUKvVIiMjQ9y9e1e0atVKnD9/XiQnJwuVSiUiIiKEEEIMGDBArF+/vnwvqCh6L31SCt9bH4eC8w0ZmVcVIEw8YxtBqZod/x3YEeCIQqHoAGwAxioUiijgYyFE8XkLZWRkXmgeVZehoDt8hQoVpBjOgu7xJVGhQkWSUjOIv36XjMwH5OWJEuNIC/fdrVs3unXrRt26ddm1axedOnUqclxB57OyxKEaGRmRl5efx71gHGp58CKmAp07dy7Lly9/oTMurFq1inXr1vHw4UPs7Ox4//33n2n/JblfK5VK5syZw5w5c4rsM5TC15BOQnEUTDsLRd2Ndft1aYHnz5+vt7+gpgPop9otuK93797Fxt/rBExlypeUW/ek+wDAg5w8vjpwgZavV5VTusroPYvPnj3L0KFDi+h0nD59mgkTJgD5HpFNmjTh8uXLBsuDg4OlFX6tVotWqwXyvS86duzIvn37sLKyIjs7u0jIg46goCBq165NYmIinTp1wt3dHVNTUxYvXiyFMly5coWEhARq1aqFSqWif//+0nj79u0rPYf79evHqVOn6NWr1xPrGL0M5OTkSMLgT0peniDl1j05xamMzGNSJs0OhUIxSaFQhAHTgAlAbeADYNNTHp+MjMwz5FF0GQpjaWlJSkoKv/32G5AfZuLm5ibtP3bxb7zXhLDg8CUuXL/Lz3F/kZZWehzp+fPnuXbtGpCvRREdHU2TJk2kbZ1Y5KZNm3BxcXmkcZmbmxMeHg6glyWjPOJDdXnY1w1vw+JBdqwb3ua5K4l//PHH/P7778Vep/LCx8eHpUuXPnZ9XXrZ+Ph4Nm7cWGz2GxmZl4kbdx9Ihg4dD3LyuHG3bOLJMq8O7dq14+bNm1La7afByJEjCQgIYO3atWUKZ2zWrBl169YlPj6eEydOcPToUc6ePUtUVBR2dnbSQoGxsTEqlarU9p6mOHVJJCYmSiGSrq6uUpheamoq/fv3x9HREUdHR3755ZcS2ylJ2+zdd9/F2dmZd999l1u3btGlSxesra0ZOXKknuZSSaFAn376KTY2NrRt25br1//i57i/8F4TwsTACLzXhPBz3F9yGJyMzCNQFs2Os8BrQB8hRHchxA4hRI4QIgxY8XSHJyMj8yx5FF2GwhgbG7N27VoGDBiARqNBqVRKuhg5eYLvjiZIE34hBF8duMCQUeNLjSO9ceMGPXv2RK1Wo9VqMTIyYvz48UC+90ZISAhqtZrjx4/zxRdfPNK4/Pz8mDRpEg4ODnqTtML6EI+LnIf9xULWTZDRcevWLWxtbbG1teX111+nQYMG0vbDhw/Lta86VSvxV9B6Iud5Ebv0fWIWDefK3sXUrlLhsdoLCAiQDMAy/y4uXrxIbm5ukYwWBRciLl++zB9//IGlpaXB8oKi2bGxsdILOYCTkxNXrlxh06ZNZRLDvnHjBsnJyTRp0oT09HRq1KhB5cqVuXjxIufOnSu2jqurK7t27eL+/fvcu3ePnTt3PjUR6bIyatQolixZQnh4OAsWLGDs2LEATJo0iSlTphAaGspPP/3EyJEjS2ynJG2z+Ph4jh49SmBgIDNmzMDFxYW4uDj69u3LH3/8IR23Zs0awsPDCQsLY/HixVLmlHv37tG2bVuioqJ44403mL/4+2K9wlJu3SvvyyMj86+lLD5WlqKgObIAQoh5CoViiRBiQjmPS0ZG5ilT2GUeDKczLJwKtWDdgvs6depEREREkfrbT5xnYmB+eZUGlrQc+Q0PcvJo2NKOy5cvS8fNnj27SF0PDw88PDwMnkdxgqEF3fdLGperq6te/zpatGihNzmUefnJyxP8HPdXkbCi5+1tI/N8qFWrlhQ64O/vj6mpaalhRlDUPb0s7urmtarg2rw2Zyp5Ytbek4pKuL3tE36PDeM/dTs+8tgDAgJQq9XUr1//kevKvHhkZmZKYR1CCNatW1fEQ2Ls2LGMGTMGjUaDkZERAQEBVKpUyWD5mDFjGDZsGFZWVlhZWWFvb6/X3ttvv01kZGSxYqg6OnTogEqlIjs7m7lz51K3bl08PDxYsWIFVlZWWFpa0rZt22Lrtm7dGh8fH0k4eeTIkdjZ2T23kJWMjAzOnDnDgAEDpDJdtrijR48SHx8vld+5c4eMjAxMTYsPMTt9+rTkCdqxY0du3bqB2KcsAAAgAElEQVTFnTt3gHwBcBMTEwCCg4PZsWMHAN27d9e71oZCgSpWrEiPHj2A/BCfjTv28kD7hl7/Oq8wOQRORqZslFWzoyTKllNQRkbmlaVO1UpUMlLquXJXMlJSp2qlEmrJyJQfsm6CTGmEh4czdepUMjIyqF27NgEBAdSrVw93d3dsbW05ffo0gwYNYu/evdJ2z549CQgI4PLly1SoUIE7d+5gY2MjbUO+h9d/6pjSuG5Neg+yo1oFwbs/5VGrVk0AKe3z/fv3adasGWvWrKFGjRrFlh87doywsDAGDx6MiYkJZ8+elV6uZF5ODOkEmZubS9odOg/FwhgqNzExkVJzF8fp06dLzMJiyChRqVIlDh48WOy+wgsoU6dOZerUqXplBc8JStcxKi/y8vKoXr16sTpleXl5nDt3DmNj4yfupyxaYQVDgSpXroy7u7sUClRQD02lUlFBIeS5k4zME1KWMBYZGZmXjBfNXV8n1lnJKP+WU15incV5pzwJKpUKW1tb1Go1AwYM4P79+waPjYyM5MCBA0/U3xdffMHRo0fLfLy/v7/kbt+8eXP69euntyL1pBhayfo3IOsmyJSEEIIJEyawfft2wsPDGT58OJ9++qm0/+HDh4SFhfHBBx/obfv5+eHu7s7+/fsB2Lx5M/369ZMMHToUCgU/rvqe0f060V7bnBYtWkir+UOHDmXevHlER0ej0WiYMWOGwXJPT08cHBzYuHEjkZGRsqHjBedFexanpaXRokULTExMihX5/rfy2muv0bRpU7Zt2wbk/96joqIA6NKli544c2nC7WXVNisYSnTw4EFu374NUOZQIADTShWeytxJRuZVonykgmVkZF4YXkR3fZ1YZ8vXq77QiuIFVfEHDx7MihUriqxM6YiMjCQsLIy33nrrsfubOXPmI9eZMmWKtBq2ZcsWOnbsSExMDGZmZmWqX54q8S8TsneRTEk8ePCA2NhYOnfuDOSvtterV0/aP3DgQL3jC26PHDmSr7/+mj59+rB27VpWrVpVbB+63252djaenp5s3ryZbt26kZaWJokme3t7M2DAANLT04stl3l5eBGfxdWrVy82dPPfxv3792nYsKG0PXXqVDZu3MiYMWOYPXs22dnZeHl5YWNjw+LFixk3bhxarZacnBzeeOMNVqzQlyTMycmRhFX9/f0ZPnw4Wq2WypUrG9Q28/PzY9CgQVhbW9O+fXsaN24MUOZQIACFgpdi7lSefPnll2zatAmVSoVSqWTlypU4OTk972EVISUlRfoOdezZs4epU6dKwvmPyooVK6hcubKeDozMk1MeM95/7y9ORuYl5EV119eJdb4sIQOurq5ER0dz7949JkyYQGxsLNnZ2fj7+9OtWze++OILMjMzOX36NNOnT+fChQt6cf9qtZp9+/YB0K1bN1xcXDhz5gwNGjRg9+7dmJiY4OPjQ48ePfD09GTmzJns3buXzMxM2rdvz8qVK/VS6RbHwIED2b9/P5s2bWLSpEmYm5sTFhZG7dq1CQsLY9q0aZw4cQJ/f38SExNJSkqicePGfPbZZwwbNoyHDx+Sl5fHTz/9RPPmzfXanj9/Plu3buXBgwf07duXGTNm8MUXX1CzZk0mT54MwKeffkqdOnWYNGnSU/gGypcXMRWwzIuDEAJra2uDKYQLu6cX3HZ2diYlJYUTJ06Qm5uLWq0usa8KFSrg4eFBcHAw3bp1e/LBy7yQvKjP4lcBXUr5wvz8889FymrXrs2WLVtKbC8uLo5mzZoBZdc2q1WrFocPHy62vbKEAnl6euLp6QnwUs2dnoSzZ8+yb98+zp8/T6VKlbh582a5C0aXJ82aNSviCfS4hg5AEs+XKV/KHMaiUCgM5f/7rpzGIiMjUw7I7vpPTk5ODgcPHkSj0fDll1/SsWNHQkJCCAoKwtfXl+zsbGbOnMnAgQOJjIwssupbmISEBMaNG0dcXBzVq1fXS3OrY/z48YSGhhIbG0tmZqZkKCmN1q1bSyn0SqKgSvyKFSuYNGmS5J1ScAUM4PDhwyQkJBASEkJkZCTh4eEEBwczfPhwfvzxRyB/Mrl582aGDBlSpnE+b17EVMAyLw6VKlUiNTVVMnZkZ2cTFxdX5vpDhw7lnXfeKVMqTyEEv/zyC82aNaNatWrUqFFDyvqkS41tqBzKJzW2zNNHfhb/OxgxYgSbNm1i3Lhxz3so/3quX79O7dq1JS+a2rVrS0LM4eHhuLm5YW9vT9euXbl+/ToAq1atwtHRERsbG/r37y+FH/v4+DBmzBjatm2LhYUFJ06cYPjw4VhZWeHj4yP1WTB8d/v27dK+bdu2oVarsbGx4Y039EViDZGSkiIZuwMCAujXrx8eHh40b96cDz/8UK/PgimG//77byDfYLZgwQIAQkND0Wq12Nra4uvrK7WbkpKCq6srrVu3pnXr1pw5cwbID6lyd3fH09OTli1bMnjwYEqX3Xw1KNXYoVAo2isUinjg4n+3bRQKxfe6/UKIgKc3PBkZmUdF565fENldv2zoVPEdHBxo3LgxI0aM4PDhw8ydOxdbW1tJSKxgCrmy0LRpUyk+397evljxt6CgIJycnNBoNBw/frzML1plfZgVVIlv164dc+bMYd68efz+++9F4v4PHz7M4cOHsbOzk4wpCQkJmJubU6tWLSIiIqT9hVMkvsi8aqmAFQqFnjEqJycHMzMzSe1/z549zJ0793kNTw93d3caN26s9//cp0+fMunIfPvtt7Rs2RKNRoONjQ1Tp04lOzv7kfpXKpVs376djz76CBsbG2xtbaVJZFkYPHgwt2/f1kvlaW5uzs2bNwGYM2cOCxculDSBcnNzpdSX69atw9fXF61WS2RkpJRC21C5j48Po0ePxtbWlszMzEc6T5lnh/wsfjo8ax2U1atX8+uvv9KkSZOn2o9Mvn7KlStXaNGiBWPHjuXkyZNAvvHZkKZSv379CA0NJSoqCisrK1avXi21d/v2bc6ePcvChQvp1asXU6ZMIS4ujpiYmFK1WWbOnMmhQ4eIiopiz549xR6TmJgopSwvzhgWGRnJli1biImJYcuWLVy5cgUommK4uNDHYcOGsXLlSiIjI/WyM9WpU4cjR45w/vx5tmzZwsSJE6V9ERERLFq0iPj4eJKSkvjll19KPMdXhbKEsSwEugJ7AIQQUQqFomwmLhkZmWeO7K7/+BTU7NAhhOCnn37Si8sE+PXXX/W2jYyM9FxnderqgLRKAfkiqIVfULKyshg7dixhYWE0atQIf39/vfolERERgYODQ5ExFK5f0O3+nXfewcnJif379/PWW2+xcuVKOnb8XwpMIQTTp0/n/fffL9LfyJEjCQgI4K+//mL48OFlGqPM86FKlSqSp5CJiQlHjhyhQYMG0v5evXrRq1evJ+5HCIEQAqXyyTTPq1evzi+//IKLiwtpaWnSyl1JrFixgsOHD3Pu3DmqV6/Ow4cP+fbbb8nMzCwiEmqIgu7nwcHBRfYXTmVdeBvys1t4enpSvXr1YvuoWLEiV69eLXafra1tsSKFhsr79+9P//79i21L5sVBfhaXPy+iDopM+WFqakp4eDinTp0iKCiIgQMHMnfuXBwcHAxqKsXGxvLZZ5+RlpZGRkYGXbt2ldrr2bMnCoUCjUZD3bp10Wg0AFhbW5OSkiItQhWHs7MzPj4+vP322/Tr16/YYwqHsRReyOrUqRPVqlUDoFWrVvz+++80atSoSIrhI0eO6NVLS0vj7t27tGvXDsifs+m8fbOzsxk/frxkBCmowdOmTRvJU9fW1paUlBRcXFwMnuOrQplmJkKIK4WKis+TJSMj89yR3fXLl65du7JkyRJpxTkiIgIo6kpubm7O+fPnATh//jzJycll7kNnmKhduzYZGRlljvn86aefOHz4sLSabG5uTnh4uLTPEElJSVhYWDBx4kR69+5NdHS03v6uXbuyZs0aKX746tWr3LhxA4C+ffvy888/ExoaqjepkHkxeeutt6RMIYGBgXqeBwEBAYwfPx7I9xaYOHEi7du3x8LCQu9/cP78+Tg6OqLVavHz8wPyJ3WWlpYMHToUtVrNrFmz8PX1LbbtPn36YG9vj7W1NT/88IPBsXp5eUnpMnfs2FFkgjlv3jzJe+Pjjz8G8sXsli9fLhkZKlasyMcffyxlRwgMDESj0aBWq/noo4+ktgy5Ee/duxcnJyfs7Ox48803pfLU1FQ6d+6MtbU1I0eOpEmTJpLXhoWFBUOGDOHs2bMlnp/Mq4X8LH40/v77b9555x0sLCywt7enXbt27Ny5U+8YQzooKbfuPdOxLlq0SC9b25NkMrt//z6DBw+W7lMuLi7lnmnuZUKlUuHu7s6MGTNYunQpP/30k6SpFBkZSWRkJDExMZIeio+PD0uXLiUmJgY/P79iF5qUSqXeopNSqSQnJwdATxutYN0VK1Ywe/Zsrly5gr29Pbdu3Xrkcym80KXrs3CKYV15WVi4cCF169YlKiqKsLAwPU0TQ/296pTF2HFFoVC0B4RCoaigUCimARee8rhkZGSegFfNXf9p8vnnn5OdnY1Wq8Xa2prPP/8cgA4dOhAfH4+trS1btmyhf//+/PPPP1hbW7N06VJatGhR5j6qV6/Oe++9h1qtpmvXrjg6Oho8VucK37x5czZs2MDx48elTCx+fn5MmjQJBwcHPbfHwmzduhW1Wo2trS2xsbFFlL+7dOnCO++8Q7t27dBoNHh6ekqGnYoVK9KhQwfefvvtEvuQeTHQGRCysrKIjo4uUdX++vXrnD59mn379knGBEP6LZCvRTN27Fji4uIYO3as3ovJli1b8PLyAmDNmjWEh4cTFhbG4sWLDU4aO3XqRHBwMLm5uWzevFlPC+fgwYPs3r2bX3/9laioKD788EPu3LlDRkYGTZs2LdJWXp7gbEwCUz7wZc3WPZw/H0FoaKgkLGjIjdjFxYVz584RERGBl5cXX3/9NQAzZsygY8eOxMXF4enpqRfKFhYWRlZWFjExMSWen8yrh/wsLhtCCPr06cMbb7xBUlIS4eHhbN68mT///FPvuBt3H5D1QD9ErTx1UHJzy7aWW9jY8SR899131K1bl5iYGGJjY1m9enWZvdLKysvy0nvp0iUSEhKk7cjISJo0aYKlpaVBTaW7d+9Sr149srOzpZTAj0LdunW5cOECeXl5es+wxMREnJycmDlzJmZmZlIIyrOgevXqVK1aVfIg1i0CQH7q4nr16qFUKlm/fn2Z/2dfZcoSxjKafBHSBsBV4DAgq/TIyMj86yhuNcXExISVK1cWKa9ZsyahoaF6ZYaU12NjY6W/ddlaIH/1W8fs2bOZPXt2iePz9/cvovheEFdX12LTChau8/HHH0svswUpeP6TJk0qNstKXl4e586dY9u2bSWOVebFQKvVkpKSQmBgYKlpkvv06YNSqaRVq1aSR0NB/RbI/x9JSEigcePGNGnSREqbaGZmhoWFBefOnaN58+ZcvHgRZ2dnABYvXixNIq9cuUJCQkKxWi8qlQoXFxc2b95MZmYm5ubm0r6jR48ybNgwKlfO10qvWbMmd+7c0at/6NAhPvroI9LS0hg/azFrjkSRU9eKqXuSmf6WMYMGvUNwcDB9+vQx6Eb8559/MnDgQK5fv87Dhw8lQ8rp06elc/Dw8KBGjRpSv2U9PxkZmeI5fvw4FStW1MtG0aRJEyZMmADkPyt37NhB6u10Ll9N4z/vzuaPfcvI/DsF8nKJajSLthZe3L9/Hx8fH2JjY7G0tOTatWssW7YMBwcHAgMDmTNnDkIIunfvzrx584B8r4z333+fo0eP0r9/f86fPy8ZRY8cOcL333+v9xK8ePFirl27RocOHahduzZBQUFAfnayffv2YWJiwu7du6lbty6pqamMHj1aMo4uWrRIui/quH79up4eiC5kNiUlBQ8PD9q2bcuZM2dwdHRk2LBh+Pn5cePGDTZu3EibNm0ICQlh0qRJZGVlYWJiwtq1a7G0tJSuWUZGBrm5uQwbNoxdu3Zx7949EhISmDZtGg8fPmT9+vVUqlSJAwcOcPv2bQYMGCB5qSYkJDBw4EBp+2mTkZHBhAkTSEtLw8jIiP/85z/88MMPVKxYke3btzNx4kTS09PJyclh8uTJWFtbM2vWLJycnDAzM8PJyemRxZvnzp1Ljx49MDMzw8HBQZoH+fr6kpCQgBCCTp06YWNj8zRO2SCrV6/mvffeQ6lUSqLVAGPHjqV///78+OOPeHh4FMkUJlMMuljbl/1jb28vZGRkZGSeHnFxcaJp06Zi6tSpz3soMmWgSpUqQgghZsyYIWrWrCmio6NFUFCQ6N69uxBCiLVr14px48YJIYTw9vYW27ZtK1J36tSpYsWKFUXaTk5OFtbW1nplq1evFlOmTBErV64UU6ZMEUIIERQUJJydncW9e/eEEEK4ubmJoKCgIu25ubmJ0NBQcfLkSVGzZk2xePHiIuP44YcfitRr2LChSEpK0ivr0LmrUL/3jfjP4Bmilu2bwnH2EeEy95j4auFSaVy6doUQYtu2bcLb21sax+7du6Wxu7m5CSGEsLGx0eunRo0aIjU1tcTza9KkiUhNTS3Sn4yMjD7fffedmDx5ssH9a9euFQ0aNBCpqTfF/uhroqH7INHU8yPhMveY2HL6gmjevLnIyMgQ8+fPF6NGjRJCCBETEyNUKpUIDQ0VV69eFY0aNRI3btwQ2dnZokOHDmLnzp1CCCEAsWXLFiGEEHl5ecLS0lLcuHFDCCHEoEGDxJ49e4qMp+BvW9eG7jhfX18xa9Ysqf6pU6eEEEL8/vvvomXLlkXaioiIEGZmZqJt27bi008/FZcvXxZC5N9jVSqViI6OFrm5uaJ169Zi2LBhIi8vT+zatUv07t1bCCFEenq6yM7OFkIIceTIEdGvXz+9a3br1i1pu1mzZuLOnTvixo0b4rXXXhPLly8XQggxefJksXDhQiGEEO7u7iIiIkIIIcT06dOle7HMs+Xu3bvS31999ZWYOHHicxxN+QGEiWdsIyhLNhYzhULxiUKh+EGhUKzRfZ66FUZGRkamHHnWCu7/Rlq1akVSUhLffPPN8x6KzCMwfPhw/Pz8JHG2R6Ek/ZbC9O3bl927dxMYGCiFsKSnp1OjRg0qV67MxYsXixXcLIirqyvTp0/X0xYB6Ny5M2vXrpVcx//55x8Apk+fzpgxY0hLSwPyF3Du3sskO1dQpaEld5Ojyb6XTtbDbH7atlVK32qI9PR0ScR13bp1UrmzszNbt24F8r1dbt++/VjnJyMjUzrjxo3DxsZGL6Szc+fO1K5dCw/r16l++yKKqN3cWj+ZOeO8pCxpp0+flu49arUarVYL5KfxdHd3x8zMDCMjIwYPHiyF46lUKknwV6FQ8O6777JhwwbS0tI4e/Ys3bp1K3W8hT3FdEKVR48eZfz48dja2tKrVy8p9K4gtra2JCUl4evryz///IOjoyMXLuSrBTRt2hSNRoNSqcTa2ppOnTpJgpu6PtLT0xkwYABqtVrKNlLwmtWsWVPa7tChA1WrVsXMzIxq1arRs2dPAL32Ro4cydq1a8nNzWXLli288847pX9hZUSeh5Wd/fv3S9m7Tp06xWefffa8h/TSUpYwlt3AKeAosjCpjIzMS4is4J6PSqVCo9GQk5ND06ZNWb9+vcHsETL/Hho2bKiXnu5R6NKlCxcuXJBU4U1NTdmwYUOxei01atTAysqK+Ph42rRpA+SHfKxYsQIrKyssLS2lsBdDKBQKvVAvHR4eHkRGRuLg4EDFihV56623mDNnDmPGjOHevXs4OTlRqVIlTE1NsbVzJLZOc3KNKtOwywgurZmGAhgyoA+9e/cusX9/f38GDBhAjRo16NixoyQ07Ofnx6BBg1i/fj3t2rXj9ddfp2rVqo98fjIyMkWxtrbWE9VetmwZN2/elDKNwf8yiimVCiqqFGzfu6tIlrTHwdjYWO9+NmzYMHr27ImxsTEDBgzAyKj0VyVDgpO6sE9jY+MS65uamtKvXz/69euHUqnkwIED9O/fv4ioZkHBTV0fn3/+OR06dGDnzp2kpKTg7u4u1Skc4lCW9vr37y9pFNnb25dbSJ48D3s0Bg4cqKdbJfP4lMXYUVkI8VHph8nIyMi8mBhScG/5elUszB5fRf1lo2BqXW9vb5YtWyblqpf591GcBo27u7s0Gfbx8cHHxwfQ148pXNeQfktBLRoduvR4OipVqsTBgwdLHWtx6VwLj6M4rRmFQoGvr69eJpiCk+paNh2pb/+mNKkurl1PT088PT0B6N27d7EGkWrVqnHo0CGMjIw4e/YsoaGh0ouCofMrmIbwVc6uICNTGh07duSTTz5h+fLljBkzBqBEAVBdlrQlS5agUCiIiIjAzs5O8sDSCYjHxMQA+Sk5J06cyM2bN6lRowaBgYGSHkhh6tevT/369Zk9ezZHjx4t9hhdNrbatWuXeF5dunRhyZIl0v0pMjKySLrTX375hVatWlGjRg0ePnxIfHy8nsGiNAp6oxW+jz8OxsbGdO3alTFjxrB69eonbk+HPA+TeV6UJRvLPoVCUbKqmYyMjMwLzI27D6QHrI7yVHB/GWnXrh1Xr14F8idgbdu2RavV0rdvX8lF393dnY8++og2bdrQokULTp06BeS/xLm6utK6dWtat27NmTNngPwXVnd3dzw9PWnZsiWDBw+WUvbKyDwrnkbKzz/++ANHR0dsbGyYOHGilL1FRkbmyVEoFOzatYuTJ0/StGlT2rRpg7e3tyQiWhhDWdLGjh1LamoqrVq14rPPPsPa2ppq1apRr1495s6dS4cOHbCxscHe3r5EL6/BgwfTqFEjrKysit0/atQoPDw86NChQ4nntXjxYsLCwtBqtbRq1YoVK1YUOSYxMRE3Nzc0Gg12dnY4ODhIYTVl4cMPP2T69OnY2dmVW9aVwYMHo1Qq6dKlS7m0B/I8TOb5oShtIqpQKO4CVYAHQDagAIQQ4rWnP7yy4+DgIMLCwp73MGRkZF5AklIz8F4TovegrWSkZN3wNq/UioKpqamkzO7l5cWIESPw8PBAq9WyZMkS3Nzc+OKLL7hz5w6LFi3C3d0de3t7vvnmGw4cOMC3337L0aNHuX//PkqlEmNjYxISEhg0aBBhYWGcOHGC3r17ExcXR/369XF2dmb+/Pm4uLg871P/15GXJ0i5dY8bdx9Qp2olzGtVkV2BZWRkXmlyc3PJzs7G2NiYxMRE3nzzTS5dukTFihUfqZ3x48djZ2fHiBEjntJIX2wWLFhAeno6s2bNKrc25XmYDIBCoQgXQjiUfmT5UapnhxCiqhBCKYQwEUK89t/tF8rQISMjI1MS5rWqMP0tKyoZ5d/ydLGi5rVerZRdmZmZ2Nra8vrrr/P333/TuXNn0tPTSUtLk4Qbvb29JeE2gH79+gH6omvZ2dm89957aDQaBgwYQHx8vHR8mzZtaNiwIUqlEltbWz1XfpnyQRem4b0mhImBEXivCeHnuL9ksTeZVwZTU/2Xo4CAAMaPH//M+vfx8WH79u1lOnbXrl0oFAouXrwolZ04cUIStCxM4XMrjYCAAK5duyZtL1q0qMQQkOfBsxKmvH//Pi4uLtjY2NC3b1++//77RzZ02NvbEx0dzZAhQ57KGF90+vbty48//lhs6OKTIM/DZJ4XpWp2KBQKZyBSCHFPoVAMAVoDi4QQfzz10cnIyMiUAzq39pavV32lV8J1mh3379+na9euLFu2DG9v7xLr6HQJCoquLVy4kLp16xIVFUVeXp6e+FpBAbSCdWTKDzn2WUbm5SEwMBAXFxcCAwOZMWNGubcfEBCAWq2mfv36QL6xY8iQIVSuXLnc+3ocnqUwZdWqVXlSL+/w8PByGs3Lyc6dO59Ku/I8TOZ5URbNjuXAfYVCYQN8ACQC65/qqGRkZGTKGaVSgYWZKW0tamFhZvpKP2ArV67M4sWL+eabb6hSpQo1atSQ9DjWr19fpvSc9erVQ6lUsn79enJz5URdzxI59llGxjB79+7FyckJOzs73nzzTf7++28gP9PO8OHDcXd3x8LCgsWLFwP5GkRWVla89957WFtb06VLFzIzMwFYtWqVpNXSv39/PY+J4OBg2rdvj4WFhUEvj4yMDE6fPs3q1avZvHmz3r47d+7QvXt3LC0tGT16NHl5//tNT5kyRUo1mpqaChSvrbR9+3bCwsIYPHgwtra2fPfdd1y7do0OHTqUqifxrDBknE25de85j0zmWSPPwwyjUqmwtbWVPo/rFevv78+CBQv0ytLS0qhVq5akoXb27FkUCgV//vknkD+nq1mzpt496Elwd3d/YqNjeVIWY0euyL86vYGlQohlQNWnOywZGRkZmaeJnZ0dWq2WwMBA1q1bh6+vL1qtlsjISL744osS644dO5Z169ZhY2PDxYsXi6S3k3m61KlaSXIF1lHJSEmdqpUM1JCR+XehC8nTfQres1xcXDh37hwRERF4eXnx9ddfS/suXrzIoUOHCAkJYcaMGWRnZwOQkJDAuHHjiIuLo3r16lIa1H79+hEaGkpUVBRWVlZ62SmuX7/O6dOn2bdvX5EsQTp2796Nh4cHLVq0oFatWnpeAyEhISxZsoT4+HgSExPZsWMHAPfu3cPBwYG4uDjc3Nwkb5ChQ4cyb948oqOj0Wg0zJgxA09PTxwcHNi4cSORkZFMmjSJ+vXrExQURFBQUDld7SdDNs7KyJSOzvNW9zE3N5f2CSGeyBBRvXp16tWrx4ULFwA4c+YMdnZ2krj8uXPnaNOmDUplWcwCLx9lOas7CoViOjAE2K9QKJSULWWtjIyMjMwLROH0l3v37uXdd9/F1taWc+fOER0dza5du6hRowaQH1fu4JCvI1W7dm1ppaF58+ZER0cTFRXFvHnzpHbd3d31Uo8uXbpUSm0qU37Isc8yrzqFXwxmzpwp7fvzz+iWDDoAACAASURBVD/p2rUrGo2G+fPnExcXJ+3r3r07lSpVonbt2tSpU0fy+mjatKmUErSgPlFsbCyurq5oNBo2btyo11afPn1QKpW0atVKaqcwgYGBeHl5AeDl5UVgYKC0r02bNlhYWKBSqRg0aBCnT58GQKlUMnDgQACGDBnC6dOnS9VWepGRjbMyMo9OSkoKlpaWDB06FLVazZUrV5g/fz6Ojo5otVr8/PykY7/88ktatGiBi4sLly5dKra99u3bS8aNM2fOMGXKFL1tZ2dncnNz8fX1lfpYuXIlkD937NSpE61bt0aj0bB7924g3zDbvXt3bGxsUKvVbNmypUi/hw8fpl27drRu3ZoBAwYAKBUKRUeFQrFLd4xCoeisUCieTvwUZTN2XCI/E8sIIcRfQEPys7PIyMjIyLwgPCsBOJnnz9NIrSoj829hwoQJjB8/npiYGFauXElWVpa0z5CmkKFyHx8fli5dSkxMDH5+fgbbKi6z4T///MPx48cZOXIk5ubmzJ8/n61bt0rHKhT6v9fC26WVvyzIxtlniy4cQq1W07NnT9LS0ko8/lHEdkvjUcMXiuv7UQV6y3tMz4uC3mp9+/YF8j3Oxo4dS1xcHJcuXSIhIYGQkBAiIyMJDw8nODiY8PBwNm/eTGRkJAcOHCA0NLTY9p2dnSXjRlJSEgMGDJCuy5kzZ2jfvj2rV6+mWrVqhIaGEhoayqpVq0hOTsbY2JidO3dy/vx5goKC+OCDDxBC8PPPP1O/fn2ioqKIjY3Fw8NDr8+bN28ye/Zsjh49yvnz53WLZ3WBIKClQqEw+++hw4A15X5R/0tZPDQchBCjdBtCiD8UCsWLJfMsIyMj8wrzLAXgZF4MdLHPsiCpjIw+6enpNGjQAIB169Y9UVt3796lXr16ZGdns3HjRqndsrB9+3beffddaXUUwM3NTdJHCgkJITk5mSZNmrBlyxZGjcqfaufl5bF9+3a8vLzYtGkTLi4uVKtWTdJWcnV11dNWqlq1Knfv3pX60G3Xrl37ic69vJCFKZ8tOq8nyPcAWrZsGZ9++ulzHpVMaRT83iDfs6NJkya0bdsWyPeQOHz4MHZ2dkC+t0VCQgJ3796lb9++kiBxr169im2/ffv2fPXVVyQnJ2Nubo6xsTFCCDIyMggPD8fJyYnly5cTHR0tGaDS09NJSEigYcOGfPLJJwQHB6NUKrl69Sp///03Go2GDz74gI8++ogePXrg6uqq1+e5c+eIj4/H2dkZgIcPHwJUFEIIhUKxHhiiUCjWAu2AoeV2MQth0LNDoVCMUSgUMYClQqGILvBJBqKe1oBkZGRkZB4NWQBORkZGJh9/f38GDBiAvb39E7/wz5o1CycnJ5ydnWnZsuUj1Q0MDJRWaHX0799fCmVxdHRk/PjxWFlZ0bRpU+nYKlWqEBISglqt5vjx45IeiSFtJR8fH0aPHo2trS2ZmZmMGjUKDw+PF0agFGRhyudFu3btuHr1KlC8wG1hZs6ciaOjI2q1mlGjRkleSO7u7nz00Ue0adOGFi1aSAa7zMxMvLy8sLKyom/fvpKwL8CYMWNwcHDA2tpaL+SirAgh8PX1Ra1Wo9FopBAJQ+UA8+bNQ6PRYGNjo6ejs23btiJjfxkoqIcmhGD69OlS6N5vv/3GiBEjytxW8+bNSUtLY+/evbRr1w7ID9lbu3Yt5ubmmJqaIoRgyZIlUh/Jycl06dKFjRs3kpqaSnh4OJGRkdStW5esrCxatGjB+fPn0Wg0fPbZZ3rhhLoxd+7cWWovPj4e4Pf/7l5LvkTGIGCbEOLppe4TQhT7AaoB5kAg0KTAp6ahOs/zY29vL2RkZGReRc4m3hSOs48U+ZxNvPm8h/avoEqVKkXKli9fLtatW/fYbUZHRwsbGxthY2MjatSoIczNzYWNjY3o1KnTkwxVCCFEt27dxO3bt5+4HRkZGRmZlwvd8yonJ0d4enqKgwcPCiGE0Gg04sSJE0IIIT7//HMxadIkIYQQ3t7eYtu2bUIIIW7duiW1M2TIELFnzx4hhBBubm5i6tSpQggh9u/fLz2nvvnmGzFs2DAhhBBRUVFCpVKJ0NBQvbZycnKEm5ubiIqKKjJWb29v6dmn++jGv337dvHmm2+KnJwc8ddff4lGjRqJa9euGSw/cOCAaNeunbh3755e/4bG/qJReJ6RnJwsrK2tpe1Dhw6JNm3aiLt37wohhPjzzz/F33//LcLDw4VGoxH3798Xd+7cEf/5z3/E/Pnzi+2jd+/ewsLCQgQHBwshhNi0aZOwsLAQ48ePF0IIsXLlStG7d2/x8OFDIYQQly5dEhkZGWLRokXSMcePHxeASE5OFlevXhWZmZlCCCH27t0revfuLYTIv+ahoaHixo0bolGjRiIhIUEIIURGRoYAYsT/bA17gauAlXiKNgKDYSxCiHQg/b8WFxkZGZmngqmpaRHhzPLmxIkT9O7dm6ZNm/LgwQO8vLzw8/NjxYoVVK5cmaFDn5r33DNBJwBXUPFeFoB7uowePfqJ6ms0Gsll1cfHhx49euDp6Vmmujk5ORgZGY5CPXDgwBONTUZGRkbm5USn/XD16lWsrKzo3LlzsQK3/xWL1CMoKIivv/6a+/fv888//2BtbU3Pnj2B/MxEoC/gGxwczMSJEwHQarVotVqpra1bt/LDDz+Qk5PD9evXiY+P19uvY/78+XrPPp1mx+nTpxk0aBAqlYq6devi5uZGaGiowfKTJ08ybNgwKZyjZs2aUpvFjf1lo0uXLly4cEHyyjA1NWXDhg20bt2agQMHYmNjQ506dXB0dDTYhrOzMwcOHJCE59u1a0dSUhLt27cHYOTIkaSkpNC6dWuEEJiZmbFr1y4GDx5Mz5490Wg0ODg4SF5uMTEx+Pr6olQqqVChAsuXL9frz8zMjICAAAYNGsSDB1L2JeMCh2wEzIQQF8rjGhlCzqoiIyPzwlHay9zj4Orqyr59+7h37x62trb07NnziV9YXxR0AnCFNTtkAbinh7+/P6ampkybNo3FixezYsUKjIyMaNWqFZs3byYkJIRJkyaRlZWFiYkJa9euxdLSstR23d3dWbBgAQ4ODty8eRMHBwdSUlIICAhgx44dZGRkkJuby4wZM/jiiy+oWrUqv/32Gx06dOD7779HqVRibm5OWFgYGRkZdOvWDRcXF86cOUODBg3YvXs3JiYmT/36qFQqNBoNQghUKhVLly6VJlRlZc6cOXzyySfSdkE1+bJgbm5O1apVUalU5ObmMnv2bHr37m3w+LS0NDZt2sTYsWOB/JjpM2fO8M477zzSuGWejLw8Qcqte7K+g4zMY6DTfrh//z5du3Zl2bJleHt7l1ovKyuLsWPHEhYWRqNGjfD39y9WkLeggK8hkpOTWbBgAaGhodSoUQMfHx+9tp41jzL250XhRT9zc3NiY2P1yiZNmsSkSZOK1P3000/LpMvi6+uLr6+vXh+igLiyUqlkzpw5zJkzp0jds2fPFikzNzena9euRcpPnDgh/d2xY0c90VSFQpFe4FAXYFWpA39C/p0JdWVkZF46Tpw4gaurK7169aJVq1acOHECNzc3evfujYWFBR9//DEbN26kTZs2aDQaEhMTgfz0qU5OTtjZ2fHmm28aTAGoo0qVKtjb2/Pbb7/h7+/PggULAMMxqbm5uUybNg21Wo1Wq2XJkiUAhIeH4+bmhr29PV27duX69etP8eqUjJyd4/kyd+5cIiIiiI6OZsWKFQC0bNmSU6dOERERwcyZM/Ve2h+X8+fPs337dk6ePAnkCxwuWbKE+Ph4EhMT2bFjR5E6CQkJjBs3jri4OKpXr85PP/30xOMoC7oJd1TU/7N353FVVP/jx18XVERcMPe0BPy4weXeyyICirK48BEisUyNEsIly6WsNOtTiWml6TdKMs1SMCUld7NsUUFcQ1BENDeQ0DQFFAQEBe75/cHvTiCL4gbqeT4ePB7MzJkzZ4brdebMOe/3IT755BPeeeedW95XCIFer69ww1WTjg6D6OhoEhMTWbNmjfIGsirZ2dl89dVXynJaWhrff/99jY8p3T5DsOXApXFMWnmQwKVx/HLkH5ldSpJqqFGjRsyfP5//+7//w8zMTAlwC5QLcGtg6Ixo2bIleXl5t5ShpU+fPsp3ZHJyMklJSQBcuXIFMzMzmjVrxoULF9iyZUuN2+/m5kZUVBQlJSVkZGQQGxuLk5NTlev79+9PeHg4V6+W5tC4dOlSjY8p3T8qlSoB0AAr7vWxZGeHJEl1xoEDB/jiiy84ceIEAIcOHWLRokX8+eefLF++nBMnThAXF8fo0aOVTofevXuzb98+Dh48yPDhw/n000+rPUZWVhb79u3Dxsamwrbi4mLi4uL4/PPPmTFjBgCLFy8mLS2NxMREkpKSCAgIoKioiIkTJ7JmzRoSEhIIDg6u9WjnMgBc7dFoNAQEBLBixQplRFJOTg5Dhw5FrVYzefJkjhw5csfH6d+/f7mhuU5OTlhZWWFsbMyIESPYtWtXhX0sLS3R6XRA7Q3hvXLlCs2bN1eW586dS48ePdBoNErgurS0NLp27crIkSNRq9WMGjVKGY4dEBAAlE9JWFkdNWnDZ599hlqtRq1W8/nnnwMwbdo0UlJS0Ol0TJkyhWnTprFz5050Oh2hoaF35VpI1ZPBliXp7rGzs0Oj0bBy5coqA9wamJubM2bMGNRqNQMHDqx2OoTBK6+8Ql5eHt27d+eDDz7AwcEBAK1Wi52dHd26deP5559XsnHUhL+/PxqNBq1Wi6enJ59++ilt27atcr23tzd+fn44Ojqi0+mUF1l1gV4vSM3IY19qFqkZebLzFhBCOAgh+gghrt289J2R01gkSaoznJycsLS0VJZ79OhBu3btAOjUqRMDBgwASuMdREdHA3D27FmGDRvG+fPnuX79ern9y9q5cyd2dnYYGRkxbdo0bGxsWL16dbkylc3r3Lp1K+PGjVMeYh977DGSk5NJTk6mf//+QOnoD0M7pUfPTz/9RGxsLD/++CMfffQRhw8f5v3338fDw4P169eTlpaGu7v7LdVVr1499PrSB70bh/2WjcwOoFKpql2Gf4fvQukQ3rLR8u8lQ0dFYWEh58+fZ/v27UBp+ryTJ08SFxeHEAI/Pz9iY2N58sknOXnyJMuWLVNS7a1evbpcKj6Dquro06dPhbIeHh4kJyejUqno2LEj9vb2TJgwgfDwcP744w+EEPTs2ZO+ffsye/ZskpOTlWPGxMQwb948Nm/efA+vVOU+//xzxo4dq8w/v9Ho0aN54403sLa2rnR7TEwMDRo0qPHUoVtR3fSeG7dFREQQHx/Pl19+eUt1X8y9pnR0CH0JR74qnVLkvawRjRoYc/bsWby8vMplYJAk6V83Tof48ccfld/37dtXoXxERITy+6xZs5g1a1aFMmWnJbRs2VK5PzI1NWXVqlWVtqNsvVWprIyh/SqVirlz5zJ37txy26taD6Ud1mWzsFTX9vvFMFrtxmnGcvTt/SNHdkiSVGfc+DBX9kHNyMhIWTYyMlLmXU6cOJEJEyZw+PBhvv766yrnhbq5uXHw4EESEhKqjNVxq/M6hRDY2Ngo6bQOHz7Mb7/9dusnKj009Ho9Z86cwcPDgzlz5pCTk0NeXh45OTm0b98euLWbPgMLCwsSEhIAbjqMOC4ujtOnT6PX64mKiqJ37963fR53m2Eay7Fjx/jll18YOXIkQgh+++03fvvtN+zs7LC3t+fYsWOcPHkSgI4dOyodHdWpro4bRUdHY2ZmxsmTJxFC8MEHH/Dxxx/j7++PmZkZjRs3ZsiQIXUuHeHnn3+uDMe+UUlJCd9++22VHR1QeoNf02k/tzqXvbrpPXc69ccQbBlAZWSMesLXOLz+Db/s2MuWLVswNTXl/fffv+36JUmS7ic5Wq32yc4OSZIeaGUfKpctW3bX6+/fvz9ff/218iBw6dIlunbtSkZGhhKwqaio6K5MU5DqpqtXr9KhQwfl57PPPlO2lZSU8MILL2Bra4udnR2TJk3C3NycqVOn8s4772BnZ1ejgGhvvfUWCxcuxM7OjszMzGrL9ujRgwkTJtC9e3csLS3x9/e/7XO8l1xcXMjMzCQjIwMhBO+8847SUXjq1ClGjRoFVOzsrEp1dVSlU6dOtGnThj///FMJ0CqEYMqUKSxatIjZs2crb0Dz8vLw8vJizJgxxMbGsnHjxkrr/OWXX7C3t0er1eLl5QWUfj8MHjwYjUaDs7OzMoc9JCSE4OBg3N3dsbKyYv78+QDk5+fj4+ODVqtFrVYTFRXF/PnzOXfuHB4eHnh4eAClU3jefPNNtFote/fuxd3dnfj4+ErbkZaWxqJFiwgNDUWn07Fz507S0tLw9PREo9Hg5eVFeno6UJoJaNy4cfTs2ZOpU6eWO7+0tDTc3Nywt7fH3t6etWvXolary03vGThwYLnh4jdO/Tl9+jRbtmzB29ubzp07lzvGb7/9houLC/b29gwdOpS8vDwl2LKhw8PwFrTjY40IDAxkypQpqNVqALZt24adnR22trYEBwcr0f6rWi9JDzo5HeLBU3a0msG1Yj0Xc+X30n1zL/Pa3s8fBweHG9MJS5L0ADDkFo+OjhY+Pj7K+huXDXm7b9y2YcMGYWlpKezt7cVbb70l+vbtW+EYN9ZlMH36dCUfedn6MzIyRMeOHYUQQhQVFYnJkyeL7t27C41GI8LCwoQQQhw8eFC4ubkJjUYjrK2txeLFi+/wSkjSravqM11XGP5dCyHEn3/+KVq0aCGKi4vFr7/+KpycnERubq4QQoizZ8+KCxcuiNOnTwsbG5tydZibm4vr169XqLOqOm7UsWNHkZGRIYyMjIS1tbUwNjYWjRs3FitWrBC2trYiMjJSeHh4CBsbG/H777+Lxx9/XLRv314UFRWJnJwcER8fL1xcXESnTp2EXq8vV/fFixdFhw4dRGpqqhBCiKysLCGEEBMmTBAhISFCCCG2bdsmtFqtEKL0u8bFxUUUFhaKjIwM8dhjj4nr16+LNWvWiNGjRyv1Zmdnl2u7ASCioqKUZcP3VVXtKPvdJoQQvr6+IiIiQgghxJIlS8TTTz8thBAiMDBQ+Pj4iOLi4grXLz8/XxQUFAghhDhx4oRQq9XCxsam3GfvxuPc+LkMDw8XlpaWIjs7WxQUFIgnn3xSpKeni4yMDOHm5iby8vKEEELMnj1bzJgxQwghREmJXqRczBV7UzJFysVcUVKiF3PnzhX//e9/lb9DQUGB6NChgzh+/LgQQogXX3xRhIaGVrlekh50JSV68VPSOdF79jbRY9bvovfsbeKnpHOipER/852lWpNyMVf5mxl+es/eJlIu5tZ202oFEC/ucx+BjNkhSVKtMszPdHd3LxfX4MblsvMuy257+umnq00nWVldBiEhIZXWX3ZeZ7169fjss8/Kvc0H0Ol0xMbGVntcSXpUGWJ2QOlLlWXLlmFsbMyAAQP4888/cXFxAUpHLKxYsQJjY+MKdYwdOxaNRoO9vT2RkZHK+qrqaN26dYU6DCMjoDTYcPfu3Rk9ejTBwcFMmjQJExMTpkyZQr9+/fD09CQ9PR2tVkuDBg0oLi4mLS2N/Px8Pvzww3KBUPft20efPn2UGEGGwLG7du1SMt54enqSlZXFlStXAPDx8cHExAQTExNat27NhQsXsLW15c033+Ttt9/G19cXNze3Sq+nsbExzzzzTIX1VbXjRnv37lWy9bz44ovlRlgMHTq00utfVFTEhAkTSExMxNjYmJMnT/Kf//yn0vrd3d3p2bMnmzZt4syZM+zcuRM3NzeOHTtGcXExzZo1U9Imu7u7o9fryczMpFevXly+fJkLFy5gampKfn4+c+bMwapVYzSWbXn55ZfZvHkz2dnZ5OXl8d5777F582aEELRv354uXboAEBgYyIIFC/Dw8MDS0rLC+tdff73SdkvSg6Kq6RDd2jbBqlXjm+wt1RbDaLUbY3ZYtLi1kYzSnZOdHZIkSdIjS68XpGXlczH3Gq2bmGDRwuyBCBpWVQdeXVFSUlLlttdee43XXnutwvrk5ORyy3PmzGHOnDnKctnAe1XVUZahw7Jx48blppllZmby4osvcvbsWWWqg8Gbb77JpUuX2LJlCytWrKB+/fpYWFgQGBhY7bFuxY3BYouLi+nSpQsHDhzg559/5r333sPLy6tClgSAhg0bVtohcTdUNX0oNDSUNm3acOjQIfR6fbn2V6a4uJiFCxcydepUZsyYwdatW4HSGEsAM2fOpH79+ixZsoTc3FwiIiIICwvD2dmZM2fO0Lx5cwYMGMCGDRsYPHgw+fn52NnZ8euvv7J06VJ8fX1xdnbmo48+IigoqFwHtSQ97KqbDiE7O+ouIyMV3jZt6da2yQN3n/GwkDE7JEm6Z+T8UqkuM0RJD1wax6SVBwlcGscvR/6Rn9OH2LFjxygpKaFFixa4ubkRFRVFSUkJGRkZxMbG4uTkRE5ODq1bt6Z+/fpER0fz119/VajH2dmZ2NhYTp8+DZTG6oDSQMiGUSgxMTG0bNmSpk2bVtmec+fO0ahRI1544QWmTJnCgQMHAGjSpAm5ubk3PZ+q2nHj/q6urkrWhMjIyCpHkJSVk5NDu3btMDIyYvny5UqWoBvrNmQBGjJkCE2aNMHY2LjSjAdbt27FwsJCaff+/fvZtGkT7u7uNGrUiNTUVAICApQRc8bGxuzevZu+ffvi4+NDgwYN8PX1BcDLy4vMzExOnToFwPLly+nbty9du3YlLS2twnpJetCVDd5rYFLPiNZNqu+ElGqfkZEKq1aNcbZqgVWrxrKj4z6TIzskSbonZLotqa6Tw4Jvz4M2GqaqKTX+/v7s3bsXrVaLSqXi008/pW3btgQEBPDUU09ha2uLo6Mj3bp1q1Bnq1atWLx4MUOGDEGv19O6dWt+//13JRCpRqOhUaNGNw2afPjwYaZMmYKRkRH169dn4cKFQOkUHm9vbx5//HElzXZlqmrHU089xbPPPsvGjRsJCwsjLCyMl156iblz59KqVSvCw8Nvet1effVVnnnmGb777ju8vb1p1KgRly9fRqPRYGxsjFarpWnTpowePRooHbli2Jaenk5oaGi17Y6IiGDs2LFkZWWRmJhYIeWliYkJixYtolu3buh0OoqLi7Gzs8PGxgZ/f3969erF0KFDKS4upkePHowbNw4TExPCw8MrrJekB52cDiFJt0dVGivkwefo6CgMkcklSap9qRl5BC6NKzfs0qSeEcuCneSDpFQn7EvNYtLKgxXWzx9hh7NVi1poUd0nOzEfbY6Ojnz66ad4enpy6dIlnJ2d2bJlC6NGjWLevHk4OjqSmZmJo6MjaWlpxMTEMG/ePDZv3sy0adMoLCzk888/B+Dy5csUFhbi7OxMQkICzZs3Z+DAgUycOJGnn36axo0bl5u6VHZ5zZo1bN68uUZpnSXpQfegdTRL0o1UKlWCEMLxfh5TTmORJOmekOm2pLpODguuuapGw6Rl5ddyy6T74bvvvmPmzJnodDo8PT2ZPn06nTp1uqV933vvPS5fvoxarUar1RIdHU27du2YPXs2Hh4eaLVaHBwcbhpwWpIeVXI6hCTVnBzZIUnSPSFHdkh13YMwSkGlUhEQEMCKFSuA0iCQ7dq1o2fPnmzevJlNmzZx9OhRpk2bRkhICI0bN+att94iKCgIX19fnn32WUaPHs0bb7yBtbX1HbfHMBrmXMz3PO7+vLK+7GgYCwsLJXZDSUkJs2bNuukDbNn2VmbDhg106dKlwjnU5E1n2VEGkiRJkiTdX7UxskPG7JAk6Z6Q80uluu5BiJJuZmZGcnIyBQUFmJqa8vvvv9O+fXtlu5+fH35+ftXW8e2339619hhGw5yPXal0dlQ2GiY6OpqWLVty/PhxBgwYcMdv6zds2ICvr2+5zg5DZ9XHPyZzXajqZGeVJEmSJEm1R05jkSTpnjA8SC4LdmL+CDuWBTvJhxCpznkQhgUPGjSIn376CYCVK1cyYsQIZVtERAQTJkyodn93d3cMIx9/+eUX7O3t0Wq1eHl5AZCfn09wcDBOTk7Y2dmxceNGpe4hQ4bg7e1N586dmTp1KhYtzGh7Yh36ouskf/kyaWtmV9uJeeXKFZo3bw6UpoJVq9XKtnnz5hESElJhn2nTpmFtbY1Go+Gtt95iz549bNq0iSlTpqDT6UhJScHd3Z1Rr0xg2H/dSd+5hispBzjwxViG9u/FsBdGcu3aNeV8u3Xrhr29PevWrVOOUdU5P6pk5ixJkiTpYSRHdkiSdM8YHiTltBVJun3Dhw/nww8/xNfXl6SkJIKDg9m5c2eN68nIyGDMmDHExsZiaWmppCn96KOP8PT0ZOnSpWRnZ+Pk5ES/fv0ASExM5ODBg5iYmNC1a1cmTpxI1DdhNFkVwbbdcVWOhvHw8EAIQWpqKj/88MMttzErK4v169dz7NgxVCoV2dnZmJub4+fnV2Gay5X8Arq/sgB90XWSQoPoFvwpDVt2IC/+GxYuXMi4ceMYM2YM27dv5z//+Q/Dhg1T9q3qnM3MHr2RZw/CdC5JkiRJuh1yZIckSZIk1WEajYa0tDRWrlzJoEGDbrueffv20adPHywtLQF47LHHAPjtt9+YPXs2Op0Od3d3CgsLSU9PB8DLy4tmzZrRsGFDrK2t+euvvzAyUqFSUe1omOjoaJKTkzl8+DATJkwol1WjOoZjjRo1inXr1tGoUaMqyz479DlM6hlRmHkGk+ZtadiyAyb1jHj+hReJjY3l2LFjWFpa0rlzZ1QqFS+88IKyb3Xn/KiRQWclSZKkh5Xs7JAkSZKkOs7Pz4+33nqr3BSWu0UIwdq1a0lMTCQxMZH09HS6d+8OgInJv7E4jI2NKS4urlHdnTp1ok2bNhw9epR69eqh1/8bsLiwsLBC+Xr16hEXF8ezzz7L5s2b8fb2rrruY90WWAAAIABJREFUdi14Z1B36huX3soYRiS0bdrwpu2q7pwfNTJzliRJkvSwkp0dkiRJklTHBQcHM336dGxtbW+7DmdnZ2JjYzl9+jSAMo1l4MCBhIWFYcjOdvDgwZvWVb9+fYqKim5a7uLFi5w+fZqOHTvSpk0bLl68SFZWFteuXas0K0peXh45OTkMGjSI0NBQDh06BECTJk3Izc0tV9YQF+j7t/wxu36JGe4t8LZpS2TkCvr27Uu3bt1IS0sjJSUFKI13YnA75/ywkimYJUmSpIeV7OyQJEmSpDquQ4cOTJo06Y7qaNWqFYsXL2bIkCFotVolhsX7779PUVERGo0GGxsb3n///ZvWNXbsWDQaDQEBAZVu9/DwQKfT4eHhwezZs2nTpg3169fngw8+wMnJif79+9OtW7cK++Xm5uLr64tGo6F379589tlnQGnckrlz52JnZ6d0XkBph0f3J1oSuXwZb44LQqvVYGRkxLhx42jYsCGLFy/Gx8cHe3t7Wrdurex3O+f8sDJkzjJ0eMjMWZIkSdLDQmV4q/Ggc3R0FIZo85IkSZIkSdKt0esFaVn5dTYF84Psn3/+4fXXX2f//v2Ym5vTpk0bpk2bxvz581mzZk1tN096RJ09e5bx48dz9OhR9Ho9vr6+zJ07lwYNGhATE8O8efPYvHkzmzZt4ujRo0ybNu2uHt/Ozo7w8HB0Oh3FxcWYm5uzaNEiJbaSg4MD33zzDfb29rd9jJCQEBo3bsxbb711t5ot3SGVSpUghHC8n8eUIzskSXooGBsbo9PpUKvVDB06lKtXr9ZKO8qm+bSwsCAzM7NG+3bt2hWdTodOp1NuhBs3vrfZbGJiYvD19b2nx5Aqkuk+pbriQUjB/CASQuDv74+7uzspKSkkJCTwySefoFKpKu3oqGlMHEm6HUIIhgwZwuDBgzl58iQnTpwgLy+P//3vfxXK+vn53ZWOjhs/27169WLPnj0AHDp0iC5duijL+fn5pKSkoNVq7/i4kiQ7OyRJeiiYmpqSmJhIcnIyDRo0YNGiRbe0X127uYyMjFSCJpZNsyk9XAzpPgOXxjFp5UECl8bxy5F/ZIeHJD1EoqOjqV+/PuPGjVPWabVannjiCdRqNQARERH4+fnh6emJl5cXeXl5vPTSS9ja2qLRaFi7di1QmkHIxcUFe3t7hg4dessZjiTpRtu3b6dhw4a89NJLQOnLotDQUJYuXVrhRVFERAQTJkwgJyeHjh07KkGm8/PzeeKJJygqKiIlJQVvb28cHBxwc3Pj2LFjAAQFBTFu3Dh69uzJ1KlTy9Xr6uqqdG7s2bOHcePGkZiYCEBcXBwODg4YGxvz2WefoVarUavVfP7558r+Va3/6KOP6NKlC7179+b48eN3+cpJDyLZ2SFJ0kPHzc2NU6dOkZ+fT3BwME5OTtjZ2bFx40ag4s1ldeWGDBmCt7c3nTt3LvefdU1vPFesWIGTkxM6nY6XX36ZkpKSGp9XXl4eXl5e2NvbY2trq7QzLS2Nbt26ERQURJcuXQgICGDr1q306tWLzp07ExcXB1DleUr3n0z3KUkPv+TkZBwcHG5a7sCBA6xZs4YdO3Ywc+ZMmjVrxuHDh0lKSsLT05PMzExmzZrF1q1bOXDgAI6Ojko8G0mqqSNHjlT4XDZt2pQnn3ySU6dOVbpPs2bN0Ol07NixA4DNmzczcOBA6tevz9ixYwkLCyMhIYF58+bx6quvKvudPXuWPXv2VPi8lh3ZsWfPHvr06YOJiQm5ubns2bMHV1dXEhISCA8P548//mDfvn188803HDx4sNr1q1atIjExkZ9//pn9+/ffzcsmPaDq1XYDJEmS7qbi4mK2bNmCt7c3H330EZ6enixdupTs7GycnJzo168fUHpzmZSUxGOPPca7775bZbnExEQOHjyIiYkJXbt2ZeLEiZiamio3nmZmZsyZM4fPPvuMDz74oNI2/fnnn0RFRbF7927q16/Pq6++SmRkJCNHjqxQNiAgAFNTUwC2bdtGixYtlG0NGzZk/fr1NG3alMzMTJydnfHz8wPg1KlTrF69mqVLl9KjRw++//57du3axaZNm/j444/ZsGFDtddDur+qS/dp1ereTluSJKlu6d+/P4899hgAW7duZdWqVcq25s2bs3nzZo4ePUqvXr0AuH79Oi4uLrXSVunRNWzYMKKiovDw8GDVqlW8+uqr5OXlsWfPHoYOHaqUu3bt37TVQ4cOxdjYuEJdHTt25Pr16/zzzz8cO3aMrl270qNHD/744w/27NnDxIkT2bVrF/7+/piZlQZLHjJkCDt37lSmh924Xq/X4+/vT6NGjQCU+yPp0SY7OyRJeigUFBSg0+mA0pEdo0aNwtXVlU2bNjFv3jwACgsLSU9PB8rfXP72229VlvPy8qJZs2YAWFtb89dff5GdnV2jG89t27aRkJBAjx49lLaWzQxRVmRkJI6OlcduEkLw7rvvEhsbi5GREX///TcXLlwAwNLSUklLamNjg5eXFyqVCltbW9LS0m56ntL9ZUj3WbbDQ6b7fHhduHCByZMns2/fPpo3b06DBg2YOnUq/v7+d1Rv2aHglXF3d2fevHlVfqdA6ffX1KlT2bx5MyqVCmtraxYsWECHDh2A0phBeXl5pKWl4evrS3JyMvHx8Xz33XfMnz//jtpfnYchuKCNjc0tBSE1PLRVRQhB//79y6VPlqTbZW1tXeFzeeXKFdLT0/nPf/6jjAa9kZ+fH++++y6XLl0iISEBT09P8vPzMTc3V6ag3Ki6z7arqyurV6+mXbt2qFQqnJ2d2b17N3Fxcbi4uMhpKNJdIaexSJL0UDDE7EhMTCQsLIwGDRoghGDt2rXK+vT0dLp37w6U/w+4unImJv8+fBobG1NcXKzceBrKHz16lCVLllTZNiEEgYGBSvnjx48TEhJS43OMjIwkIyODhIQEEhMTadOmDYWFhRXaaWRkpCwbGRkpcUmqO0/p/pLpPh8dQggGDx5Mnz59SE1NVYZanz179pbruDG2kGG5uo6OW/Xuu++Sm5vL8ePHOXnyJIMHD2bIkCFUl63P0dHxnnZ03I66Fn8JwNPTk2vXrrF48WJlXVJSEmfOnKlyn/79+7NgwQJl+fLly8pDoGGKQX5+PidOnLh3DZceal5eXly9epXvvvsOgJKSEt58802CgoKUURGVady4MT169OC1117D19cXY2NjmjZtiqWlJatXrwZKv+8OHTp0S+1wdXXl888/V14Wubi48N1339G2bVuaNWuGm5sbGzZs4OrVq+Tn57N+/Xrc3NyqXN+nTx82bNhAQUEBubm5/Pjjj3d4paSHgezskCTpoTVw4EDCwsKUm/aDBw/eUTmDmt54enl5sWbNGi5evAjApUuX+Ouvv2p8Pjk5ObRu3Zr69esTHR1d4zpqep7SvWNkpMLbpi3Lgp2YP8KOZcFOeNu0lVkwHkLbt2+nQYMG5YJUduzYkYkTJwKlMXfc3Nywt7fH3t5e6cCIiYnBzc0NPz8/rK2tKyxD+UxNc+bMwdbWFq1WWyF7gl6vJygoiPfee6/c+qtXrxIeHk5oaKgy1Pyll17CxMSE7du3V3lOhgxOer0eCwsLsrOzlW2dO3fmwoUL/Pjjj/Ts2RM7Ozv69eunjEILCQkhODgYd3d3rKysynWaVBVc8HYCINYFKpWK9evXs3XrVjp16oSNjQ3vvPMObdu2rXKf9957j8uXL6NWq9FqtURHR9OqVSsiIiIYMWIEGo0GFxcX5RpIUk0ZPperV6+mc+fOdOnShYYNG/Lxxx/fdN9hw4axYsUKhg0bpqyLjIxkyZIlaLVabGxsbjkeWK9evUhNTVU6O9q1a0dJSQmurq4A2NvbExQUhJOTEz179mT06NHY2dlVu37YsGFotVr++9//KqNppUecEOKh+HFwcBCSJD26zMzMKqy7evWqGDt2rFCr1cLa2lr4+PgIIYQIDw8X48ePr3E5Hx8fER0dLYQQYtu2bcLR0VHY2toKW1tbsXHjRiGEEH379hX79+8XQgjRsWNHkZGRIYQQYtWqVUKr1QpbW1thb28v9u7dW6G9Zfet7NwyMjKEs7OzUKvVIigoSHTr1k2cPn1anD59WtjY2CjlAwMDxerVq4UQoty2qs4zOjpa+V2SpLvriy++EK+//nqV2/Pz80VBQYEQQogTJ04Iw/1MdHS0aNSokUhNTa10WYh/vxt+/vln4eLiIvLz84UQQmRlZQkhSr9T9u7dK4YPHy5mzZpV4diHDh0SOp2uwvrXX39dfPHFF+WOUfa7pOx3xqRJk8TSpUuFEELs27dPeHl5CSGEuHTpktDr9UIIIb755hvxxhtvCCGEmD59unBxcRGFhYUiIyNDPPbYY+L69esiPj5eqNVqkZ+fL3JyckSnTp3E3LlzhRBCeHp6ihMnTijH8PDwEEKUftf5+PiI4uLiKq+vJEmSVDcA8eI+9xHImB2SJD0UKsuGYmpqytdff11hfVBQEEFBQTUut3nzZuV3T0/PSiN9x8TEKL8bYmVA6duQsm9CKlN237IM59ayZUv27t1baZnk5GTl94iICOV3CwsLZVtV5+nu7o67u3u1bZMk6e4YP348u3btokGDBuzfv5+ioiImTJhAYmIixsbG5UaJOTk5YWlpWeWywdatW3nppZeUIeiGeEQAL7/8Ms899xz/+9//7sn5DBs2jA8//JCXXnqJVatWKd9zZ8+eZdiwYZw/f57r16+Xa7ePjw8mJiaYmJjQunVrLly4wM6dOysNLni7ARAl6VGl1wvSsvK5mHuN1k1MsGhhJkcNSo8sOY1FkiRJkiTpHrGxseHAgQPK8oIFC9i2bRsZGRkAhIaG0qZNGw4dOkR8fDzXr19Xyt4Y3O9mgSwr4+rqSnR0tBLfp6xOnTqRnp5Obm5uufUJCQnY2NjcUv0uLi6cOnWKjIwMNmzYwJAhQwCYOHEiEyZM4PDhw3z99dfljl9ZLKSq6PV6JQCi4efPP/9Utt/ONbkb9HpBakYe+1KzSM3IQ6+vOsaJJN0ver3glyP/ELg0jkkrDxK4NI5fjvwjP5/SI0t2dkiSVOfJm0pJkh5Unp6eFBYWsnDhQmXd1atXld9zcnJo164dRkZGLF++nJKSkhofo3///oSHhyv1Xrp0Sdk2atQoBg0axHPPPVehU8HMzIzAwEDeeOMN5bjfffcdV69exdPT85aOrVKp8Pf354033qB79+5KuuycnBzat28PwLJly25aT1XBBe8kAOK9Ih8opboqLSufT37+U8n0da1Yzyc//0laVn4tt0ySaofs7JAkqU6TN5WSJD3IVCoVGzZsYMeOHVhaWuLk5ERgYCBz5swB4NVXX2XZsmVotVqOHTt2WyMVvL298fPzw9HREZ1Op6SXNnjjjTews7PjxRdfRK/Xl9v2ySef0LBhQ7p06ULnzp1ZvXo169evR6W69WHvlQUtDAkJYejQoTg4ONCyZcub1lFdcMHbDYB4r8gHSqmuuph7rVxKcyj9fF7MvVbFHnWbsbExOp0OtVrN0KFDy3UUS9KtUIlqUos9SBwdHUV8fHxtN0OSpLssNSOPwKVx5f7zNqlnxLJgJ6xaNa5mT0mSJEm6+/alZjFpZcVsVvNH2OFs1aIWWiRJpR62e6bGjRsrccsCAgJwcHDgjTfeqOVWSbdLpVIlCCEc7+cx5cgOSZLqtIftLYUkSZL0YGvdxASTeuVvoU3qGdG6iUkVe0jS/WHRwox3BnVXPp8m9Yx4Z1B3LFrUTmybu8nNzY1Tp06Rn59PcHAwTk5O2NnZKSO9SkpKmDJlCj169ECj0SgB2YcPH85PP/2k1BMUFMSaNWuqLH/+/Hn69OmjjCjZuXPn/T9Z6a6pc9lYVCpVCDAGyPj/q94VQvxcey2SJKk2GW4qb3xLIW8qJUmqC2Tmg0eP4YHSMJXlYXqglB5sRkYqvG3a0q1tk4fqO6m4uJgtW7bg7e3NRx99hKenJ0uXLiU7OxsnJyf69etHZGQkzZo1Y//+/Vy7do1evXoxYMAAhg0bxg8//ICPjw/Xr19n27ZtLFy4kCVLllRaft26dQwcOJD//e9/lJSUyKkzD7g619nx/4UKIebdvJgkSQ87eVMpSVJdZYgpdOP3k7dN2wf+4UKq2sP6QCk9HIyMVFi1avxATlu5UUFBATqdDigd2TFq1ChcXV3ZtGmTEpuosLCQ9PR0fvvtN5KSklizZg1QGiT55MmT/Pe//+W1117j2rVr/PLLL/Tp0wdTU9Mqy/fo0YPg4GCKiooYPHiwcnzpwSSnsUiSVKcZbiqXBTsxf4Qdy4Kd5IOEJD2kDMHoDD+zZ8+utvymTZuqLNO4ceU3+gUFBfTt27fSrCeG4c0Ao0eP5ujRo9Ue/04CVVbVvg8++ICtW7fedP+a+vjjj8stu7q63nZdw4cP5+TJk3fapAea4YHS2aoFVq0ay/+TJOkeMDU1VVJOh4WF0aBBA4QQrF27Vlmfnp5O9+7dEUIQFhamrD99+jQDBgygYcOGuLu78+uvvxIVFaUEUq6qfJ8+fYiNjaV9+/YEBQXx3Xff1fJVkO5EXe3smKBSqZJUKtVSlUrVvLYbI0lS7ZI3lZL0aCh7Y5uYmMi0adOqLe/n53fTMjdaunQpQ4YMwdjYuNpy3377LdbW1tWWuRcxhT788EP69et32/tX5cbOjj179tx2Xa+88gqffvrpnTZJkiSpxgYOHEhYWBiGJBsHDx5U1i9cuJCioiIATpw4QX5+acfzsGHDCA8PZ+fOnXh7e1db/q+//qJNmzaMGTOG0aNHc+DAgft9itJdVCudHSqVaqtKpUqu5OdpYCHQCdAB54H/q6aesSqVKl6lUsVnZGRUVUySJEmSpAeYhYUF06dPx97eHltbW44dOwZAREQEEyZMAOD06dO4uLhga2vLe++9V2VdkZGRPP3000Dpm70JEybQtWtX+vXrx8WLF5Vy7u7uxMfHU1JSQlBQEGq1GltbW0JDQwH45ptvGPvMAI58+TKnvp9ByfVCAP5aN5ewD9/G2dkZKysrYmJiCA4Opnv37gQFBZVry+TJk7GxscHLywvDfUzZ0SU///wz3bp1w8HBgUmTJuHr6wuUpnUtm15WrVaTlpYGwODBg3FwcMDGxobFixcDMG3aNGU4eEBAAPDvyBIhBFOmTFHOLyoqCoCYmBjc3d159tln6datGwEBAcrDhZubG1u3bqW4uPjW/oCSJEl3yfvvv09RUREajQYbGxvef/99oHQ0nrW1Nfb29qjVal5++WXlO2rAgAHs2LGDfv360aBBg2rLx8TEoNVqsbOzIyoqitdee63WzlW6C4QQdfYHsACSb6Wsg4ODkCRJkiTpwWVkZCS0Wq3ys2rVKiGEEB07dhTz588XQgixYMECMWrUKCGEEOHh4WL8+PFCCCGeeuopsWzZMiGEEF9++aUwMzOrUP+1a9dEmzZtlOW1a9eKfv36ieLiYvH333+LZs2aidWrVwshhOjbt6/Yv3+/iI+PF/369VP2uXz5shBCiMzMTFFSohc/JZ0TT3gEiCd9xoves7cJL7/nxHPPDRN6vV5s2LBBNGnSRCQlJYmSkhJhb28vDh48KIQQAhArVqwQQggxY8YM5TwCAwPF6tWrRUFBgejQoYNITU0VQggxfPhw4ePjI4QQYvr06WLu3LlKm2xsbMTp06eFEEJkZWUJIYS4evWqsLGxEZmZmUIIUeF6GJbXrFmjXIN//vlHPPHEE+LcuXMiOjpaNG3aVJw5c0aUlJQIZ2dnsXPnTmX/fv36ifj4+Gr+mpIkSZL0LyBe3Of+hDo3jUWlUrUrs+gPJNdWWyRJkiRJun9unMZimFsNMGTIEAAcHByUUQxl7d69mxEjRgDw4osvVlp/ZmYm5ubmynJsbCwjRozA2NiYxx9/HE9Pzwr7WFlZkZqaysSJE/nll19o2rQpAMnJyfTt24e3nx+ASNmFfdM8lgU70d7cFD+/p1CpVNja2tKmTRtsbW0xMjLCxsZGabuRkZFyfi+88AK7du0qd9xjx45hZWWFpaUlgHJuNzN//ny0Wi3Ozs6cOXPmprE1du3apVyDNm3a0LdvX/bv3w+Ak5MTHTp0wMjICJ1OV+66t27dmnPnzt1SmyRJkm6k1wtSM/LYl5pFakYeer2o7SZJD6G6mI3lU5VKpQMEkAa8XLvNkSRJkiSptpmYlKabNjY2rnL6hEpVfTwfU1NTCgsLa3Tc5s2bc+jQIX799VcWLVrEDz/8wNKlSwkKCmLDhg1otVoiIiKIiYnBqlVjVKp/22pkZKT8bli+3baXVa9ePfT6f2OFGM4pJiaGrVu3snfvXho1aoS7u3uNz7essm2/8boXFhZiamp623VLkvTokpmspPulzo3sEEK8KISwFUJohBB+Qojztd0mSZKk2nbhwgWef/55rKyscHBwwMXFhfXr11da9ty5czz77LN3vQ0bNmwol50iIiKiRm92y8ZXMDDERbhTaWlpqNXqSredPHkSX19fOnXqhIODAx4eHsTGxlZb340xESo7Tnx8PJMmTbrjtkt3R69evVi1ahVQGpejMs2bN6ekpETpAOjTpw9RUVGUlJRw/vx5oqOjK+yTmZmJXq/nmWeeYdasWUqwutzcXNq1a0dRUVGVx6uOXq9XYnN8//339O7du9z2rl27kpqaqoymMMTSgNIYJoZ2HDhwgNOnTwOlqRObN29Oo0aNOHbsGPv27VP2qV+/vhKIryw3NzflGmRkZBAbG4uTk9NN23/ixIkq/81JkiRV504yWUlSTdS5zg5JkiSpPCEEgwcPpk+fPqSmppKQkMCqVas4e/ZshbLFxcU8/vjjykPU3XSnnR21obCwEB8fH8aOHUtKSgoJCQmEhYWRmpp6x3U7Ojoyf/78u9BKycAQRNPwU5NMK1988QULFizA1taWv//+u8pyAwYMUKaM+Pv707lzZ6ytrRk5ciQuLi4Vyv/999+4u7uj0+l44YUX+OSTTwCYOXMmPXv2pFevXnTr1q2GZwpmZmbExcWhVqvZvn07H3zwQbntpqamfPXVV3h7e+Pg4ECTJk1o1qwZAM888wyXLl3CxsaGL7/8ki5dugDg7e1NcXEx3bt3Z9q0aTg7Oyv1jR07Fo1GowQoNfD390ej0aDVavH09OTTTz+lbdu21bb9woULmJqa3rScJElSZe5FJitJqoxKiIdjfpSjo6O4G28HJUmS6ppt27bx4YcfsmPHjkq3R0REsG7dOvLy8igpKWHZsmX4+vqSnJxMREQEmzZt4urVq6SkpODv76+kjFyyZAlz5szB3NwcrVaLiYkJX375JWlpaQQHB5OZmUmrVq0IDw/n7Nmz+Pr60qxZM5o1a8aIESOYOXMm7du3x9TUlL179zJjxgw2bdpEvXr1GDBgQIWREREREcTHx/Pll18q69zd3Zk3bx6Ojo789ttvTJ8+nWvXrtGpUyfCw8Np3LgxH374IT/++CMFBQW4urry9ddfo1KpSEhIIDg4GCh9gN2yZQvJyeXDPC1ZsoTY2FiWLVtW6bW7dOkSwcHBpKam0qhRIxYvXoxGoyEkJISUlBROnTpFZmYmU6dOZcyYMaSlpSnXNiYmhnnz5rF582ZCQkJIT08nNTWV9PR0Xn/9dTnqo446cOAAoaGhLF++vLabclN5eXk0btwYIQTjx4+nc+fOTJ48ubabRWhoKE2bNmXUqFG13RRJkh5AqRl5BC6NK9fhYVLPiGXBTli1alyLLZPuJZVKlSCEcLyfx5QjOyRJkuq4I0eOYG9vX22ZAwcOsGbNmko7RBITE4mKiuLw4cNERUVx5swZzp07x8yZM9m3bx+7d+9WUnkCTJw4kcDAQJKSkggICGDSpEm4urri5+fH3LlzSUxM5O2338bR0ZHIyEgSExO5evUq69ev58iRIyQlJVWZ+jMqKqrcm3tDJ3VmZiazZs1i69atHDhwAEdHRz777DMAJkyYwP79+0lOTqagoIDNmzcD8NJLLxEWFsahQ4du+9pNnz4dOzs7kpKS+Pjjjxk5cqSyLSkpie3bt7N3714+/PDDm45iOXbsGL/++itxcXHMmDGj0ikDUu2zt7fHw8ODkpKS2m7KTX3zzTfodDpsbGzIycnh5ZfrRhgzc3NzAgMDa7sZkiQ9oCxamPHOoO6Y1Ct9FDXE7LBoYVbLLZMeNnUxQKkkSZJUjfHjx7Nr1y4aNGigZE3o378/jz32WKXlvby8lOHv1tbW/PXXX2RmZtK3b19ln6FDh3LixAkA9u7dy7p164DSrBZTp069aZuaNWtGw4YNGTVqFL6+vvj6+lZabtiwYRVGdgDs27ePo0eP0qtXLwCuX7+uTCmIjo7m008/5erVq8rQfTc3N7Kzs+nTp4/Szi1btty0nf7+/pw8eZIuXbqwbt06du3axdq1awHw9PQkKyuLK1euAPD0009jamqKqakpHh4exMXFodPpqqzbx8cHExMTTExMaN26NRcuXKBDhw43bdOjQq8XpGXlczH3Gq2bmGDRwqzWAtEZRgTVdZMnT64TIzlu9NJLL9V2EyRJeoAZGanwtmlLt7ZN6sT/CdLDS47skCRJquNsbGyUYIQACxYsYNu2bWRkZCjrzMyqfhtSXUaFu6VevXrExcXx7LPPsnnzZry9vWu0vxCC/v37KylHjx49ypIlSygsLOTVV19lzZo1HD58mDFjxtQou8SN1279+vVERERw6dKlm+57Y3aMm2XLuB/X+UFliLwfuDSOSSsPErg0jl+O/CNTDdaASqXihRdeUJaLi4tp1apVlR2LNVVZAOHqhISE0L59e3Q6Hd26deOVV14plyHmbrejqqDBZQUFBd2TeEUxMTHs2bPnrtcrSY8yIyMVVq0a42zVAqtWjWVHh3RPyM4OSZKkOs7T05PCwkIWLlyorLt69eod1dmjRw927NjB5csNXnXSAAAgAElEQVSXKS4uVkY3ALi6upbLauHm5gZAkyZNyM3NVcqVXc7LyyMnJ4dBgwYRGhpa7dSSyjg7O7N7925OnToFQH5+PidOnFA6Nlq2bEleXp7yIGNubo65ubkSaLKqbBjPP/88u3fvZtOmTcq6stfOzc1N2TcmJoaWLVvStGlTADZu3EhhYSFZWVnExMTQo0ePGp2T9C8Zef/OmZmZKVO5AH7//Xfat29fq22aPHmy0jl5+PDhSqfRPUidflVNbZKdHZIkSQ8m2dkhSZJUx6lUKjZs2MCOHTuwtLTEycmJwMBA5syZc9t1tm/fnnfffRcnJyd69eqFhYWFMtUlLCyM8PBwNBoNy5cv54svvgBg+PDhzJ07Fzs7O1JSUggKCmLcuHHodDpyc3Px9fVFo9HQu3dvJd7GrWrVqhURERGMGDECjUaDi4sLx44dw9zcnDFjxqBWqxk4cGC5Dofw8HDGjx+PTqejqmDbpqambN68mUWLFmFlZYWLiwuzZs1SYoqEhISQkJCARqNh2rRp5QKZajQaPDw8cHZ25v333+fxxx+v0TlJ/5KR9++OQYMG8dNPPwGwcuVKRowYoWyLi4vDxcUFOzs7XF1dOX78OFA6UmLIkCF4e3vTuXPnctPSwsPD6dKlC05OTuzevRsoTalraWmpxJy5cuVKueXKXL9+ncLCQpo3bw6UTk97/fXXcXR05IsvvmDbtm3Y2dlha2tLcHAw166V/t3379+Pq6srWq0WJyencp2pAD/99BMuLi5kZmaWW5+SkqJkqXFzcysXcyg2NhZXV1esrKyUztGYmJhyI2AmTJhAREQEUJrG9+2338be3p7Vq1czf/58rK2t0Wg0DB8+nLS0NBYtWkRoaCg6nY6dO3fe7M8kSZIk1RVCiIfix8HBQUiSJEm3Ljc3VwghRFFRkfD19RXr1q2r5RZJD6uUi7mi9+xtoses35Wf3rO3iZSLubXdtAeGmZmZOHTokHjmmWdEQUGB0Gq1Ijo6Wvj4+AghhMjJyRFFRUVCCCF+//13MWTIECGEEOHh4cLS0lJkZ2eLgoIC8eSTT4r09HRx7tw58cQTT4iLFy+Ka9euCVdXVzF+/HghhBBBQUFi/fr1Qgghvv76a/HGG29UaM/06dPF448/LrRarTA3NxcjRoxQtvXt21e88sorQgghCgoKRIcOHcTx48eFEEK8+OKLIjQ0VFy7dk1YWlqKuLi4cu0PDw8X48ePF+vWrRO9e/cWly5dUo43d+5cIYQQnp6e4sSJE0IIIfbt2yc8PDyEEEIEBgaKZ599VpSUlIgjR46ITp06CSFEueskhBDjx48X4eHhQgghOnbsKObMmaNsa9eunSgsLBRCCHH58uUKx5YkSZJuDxAv7nMfgRzZIUmSVMv0ekFqRh77UrNIzci7b3EMQkJC0Ol0qNVqLC0tGTx48H05rvTokZH37w6NRkNaWhorV65k0KBB5bbl5OQwdOhQ1Go1kydP5siRI8o2Q5Dihg0bKkGK//jjD9zd3WnVqhUNGjRg2LBhSvnRo0cTHh4OlI7+qCogqWEay8WLF8nPz1emvwFKfcePH8fS0pIuXboAEBgYSGxsLMePH6ddu3bKaK2mTZtSr15p3Pzt27czZ84cfvrpJ2W0iEFeXh579uxh6NCh6HQ6Xn75Zc6fP69sHzx4MEZGRlhbW3PhwoVbuq5lz12j0RAQEMCKFSuU9kiSJEkPJvktLkmSVIsMgRsN8QwMD4HeNm3vebCumwX7k6S7RUbev3v8/Px46623iImJISsrS1n//vvv4+Hhwfr160lLS1MyHUHNg+f26tWLtLQ0YmJiKCkpQa1WV1u+fv36eHt7Exsby/Dhw4HqgybfTKdOnUhNTeXEiRM4OjqW26bX6zE3NycxMbHSfcueq/j/09vq1atXLnjqjUGOy7b1p59+IjY2lh9//JGPPvqIw4cP3/Z5SJIkSbVLjuyQJEmqRTJwo/SokJH3747g4GCmT5+Ora1tufU5OTlKwFJDPIrq9OzZkx07dpCVlUVRURGrV68ut33kyJE8//zzt5RmVgjB7t276dSpU4VtXbt2JS0tTQk+vHz5cvr27UvXrl05f/68kj47NzdX6YTp2LEja9euZeTIkeVGqEDpCBBLS0ulvUKImwZE7tixI0ePHuXatWtkZ2ezbdu2Ssvp9XrOnDmDh4cHc+bMIScnh7y8vArBmSVJkqQHg+zskCRJqkUycKMkSTXRoUMHJk2aVGH91KlTeeedd7Czs7ulDCjt2rUjJCQEFxcXevXqRffu3cttDwgI4PLly+WCoN7IELRTrVZTUlLCq6++WqFMw4YNCQ8PZ+jQodja2mJkZMS4ceNo0KABUVFRTJw4Ea1WS//+/cuNuOjWrRuRkZEMHTqUlJSUcnVGRkayZMkStFotNjY2bNy4sdpzfeKJJ3juuedQq9U899xz2NnZVVqupKSEF154AVtbW+zs7Jg0aRLm5uY89dRTrF+/XgYolSRJesCoDEP8HnSOjo4iPj6+tpshSZJUI6kZeQQujSvX4WFSz4hlwU5YtWpciy2TJOlRtmbNGjZu3Mjy5ctruymSJEnSQ0ClUiUIIRxvXvLukTE7JEmSapEhcOONMTtk4EZJkmrLxIkT2bJlCz///HNtN0WSJEmSbpsc2SFJklTL9HpBWla+DNwoSY8g+e9fkiRJehTUxsgOGbNDkiSplsnAjZJUezZs2IBKpeLYsWPKurS0tJtmIAEYNGgQ2dnZt3wsd3d3yr6YMWRjClwax6SVBwlcGscvR/657fTTN9Z/MzExMezZs0dZ3rBhA0ePHr2tY0uSJElSXSM7OyRJkiRJemStXLmS3r17s3Llyhrv+/PPP2Nubn7bx67tbEyys0OSJEl6mMnODkmSJEmSHkl5eXns2rWLJUuWsGrVqkrLXL16leeeew5ra2v8/f3p2bOnMnrCwsKCzMxMAFasWIGTkxM6nY6XX36ZkpKSmx7/Yu418q9kczJyOslhYzm6aCKXz57iYu41QkJCCA4Oxt3dHSsrK+bPn6/sN3PmTLp27Urv3r0ZMWIE8+bNU7YtX75cyZASFxcHwKVLlxg8eDAajQZnZ2eSkpJIS0tj0aJFSkaVHTt2sGnTJqZMmYJOpyMlJYXExEScnZ3RaDT4+/tz+fJloHQEyeTJk3F0dKR79+7s37+fIUOG0LlzZ957773b+2NIkiRJ0l0mOzskSZKkOiUrKwudTodOp6Nt27a0b98enU6Hubk51tbW9+SYjRvfm8w3KpWKN998U1meN28eISEh1e5z49v1iIgIzp07d0/a96jbuHEj3t7edOnShRYtWpCQkFChzFdffUXz5s05evQoM2fOrLTMn3/+SVRUFLt37yYxMRFjY2MiIyNvevzWTUz4J3o5jdr9B/XExXToH0za2k9p3cQEgGPHjvHrr78SFxfHjBkzKCoqYv/+/axdu5ZDhw6xZcuWCtNWrl69SmJiIl999RXBwcEATJ8+HTs7O5KSkvj4448ZOXIkFhYWjBs3jsmTJ5OYmEjfvn3x8/Nj7ty5JCYm0qlTJ0aOHMmcOXNISkrC1taWGTNmKMdp0KAB8fHxjBs3jqeffpoFCxaQnJxMREQEWVlZNfo7SJIkSdK9IDs7JEmSpDqlRYsWJCYmkpiYWO5hLDExESOj2v9vq7i4+JbLmpiYsG7dOuXt/62QnR33z8qVKxk+fDgAw4cPr3Qqy65du5QyarUajUZTocy2bdtISEigR48e6HQ6tm3bRmpq6k2Pb9HCDNPLJ3ncoT8Arbo6YKq/ymP1S0eF+Pj4YGJiQsuWLWndujUXLlxg9+7dPP300zRs2JAmTZrw1FNPlatzxIgRAPTp04crV66QnZ3Nrl27ePHFFwHw9PQkKyuLK1euVNu2nJwcsrOz6du3LwCBgYHExsYCsGPHDtatW4dOpyMsLAwrKyvatWuHiYkJVlZWnDlzBoDs7Gy++uqrKo9hbGysdGzqdDrS0tIqlKlpXBRJkiRJMqj9u0ZJkiRJukUlJSWMGTMGGxsbBgwYQEFBAQApKSl4e3vj4OCAm5ubEmwyLS0NT09PNBoNXl5epKenA3D69GlcXFywtbUtN+xeCMGUKVNQq9XY2toSFRUFlMY2cHNzw8/PD2tra0pKSpgyZQo9evRAo9Hw9ddfV9reevXqMXbsWEJDQytsq6xte/bsKTeVYM6cOcTHxxMQEIBOp1POV7pzly5dYvv27YwePRoLCwvmzp3LDz/8wO1kqRNCEBgYqHTKHT9+/KYjeKA0OHHThvWZO1TL/BF2LAt2omF9YyVIsYmJiVLW2Nj4ljraVCpVtct3g5GREStXriQxMZFvv/22XNwSIyMjpZ036+wwNTVVrlliYiIWFhbKNiEEer2+xnFRbmX6kCRJkvRokJ0dkiRJ0gPj5MmTjB8/niNHjmBubs7atWsBGDt2LGFhYSQkJDBv3jxeffVVACZOnEhgYCBJSUkEBAQwadIkAF577TVeeeUVDh8+TLt27ZT6161bR2JiIocOHWLr1q1MmTKF8+fPA3DgwAG++OILTpw4wZIlS2jWrBn79+9n//79fPPNN5w+fbrSNo8fP57IyEhycnLKra+sba6uruWmErz99tv/j717j8v57h84/roKkXJK2GZUbopOVwehRHNs5DRziHukMcbWHGbYSTbbjDbG7GaGmJhhDjMz3MphMYqrnBorl5nZ5NS6dFBd398f/freXToIKYf38/Hw2K7v93P6XpO53tfn837j7e1NVFQUOp2OGjVqlPt7+rhav349L7zwAufOnUOv13P+/Hns7e3Zt2+fSTs/Pz++/fZbAE6ePMmxY8eKjNW5c2fWr1/PpUuXgPxAyrlz58q0Dn9/f/Zt30RbBxt+PxFH/fr1qVWrVont/fz8+P7778nKysJgMLB161aT+wUBuv3791O7dm1q166Nv7+/eqwmJiZGncPa2pr09HS1b+HXtWvXpm7duur78fXXX6u7PG6Vm5tL586d8fT0JC4ujj179gAwdepUkpOT0Wq1TJ48+bbvhV6vx9HRkWHDhuHi4sL58+dN8qL07dsXLy8vnJ2d+fLLL9V+VlZWTJo0CXd3dw4cOHDbeYQQQjweqlT2AoQQQoiysre3R6vVAuDl5YVer8dgMBAbG8uAAQPUdtnZ2QAcOHCA7777DoAXXniBN954A4Cff/5ZDZS88MILTJkyBcj/gBgcHIy5uTkNGzakY8eOHD58mFq1auHj44O9vT0AO3bsIDExkfXr1wP5W/7PnDmj3i+sVq1aDBs2jPnz55sEK0pam6gYa9asUf+7F+jfv3+R62PHjmX48OG0atUKJycnnJ2dqV27tkm/Vq1aMXPmTLp164bRaKRq1aosXLiQpk2bFpm3Z8+eVK1aFYB27dqxePFiQkNDcXNzw9LSkhUrVpS67tatW9O7d2/c3Nxo2LAhrq6uJuupXr06Hh4e5OTksGzZMgA12emtc/Tq1Yvnn3+ezZs3s2DBAgYPHsyoUaOYP38+69evZ8WKFYwZM4aMjAwcHBxYvnw5AEajkSFDhmBpaYm1tTXW1tZs3LiRWrVq4efnx7x585g4cSKzZs3i+PHj6HS6Yp8lMzNT/Xm2t7dn7ty5nDlzhhUrVtC2bdsi7ZctW0a9evXIzMykdevW9O/fHxsbG27cuEGbNm345JNPSn3vhBBCPF4k2CGEEOKhceu2/szMTIxGI3Xq1CnxA1VJ7nR7f82aNdV/VxSFBQsW0L179zL1HT9+PJ6enowYMeKO5hT3T3R0dJFrBTt/AI4fPw7kBw9WrVpF9erVSU5OpkuXLmoQo3COiUGDBjFo0KBS54yJiSn2+qZNm4pcu/UYTMF6AF5//XXCw8PJyMigQ4cOeHl5lTp+vXr1ip2jRYsWJCYmmly7tfTswYMHi/SrWbMmp0+fVl/n5OQwYcIE9u7di5mZGZcvX+bvv/8udi2FFRxjKaDX62natGmxgQ6A+fPns3HjRgDOnz/PmTNnsLGxwdzcnP79+992PiGEEI8XOcYihBDioVarVi3s7e1Zt24dkB+ISEhIAMDX11ctKRoVFYW/vz+QfxSg8PUC/v7+rF27lry8PFJTU9m7dy8+Pj5F5uzevTv/+c9/yMnJAeD06dPcuHGjxDXWq1ePgQMHsnTpUvVaSWsr7WiBqHgZGRm0b98ed3d3+vXrxxdffEG1atUqdU0vvfQSWq0WT09P+vfvj6enZ6WuJyoqitTUVOLj49HpdDRs2JCsrKy7GqtwULGwmJgYdu3axYEDB0hISMDDw0Odo3r16pibm9/1+oUQQjyaZGeHEEKIh15UVBQvv/wyM2fOJCcnh8GDB+Pu7s6CBQsYMWIEc+bMwdbWVt2G/9lnnzFkyBA+/vhj+vTpo47Tr18/Dhw4gLu7OxqNhtmzZ9OoUSM14WmBkSNHotfr8fT0RFEUbG1ti/3mvLBJkybx+eefq69LWtutRwlCQkIYM2YMNWrU4MCBA5K3o4yMRgX9lRtcSs+mgbUFdjY11cSfd8La2rpIedfKtnr16spegom0tDQaNGhA1apViY6OVvOVlGegLi0tjbp162JpaUlSUlKxO06EEEKIwjR3k3X8QeTt7a08aH8ZEUIIIUTFMxoVtp/4i4+2nSI714hFFTOm9WhJoHOjuwp4CFNWVlYYDAb19eXLl+nVqxcGgwFvb28OHjzIjz/+iJ2dHUOGDCExMZFnn32WOXPmlDqOXq8nKCjI5MiOnZ0dcXFxWFtb07dvXzWJ6fXr1wkPDycgIKDIOEIIIR48Go0mXlEU7wqdU4IdQgghhHiUpKQaGL7sENm5RvWaRRUzVoT64GBrVYkrE0I8bszNzXF1dSU3N5eWLVuyYsUKLC0t7+ucn332GWfPnmXevHkAjB49muTkZHbt2gXk7yw8c+YM8+fPv+e5igtSClGcygh2SM4OIYQQFcpoVEhJNXAw5QopqQaMxkcj6C4eHJfSs00CHQDZuUYupWdX0oqEEI+rgkS8x48fp1q1aixatKhM/XJzc+96Tj8/P2JjY9XXCQkJpKWlkZeXB0BsbCy+vr53Pb4QDwsJdgghhKgwBccLhi87RNiaowxfdojtJ/6SgIcoVw2sLbCoYvpXHIsqZjSwtiihhyggwUgh7h9/f39+++03bty4QWhoKD4+Pnh4eLB582YAIiMj6d27N506daJz584YDAZGjBiBq6srbm5ubNiwgWXLljF+/Hh1zCVLljBhwgSTebRaLadPnyYzM5O0tDRq1KiBVqvl2LFjQH6ww8/Pj+TkZAIDA/Hy8sLf31/NT/X999/Tpk0bPDw86NKli1pdac+ePWi1WrRaLR4eHkVy8uTl5TF58mRat26Nm5sbixcvBmDYsGEmea2GDh2qPrMQ95MkKBVCCFFh9FduqHkUIP/b9o+2ncKpkbUcLxDlxs6mJtN6tCySs8POpvhKHyKf5DoR4v7Jzc3lxx9/JDAwkA8++IBOnTqxbNkyrl+/jo+PD126dAHgyJEjJCYmUq9ePaZMmULt2rXVIMW1a9eoWrUqH3zwAXPmzKFq1aosX75cDSoUqFKlCh4eHhw+fJjMzEzatGlD8+bNiY2NxdbWFkVRePrpp+ncuTOLFi2iefPm/PLLL4wdO5bdu3fTvn17Dh48iEaj4auvvmL27Nl88sknREREsHDhQvz8/DAYDFSvXt1k3qVLl1K7dm0OHz5MdnY2fn5+dOvWjRdffJG5c+fSt29f0tLSiI2NZcWKFRXzxovHmgQ7hBBCVJjSjhdIsEOUFzMzDYHOjXBqZH3P1VgeJxKMFKL8ZWZmotVqgfydHS+++CK+vr5s2bKFiIgIALKysvj9998B6Nq1K/Xq1QNg165daolygLp16wLQqVMntm7dSsuWLcnJycHV1bXIvL6+vsTGxpKZmUm7du1o3rw5H374Iba2tvj6+mIwGIiNjWXAgAFqn+zs/KN+f/zxB4MGDeLixYvcvHkTe3t7IP94zMSJExk6dCjPPfccjRs3Nplzx44dJCYmsn79eiC/itKZM2fo1q0bY8eOJTU1lQ0bNtC/f3+qVJGPoeL+k99lQgghKkzB8YJbE0fK8QJR3szMNDjYWsmH9DsgwUghyl9Bzo7CFEVhw4YNODo6mlz/5ZdfqFnz9jvQRo4cyYcffoiTkxMjRowoto2fnx+LFi0iKyuLcePGYWtry8mTJ9Vgh9FopE6dOkXWBvDqq68yceJEevfuTUxMDOHh4QBMnTqVnj17sm3bNvz8/Pjpp59MdncoisKCBQvo3r17kTGHDRvGqlWr+Oabb9RS60Lcb5KzQwghRIUpOF5QkE9Bjhc8fPR6PS4uLibXwsPD1W8ob7Vo0SJWrlxZprGvX7/OF198ob6OiYkhKCjo7hcLfPnllzg5OeHk5ISPjw/79+8vtl1pc9nZ2XH58uVin/12QkJC1G85AwICeJArx0muEyEqRvfu3VmwYAEFVTGPHj1abLuuXbuycOFC9fW1a9cAaNOmDefPn2f16tUEBwcX27ddu3YcPHiQ1NRUGjRogEajwdbWls2bN+Pn50etWrWwt7dn3bp1QH6gIiEhAcjfkfHUU08BmBw3SU5OxtXVlSlTptC6dWs1x0fh5/rPf/5DTk4OAKdPn+bGjRtA/p+FBdVhWrVqdQfvlhB3T4IdQgghKkzB8YIVoT7MD/ZgRaiP5AN4hOXm5jJmzBiGDRtWpva3Bjvu1datW1m8eDH79+8nKSmJRYsWMWTIEP76669ym+NRIsFIISrGO++8Q05ODm5ubjg7O/POO+8U2+7tt9/m2rVruLi44O7uTnR0tHpv4MCB+Pn5qUdbblW3bl1sbW1xdnZWr7Vr145Lly7h7u4OQFRUFEuXLsXd3R1nZ2c1aWh4eDgDBgzAy8uL+vXrq/3nzZuHi4sLbm5uVK1alWeffdZkzpEjR9KqVSs8PT1xcXFh9OjRalWZhg0b0rJlyxJ3oghxP2gKIooPO29vb+VB/rZECCGEeBTo9XqCgoI4fvy4ei08PBwrKytef/11AgIC0Gq17N+/n+DgYNLT09V7v/32G2PGjCE1NRVzc3PWrVtHs2bN1HEGDx7M5s2bcXR0pGvXrvTs2ZPw8HDq16/P8ePH8fLyYtWqVWg0GuLj45k4cSIGg4H69esTGRnJE088YbJWf39/ZsyYQadOndRrBR8q3n//fbZv38748eOxtLSkffv2pKSksHXrVq5cuUJwcDAXLlygXbt27Ny5k/j4eAwGg1q54MiRIzg7O7Ny5UosLS157733+P7778nMzMTX15fFixej0WgICQkhKCiI559/noCAACIiIvD29r7P/5XuntGooL9yQ3KdCPGACwoKYsKECXTu3Lmyl1ImGRkZuLq6cuTIEWrXrl3ZyxGVQKPRxCuKUqH/A5SdHUIIIYQoVzdv3iQuLo5JkyaZXB86dCjjxo0jISGB2NjYIsGJWbNm0axZM3Q6HXPmzAHyt3fPmzePkydPkpKSws8//0xOTg6vvvoq69evJz4+ntDQUN56660i6zhx4gReXl4m17y9vTlx4gRZWVmMGjWK77//nvj4eJPdHjNmzKB9+/acOHGCfv36qYkDAX799VfGjh3LqVOnqFWrlroT5ZVXXuHw4cMcP36czMxMtm7dem9vYiUpyHXS1sEGB1srCXQI8YC5fv06LVq0oEaNGg9NoGPXrl20bNmSV199VQIdokJJglIhhBBClJlGU/yH38LXBw0aVOR+eno6Fy5coF+/fgBFShaWxMfHR834r9Vq0ev11KlTh+PHj9O1a1cA8vLyigRObicpKQl7e3uaN28OwL///W++/PJLAPbu3ct3330HQM+ePU22iT/99NP4+fmpfebPn8/rr79OdHQ0s2fPJiMjg6tXr+Ls7EyvXr3uaE1CiIdLZeyEqlOnDqdPn76vc5S3Ll26cO7cucpehngMSbBDCCGEEGVmY2OjJskrcPXqVbU0IVCmagJlZWHxv+SY5ubm5ObmoigKzs7OHDhwoNS+rVq1Ij4+3uQYS3x8vMkZ9jt1a7BHo9GQlZXF2LFjiYuL4+mnnyY8PJysrKy7nkMI8eAzGhW2n/hLLddckONG8lAJ8eCQYyxCCCGEKDMrKyueeOIJdu/eDeQHOrZv30779u1L7WdtbU3jxo3ZtGkTANnZ2WRkZBRpk56efts1ODo6kpqaqgY7cnJyOHHiRJF2b7zxBlOmTOHKlSsA6HQ6IiMjGTt2LE5OTuj1epKTkwFYs2aN2q9Dhw6sXr0agB9//NEkuPP777+r865evZr27durgY369etjMBjU6iuFmZubExcXx8CBA3F3d+eTTz7BaDQWaVeaP//8k+eff77M7Q0GA6NHj6ZZs2Z4eXkREBDAL7/8ckdzFqekqjLr1q2jZcuWPPPMM+U+thAPGv2VG2qgA/LLNH+07RT6KzcqeWVCiAKys0MIIYQQd2TlypWMGzeOiRMnAjB9+nSTRKMl+frrrxk9ejTvvvsuVatWZd26dTg4OKj3bWxs8PPzw8XFhWeffZaePXsWO061atVYv349YWFhpKWlkZuby/jx44vs2OjduzcXLlzA19cXjUaDtbU1q1atUo+8fPnll/Ts2RNLS0v8/f3VQMv06dMJDg7G2dkZX19fmjRpoo7p6OjIwoULCQ0NpVWrVrz88stYWloyatQoXFxcaNSoEa1bty6y5ho1auDt7U1ERARNmjRhyJAh/PPPP8yYMeO27xvkV7Z58skniw2klGTkyJHY29tz5swZzMzMOHv2LCdPnjRpoygKiqJgZnbv338tXbqUJUuW3DbwVSA3N5cqVeSvouLhdCk9Ww10FMjONXIpPRsHW6tKWpUQojCpxiKEEEIIcZ9ZWVlhMBjU1ykpKbRu3ZrLly+TnZ3Nyy+/TFxcHFWqVOHTTz/lmS+kZVIAACAASURBVGeeITIyku+++w6DwUBeXh4rVqxQK+GcOHGCESNGcPPmTYxGIxs2bFDzjwAkJyfTpUsXfvvtN8zNzU3Wotfr6d69O23atCE+Pp5t27bx+eef8+OPP6LRaHj77bfVvCsff/wxq1atwszMjGeffZZZs2apVWU8PT0JDQ2lcePGVKtWjdmzZ/PUU0/Ru3dv3n///TI90/bt2xkxYgQJCQk4OTnx559/snDhwge6Yo0QACmpBoYvO2QS8LCoYsaKUB8JdghRjMqoxiLhdCGEEEKopPRoxXBwcCAvL49Lly6p5XSPHTtGUlIS3bp1UxMQHjlyhMTEROrVq4der1f7L1q0iNdee42hQ4dy8+ZN8vLyTMY/ceIEWq22SKCjwJkzZ1ixYgVt27Zlw4YN6HQ6EhISuHz5Mq1bt6ZDhw7odDo2b97ML7/8gqWlJVevXlX75+bmMnToUFxcXNRKOLt371ZL637yySdleqZPP/0US0tLTp06RWJiIp6enuX5NouHwAcffMDq1asxNzfHzMyMxYsX06ZNG0aOHMnEiRNp1apVkT6l3SsrvV5Py5YtcXR0RFEUatasyfLly3F0dCQmJoaIiIhSqyrZ2dRkWo+WRXJ2dGrtQlxcHPXr17/rtQkhyocEO4QQQggBSMK9yrJ//35effVVAJycnGjatKkaGOjatSv16tUr0qddu3Z88MEH/PHHHzz33HMmuzrKomnTprRt21adPzg4GHNzcxo2bEjHjh05fPgwe/bsYcSIEVhaWgKYrGP06NEMHDiw2JK/d/JMe/fuJSwsDAA3Nzfc3Nzu6DnEw+3AgQNs3bqVI0eOYGFhweXLl7l58yYAX331VbF98vLySrx3pwpKXQMsXryYDz/8kBUrVpSpr5mZhkDnRjg1sjYJDgshHhySoFQIIYQQgCTcq0gpKSmYm5vToEGDUtuVVNlmyJAhbNmyhRo1atCjRw81YWwBZ2dnEhISiuz4uN24ZeXr60t0dPRdVZ0pz2o94uF28eJF6tevr1Zdql+/Pk8++SRgmqzWysqKSZMm4e7uzoEDB4rcK7B+/XpCQkKA/IS5Li4uuLu706FDh9uu5Z9//jEpM13g0KFDtGvXDg8PD3x9ffn111+B/KDLG29MpvczbXmp7zP88M1yk6BwZmYmzz77LEuWLLmLd0YIUR4k2CGEEEIIoPSEe6L8pKamMmbMGF555RU0Gg3+/v5ERUUBcPr0aX7//XccHR1LHSMlJQUHBwfCwsLo06cPiYmJJvebNWuGt7c306dPpyA/m16v54cffigylr+/P2vXriUvL4/U1FT27t2Lj48PXbt2Zfny5WrVnMLHWF588UV69OjBwIEDyc3NLXbMsjxT4co3x48fL/Ic4tHWrVs3zp8/T4sWLRg7dix79uwptt2NGzdo06YNCQkJZU6A+9577/HTTz+RkJDAli1bim2TnJyMVqulWbNmfPrpp2rS5cKcnJzYt28fR48e5b333uPNN98E8hMc6/V6dDodiYmJDB06VO1jMBjo1asXwcHBjBo1qkzrFUKUPwl2CCGEEAKABtYWWFQx/auBRRUzGlhbVNKKHh2ZmZlotVqcnZ3p0qUL3bp1Y/r06QCMHTsWo9GIq6srgwYNIjIyUv2muyTffvstLi4uaLVajh8/zrBhw4q0+eqrr/j777/517/+hYuLCyEhIcXuJOnXrx9ubm64u7vTqVMnZs+eTaNGjQgMDKR37954e3uj1WqJiIgw6Tdx4kQ8PDx44YUXipTRLeszvfzyyxgMBlq2bMm7776Ll5fXbd9L8eiwsrIiPj6eL7/8EltbW/X3yq3Mzc3p37//HY3t5+dHSEgIS5YsKXGHU8ExluTkZObNm8dLL71UpE1aWhoDBgzAxcWFCRMmqGWud+3axejRo9WKQoWPefXp04cRI0YU+3MphKg4Uo1FCCGEEIDk7BBCVK7169ezYsUKvv/+e7Xqj7e3d5FqRoXvWVtbq2WjV61axa5du9SAyS+//MIPP/zAypUriY+Px8bGRh1Dr9er1Y0gPyBpY2NDRkaGSYLSkJAQPD09CQsLQ6/XExAQgF6vp3///owZM4auXbuaPIOdnR09evQgPT2dlStXotHIn51CQOVUY5GdHUIIIYQA/pdwb0WoD/ODPVgR6vNQBDr++usvBg8eTLNmzfDy8qJHjx5qMsySzJs3Tz2eAabn/gsLCQlh/fr1pY5lNCqkpBo4mHKFlFQDRuP/vki6fv06X3zxRYl9zc3N0Wq1uLu74+npSWxsLAB//vknzz//fKnzCvGw+/XXXzlz5oz6WqfT0bRp0zsao2HDhpw6dQqj0cjGjRvV68nJybRp04b33nsPW1tbzp8/X+o4+/fvp1mzZkWup6Wl8dRTTwGY7Drp2rUrixcvVo9xFT7m9d5771G3bl3GjRt3R88ihChfEuwQQgghhMrMTIODrRVtHWxwsLV64AMdiqLQr18/AgICSE5OJj4+no8++oi///671H63BjvuVsFumOHLDhG25ijDlx1i+4m/MBoVcnNzbxvsqFGjhlr29aOPPmLatGkAPPnkk7cNsgjxsDMYDAwfPpxWrVrh5ubGyZMnCQ8Pv6MxZs2aRVBQEL6+vjzxxBPq9cmTJ+Pq6oqLiwu+vr64u7sX6VuQs8Pd3Z0333yz2Covb7zxBtOmTcPDw8MkP83IkSNp0qSJegSsIPdMgc8++4zMzEzeeOONO3oeIUT5kWMsQgghhHho7d69m/DwcPbu3VvkXuGt6ACvvPIK3t7e/PPPP7z++us4OjpSv359oqOjsbKy4rXXXmPr1q3UqFGDzZs307BhQ0JCQqhevTpxcXH8888/fPrppwQFBZGXl8fUqVP5addukv+6hq1Pbxr4BPFPSgIXd0fS2vFpfk/5DU9PTzZv3oyjoyNdu3Zlzpw5JmssvD1/3bp1REVFsWnTJpMt9pGRkWzZsoWMjAySk5Pp168fs2fPVvsXt+5169YxY8YMzM3NqV27drHvjxBCCFFR5BiLEEIIIcQdOH78+B0ntQwLC+PJJ58kOjqa6OhoIL/aQ9u2bUlISKBDhw4m5SL1ej2HDh3ihx9+YMyYMWRlZbF06VJq167Nlxt20HLM56TGbSP76kUADBd+Y+y0mZw+fZpZs2apSRBvDXTA/xKXOjk5MXLkSN55551i16zT6Vi7di3Hjh1j7dq16pb8ktZdlkoUQtxPpR3vEkKIiiDBDiGEEOIBtGnTJjQaDUlJSeo1vV6Pi4sLAHFxcYSFhZU6Ro8ePbh+/XqZ59y6dSseHh64u7vTqlUrFi9eXGr7sqzhbmzatImTJ0+W+7ilqVatGkFBQQB4eXmh1+vVewMHDsTMzIzmzZvj4OBAUlISO3bsYOXKlYT2foakxWHkZqSTdeUCANZPO6Jt1aJM8xYcY0lKSmL79u0MGzaM4nbddu7cmdq1a1O9enVatWrFuXPnSl13WSpRCHG/lHa8SwghKooEO4QQQogH0Jo1a2jfvj1r1qwp9r63tzfz588vdYxt27ZRp06dMs2Xk5PDSy+9xPfff09CQgJHjx4lICCg1D5lWcPduJNgh7OzM/Hx8cXeq1KliklJ1KysrBLHqVq1qlo1wdzc3ORs/q3VFDQaDYqisGDBAo4nJvDtT/vwmRpF7ebeVDXX0KKxLXY2Ncu0/sLatWvH5cuXSU1NLXKvcNnWwusrad2LFi1i5syZnD9/Hi8vL65cuQLA33//zZAhQ3BwcMDLy4t27dqZJHUsUJYEqYWDb/cqICAAOY786NBfuaFWdQLIzjXy0bZT6K/cqOSVCSEeJxLsEEIIIR4wBoOB/fv3s3TpUr755pti28TExKjf6BsMBkaMGIGrqytubm5s2LAByC+BePnyZQD69u2Ll5cXzs7OfPnll0XGS09PJzc3Vy3NaGFhgaOjI5BfkWTMmDF4e3vTokULNQdG4TWEh4cTGhpKQEAADg4OahBEr9fTsmVLRo0ahbOzM926dSMzMxPITw4YGBiIl5cX/v7+JCUlERsby5YtW5g8eTJarZbk5ORS36tOnTqRnZ1t8kyJiYns27ePpk2bcvLkSbKzs7l+/Tr//e9/1TaFy1Xezrp16zAajSQnJ5OSkoKjoyPdu3fnP//5D3l5uQQ6NyK8Y10+7tOCaT1aYmtloSZ2vZN5kpKSyMvLMymPebeKq0ShKAp9+/alQ4cOpKSkEB8fzzfffMMff/xh0jc3N1cSpIp7cik9Ww10FMjONXIpPbuSViSEeBxJsEMIIYR4wGzevJnAwEBatGiBjY1NiTsXCrz//vvUrl2bY8eOkZiYSKdOnYq0WbZsGfHx8cTFxTF//nz1m/4C9erVo3fv3jRt2pTg4GCioqJMdkUUl7fiVklJSfz0008cOnSIGTNmkJOTA8CZM2cYN24cJ06coE6dOmow5qWXXmLBggXEx8cTERHB2LFj8fX1pXfv3syZMwedTldsKcjCNBoNGzduZNeuXTRr1gxnZ2emTZtGo0aNePrppxk4cCAuLi4MHDgQDw8Ptd9LL71EYGAgzzzzTKnjAzRp0gQfHx+effZZFi1aRPXq1Rk5ciStWrXC09MTNzdXZk6biOfTtXmyTg0KbwSxsbHBz88PFxcXJk+eXGTsgpwdWq2WQYMGsWLFCszNzW+7ptsprhLF7t27qVatGmPGjFHbNW3alFdffZXIyEh69+5Np06d6Ny5s8mujcjISPr06UNAQADNmzdnxowZav+8vLxiA1k6nY62bdvi5uZGv379uHbtWqnXCxiNRkJCQnj77bfv+T0QlaeBtQUWVUw/ZlhUMaOBtUUJPYQQ4j5QFOWR+OXl5aUIIYQQj4KePXsqO3bsUBRFUT777DNl0qRJiqIoytmzZxVnZ2dFURQlOjpa6dmzp6IoiuLp6amcPn26yDhNmzZVUlNTFUVRlOnTpytubm6Km5ubUqtWLeXAgQPFzp2YmKh8+umnilarVYYPH64oiqIMHz5cWbp0qdrG399fOXr0qMkapk+frsycOVNt4+TkpJw/f145e/as8q9//Uu9PmvWLOX9999X0tPTlerVqyvu7u7qLycnJ3W+devW3fkbJ0r12WefKePHjy/23vLly5WnnnpKuXLliqIopr/Xli9frjRq1Ei5fPmykpGRoTg7OyuHDx9Wzp49q5ibmytHjx5VFEVRBgwYoHz99deKoiiKq6urEhMToyiKorzzzjvKa6+9Vur1jh07KgcOHFAGDx5s8vtIPJzy8ozKD4l/Ku1n/VdpPXOn0n7Wf5UfEv9U8vKMlb00IUQlAeKUCo4RVKnsYIsQQggh/ufq1avs3r2bY8eOodFoyMvLQ6PRFFvJo6xiYmLYtWsXBw4cwNLSkoCAgBLzV7i6uuLq6soLL7yAvb09kZGRQPF5K25VUl6JW69nZmZiNBqpU6cOOp2u1LUbjQr6Kze4lJ5NA2sL7GxqqkdExL0ZN24c+/fvp1q1aowbN46uXbtSr169Ytt27dpVPV7z3HPPsX//fvr27Yu9vT1arRb4X4LUtLQ0rl+/TseOHQEYPnw4AwYMKPF6gdGjRzNw4EDeeuut+/nYogKYmWkIdG6EUyNr+dkVQlQaOcYihBBCPEDWr1/PCy+8wLlz59Dr9Zw/fx57e3v27dtXYp+uXbuycOFC9fWtRwPS0tKoW7culpaWJCUlcfDgwSJjGAwGYmJi1Nc6nY6mTZuqr4vLW3EvatWqhb29PevWrQPyd5omJCQA/8tzIRUdypezszNHjhxRXy9cuJD//ve/akLUmjVLTqpaUrCrpADX3fD19SU6OrrURLLi4WFmpsHB1oq2DjY42FpJoEMIUeEk2CGEEEI8QNasWUO/fv1MrvXv37/EqiwAb7/9NteuXcPFxQV3d3eio6NN7gcGBpKbm0vLli2ZOnUqbdu2LTKGoijMnj0bR0dHtFot06dPV3d1QPF5K+5VVFQUS5cuxd3dHWdnZzZv3gzA4MGDmTNnDq7uWt79+r9S0aGcdOrUiaysLP7zn/+o1zIyMsrUd+fOnVy9epXMzEw2bdqEn59fiW1r165N3bp11QDd119/TceOHUu8XuDFF1+kR48eDBw48J6CJkIIIQSARimmlvvDyNvbW5GSZUIIIUT5CwkJISgo6LalSMvbwZQrhK05WuT6/GAP2jrce8WSx9HFixeZMGECv/zyC7a2ttSsWZMxY8aQmZlJXFwcn3/+OZCfkDYoKIjjx48TGRnJpk2bSEtL448//uDf//4306dPN2kDEBERgcFgIDw8HJ1Ox5gxY8jIyMDBwYHly5dTt27dEq8HBAQQERGBt7c306dP5/Tp00RFRWFmJt/LCSHEo0Cj0cQriuJdoXNKsEMIIYSoOA9jDorKCnakpBoYvuyQSQlLiypmrAj1wcHWqkLX8jiLjIw0CYQIIYQQd6oygh2SoFQIIYSoIAU5KD7adorsXCMWVcyY1qMlgc6NHuiAR+HjLBXJzqYm03q0LPJ+2dmUnFvicfUwBtGEEEKI+0l2dgghhBAVRHYq3Dn5EH97D2sQTQghxOOjMnZ2yEFIIYQQooJcSs82CXRAftLNS+nZlbSiB59UdLg9/ZUbaqADJJGrEEIIARLsEEIIISpMA2sLLKqY/q/XoooZDawtSujx6DA3N0er1aq/Zs2adV/m6dGjB9evXy9T25iYGGJjY9XXISEhrF+//q7ntrOzw9XVVX3GsLCwUtuPHDmSkydPqn0vX758V/NKEE0IIYQoSnJ2CCGEEBXkcc5BUaNGDXQ63X0bX1EUFEVh27ZtZe4TExODlZUVvr6+5baO6Oho6tevX6a2X331VbnMWRBEu/V41OMQRBNCCCFKIjs7hBBCiApiZqYh0LkRK0J9mB/swYpQn8c+r4KdnR3Tpk1Dq9Xi7e3NkSNH6N69O82aNWPRokVquzlz5tC6dWvc3NyYPn06kF8e1dHRkWHDhuHi4sL58+dNdkisXLkSNzc33N3deeGFF0zm1ev1LFq0iLlz56LVatm3bx8Ae/fuxdfXFwcHB5NdHsXNXxZJSUn4+PiYzOvq6gpAQEAA5ZFvrCCIVrBr6HEKogkhhBAlkWCHEEJUAI1Gw6RJk9TXERERhIeHA7Bo0SJWrlx5x2Pq9XpcXFzueW0BAQE4OjqqW+8LPuBZWd3fhJkxMTEEBQXd1zkeRI9rDorMzEyTYyxr165V7zVp0gSdToe/v796lOTgwYNqUGHHjh2cOXOGQ4cOodPpiI+PZ+/evQCcOXOGsWPHcuLECZo2baqOeeLECWbOnMnu3btJSEjgs88+M1mPnZ0dY8aMYcKECercABcvXmT//v1s3bqVqVOn3nb+Wz3zzDPqM86dOxcnJydu3rzJ2bNnAVi7di2DBg0qp3c1nwTRhBBCiKLkGIsQQlQACwsLvvvuO6ZNm1Zki/uYMWMqaVX/ExUVhbd3hSbIFo+Z0o6x9O7dGwBXV1cMBgPW1tZYW1tjYWHB9evX2bFjBzt27MDDwwMAg8HAmTNnaNKkCU2bNqVt27ZFxty9ezcDBgxQf97q1atXpnX27dsXMzMzWrVqxd9//w1Q4vwdOnQo0r+4YywDBw5k7dq1TJ06lbVr15oEespLQRBNqvoIIYQQ+WRnhxBCVIAqVarw0ksvMXfu3CL3wsPDiYiIAOC3336jS5cuuLu74+npSXJyMoqiMHnyZFxcXHB1dS32g5Jer8ff3x9PT088PT3VpIsXL16kQ4cOaLVaXFxc1K36d8JgMNC5c2c8PT1xdXVl8+bN6pxOTk6EhITQokULhg4dyq5du/Dz86N58+YcOnQIgBs3bhAaGoqPjw8eHh5qfyEKWFjk55YwMzNT/73gdW5uLoqiMG3aNHQ6HTqdjt9++40XX3wRgJo1y/eoRuH5FUVR/1nS/GUxaNAgvv32W06fPo1Go6F58+blumYhhBBCFCXBDiGEqCDjxo0jKiqKtLS0EtsMHTqUcePGkZCQQGxsLE888QTfffcdOp2OhIQEdu3axeTJk7l48aJJvwYNGrBz506OHDnC2rVr1SoQq1evpnv37mp/rVZb4rwFW++vXLlicq969eps3LiRI0eOEB0dzaRJk9QPgb/99huTJk0iKSmJpKQkVq9ezf79+4mIiODDDz8E4IMPPqBTp04cOnSI6OhoJk+ezI0bUhJTlF337t1ZtmwZBoMBgAsXLnDp0qVS+3Tq1Il169apv5+vXr1apI21tTXp6en3Zf7CmjVrhrm5Oe+//365H2ERQgghRPHkGIsQQlSQWrVqMWzYMObPn0+NGjWK3E9PT+fChQv069cPyA8yAOzfv5/g4GDMzc1p2LAhHTt25PDhw7i5ual9c3JyeOWVV9DpdJibm3P69GkAWrduTWhoKDk5OfTt27fEYEdpx1gUReHNN99k7969mJmZceHCBXV7v729vZps0dnZmc6dO6PRaHB1dUWv1wP5RwC2bNmi7l7Jysri999/v9O3TzzkCnJ2FAgMDCxz+dlu3bpx6tQp2rVrB+Tnk1m1ahXm5uYl9nF2duatt96iY8eOmJub4+HhQWRkpEmbXr168fzzz7N582YWLFhQ5vlPnjzJ6dOnadCgAdu2bWP8+PHs3LkTyM/ZUbAuNzc3Vq5cyaZNmwgICCAiIoKzZ8/y7rvvFnsEpiTh4eEsWbIEW1tbsrKyeOaZZ1i4cCFmZiV/ZxUeHo6VlRWvv/46ISEhBAUF8fzzz5d5TiGEEOJhV2nBDo1GMwAIB1oCPoqixBW6Nw14EcgDwhRF+alSFimEEOVs/PjxeHp6MmLEiHIdd+7cuTRs2JCEhASMRqMaKOnQoQN79+7lhx9+ICQkhIkTJzJs2LA7GjsqKorU1FTi4+OpWrUqdnZ2ZGVlARQ5clD4OEJubi6QHyzZsGEDjo6OJuMWBEzE4yEvL6/Y6wVBMYCQkBBCQkKKvffaa6/x2muvFel//PjxEscbPnw4w4cPL3FNLVq0IDExUX1dkKS0QMFOjlvnt7KyolmzZvz3v/8lLCyMn376iaZNm5rMXdimTZsICgpSd0S99957AHTp0qXYdRdnwoQJvP766xiNRjp06MCePXt45plnSu0jhBBCPM4q8xjLceA5wCSduUajaQUMBpyBQOALjUZT8lc3QgjxEKlXrx4DBw5k6dKlRe5ZW1vTuHFjNm3aBEB2djYZGRn4+/uzdu1a8vLySE1NZe/evSalLAHS0tJ44oknMDMz4+uvv1Y/WJ47d46GDRsyatQoRo4cyZEjR+54zWlpaTRo0ICqVasSHR3NuXPn7qh/9+7dWbBggfpB7+jRo3e8BiEeNHv37mXUqFFs3bqVZs2aAbBkyRJat26Nu7s7/fv3JyMjg9jYWLZs2cLkyZPRarUkJyerFWcA4uPj6dixI15eXnTv3r3IEbVb3bx5k6ysLOrWrQtAcnIygYGBeHl54e/vT1JS0v19cCGEEOIhUWnBDkVRTimK8msxt/oA3yiKkq0oylngN8CnmHZCCPFQmjRpEpcvXy723tdff838+fNxc3PD19eXv/76i379+uHm5oa7uzudOnVi9uzZNGrUyKTf2LFjWbFiBe7u7iQlJalJG2NiYnB3d8fDw4O1a9cW+8347QwdOpS4uDhcXV1ZuXIlTk5Od9T/nXfeIScnBzc3N5ydnXnnnXfueA3iwWY0KqSkGjiYcoWUVANGo1LZS7qvsrOz6du3L5s2bTL5eXjuuec4fPgwCQkJtGzZkqVLl+Lr60vv3r2ZM2cOOp1ODYxA/vGzV199lfXr1xMfH09oaChvvfVWsXPOnTsXrVbLE088QYsWLdQjQS+99BILFiwgPj6eiIgIxo4de38fXgghhHhIaAq+aau0BWg0McDrBcdYNBrN58BBRVFW/f/rpcCPiqKsL20cb29vJS4urrQmQgghhChnRqPC9hN/8dG2U2TnGrGoYsa0Hi0JdG6EmZmmspd3X1haWtKpUyeaNWvGZ599pl7fs2cPb7/9NtevX8dgMNC9e3cWLVpUJGdGwWsnJyd8fX1xcHAA8o/6PPHEE+zYscNkvsL5N3Jycnj++ecJDg4mKCgIW1tbkyNi2dnZnDp1SnJ2CCGEeKBoNJp4RVGKTxB3n9zXnB0ajWYX0KiYW28pinLPtQc1Gs1LwEsATZo0udfhhBDirhiNCvorN7iUnk0DawvsbGo+sh/yhLiV/soNNdABkJ1r5KNtp3BqZI2DrVUlr+7+MDMz49tvv6Vz5858+OGHvPnmm0B+EGPTpk24u7sTGRlJTExMqeMoioKzszMHDhwo89xVq1YlMDCQvXv30qNHD+rUqYNOp7uXxxFCCCEeSff1GIuiKF0URXEp5ldpgY4LwNOFXjf+/2vFjf+loijeiqJ429ralufShRCiTAq+1R6+7BBha44yfNkhtp/465Hfxi9EgUvp2Wqgo0B2rpFL6dmVtKKKYWlpyQ8//EBUVJSagyc9PZ0nnniCnJwcoqKi1LYllbh1dHQkNTVVDXbk5ORw4sSJUudVFIWff/6ZZs2aUatWLezt7Vm3bp16LyEhobweUQghhHioVWaC0pJsAQZrNBoLjUZjDzQHDlXymoQQolglfautv3KjklcmRMVoYG2BRRXTv05YVDGjgbVFCT0eHfXq1WP79u3MnDmTLVu28P7779OmTRv8/PxMcnkMHjyYOXPm4OHhQXJysnq9WrVqrF+/nilTpuDu7o5WqyU2NrbYuQpydri4uJCXl6fm5igItri7u+Ps7Mzmzfe8cVYIIYR4JFRazg6NRtMPWADYAtcBnaIo3f//3ltAKJALjFcU5cfbjSc5O4QoP+bm5ri6uqqvN23axJAhQ4iNjUWv1xMUFMTx48eJi4tj5cqVzJ8//57mCwkJYc+ePdSuXRuA0NBQwsLCsLOzIy4ujvr16+Pr66vOHxsby5AhQ8o09p9//klY+2BxPwAAIABJREFUWJha+aA4hee5UwdTrhC2pmh1kfnBHrR1sLnj8YR42DyOOTuEEEIIcWceuZwdpVEUZSOwsYR7HwAfVOyKhBAFatSoUeQMeHHfNnp7e+PtXT5/Zs2ZM6fU5HkF8+v1elavXl3mYMeTTz5ZaqDjXhV8q114G//j8q22qBibNm2iX79+nDp16o4r4ZRFTEwMERERbN26lS1btnDy5EmmTp1a5v5mZhoCnRvh1MjaJG+Ng4N9qUHEwoHTB4nk4BFCCCEeDQ/iMRYhxAPIyqpoosGYmBiCgoKA/GoBERER6j0XFxf0ej03btygZ8+euLu74+Liwtq1a+9p/qlTp7Jv3z60Wi1z586lZ8+eJCYmAuDh4cF7770HwLvvvsuSJUvQ6/W4uLgA+ZUOXn/9dVxcXHBzc2PBggUmc2RmZvLss8+yZMmSMq/LzqYm03q0VLfxF3yrbWdT866eU4hbrVmzhvbt27NmzZr7Plfv3r3vKNBRwMxMg4OtFW0dbHCwtXpogwOSg0cIIYR4dEiwQwhRRGZmJlqtFq1WS79+/e5prO3bt/Pkk0+SkJDA8ePHCQwMLLbd5MmT1TmPHTtW4nizZs3C398fnU7HhAkT8Pf3Z9++faSlpVGlShV+/vlnAPbt20eHDh1M+n755Zfo9Xp0Oh2JiYkMHTpUvWcwGOjVqxfBwcGMGjWqzM9X8K32ilAf5gd7sCLUR7bvi3JjMBjYv38/S5cu5ZtvvlGvx8TEEBAQwPPPP4+TkxNDhw6l4Fjqtm3bcHJywsvLi7CwMDUgeePGDUJDQ/Hx8cHDw6PY3A6RkZG88sorQP7xsrCwMLU0asEOKYPBQOfOnfH09MTV1bVMOSI+/fRTXFxccHFxYd68eer1vLw8Ro0ahbOzM926dSMzMxOAgIAApkyZgo+PDy1atGDfvn0AnDhxAh8fH7RaLW5ubpw5c6bE8fV6PS1btix2/JJIDh4hhBDi0SHBDiFEEQXHWHQ6HRs3FnvarMxcXV3ZuXMnU6ZMYd++fWpejlvNmTNHnbNwvpDb8ff3Z+/evfz888/07NkTg8FARkYGZ8+exdHR0aTtrl27GD16NFWq5J/gq1evnnqvT58+jBgxgmHDht3xMz4q32qLB8/mzZsJDAykRYsW2NjYEB8fr947evQo8+bN4+TJk6SkpPDzzz+TlZXF6NGj+fHHH4mPjyc1NVVt/8EHH9CpUycOHTpEdHQ0kydP5saN0j/EX7x4kf3797N161Z1x0f16tXZuHEjR44cITo6mkmTJlFa/q/4+HiWL1/OL7/8wsGDB1myZAlHj+bnuTlz5gzjxo3jxIkT1KlThw0bNqj9cnNzOXToEPPmzWPGjBkALFq0iNdeew2dTkdcXByNGze+6/GL87hWlhFCCCEeRRLsEEKUiypVqmA0/u9DQlZWFgAtWrTgyJEjuLq68vbbb6vHTMpL69atiYuLU3dyeHh4sGTJEry8vO5oHD8/P7Zv317qhzYhKtqaNWsYPHgwkF/Ro/BRFh8fHxo3boyZmRlarRa9Xk9SUhIODg7Y29sDEBwcrLbfsWMHs2bNQqvVEhAQQFZWFr///nup8/ft2xczMzNatWrF33//DeSXN33zzTdxc3OjS5cuXLhwQb1XnP3799OvXz9q1qyJlZUVzz33nLpTw97eHq1WC4CXlxd6vV7t99xzzxW53q5dOz788EM+/vhjzp07R40aNe56/OI8zpVlhBBCiEeNBDuEEOXCzs6OI0eOAHDkyBHOnj0L5FdDsbS05N///jeTJ09W29wta2tr0tPT1dfVqlXj6aefZt26dbRr1w5/f38iIiKKHGEB6Nq1K4sXLyY3NxeAq1evqvfee+896taty7hx4+5pfUKUl6tXr7J7925GjhyJnZ0dc+bM4dtvv1UDchYW//sAbm5urv6+LomiKGzYsEHdQfX777/TsmXLUvsUnqNg3qioKFJTU4mPj0en09GwYUM1uHmnSnuGgnuFrw8ZMoQtW7ZQo0YNevTowe7du+96/OJIDh4hhBDi0SHBDiFEuejfvz9Xr17F2dmZzz//nBYtWgBw7Ngx9Yz9jBkzePvtt+9pHjc3N8zNzXF3d2fu3LlA/lGWBg0aUKNGDfz9/fnjjz/w9/cv0nfkyJE0adIENzc33N3dWb16tcn9zz77jMzMTN544417WqMQ5WH9+vW88MILnDt3Dr1ez/nz57G3t1d3LRTH0dGRlJQUdQdD4YTA3bt3Z8GCBWrQouCox51KS0ujQYMGVK1alejoaM6dO1dqe39/fzZt2kRGRgY3btxg48aNxf58lkVKSgoODg6EhYXRp08fEhMTy3V8ycEjhBBCPDoqrfSsEOLBZTAYSrxmZ2enlooMCAggICAAyM/zsWPHjiL97Ozs6N69e6nzRUZGFnu98JbzgvmrVq1a5Nvc999/n/fffx/ILzVb+ChK4fVWqVKFTz/9lE8//bTEeZYvX17qWoWoKGvWrGHKlCkm1/r378+aNWsYNGhQsX1q1KjBF198QWBgIDVr1qR169bqvXfeeYfx48fj5uaG0WjE3t6erVu33vG6hg4dSq9evXB1dcXb27vEcri5ublYWFjg6elJSEgIPj4+QH7Q0cPD47ZHSorz7bff8vXXX1O1alUaNWrEm2++Sb169cptfPhfDh4H26IVqIQQQgjx8NA8KufTvb29lbi4uMpehhBCCFGpDAYDVlZWKIrCuHHjaN68ORMmTKjQNaSmpqLVarlw4cJt25qbm5skJd60aRN2dnZF2l2/fp3Vq1czduzYYsexsrIqNlBbFnZ2dsTFxVG/fv276i+EEEKI0mk0mnhFUbwrck45xiLEY8RoVEhJNXAw5QopqQaMxkcj2CnEw+Z+/iwuWbIErVaLs7MzaWlpjB49utzGLostW7bg7+/PRx99VKb2has/6XS6YgMdkB/s+OKLL8pxpUIIIYR4lMnODiEeE0ajwvYTf/HRtlNk5xrVxHtyHl2IiiU/i6Zu3ZFhMBjo06cP165dIycnh5kzZ9KnTx8GDx7M5s2bcXR0pGvXrsyZM6fUcQC+//57Zs6cyc2bN7GxsSEqKoqGDRty5coVgoODuXDhAu3atWPnzp3Ex8czf/586tWrx/jx4wF46623aNCgAa+99tr9fyOEEEKIR1hl7OyQYIcQj4mUVAPDlx0iO/d/5WEtqpixItRHzqYLUYHkZ9FU4WMs9vb2rFu3joyMDGrVqsXly5dp27YtZ86c4dy5cwQFBak5eG5VXLDj2rVr1KlTB41Gw1dffcWpU6f45JNPCAsLo379+rz77rv88MMPBAUFkZqaisFg4LnnnuPIkSMYjUaaN2/OoUOHsLGxue/vgxBCCPEoq4xghyQoFeIxcSk92+TDFUB2rpFL6dmP5QcsISqL/CyaKjjGUiAnJ4c333yTvXv3YmZmxoULF/j777/vauw//viDQYMGcfHiRW7evIm9vT0Ae/fu5bvvvgOgZ8+e1K1bF8jP3WFjY8PRo0f5+++/8fDwkECHEEII8ZCSnB1CPCYaWFtgUcX0R96iihkNrC0qaUVCPJ7kZ7F0UVFRpKamEh8fj06no2HDhmRlZd3VWK+++iqvvPIKx44dY/HixWUaZ+TIkURGRrJ8+XJCQ0Pval4hhBBCVD4JdgjxmLCzqcm0Hi3VD1kFeQLsbGpW8sqEeLzIz2Lp0tLSaNCgAVWrViU6Oppz584BYG1tTXp6+h2P9dRTTwGwYsUK9XqHDh1YvXo1AD/++CPXrl1T7/Xr14/t27dz+PDh25bNFkIIIcSDS46xCPGYMDPTEOjcCKdG1lxKz6aBtQV2NjUfy4SIQlQm+Vks3dChQ+nVqxeurq54e3vj5OQEgI2NDX5+fri4uPDss88WSVCakZFB48aN1dcTJ04kPDycAQMGULduXTp16sTZs2cBmD59OsHBwTg7O+Pr60uTJk3UftWqVeOZZ56hTp06mJubV8ATV5yC/CiKomBubs7nn3+Or68ver2+1HwoAH/++SdhYWGsX7/+ruc/f/48vXr1MrmWkpLCyy+/zMcff1xiv5JKAy9atAhLS0uGDRtWYt+4uDhWrlzJ/Pnz73rdQgghHk6SoFQIIYQQ4v8ZjUY8PT1Zt24dzZs3r+zllKvCSVx/+uknPvzwQ/bs2VOmYMf9cOzYMXr06MHhw4dp1KhRie1KCnYIIYR4eFRGglI5xiKEEEIIAZw8eZJ//etfJCQkMGPGDPV6bm4utra2BAUFAbBlyxZmzZoFQHh4OBEREfc0r16vp0aNGmi1Wtzd3fH19eXXX38FICYmRp23JDqdjm3btt12nhs3bqj//s8//6iJWefNm8fly5fVtfj7++Pp6YmnpyexsbHqdRcXFwBOnDiBj48PWq0WNzc3zpw5A8CqVavU66NHjyYvL6/EtWRlZTFkyBAWLlyoBjpefvllvL29cXZ2Zvr06SbtZ8+ejaurKz4+Pvz222+A6XsfEBDAlClT8PHxoUWLFuzbt6/M758QQohHkwQ7hBBCCHFfGI0KKakGDqZcISXVgNH4YO8mbdWqFSkpKdSsWZPjx4+TmZkJwM6dO9XcHwC9e/dm6tSp5Tp3s2bN0Ol0JCQkMHz4cD788MMy9y1rsANAq9Xi5OTEyJEjeeedd4rcb9CgATt37uTIkSOsXbuWsLCwIm0WLVrEa6+9hk6nIy4ujsaNG3Pq1CnWrl3Lzz//jE6nw9zcnKioqBLX8cYbb9C+fXt69+6tXvvggw+Ii4sjMTGRPXv2kJiYqN6rXbs2x44d45VXXmH8+PHFjpmbm8uhQ4eYN2+eSbBKCCHE40mCHUIIIYQod0ajwvYTfzF82SHC1hxl+LJDbD/x1wMf8CjQo0cPfvjhBwDWrFlDcHCwei8yMpJXXnmlSJ/k5GQCAwPx8vLC39+fpKQkANatW4eLiwvu7u506NDhtnMX3nVR2I0bNwgNDcXHxwcPDw82b97MzZs3effdd1m7di1arZa1a9diMBgYMWIErq6uuLm5sWHDBnWM/2vv3uOqKtP+j39u0CFETEXNzqCZIgKbg6gphlrKaI+l5mgeynwsM9Nqyt9kPZYdfNKRaRoZRzs5ZjFa6pOWaTkeSPMMioyn0TDMrIS0VExI3PfvD2APWw5qoVs23/frxWv2Xutea12LYZFc+7qvu1evXvj5+XH99dczaNAgzp7OvHfvXpo1a4a/vz9RUVHs2LGDEydOEB8f7xobGRnJ/fffz//+7/9y4MAB/P39WblyJenp6bRt2xaHw8HKlSvZv39/ufe3bNkyVqxYwSuvvOK2/f333yc6OpqoqCh27tzJrl27XPtKvv/33HMPGzZsKPe8ffv2BSAmJobs7OxzfJdFRMTbKdkhIiIiVS77yEleXrqbgkInAAWFTl5eupvsIyfPceTlYeDAgcybN4/8/HwyMzNp167dOY958MEHSU5OJj09naSkJB5++GEAXnjhBT799FO2b9/Ohx9+WO6xWVlZOBwOmjdvziuvvMLvf//7MmMmTZpE165d2bx5M6tXr2bcuHGcPn2aF154gQEDBpCRkcGAAQN48cUXXZUQmZmZdO3a1XWO9u3bs337dnr27MmhQ4fIzc11u0bfvn357W9/y8mTJ/n0008pKCggMDCQ9u3bu1bDcTqdDB06lLp169KzZ09WrVqFtZb77ruPjIwMMjIy+Pe//83EiRPL3ENOTg4jR44kJSUFf39/1/Yvv/ySpKQkVq5cSWZmJr169XJbKtgYU+7r0vz8ipZv9vX1pbCwsNwxIiJScyjZISIiIlUu50SBK9FRoqDQSc6JAg9FdGEiIiLIzs5m7ty59OzZ85zj8/LyWL9+Pf3793f1rPj2228B6NixI8OGDeONN96osI9FyTSWrKwsXn31VR588MEyY5YvX87kyZNxOBwkJCSQn5/PV199VWbcihUrGD16tOt96SqRkv4VTZs2pbCwkKCgILd7+Oqrr/jkk0+Ijo52q2YZMGAAP/74I1A0jeWxxx5j7Nix3HnnnWRmZtKtWzcWLFhATk4OAEePHnUtG1za8OHDGTNmDFFRUW7bjx8/TkBAAFdeeSWHDx9m2bJlbvvfe+891/926NCh3O+hiIhIaVp6VkRERKpck0A//Gr5uCU8/Gr50CTQz4NRXZjevXvz5JNPkpqaypEjRyod63Q6qV+/PhkZGWX2zZw5k02bNvHxxx8TExNDenq6W5KhvOvef//9ZbZba1m4cCEtW7Z0275p06bzvCNcSYYffviBTp06uS2v63Q6adiwIUFBQVhrueeee5g+fToAsbGx/Pzzz6SmppKbm8vAgQOpXbs2TZs25emnn6Zhw4a89NJLdO/eHafTSe3atZk+fTo33nij6/wbNmzg448/5uDBg279PG6//XamTp1KVFQUrVq14vrrr6djx45ucf/www9ERETg5+fH3Llzz/t+RUSk5lKyQ0RERKpccFAA43uGuqay+NXyYXzPUIKDAjwd2nkbPnw49evXJzw8nNTU1ErH1qtXj5CQEObPn0///v2x1pKZmUlkZCRZWVm0a9eOdu3asWzZMg4ePFhpsuPzzz+nefPmZbb36NGD5ORkkpOTMcawbds2oqKiCAwMdE0xgaLkwfTp03n11VeBokRBgwYNCAgIcCVjFixYwJIlSwCoX78+Tz75JPXq1eOmm27i8ccfd93DoEGDgKLlXydNmsSgQYOYMGECo0aNKhPfgAEDGDBgQIX31aFDhzI9QkqbPXt2udtL+m9MmTLFbXvpaTKl//9p1KiR65iEhAQSEhIqvKaIiHgvTWMRERGRKufjY0gMa8rbw+OYdk8Ubw+PIzGsKT4+5fdbuBxdd9115a5GUpGUlBTeeustIiMjCQsLY/HixQCMGzeO8PBw2rRpwy233EJkZGSZY0t6dkRGRvL000/z5ptvlhkzYcIETp8+TUREBGFhYa7VVLp06cKuXbto3SaCl6a9yeCRj3H06A+upqirV6/+1fcAMHjwYH744Qe36S0iIiKXK1NZhr06iY2NtWlpaZ4OQ0REROSSKln55uwqmqpOLi1YsIDFixfzzjvvVNk5RUSkZjDGpFtrYy/lNTWNRURERKQaq2jlm1ZNA2nWuG6VXGPMmDEsW7aMpUuXVsn5RERELjYlO0RERKTGcDot2UdOknOigCaBfgQHBVSrqTXlqWzlm6pKdiQnJ1fJeURERC4VJTtERESkRrhU0z0uNW9Y+UZERKSqqUGpiIiI1AgVTffIPnLSw5H9OiUr3/jVKvpnXXVc+UZERKSqqbJDREREaoRLMd3DE0pWvmnVNNCrpueIiIj8Gkp2iIiISI3gzdM9fHwMzRrXrdZJGxERkaqkaSwiIjXAokWLMMawZ88e17bs7GzatGkDwOzZs3nkkUeq9JqpqalceeWVREVF0bJlSzp37sySJUuq7PzDhg1jwYIF5V73jjvuuKBzJSQkoOXLvZ+me4iIiNQcquwQEakB5s6dS6dOnZg7dy7PP//8JbtufHy8K8GRkZHBXXfdhb+/P926dbtkMVwMZ86cwdfX19NhyAXSdA8REZGaQ5UdIiJeLi8vj88//5y33nqLefPmVTju4MGDJCQk0KJFC1dCpHT1B0BSUhITJ04EYNq0abRu3ZqIiAgGDhx4zjgcDgfPPvssf/3rX4GylRl16xaV36empnLrrbdy55130qxZM5566ilSUlKIi4sjPDycrKws1zErVqwgNjaWm2++udyqkZMnTzJ8+HDi4uKIiopi8eLFAJw6dYqBAwcSGhpKnz59OHXqlOuYuXPnEh4eTps2bfjDH/7gFt8TTzxBZGQkGzZs4N133yUuLg6Hw8HIkSM5c+bMOb8H1V15FUJnq6xKZsSIEezatetXx1FSNeRwOAgNDb2gBF7JdI/2zYJo1riuEh0iIiJeSskOEREvt3jxYhITE7n55psJCgoiPT293HGbN29m4cKFZGZmMn/+/HNO65g8eTLbtm0jMzOTmTNnnlcs0dHRlf6hXGL79u3MnDmT3bt3884777B37142b97MiBEjSE5Odo3Lzs5m8+bNfPzxxzz00EPk5+e7nWfSpEl07dqVzZs3s3r1asaNG8fJkyeZMWMGderUYffu3Tz//POu78k333zDH/7wB1atWkVGRgZbtmxh0aJFQFHipF27dmzfvp2goCDee+891q1bR0ZGBr6+vqSkpJzX96A6K10hdKHOnDnDm2++SevWrasklvj4eDIyMkhLS+Pdd99l69atVXJeERER8Q5KdoiIeLm5c+e6Ki8GDhxY4R+qt99+O0FBQfj7+9O3b18+//zzSs8bERHB4MGDeffdd6lV6/xmRVprz2tc27Ztufrqq/Hz86N58+Z0794dgPDwcLKzs13jfve73+Hj40OLFi1o1qxZmUTK8uXLmTx5Mg6Hg4SEBPLz8/nqq69Ys2YNQ4YMcd1HREQEAFu2bCEhIYHGjRtTq1YtBg8ezJo1awDw9fWlX79+AKxcuZL09HTatm2Lw+Fg5cqV7N+//7zurbqqqEKosiqZs6thSld9jBo1itjYWMLCwnjuuedcxwQHB/Pcc88RHR1NeHj4OZNjAQEBxMTE8MUXXzBx4kSSkpJc+9q0aeP6eZkzZw4RERFERkYydOhQAHJzc+nXrx9t27albdu2rFu3DqfTSYsWLcjNzQXA6XRy0003ud6LiIhI9aCeHSIiXuzo0aOsWrWKf/3rXxhjOHPmDMYYpk6dWmasMabM+1q1auF0/mflitKVEx9//DFr1qzho48+YtKkSfzrX/86Z9Jj27ZthIaGArid2+l08vPPP7vG+fn9Z3UMHx8f13sfHx8KCwsrjbk0ay0LFy6kZcuWlcZ1Pq644gpXnw5rLffddx8vv/zyrz5vdVFehVBMTIxblUxmZibR0dGuY0qqYf70pz+VOd+kSZNo2LAhZ86coVu3bmRmZrqSTo0aNWLr1q387W9/IykpiTfffLPCuI4cOcLGjRuZMGFChVNkdu7cyUsvvcT69etp1KgRR48eBeDRRx/l8ccfp1OnTnz11Vf06NGD3bt3M2TIEFJSUnjsscdYsWIFkZGRNG7c+Nd8+0REROQSU2WHiIgXW7BgAUOHDuXAgQNkZ2dz8OBBQkJCWLt2bZmx//znPzl69CinTp1i0aJFdOzYkauuuoqcnByOHDlCQUGBqy+G0+nk4MGDdOnShSlTpnDs2DHy8vIqjSUzM5MXX3yR0aNHA0Wf4JdMH/nwww85ffr0Bd/f/PnzcTqdZGVlsX///jJJjR49epCcnOyqKNm2bRsAnTt35h//+AcAO3bsIDMzE4C4uDg+++wzvv/+e86cOcPcuXO59dZby1y3W7duLFiwgJycHKAoqXTgwIELjr86qahCqKIqGXCvhjnb+++/T3R0NFFRUezcudMtUdG3b18AYmJi3Cp5Slu7di1RUVF0796dp556irCwsApjX7VqFf3796dRo0YANGzYECjq+fLII4/gcDjo3bs3x48fJy8vj+HDhzNnzhwAZs2axf3333/O74+IiIhcXlTZISLixebOnevWZBOgX79+5W6Pi4ujX79+fP311wwZMoTY2FgAnn32WeLi4rj22mtp1aoVUNR/YciQIRw7dgxrLWPHjqV+/fplrl/yB+lPP/1EkyZNmDZtmmsllgceeIA777yTyMhIEhMTCQi48OU/b7jhBuLi4jh+/DgzZ87kiiuucNs/YcIEHnvsMSIiInA6nYSEhLBkyRJGjRrF/fffT2hoKKGhocTExABw9dVXM3nyZLp06YK1ll69enHnnXeWuW7r1q156aWX6N69O06nk9q1azN9+nRuvPHGC76H6uBCKoRKK10NU9qXX35JUlISW7ZsoUGDBgwbNsytaqikksfX19etkqe00iv9lKisEqk8TqeTjRs3lvm5qVu3LldddRWrVq1i8+bNNaIfi4iIiLcx5zt/+nIXGxtrz9VMT0RERC7c66+/Tnp6Oq+99ppr26233sqLL75IWloau3bt4s0332THjh04HA42btxIbGwsdevWdav4SUhIICkpidq1a3Pvvfeybds2cnNziYiIYMqUKQwbNozg4GDS0tJo1KgRaWlpPPnkk6SmprrFk5qaSlJSUplkx7vvvsuSJUuYN28eW7dupW3btmRlZXHy5En69OnDhg0bCAoK4ujRozRs2JBBgwYRFRXFuHHjgKLlkR0OBwALFy5kzJgxDB06lClTplyk76yIiEjNYIxJt9bGXsprahqLiIiIVGru3Ln06dPHbVtJhdCoUaPIy8sjNDSUZ5991lUlU5nIyEiioqJo1aoVgwYNomPHjlUSZ79+/Th69ChhYWH89a9/5eabbwYgLCyMZ555hltvvZXIyEh+//vfA0XLJ6elpREREUHr1q3dVhXq3bs3eXl5msIiIiJSTamyQ0SkGnM6LdlHTpJzooAmgX4EBwXg42POfaCIVCotLY3HH3+83P42IiIicmE8Udmhnh0iItWU02n5ZOd3vLx0NwWFTvxq+TC+ZyiJYU2V8BD5FSZPnsyMGTPUq0NERKQaU2WHiEg1tT83j/tmbaag8D8NGf1q+fD28DiaNa7rwcikulGFkIiIiFxMquwQEZHzlnOiwC3RAVBQ6CTnRIGSHXLeVCEkIiIi3kgNSkVEqqkmgX741XL/Ne5Xy4cmgX4eikiqo+wjJ12JDihKmL28dDfZR056ODIRERGRX07JDhGRaio4KIDxPUNdCY+ST+SDgwI8HJlUJ5VVCImIiIhUV5rGIiJSTfn4GBLDmtKqaaB6LcgvVlIhdHbvF1UIiYiISHWmyg4RkWrMx8fQrHFd2jcLolnjukp0yAVThZCIiIh4I1V2iIiI1GCqEBIRERFvpMoOEanxDh8+zKBBg2jWrBkxMTF06NCBDz74oNJjsrOzadOmDQCpqanccceprKzPAAAdtUlEQVQdF3TN7Oxs/vGPf1S4f9++fdxxxx00b96cmJgYunTpwpo1a8odm5aWxtixYy/o+hMnTiQpKelXjzmX2bNn88gjj5S7r25drRhzuVCFkIiIiHgbJTtEpEaz1nLXXXfRuXNn9u/fT3p6OvPmzePrr7++aNcsLCysNNmRn59Pr169ePDBB8nKyiI9PZ3k5GT2799f7rliY2OZNm3aRYtXRERERKS6UbJDRGq0VatW8Zvf/IaHHnrIte3GG29kzJgxAJw5c4Zx48bRtm1bIiIieO211yo938mTJxk+fDhxcXFERUWxePFioKjCoXfv3nTt2pVu3brx1FNPsXbtWhwOB3/+85/dzpGSkkKHDh3o3bu3a1ubNm0YNmwYUFRxMXToUDp27MjQoUPdKksmTpzI8OHDSUhIoFmzZm5JkEmTJnHzzTfTqVMn/v3vf7u2Z2VlkZiYSExMDPHx8ezZs8ctnpycHGJiYgDYvn07xhi++uorAJo3b85PP/3ERx99RLt27YiKiuK2227j8OHDZb43X375JR06dCA8PJz/+Z//qfT7KCIiIiLya6hnh4jUaDt37iQ6OrrC/W+99RZXXnklW7ZsoaCggI4dO9K9e3eMKb/Mf9KkSXTt2pVZs2bx448/EhcXx2233QbA1q1byczMpGHDhqSmppKUlMSSJUsuOCaAXbt28fnnn+Pv709qaqrbvj179rB69WpOnDhBy5YtGTVqFJmZmcybN4+MjAwKCwuJjo52JTAefPBBZs6cSYsWLdi0aRMPP/wwq1atcp2vSZMm5Ofnc/z4cdauXUtsbCxr166lU6dONGnShDp16tCpUyc2btyIMYY333yTP/7xj/zpT39yi+vRRx9l1KhR3HvvvUyfPr3S+xMRERER+TVU2SEiUsro0aOJjIykbdu2ACxfvpw5c+bgcDho164dR44cYd++fRUev3z5ciZPnozD4SAhIYH8/HxXFcTtt99Ow4YNLzimPn360KZNG/r27eva1rt3b/z9/csd36tXL/z8/GjUqBFNmjTh8OHDrF27lj59+lCnTh3q1avnqhrJy8tj/fr19O/fH4fDwciRI/n222/LnPOWW25h3bp1rFmzhqeffpo1a9awdu1a4uPjAfj666/p0aMH4eHhTJ06lZ07d5Y5x7p167jnnnsAGDp06AV/H0QuhK+vLw6Hw/U1efJkABISEkhLSwNg/vz5hIaG0qVLlzLHf/PNN9x9993nfb3Zs2fzzTffuN4HBwfz/fff/6LYs7Oz8ff3d4t/zpw5v+hcIiIiNZUqO0SkRgsLC2PhwoWu99OnT+f7778nNjYWKOrpkZycTI8ePdyOy87OLvd81loWLlxIy5Yt3bZv2rSJgIDzW8ozLCzMrRnpBx98QFpaGk8++aRrW2Xn8vPzc7329fWlsLCwwrFOp5P69euTkZFRaUydO3dm7dq1HDhwgDvvvJMpU6ZgjKFXr14AjBkzht///vf07t2b1NRUJk6cWO55KqqIEalq/v7+5/y5fuutt3jjjTfo1KmT2/bCwkKuueYaFixYcN7Xmz17Nm3atOGaa675RfGerXnz5ueMv6oUFhZSq5b+SSgiIt5FlR0iUqN17dqV/Px8ZsyY4dr2008/uV736NGDGTNmcPr0aQD27t3LyZMnKzxfjx49SE5OxloLwLZt28odFxgYyIkTJ8rdN2jQINatW8eHH35Ybky/ROfOnVm0aBGnTp3ixIkTfPTRRwDUq1ePkJAQ5s+fDxQla7Zv317m+Pj4eN59911atGiBj48PDRs2ZOnSpa4/Eo8dO8a1114LwNtvv11uDB07dmTevHlAUV8SEU964YUX+Pzzz/nv//5vxo0bV6avTukVl86cOcOTTz5JmzZtiIiIIDk52e1cCxYsIC0tjcGDB+NwODh16hQAycnJREdHEx4e7uqFU1Ffn/M1atQoYmNjCQsL47nnnnNtX7p0Ka1atSImJoaxY8e6+vicbx8hERERb6Nkh4jUaMYYFi1axGeffUZISAhxcXHcd999TJkyBYARI0bQunVroqOjadOmDSNHjqy0UmLChAmcPn2aiIgIwsLCmDBhgtv+kuVWIyIi8PX15YYbbijzqbK/vz9Llixh5syZNGvWjJtuuokhQ4b8qqae0dHRDBgwgMjISH7729+6pulAUeJh5MiR+Pn54e/vT8+ePct8ohwcHIy1ls6dOwPQqVMn6tevT4MGDYCixqj9+/cnJiaGRo0alRvDX/7yF6ZPn054eDiHDh2qNN7Sf2iK/BKnTp1ymwby3nvvue1/9tlniY2NJSUlhalTpwJFfXUWLFjAZ5995jb29ddfJzs7m4yMDDIzMxk8eLDb/rvvvtt1royMDNcUs0aNGrF161ZGjRrlWsa5pK/P5s2bWb16NePGjSs3gZqVleUW/9q1a13Hp6WlkZmZyWeffUZmZib5+fmMHDmSZcuWkZ6eTm5urus8lV2vovsVERHxCtZar/iKiYmxIiKXu4CAALf3f//73+3o0aMrPeZ8xvxat956q92yZYu11tpZs2bZ22677aJe71y+/PJLGxYW5tEYpHo7+1krUfpnvfTrv//973bYsGGucaV/Bvv27WuXL19e6fVKn8taa2+88Ub79ddfW2ut3bhxo+3WrZu11tqYmBgbFhZmIyMjbWRkpL3++uvtrl273M5V2c//jBkzbFRUlA0PD7eNGjWyc+fOtdu2bbOdO3d2jVm8eLHt1atXpdc7+35FREQuJiDNXuIcgSo7REQuE7m5ufTr14+2bdvStm1b1q1bd95jKlty9q677iImJoawsDBef/31c8bRoUMHV+VFXl4e3bp1c5Xil5TAP/XUU24rqkycONH1yfXUqVNdS/WWlNlnZ2cTGhrKAw88QFhYGN27d3eV+n/xxRfcdtttREZGEh0dTVZWlls82dnZxMfHEx0dTXR0NOvXrweKmsmWTPXp06cPw4cPB2DWrFk888wz57xPkbOdb1+d81XSP6d07xxb3NcnIyODjIwMvvrqK0JDQ8/rfF9++SVJSUmsXLmSzMxMevXqRX5+fqXHVHa9qr5fERGRy4mSHSLi1ZxOy/7cPDbuP8L+3DycTuvReM4urX/22Wdd+x599FEef/xxtmzZwsKFCxkxYkSZ4ysbs2fPHj799FM2b97M888/7+ozMmvWLNLT00lLS2PatGkcOXKk0hg/+eQT7rrrLgCuuOIKPvjgA7Zu3crq1at54oknsNYyYMAA3n//fdcx77//PgMGDGD58uXs27ePzZs3k5GRQXp6uqvZ6r59+xg9ejQ7d+6kfv36rsawgwcPZvTo0Wzfvp3169dz9dVXu8XTpEkT/vnPf7J161bee+89xo4dCxT1ESkp7T906BC7du0CYO3ata7pNiJV4fbbb+e1115zJSyOHj1aZkxlfXhKO9++PuU5fvw4AQEBXHnllRw+fJhly5YB0LJlS/bv3+9qnFx6ys6vuZ6IiEh1ptbbIuK1nE7LJzu/4+WluykodOJXy4fxPUNJDGuKj49nVgU5e4WI2bNnu5bBXLFihesPdij6wyYvL8/t+MrGlCw56+fn51py9rrrrmPatGl88MEHABw8eJB9+/YRFBRUJrbBgwfz888/k5eX54rRWutaatbHx4dDhw5x+PBhoqKiyMnJ4ZtvviE3N5cGDRpw/fXX85e//IXly5cTFRUFFFWG7Nu3jxtuuIGQkBAcDgcAMTExZGdnc+LECQ4dOkSfPn2AouTK2U6fPs0jjzxCRkYGvr6+7N27FyhKdrz66qvs2rWL1q1b88MPP/Dtt9+yYcMGt8oWqZlKEoslEhMTXcvPXqgRI0awd+9eIiIiqF27Ng888ACPPPKI25hhw4bx0EMP4e/vz4YNGyo814QJE3jssceIiIjA6XQSEhLCkiVLyowr6dlRYvjw4YwdO5aoqChatWrF9ddfT8eOHYGi3yt/+9vfSExMJCAgwK0nz/leT0RExNso2SEiXiv7yElXogOgoNDJy0t306ppIM0a1/VwdGU5nU42btxY7h/85zOmvCVnU1NTWbFiBRs2bKBOnTokJCRUWPaekpJCTEwM48aNY8yYMfzf//0fKSkp5Obmkp6eTu3atQkODnYd379/fxYsWMB3333HgAEDgKLkyPjx4xk5cqTbubOzs8vEVzKN5Vz+/Oc/c9VVV7F9+3acTqfr3q+99lp+/PFHPvnkEzp37szRo0d5//33qVu3LoGBged1bvFeZ86cKXd7ampqua+HDRvGsGHDXO+Dg4PZsWMHALVq1eKVV17hlVdeqfB6/fr1o1+/fq73pZenjo2NdV3L39+f1157rdLYg4ODK3w+Zs+eXe72Ll26sGfPHqy1jB492rV8dkXXO/t+RUREvI2msYiI18o5UeBKdJQoKHSSc6LAQxFVrnv37m5LWp69Isr5jint2LFjNGjQgDp16rBnzx42btxY6XhjDC+++CIbN25kz549HDt2jCZNmlC7dm1Wr17NgQMHXGMHDBjAvHnzWLBgAf379weKSuZnzZrlqjY5dOgQOTk5FV4vMDCQ6667jkWLFgFQUFBQZpndY8eOcfXVV+Pj48M777zj9kds+/btefXVV+ncuTPx8fEkJSURHx9f6T2KeKM33ngDh8NBWFgYx44dK5NwFBERqWmU7BARr9Uk0A+/Wu6/5vxq+dAk0K+CIzxr2rRppKWlERERQevWrZk5c+YvGlNaYmIihYWFhIaG8tRTT9G+fftzxuHv788TTzzB1KlTGTx4MGlpaYSHhzNnzhxatWrlGhcWFsaJEye49tprXX02unfvzqBBg+jQoQPh4eHcfffd5+xj8M477zBt2jQiIiK45ZZb+O6779z2P/zww7z99ttERkayZ88et6aK8fHxFBYWctNNNxEdHc3Ro0eV7KgBLrdePJeDxx9/nIyMDHbt2kVKSgp16tTxdEgiIiIeZUoaVlV3sbGxtmTeu4gIXJ49O0Tk19FzLSIiUv0YY9KttbGX8prq2SEiXsvHx5AY1pRWTQPJOVFAk0A/goMCLtofRE6nJfvIyUtyLZGaqrr14hERERHPULJDRLyaj4+hWeO6F/2PIH3aLHJpVNaLR8kOERERKaGeHSIiVaCiT5uzj5z0cGQi3qW69eIRERERz1CyQ0SkClS3lV9EqqvgoADG9wx1JTxKqqiCgwLOcaSIiIjUJJrGIiJSBUo+bS6d8NCnzSJV71L34hEREZHqSZUdIiJVQJ82i1w6Jb142jcLolnjukp0iIiISBmq7BARqQL6tFlERERE5PKhZIeISBW5VCu/iIiIiIhI5Tw2jcUY098Ys9MY4zTGxJbaHmyMOWWMySj+mumpGEVERERERESk+vFkZccOoC/wWjn7sqy1jkscj4iIiIiIiIh4AY8lO6y1uwGM0Xx2EREREREREak6l+tqLCHGmG3GmM+MMfGeDkZEREREREREqo+LWtlhjFkBNC1n1zPW2sUVHPYtcIO19ogxJgZYZIwJs9YeL+f8DwIPAtxwww1VFbaIiIiIiIiIVGMXNdlhrb3tFxxTABQUv043xmQBNwNp5Yx9HXgdIDY21v66aEVERERERETEG1x201iMMY2NMb7Fr5sBLYD9no1KRLyNr68vDofD9ZWdnc0tt9zi6bBERERERKQKeKxBqTGmD5AMNAY+NsZkWGt7AJ2BF4wxpwEn8JC19qin4hQR7+Tv709GRobbtvXr15cZV1hYSK1anly4SkRERERELpTHKjustR9Ya6+z1vpZa68qTnRgrV1orQ2z1jqstdHW2o88FaOI1Cx169YFIDU1lfj4eHr37k3r1q05c+YM48aNo23btkRERPDaa6+5xiUkJHD33XfTqlUrBg8ejLWWtLQ0V8VIeHi4a9WprKwsEhMTiYmJIT4+nj179njsXkVEREREvJk+rhSRGunUqVM4HA4AQkJC+OCDD9z2b926lR07dhASEsLrr7/OlVdeyZYtWygoKKBjx450794dgG3btrFz506uueYaOnbsyLp16+jUqZOramTcuHEkJiYC8OCDDzJz5kxatGjBpk2bePjhh1m1atUlvGsRERERkZpByQ4RqZHKm8ZSWlxcHCEhIQAsX76czMxMFixYAMCxY8fYt28fv/nNb4iLi+O6664DcPX+6NSpEwDvvfceW7duZfny5eTl5bF+/Xr69+/vukZBQcHFuj0RERERkRpNyQ4RkXIEBAS4XltrSU5OpkePHm5jUlNT8fPzc7339fWlsLAQgB07djBx4kTWrFmDr68vTqeT+vXrV5pgERERERGRqnHZrcYiInK56dGjBzNmzOD06dMA7N27l5MnT1Y4/scff+See+5hzpw5NG7cGIB69eoREhLC/PnzgaIEyvbt2y9+8CIiIiIiNZAqO0REzmHEiBFkZ2cTHR2NtZbGjRuzaNGiCscvXryYAwcO8MADD7i2ZWRkkJKSwqhRo3jppZc4ffo0AwcOJDIy8lLcgoiIiIhIjWKstZ6OoUrExsbatLQ0T4chIiIiIiIiIqUYY9KttbGX8pqaxiIichnx9fXF4XAQGRlJdHQ069ev93RIIiIiIiLVjqaxiIjXcTot2UdOknOigCaBfgQHBeDjYzwd1nkpvUrMp59+yvjx4/nss888HJWIiIiISPWiyg4R8SpOp+WTnd9x36zNjJ27jftmbeaTnd/hdFa/KXvHjx+nQYMGAOTl5dGtWzeio6MJDw9n8eLFAGRnZxMaGsoDDzxAWFgY3bt359SpUwBkZWWRmJhITEwM8fHx7Nmzx2P3IiIiIiJyKalnh4h4lf25edw3azMFhU7XNr9aPrw9PI5mjet6MLLz4+vrS3h4OPn5+Xz77besWrWKmJgYCgsL+emnn6hXrx7ff/897du3Z9++fRw4cICbbrqJtLQ0HA4Hv/vd7+jduzdDhgyhW7duzJw5kxYtWrBp0ybGjx/PqlWrPH2LIiIiIlLDeKJnh6axiIhXyTlR4JboACgodJJzoqBaJDtKT2PZsGED9957Lzt27MBay9NPP82aNWvw8fHh0KFDHD58GICQkBAcDgcAMTExZGdnk5eXx/r16+nfv7/r3AUFBZf+hkREREREPEDJDhHxKk0C/fCr5VOmsqNJoJ8Ho/plOnTowPfff09ubi5Lly4lNzeX9PR0ateuTXBwMPn5+QD4+f3n3nx9fTl16hROp5P69eu7EiciIiIiIjWJenaIiFcJDgpgfM9Q/GoV/Xrzq+XD+J6hBAcFeDiyC7dnzx7OnDlDUFAQx44do0mTJtSuXZvVq1dz4MCBSo+tV68eISEhzJ8/HwBrLdu3b78UYYuIiIiIeJwqO0TEq/j4GBLDmtKqaWC1XI3l1KlTrikp1lrefvttfH19GTx4MP/1X/9FeHg4sbGxtGrV6pznSklJYdSoUbz00kucPn2agQMHEhkZebFvQURERETE49SgVEREREREREQuGk80KNU0FhERERERERHxKprGIiJyCTidluwjJ6vl1BoRERERkepGyQ4RkYvM6bR8svM7Xl66m4JCp6tpamJYUyU8REREREQuAk1jERG5yLKPnHQlOgAKCp28vHQ32UdOejgyERERERHvpGSHiMhFlnOiwJXoKFFQ6CTnRIGHIhIRERER8W5KdoiIXGRNAv3wq+X+69avlg9NAv08FJGIiIiIiHdTskNE5CILDgpgfM9QV8KjpGdHcFCAhyMTEREREfFOalAqInKR+fgYEsOa0qppoFZjERERERG5BJTsEBG5BHx8DM0a16VZ47qeDkVERERExOtpGouIiIiIiIiIeBUlO0RERERERETEqyjZISIiIiIiIiJeRckOEREREREREfEqSnaIiIiIiIiIiFdRskNEREREREREvIqSHSIiIiIiIiLiVZTsEBERERERERGvomSHiIiIiIiIiHgVJTtERERERERExKso2SEiIiIiIiIiXkXJDhERERERERHxKkp2iIiIiIiIiIhXUbJDRERERERERLyKkh0iIiIiIiIi4lWU7BARERERERERr6Jkh4iIiIiIiIh4FSU7RERERERERMSrKNkhIiIiIiIiIl7FWGs9HUOVMMbkAgc8HYeXaQR87+kgRKoRPTMiF0bPjMiF0TMjcmH0zFw+brTWNr6UF/SaZIdUPWNMmrU21tNxiFQXemZELoyeGZELo2dG5MLomanZNI1FRERERERERLyKkh0iIiIiIiIi4lWU7JDKvO7pAESqGT0zIhdGz4zIhdEzI3Jh9MzUYOrZISIiIiIiIiJeRZUdIiIiIiIiIuJVlOwQEREREREREa+iZIe4McZMNcbsMcZkGmM+MMbUL7VvvDHmC2PMv40xPTwZp8jlwhjT3xiz0xjjNMbEnrVPz4xIOYwxicXPxRfGmKc8HY/I5cgYM8sYk2OM2VFqW0NjzD+NMfuK/7eBJ2MUuZwYY643xqw2xuwq/rfZo8Xb9dzUUEp2yNn+CbSx1kYAe4HxAMaY1sBAIAxIBP5mjPH1WJQil48dQF9gTemNemZEylf8HEwHfgu0Bu4pfl5ExN1siv77UdpTwEprbQtgZfF7ESlSCDxhrW0NtAdGF//3Rc9NDaVkh7ix1i631hYWv90IXFf8+k5gnrW2wFr7JfAFEOeJGEUuJ9ba3dbaf5ezS8+MSPnigC+stfuttT8D8yh6XkSkFGvtGuDoWZvvBN4ufv02cNclDUrkMmat/dZau7X49QlgN3Atem5qLCU7pDLDgWXFr68FDpba93XxNhEpn54ZkfLp2RD55a6y1n5b/Po74CpPBiNyuTLGBANRwCb03NRYtTwdgFx6xpgVQNNydj1jrV1cPOYZikrBUi5lbCKXo/N5ZkRERC4la601xlhPxyFyuTHG1AUWAo9Za48bY1z79NzULEp21EDW2tsq22+MGQbcAXSz1pb8MjgEXF9q2HXF20S83rmemQromREpn54NkV/usDHmamvtt8aYq4EcTwckcjkxxtSmKNGRYq39v+LNem5qKE1jETfGmETg/wG9rbU/ldr1ITDQGONnjAkBWgCbPRGjSDWhZ0akfFuAFsaYEGPMbyhq5Puhh2MSqS4+BO4rfn0foOpCkWKmqITjLWC3tfaVUrv03NRQ5j8f3IuAMeYLwA84Urxpo7X2oeJ9z1DUx6OQorKwZeWfRaTmMMb0AZKBxsCPQIa1tkfxPj0zIuUwxvQEXgV8gVnW2kkeDknksmOMmQskAI2Aw8BzwCLgfeAG4ADwO2vt2U1MRWokY0wnYC3wL8BZvPlpivp26LmpgZTsEBERERERERGvomksIiIiIiIiIuJVlOwQEREREREREa+iZIeIiIiIiIiIeBUlO0RERERERETEqyjZISIiIlXOGFPfGPOwp+MQERGRmknJDhEREbkY6gNKdoiIiIhHKNkhIiIiF8NkoLkxJsMY84YxZk3x6x3GmHgAY0yeMWaSMWa7MWajMeaq4u2NjTELjTFbir86VnQRY8xfjDHPFr/uUXwd/ftGRESkhjPWWk/HICIiIl7GGBMMLLHWtjHGPAFcYa2dZIzxBepYa08YYyzQ21r7kTHmj8Bxa+1Lxph/AH+z1n5ujLkB+NRaG1rBdeoAW4BHgJlAT2tt1iW4RREREbmM1fJ0ACIiIuL1tgCzjDG1gUXW2ozi7T8DS4pfpwO3F7++DWhtjCk5vp4xpq61Nu/sE1trfzLGPACsAR5XokNERERA01hERETkIrPWrgE6A4eA2caYe4t3nbb/KTE9w38+hPEB2ltrHcVf15aX6CglHDgCXHMRwhcREZFqSMkOERERuRhOAIEAxpgbgcPW2jeAN4Hocxy7HBhT8sYY46hoYPG5nwCigN8aY9r9yrhFRETEC2gai4iIiFQ5a+0RY8w6Y8wOIAA4aYw5DeQB91Z+NGOB6caYTIr+rbIGeOjsQaZonstbwJPW2m+MMf9NUeVIW2ttflXej4iIiFQvalAqIiIiIiIiIl5F01hERERERERExKtoGouIiIhc9owx9wOPnrV5nbV2tCfiERERkcubprGIiIiIiIiIiFfRNBYRERERERER8SpKdoiIiIiIiIiIV1GyQ0RERERERES8ipIdIiIiIiIiIuJVlOwQEREREREREa+iZIeIiIiIiIiIeJX/D9Tyj2o4WexHAAAAAElFTkSuQmCC\n"
- },
- "metadata": {
- "needs_background": "light"
- }
- }
- ]
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/home/tomaz/.local/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py:795: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.\n",
+ " warnings.warn(\n",
+ "/home/tomaz/.local/lib/python3.8/site-packages/sklearn/manifold/_t_sne.py:805: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.\n",
+ " warnings.warn(\n"
+ ]
},
{
- "cell_type": "markdown",
- "metadata": {
- "id": "H_ij2S-ze_NJ"
- },
- "source": [
- "Calculating node embedding based on node role similarity is an exciting field. Instead of comparing the closeness of nodes in the network, we want to capture the structural role similarity between nodes. Then, we can use the structural role embedding to infer a kNN network and run a community detection algorithm to try and segment the nodes based on their network roles. First, we have to store the Role2vec results back to Neo4j."
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABFIAAAJNCAYAAAAS6lF+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde1zO9/vA8dddlMixYowpx6T77u6MRDmf5pzDGK3ZnJmNjRlibDa+ZsyEjcwMc5htjBmTHNdBd0mOpc02I5lDlNT9+f3R7s+vdJBjDtfz8ejB5/z+3Pct933d1/u6NIqiIIQQQgghhBBCCCHuzKykByCEEEIIIYQQQgjxpJBAihBCCCGEEEIIIUQxSSBFCCGEEEIIIYQQopgkkCKEEEIIIYQQQghRTBJIEUIIIYQQQgghhCgmCaQIIYQQQgghhBBCFFOpkh7Ag2Jra6vY29uX9DCEEEIIIYQQQgiRS3R09EVFUexKehwPylMTSLG3tycqKqqkhyGEEEIIIYQQQohcNBrN7yU9hgdJpvYIIYQQQgghhBBCFJMEUoQQQgghhBBCCCGKSQIpQgghhBBCCCGEEMUkgRQhhBBCCCGEEEKIYpJAihBCCCGEEEIIIUQxSSBFCCGEEEIIIYQQopgkkCKEEEIIIYQQQghRTBJIEUIIIYQQQgghhCgmCaQIIYQQQgghhBBCFJMEUoQQQgghhBBCCCGKSQIpQgghhHhozM3N0ev1ODs78+KLL3L58uUHev7k5GScnZ0L3Obn50dUVFSedd9//z3du3dXlz/88EPq1aunLv/444907dr1gY3P2tr6gZ1LCCGEEI8HCaQIIYQQ4qGxsrLCYDAQHx9PlSpVWLRoUYmOp1mzZhw6dEhdPnjwIBUqVODChQsAHDhwgGbNmpXU8IQQQgjxBJBAihBCCCEeiaZNm/LXX38BYDAYaNKkCTqdjh49evDvv/8COVkk77zzDl5eXjRo0IC9e/cCOZknvr6+uLm54ebmxoEDB/KdPz09nX79+tGoUSN69OhBenp6vn3s7OyoUKECp0+fBuCvv/6iV69e6vkOHDiAj48PKSkp9OrVC09PTzw9Pdm/fz8AERERNG3aFFdXV5o1a8aJEycAOHr0KF5eXuj1enQ6HadOncp37Tlz5uDp6YlOp2PatGkATJ06lfnz56v7TJ48mU8//fSeHl8hhBBCPBoSSBFCCCHEQ5ednc2uXbvUaTODBg3io48+Ii4uDq1Wy/Tp09V9s7KyiIiIYP78+er6qlWr8ssvv3D48GHWrVvHmDFj8l1j8eLFlC1blmPHjjF9+nSio6MLHIuPjw8HDhzgxIkT1K9fnyZNmnDgwAGysrKIjY3F09OTsWPHMm7cOCIjI9m4cSNDhgwBwNHRkb179xITE8OMGTN49913AQgJCWHs2LEYDAaioqKoWbNmnmvu2LGDU6dOERERgcFgIDo6mvDwcIKCgvjqq68AMBqNrF27loEDB97noy2EEEKIh6lUSQ9ACCGEEE+v9PR09Ho9f/31F40aNaJt27ZcuXKFy5cv07JlSwAGDx5MQECAekzPnj0BcHd3Jzk5GYBbt24xatQoDAYD5ubmnDx5Mt+1wsPD1QCLTqdDp9MVOKZmzZpx4MABsrOzadq0KV5eXsyYMYOYmBgcHR0pU6YMO3fuJCEhQT3m6tWrpKWlceXKFQYPHsypU6fQaDTcunULyMm2mTVrFn/++Sc9e/akfv36ea65Y8cOduzYgaurKwBpaWmcOnWKFi1aYGNjQ0xMDOfPn8fV1RUbG5t7eaiFEEII8YhIIEUIIYQQD42pRsqNGzdo3749ixYtYvDgwUUeY2lpCeQUqs3KygLgk08+oVq1asTGxmI0GilTpsw9j8nHx4eFCxeSnZ3Na6+9Rvny5cnIyCAsLEytj2I0Gjl06FC+64waNQp/f3++++47kpOT8fPzA+Cll17C29ubrVu30qlTJ5YsWUKrVq3U4xRFYdKkSQwdOjTfeIYMGUJoaCj//PMPQUFB93xfQgghhHg0ZGqPEEIIIR66smXLsmDBAv73v/9Rrlw5KleurNY/WbVqlZqdUpgrV65QvXp1zMzMWLVqFdnZ2fn2adGiBd988w0A8fHxxMXFFXiuRo0a8ffff7Nv3z41Q0Sv1xMSEoKPjw8A7dq1Y+HCheoxBoNBHcfzzz8PQGhoqLo9KSmJOnXqMGbMGLp165bv2u3bt2f58uWkpaUBObVZTAVue/Towfbt24mMjKR9+/ZFPg5CCCGEKHkSSBFCCCHEI+Hq6opOp2PNmjWsXLmSCRMmoNPpMBgMTJ06tchjR4wYwcqVK3FxceH48eOUK1cu3z7Dhw8nLS2NRo0aMXXqVNzd3Qs8l0ajwdvbGxsbG0qXLg3kTM1JSkpSM1IWLFhAVFQUOp0OJycnQkJCAHj77beZNGkSrq6uarYMwLfffouzszN6vZ74+HgGDRqU55rt2rXjpZdeomnTpmi1Wnr37s21a9cAsLCwwN/fnz59+mBubl7MR1MIIYQQJUWjKEpJj+GB8PDwUKKiokp6GEIIIYQQd8VoNOLm5sb69evz1VYRQgghngYajSZaURSPkh7HgyIZKUIIIYQQJSQhIYF69erRunVrCaIIIYQQTwgJpAghhBCiWIxGhaSUNA4lpZKUkobR+HRktZYkJycnkpKS+N///lfSQxHiseHv78/PP/+cZ938+fMZPnx4CY3o/9nb26PVatFqtTg5OfHee++RkZHxQM4dGhrKqFGjHsi5hBAPlwRShBBCCHFHRqPC9qP/MHh5BGPWxDB4eQTbj/4jwRQhxAPXv39/1q5dm2fd2rVr6d+/f7GOL6gY9YO0e/dujhw5QkREBElJSQV24yrKwx6fEOLhk0CKEEIIIe4oOfU6H/50jJtZRgBuZhn58KdjJKdeL+GRCSGeNr1792br1q1kZmYCkJyczN9//42vry87duygadOmuLm5ERAQoHbCsre355133lHrDdnb2zNt2jTc3NzQarUcP34cgEuXLtG9e3d0Oh1NmjRRO2wFBwcTFBSEn58fderUYcGCBXccp7W1NSEhIWzevJlLly4RFhZGly5d1O2jRo1Su3vdPr4FCxbg5OSETqejX79++c6dkpJCr1698PT0xNPTk/3792M0Gqlfvz4pKSlATn2levXqqctCiEdHAilCCCGEuKML126qQRSTm1lGLly7WUIjEkI8rapUqYKXlxfbtm0DcrJR+vTpQ2pqKjNnzmTnzp0cPnwYDw8P5s2bpx5nY2PD4cOH1cCEra0thw8fZvjw4cydOxeAadOm4erqSlxcHB988EGeDlvHjx/n559/JiIigunTp3Pr1q07jrVChQo4ODhw6tSpO+6be3yzZ88mJiaGuLg4tStYbmPHjmXcuHFERkayceNGhgwZgpmZGQMHDmT16tUA7Ny5ExcXF+zs7O54bSHEgyWBFCGEEELcUdXylliWyvu2wbKUGVXLW5bQiIQQT7Pc03tM03oOHTpEQkICPj4+6PV6Vq5cye+//64e07dv3zzn6NmzJwDu7u4kJycDsG/fPl5++WUAWrVqRWpqKlevXgWgc+fOWFpaYmtrS9WqVTl//nyxxlrcLqi5x6fT6RgwYABff/01pUqVyrfvzp07GTVqFHq9nq5du3L16lXS0tIICgriq6++AmD58uW88sorxbq2EOLBkkCKEEIIIe7I3qYckzo1UoMplqXMmNSpEfY25Up4ZEKIp1G3bt3YtWsXhw8f5saNG7i7u6MoCm3btsVgMGAwGEhISODLL79UjylXLu/vI0vLnECvubk5WVlZd7ymaf+7OebatWskJyfToEEDSpUqhdH4/5l7txehzT2+rVu3MnLkSA4fPoynp2e+axmNRg4dOqTe619//YW1tTW1atWiWrVq/Prrr0RERNCxY8c7jlEI8eBJIEUIIYQQd2RmpqFD4+dYGeTFgv6urAzyokPj5zAz05T00MQzytzcHL1ej7OzMwEBAdy4ceOhXctgMPDTTz+pyz/88AOzZ8/Ot19oaCh2dnbo9XqcnJxYtmxZkeedP39+nnF36tSJy5cvAzn1N55l1tbW+Pv7ExQUpBaZbdKkCfv37+f06dMAXL9+nZMnT97VeX19fdWpMWFhYdja2lKhQoV7GmNaWhojRoyge/fuVK5cmdq1a5OQkMDNmze5fPkyu3btKvA4o9HI2bNn8ff356OPPuLKlStqrReTdu3asXDhQnXZYDCofx8yZAgDBw4kICAAc3Pzexq7EOL+SCBFCCGEEMViZqahjp01TerYUMfOWoIookRZWVlhMBiIj4/HwsKiwDoTBSlOlsHtbg+kdO3alYkTJxa4b9++fTEYDISFhfHuu+8WOT3k9kDKTz/9RKVKle56fE+r/v37ExsbqwZS7OzsCA0NpX///uh0Opo2baoWkS2u4OBgoqOj0el0TJw4kZUrV971uPz9/XF2dsbLy4sXXniBJUuWAFCrVi369OmDs7Mzffr0wdXVtcDjs7OzGThwIFqtFldXV8aMGZPveV+wYAFRUVHodDqcnJzyvL67du1KWlqaTOsRogRpijun73Hn4eGhREVFlfQwhBBCCCHEI2Btba1+ix8SEkJcXBwdO3Zk5syZZGZmYmNjw+rVq6lWrRrBwcEkJiaSlJTECy+8wJkzZ/jyyy9p3LgxAH5+fsydOxej0cjYsWPJyMjAysqKFStW4ODgQL169UhPT+f5559n0qRJpKenExUVxWeffZZnTKGhoXnWN2nShAULFrBixQoiIyNJT0+nd+/eTJ8+nQULFjB+/HgaNmyIra0tu3fvxt7enqioKGxtbfPcnxC5RUVFMW7cOPbu3VvSQxGi2DQaTbSiKB4lPY4HRTJShBBCCCHEEysrK4tt27ah1Wpp3rw5hw4dIiYmhn79+vHxxx+r+yUkJLBz507WrFlD3759+fbbbwE4d+4c586dw8PDA0dHR/bu3UtMTAwzZszg3XffxcLCghkzZqiZJrcXNC1MUlISSUlJ1KtXj1mzZhEVFUVcXBx79uwhLi6OMWPGUKNGDXbv3s3u3bsfymPzuDAaFZJS0jiUlEpSShpG49PxRW5JmD17Nr169eLDDz8s6aEI8UzLXyJaCCGEEEKIx1x6ejp6vR7IqXvx6quvcuLECfr27cu5c+fIzMzEwcFB3b9r165YWVkB0KdPH9q1a8f06dP59ttv6d27NwBXrlxh8ODBnDp1Co1GU6z2t7dbt24d+/btw9LSkiVLllClShVCQkJYunQpWVlZnDt3joSEBHQ63f0/CE8Ao1Fh+9F/+PCnY9zMMqqFqqXG0r2ZOHFiodPKhBCPjgRShBBCCCHEE8dUIyW30aNH8+abb9K1a1fCwsIIDg5Wt+XumPL8889jY2NDXFwc69atU+tPTJkyBX9/f7777juSk5Px8/O763H17ds3z5SfM2fOMHfuXCIjI6lcuTKBgYH5urk8zZJTr6tBFICbWUY+/OkYjs+Vp47ds11QVwjx5JKpPUIIIYQQ4qlw5coVnn/+eYA7FhHt27cvH3/8MVeuXFGzQ3IfHxoaqu5bvnx5rl27dk9junr1KuXKlaNixYqcP3+ebdu2PZDzPikuXLupBlFMbmYZuXDtZgmNSAgh7p8EUoQQQgghxFMhODiYgIAA3N3dsbW1LXLf3r17s3btWvr06aOue/vtt5k0aRKurq55uvv4+/uTkJCAXq9n3bp1dzUmFxcXXF1dcXR05KWXXsLHx0fd9vrrr9OhQwf8/f3v6pxPkqrlLbEslfcjh2UpM6qWtyyhEQkhxP2Trj1CCCGEEEKIh0JqpAgh4Onr2iM1UoQQQgghhBAPhZmZhg6Nn8PxufJcuHaTquUtsbcpJ0EUIcQTTab2CCGEEI8Ra+v8xRdDQkL46quv7vmcR44cQa/Xo9frqVKlCg4ODuj1etq0aXM/QwWgU6dOXL58+b7PI55t0h736WZmpqGOnTVN6thQx85agihCiCeeTO0RQgghHiPW1takpaU9tPMHBgbSpUsXtd3rnWRlZVGqlCSwiodHpn4IIcTT72mb2iMZKUIIIcRjLjg4mLlz5wKwYMECnJyc0Ol09OvXD4CIiAiaNm2Kq6srzZo148SJE8U6r5+fH6YvIS5evIi9vT2Q062ka9eutGrVitatWxMWFkaLFi3o3LkzDRs2ZNiwYRiNOV047O3tuXjxIsnJyTRq1IjXXnuNxo0b065dO9LT0x/wIyGeRoW1x01OvV7CIxNCCCEKJoEUIYQQ4gkye/ZsYmJiiIuLIyQkBABHR0f27t1LTEwMM2bM4N13373v6xw+fJgNGzawZ88eICdYs3DhQhISEkhMTGTTpk35jjl16hQjR47k6NGjVKpUiY0bN973OMTTT9rjCiGEeNJIIEUIIYR4guh0OgYMGMDXX3+tTrm5cuUKAQEBODs7M27cOI4ePXrf12nbti1VqlRRl728vKhTpw7m5ub079+fffv25TvGVHsFwN3dneTk5Pseh3j6SXtcIYQQTxoJpAghhBBPkK1btzJy5EgOHz6Mp6cnWVlZTJkyBX9/f+Lj4/nxxx/JyMgo9PiVK1eyYMECAEqVKkVmZiZ2dnb07dsXgB9++IGtW7dSrly5PFOKTp48yYYNG4CcqT+XLl3Kd25Ly///4Gtubk5WVlax7+uDDz4odJu9vT1arRa9Xo9Wq+X777+/4/kCAwPV8RZk8+bNJCQkFHt8BQkLC6NLly73dQ4B9jblmNSpkRpMMdVIsbcpV8IjE0IIIQom1eOEEEKIJ4TRaOTs2bP4+/vTvHlz1q5dS1paGleuXOH5558HcoIcRSlVqhR//PEH6enp2Nvb88033/D888/zzz//ANC1a1cuXbrE7QXcL168yPnz5zEajVhZWdGtW7cHem8ffPBBkVOSdu/eja2tLSdOnKBdu3b3ff3NmzfTpUsXnJyc8m2TAruPlrTHFUII8aSRjBQhhBDiMXLjxg1q1qyp/sybN0/dlp2dzcCBA9Fqtbi6ujJmzBgqVarE22+/zaRJk3B1dS1WFoibmxtbt25l/PjxrF69mgsXLpCZmQnkBGJWrVqV7xgbGxu+/PJLGjVqxJEjR6hVqxYA6enptGrVio4dO6pTea5fv866detYtmwZrq6uagZJaGgoPXv2pEOHDtSvX5+3334bgIkTJ5Keno5er2fAgAFFjv3q1atUrlwZgOTkZJydndVtc+fOJTg4ON8xEydOVAv0jh8/ngMHDvDDDz8wYcIE9Ho9iYmJ+Pn58cYbb+Dh4cGnn37Krl27cHV1RavVEhQUxM2bOfU6tm/fjqOjI25ubnnqxFy/fp2goCC8vLzy3LMoHmmPK4QQ4kkiX7cIIYQQjxFTN5zCFFSbpGnTppw8eVJdnjlzZqHHW1paEhwczIwZM/j666+pXbs28+fPZ+7cuWzZsoXQ0FAaNWrEZ599licoYWFhwbvvvkvv3r3x8/PDzMyMlJQULCws+P7773FwcFCn+8yaNYuxY8cycOBALl++jJeXF23atAHAYDAQExODpaUlDRs2ZPTo0cyePZvPPvsMg8FQ6Lj9/f1RFIWkpCS+/fbbIh+j3FJTU/nuu+84fvw4Go2Gy5cvU6lSJbp27ZqvDXRmZiZRUVFkZGRQv359du3aRYMGDRg0aBCLFy9m2LBhvPbaa/z666/Uq1dPnQ5luudWrVqxfPnyPPdcrpxMTxFCCCGeNpKRIoQQQjwkRqNCUkoah5JSSUpJw2hUSnpIQE7B2uTkZNasWUOnTp3u+TyHDh2iRYsWODg4AKjFaXfs2MHs2bPR6/X4+fmRkZHBH3/8AUDr1q2pWLEiZcqUwcnJid9//71Y19q9ezfx8fEcOXKEUaNGkZaWVqzjTNd69dVX2bRpE2XLli10X1Ng5MSJEzg4ONCgQQMABg8eTHh4OMePH8fBwYH69euj0WgYOHCgemxR9yyEEEKIp4tkpAghhBAPgdGosP3oP3z40zFuZhnVApodGj/3WExb6Nq1K+PHjycsLIzU1NQi9/Xz86N169bFPreiKGzcuJGGDRvmWf/bb7/dV0FagLp161KtWjUSEhKoUaNGngyegorslipVioiICHbt2sWGDRv47LPP+PXXXws89/1kjxR2z0IIIYR4+khGihBCCPEQJKdeV4MoADezjHz40zGSU6+X8MhyBAUFMW3aNLRa7T2fo0mTJoSHh3PmzBkAdWpP+/btWbhwIYqSk4ETExNzx3OVLl2aW7du3XG/CxcucObMGWrXrk21atW4cOECqamp3Lx5ky1btuTb31SMt1OnTnzyySfExsYCUL58ea5du1bgNRo2bEhycjKnT58GYNWqVbRs2RJHR0eSk5NJTEwEYM2aNeox93LP4vFlbm6OXq/H2dmZgIAAbty48cjHYOpWpdPpaNeunVoQ+n4cP34cvV6Pq6ur+joWQghx9ySQIoQQQjwEF67dVIMoJjezjFy4drOERpRXzZo1GTNmzH2dw87OjqVLl9KzZ09cXFzUqTFTpkzh1q1b6HQ6GjduzJQpU+54rtdffx2dTldosVl/f3/0ej3+/v7Mnj2batWqUbp0aaZOnYqXlxdt27bF0dEx33HXrl2jS5cu6HQ6mjdvrhbv7devH3PmzCnwA2WZMmVYsWIFAQEBaLVazMzMGDZsGGXKlGHp0qV07twZNzc3qlatqh5zL/csHl9WVlYYDAbi4+OxsLAgJCSkRMaxe/du4uLi8PDwKLJFeHFt3ryZ3r17ExMTQ926ddX1iqLcsT6TEEKI/6cxfXPypPPw8FBub9UohBBClJSklDQGL4/IE0yxLGXGyiAv6thZl+DIhBB3Ym1trdbhCQkJIS4ujpkzZxIUFERSUhJly5Zl6dKl6HQ6goODSUxM5PTp01y8eJG3336b1157jbCwMKZOnUr58uU5ffo0/v7+fP7554SGhhIXF8f8+fMBWLZsGQkJCXzyySd5xmBvb09UVBS2trZs376dBQsWsGnTJoYPH05UVBSlSpVi3rx5+Pv7ExoayubNm7l+/TqnTp1i/PjxZGZmsmrVKiwtLfnpp584dOgQQUFBmJub06BBA1asWEH79u3x9vYmOjqan376iW+//ZZvv/2Wmzdv0qNHD6ZPn87UqVOpUqUKb7zxBgCTJ0+matWqjB079lE+JUKIJ5xGo4lWFMWjpMfxoEhGihBCCPEQ2NuUY1KnRliWyvmv1lQjxd7mwXVxeVyL2YrHg2l6iouLC25ubhw4cADI3zb6fvj5+XE3X2SZpqvo9Xq0Wu1j3yY6KyuLbdu2odVqmTZtGq6ursTFxfHBBx8waNAgdb+4uDh+/fVXDh48yIwZM/j7778BiIiIYOHChSQkJJCYmMimTZvo06cPP/74ozqVbcWKFQQFBRU5ji1btqDValm0aBEajYYjR46wZs0aBg8erNYGio+PZ9OmTURGRjJ58mTKli1LTEwMTZs25auvvqJTp04MGzaMcePGsXv3bgBOnTrFiBEjOHr0KCdOnODUqVNERERgMBiIjo4mPDycoKAgvvrqKyCnq9jatWvzFFoWQohnkRSbFUIIIR4CMzMNHRo/h+Nz5blw7SZVy1tib1PugRWafdyL2YqSZ5qeAvDzzz8zadIk9uzZU7KDIme6iq2tLSdOnKBdu3Z069at2MdmZ2djbm7+EEeXIz09Hb1eD4Cvry+vvvoq3t7ebNy4EYBWrVqRmprK1atXAejWrRtWVlZYWVnh7+9PREQElSpVwsvLizp16gDQv39/9u3bR+/evWnVqhVbtmyhUaNG3Lp1q9BaRf7+/pibm6PT6Zg5cyavvPIKo0ePBsDR0ZHatWurrc/9/f0pX7485cuXp2LFirz44osAaLVa4uLiCjx/7dq1adKkCZDTeWrHjh24uroCOfWFTp06RYsWLbCxsSEmJobz58/j6uqKjY3N/T7EQgjxRJNAihBCCPGQmJlpqGNn/VCm8hRWzNbxufIydUjkc/XqVSpXrpxvfUZGRoFTRQpbn56eziuvvEJsbCyOjo6kp6cDsHz58mJNVylqTN27d+fs2bNkZGQwduxYXn/9dSBnms3QoUPZuXMnixYtIiIiguXLlwMwZMgQ3njjDZKTk+nYsSPNmzfnwIEDPP/883z//fdYWVnd0+OVOwhVHBqNpsDlwtYPGTKEDz74AEdHR1555ZVCz2sKOhVH7o5YZmZm6rKZmVmh3bFyd6pSFIVJkyYxdOjQfPsNGTKE0NBQ/vnnnztmzwghxLNApvYIIYQQT6DHvZitKHmmrApHR0eGDBlSYAHcwqaKFLZ+8eLFlC1blmPHjjF9+nSio6MB7mq6ir+/P87OzrRs2ZKZM2eq65cvX050dDRRUVEsWLBAbct9/fp1vL29iY2NxcrKihUrVvDbb79x6NAhli1bpnZIOnXqFCNHjuTo0aNUqlRJzR55UHx9fVm9ejUAYWFh2NraUqFCBQC+//57MjIySE1NJSwsDE9PTyBnas+ZM2cwGo2sW7eO5s2bA+Dt7c3Zs2f55ptv6N+//z2N4eTJk/zxxx8PrOV2+/btWb58uVob5q+//uLChQsA9OjRg+3btxMZGUn79u0fyPWEEOJJJhkpQgghxBOoanlLLEuZ5StmW7W8ZRFHiWdJ7qyKgwcPMmjQIOLj4/Pss2/fvgKnihS2Pjw8XO32pNPp0Ol0QE7WSHGnq5iyLBITE2ndujV+fn5YW1uzYMECvvvuOwDOnj3LqVOnsLGxwdzcnF69eqnj7dGjh5pJ0bNnT/bu3UvXrl1xcHBQp+O4u7uTnJz8YB7I/wQHBxMUFIROp6Ns2bKsXLlS3abT6fD39+fixYtMmTKFGjVqcPLkSTw9PRk1apRabLZHjx7qMX369MFgMBSYKVSYESNGMHz4cLRaLaVKlSI0NDRPJsr9aNeuHceOHaNp06ZAznP69ddfU7VqVSwsLPD396dSpUqPZGqVEEI87iSQIoQQQjyBTMVsb6+R8iCL2YqnR9OmTbl48SIpKSkP7RrFna5iUrduXapVq0ZCQgI3btxg586dHDx4kLJly+Ln56cWUS1TpkyxPrznDiiYm5ur047uhSkrI7cqVaqwefPmAvfX6XRqQdbcKlSowJYtWwo8Zt++fYwbN67QMRQUCDK15r5dYGAggYGBBR6be1twcLC63t7ePl9gbezYsQV24zEajRw6dIj169cXOl4hhHiWyNQeIYQQ4glkKma7MsiLBf1dWRnkJYVmRaGOHz9OdnZ2viKhhU0VKWx9ixYt+Oabb4CcLjG5i5je7XSVCxcucObMGWrXrs2VK1eoXLkyZcuW5fjx4xw6dKjAY3x9fdm8eTM3btzg+vXrfPfdd/j6+hZ6jcexs9Xly5dp0KABVlZWtG7duqSHc0cJCQnUq1eP1q1bU79+/ZIejhBCPBYkI0UIIYR4Qj3MYrbiyZe784yiKKxcuTJfZkdhU0UKWz98+HBeeeUVGjVqRKNGjXB3d89zvuJMVzF1orl16xazZ8+mWrVqdOjQgZCQEBo1akTDhg3VTjK3c3NzIzAwEC8vLyAnC8bV1bXA7A1FeTSdrXJneeTm5+eHn59fvvWVKlVSO+08CZycnEhKSirpYQghxGNFoyglH5l/EDw8PJSoqKiSHoYQQgghxDOrS5cujBs37rHItEhKSWPw8oh8dYRWBnlJ8FEIIR4xjUYTrSiKR0mP40GRqT1CCCGEEI+5x3GKSm6P43QV6WwlhBDiYZGpPUIIIYQQjzGj8dFMUbkfj+N0FelsJYQQ4mGRjBQhhBBCiMdYcup1NYgCOVkVH/50jOTU6yU8ssebqbOVZamct7vS2UoIIcSDIhkpQgghhBCPsaKmqEitj8KZOls5PleeC9duUrW8JfY25R6bLB4hhBBPrhLNSNFoNMs1Gs0FjUYTn2tdFY1G84tGozn135+Fl30XQgghhHjKmaao5CZTVIrH1NmqSR0b6thZSxBFCCHEA1HSU3tCgQ63rZsI7FIUpT6w679lIYQQQohnkkxREUIIIR4vJTq1R1GUcI1GY3/b6m6A339/XwmEAe88ulEJIYQQQjw+ZIqKEEII8Xh5HGukVFMU5dx/f/8HqFbYjhqN5nXgdYAXXnjhEQxNCCGEEOLRM01RkZooQgghRMkr6ak9RVIURQGUIrYvVRTFQ1EUDzs7u0c4MiGEEEIIIYQQQjyLHsdAynmNRlMd4L8/L5TweIQQQgghhBBCCCGAxzOQ8gMw+L+/Dwa+L8GxCCGEEEIIIYQQQqhKuv3xGuAg0FCj0fyp0WheBWYDbTUazSmgzX/LQgghhBBCCCGEECWuRAMpiqL0VxSluqIopRVFqakoypeKoqQqitJaUZT6iqK0URTlUkmOUQghhLC2fvgFPsPCwqhYsSJ6vZ5GjRoxffp0AEJCQvjqq68e+vWFEEIIIUTxPI5de4QQQojHXlZWFqVKPdj/Rn19fdmyZQvXr19Hr9fz4osvMmzYsAd6DSGEEEIIcX8exxopQgghxGMpLCwMX19funbtipOTE2FhYbRs2ZJu3bpRp04dJk6cyOrVq/Hy8kKr1ZKYmAjAjz/+iLe3N66urrRp04bz588XeZ1y5crh7u7O6dOnCQ4OZu7cuQD4+fnxzjvv4OXlRYMGDdi7dy8A2dnZjB8/HmdnZ3Q6HQsXLgQgOjqali1b4u7uTvv27Tl37txDfHSEEEIIIZ4NEkgRQggh7sLhw4f59NNPOXnyJACxsbGEhIRw7NgxVq1axcmTJ4mIiGDIkCFqQKN58+YcOnSImJgY+vXrx8cff1zkNVJTUzl06BCNGzfOty0rK4uIiAjmz5+vTv9ZunQpycnJGAwG4uLiGDBgALdu3WL06NFs2LCB6OhogoKCmDx58gN+NIQQ4slR0DTN3NMnAwMD2bBhQ7HP5+fnxwsvvICiKOq67t27P5LpoEKIkiVTe4QQQoi74OXlhYODg7rs6elJ9erVAahbty7t2rUDQKvVsnv3bgD+/PNP+vbty7lz58jMzMxzfG579+7F1dUVMzMzJk6cSOPGjVm/fn2efXr27AmAu7s7ycnJAOzcuZNhw4apU42qVKlCfHw88fHxtG3bFsjJWjGNUwghRI77nT5ZqVIl9u/fT/Pmzbl8+bJk/gnxjJCMFCGEEOIulCtXLs+ypaWl+nczMzN12czMjKysLABGjx7NqFGjOHLkCEuWLCEjI6PAc/v6+hITE0N0dHShb+5N5zc3N1fPXxBFUWjcuDEGgwGDwcCRI0fYsWNH8W9UCCGeAbmnT5r8+uuvdO/eXV3+5Zdf6NGjR4HH9+vXj7Vr1wKwadMmNdgNOb+HJ0yYgLOzM1qtlnXr1hW5PiwsDD8/P3r37o2joyMDBgzIk+0ihHh8SCBFCCGEeMiuXLnC888/D8DKlSsf+Pnbtm3LkiVL1MDKpUuXaNiwISkpKRw8eBCAW7ducfTo0Qd+bSGEeNr4+/tz/PhxUlJSAFixYgVBQUEF7tu6dWvCw8PJzs5m7dq19O3bV922adMmDAYDsbGx7Ny5kwkTJnDu3LlC1wPExMQwf/58EhISSEpKYv/+/Q//hoUQd00CKUIIIcRDFhwcTEBAAO7u7tja2j7w8w8ZMoQXXngBnU6Hi4sL33zzDRYWFmzYsIF33nkHFxcX9Ho9Bw4ceODXFkKIp41Go+Hll1/m66+/5vLlyxw8eJCOHTsWuK+5uTnNmzdn7dq1pKenY29vr27bt28f/fv3x9zcnGrVqtGyZUsiIyMLXQ8500dr1qyJmZkZer1encIphHi8SI0UIYQQ4g7S0tKAnMKCfn5+6vrbl8PCwgrc1q1bN7p161bkNW4/l0lwcHCB57e1tVXfYJcqVYp58+Yxb968PMfq9XrCw8OLvK4QQoj8XnnlFV588UXKlClDQEBAke3u+/XrR48ePfL8vr5XuaeL3mkKpxCi5EhGihBCCCGEEELkUqNGDWrUqMHMmTN55ZVXitzX19eXSZMm0b9//3zr161bR3Z2NikpKYSHh+Pl5VXoeiHEk0MyUoQQQjxTjEaF5NTrXLh2k6rlLbG3KYeZmaakhyWEEOIhu3HjBjVr1lSX33zzzSL3HzBgACkpKTRq1KjI/TQaDePHj8+3vkePHhw8eBAXFxc0Gg0ff/wxzz33XKHrjx8/fm83JoR45DRPSyVoDw8PJSoqqqSHIYQQ4jFmNCpsP/oPH/50jJtZRixLmTGpUyM6NH5OgilCCCHyGDVqFK6urrz66qslPRQhnngajSZaURSPkh7HgyJTe4QQQjwxzM3N0ev1NG7cGBcXF/73v/9hNBqLfXxy6nU1iAJwM8vIhz8dIzn1eoH7z5o1C71ej16vV6+t1+tZsGABgYGBbNiw4YHc17NKo9EwcOBAdTkrKws7Ozu6dOnyQM4fGhrKqFGjir1/cHAwzz//PHq9HkdHR4YPH35Xr6+7HUdBbVdv97BeZ2FhYVJ8WIgiuLu7ExcXl+d3lBBCmMjUHiGEEE8MKysrDAYDABcuXOCll17i6tWrTJ8+vVjHX7h2Uw2imNzMMnLh2k3q2Fnn23/y5MlMnjwZAGtra/XakPMBV9yfcuXKER8fT3p6OlZWVvzyyy9qm+iSMm7cOMaPH4/RaKRFixbs2bMHf3//PPtkZWUVWXjycZKdnY25uXm+9WFhYVhbW9OsWbMSGJUQ9+9hT9OMjo5+YOcSQjx9JCNFCCHEE6lq1aosXbqUzz77DEVRyM7OZsKECXh6eqLT6ViyZAmQ03GndevWuLm5MbhLC9JOHATg5r//cOTTIP74/hMGdWpOu3btSE9Pv6sxhIeH06xZM+rUqaNmDSiKwoQJE3B2dkar1bJu3Tog54Nry5Yt6datG3Xq1GHixImsXr0aLy8vtFotiYmJAPz44494e3vj6upKmzZtOH/+PAB79uxRM2JcXV25du3aA3kcS1qnTp3YunUrAGvWrMlTrDEiIoKmTZvi6upKs2bNOHHiBJCT4dGzZ086dOhA/fr1efvtt9VjVqxYQYMGDfDy8mL//v0AXLt2DQcHB27dugXA1atX8ywXJDMzk4yMDCpXrgzkdFV644038PDw4NNPP2XXrl24urqi1WoJCgri5s2bAERGRtKsWTNcXFzw8vLK9zxt3bqVpk2bcvHixTzrExMT6dChA+7u7vj6+uaplVDQ6ywsLCxP5s6oUaMIDQ0FwN7ennfeeQc3NzfWr1/PggULcHJyQqfT0a9fP5KTkwkJCeGTTz5Br9ezd+/eOz1NQjxWTNM0By+PYMyaGAYvj2D70X8wGp+OkgVCiMefBFKEEEI8serUqUN2djYXLlzgyy+/pGLFikRGRhIZGcmyZcs4c+YMZcqU4bvvvuPw4cPsDQvjcthyLMxzvrXMSP2LyRPe4HhCApUqVWLjxo13df1z586xb98+tmzZwsSJEwHYtGkTBoOB2NhYdu7cyYQJEzh37hwAsbGxhISEcOzYMVatWsXJkyeJiIhgyJAhLFy4EIDmzZtz6NAhYmJi6NevHx9//DEAc+fOZdGiRRgMBvbu3YuVldWDehhLVL9+/Vi7di0ZGRnExcXh7e2tbnN0dGTv3r3ExMQwY8YM3n33XXWbwWBg3bp1HDlyhHXr1nH27FnOnTvHtGnT2L9/P/v27SMhIQGA8uXL4+fnpwZs1q5dS8+ePSldunS+8ZiCC9WrV6dBgwbo9Xp1W2ZmJlFRUYwcOZLAwED1+llZWSxevJjMzEz69u3Lp59+qj7/uZ+n7777jtmzZ/PTTz9ha2ub57qvv/46CxcuJDo6mrlz5zJixAh1W0GvszuxsbHh8OHD9OvXj9mzZxMTE0NcXBwhISHY29szbNgwxo0bh8FgwNfXt1jnFOJxcbfTNMXjYdasWTRu3BidToder+e3334DYMiQIerv69sVta24kpOTsbKyQq/X4+Likicwf3tQ+m7Y29vnC4qLZ8eTkZcqhBBC3MGOHTuIi4tTv7G/cuUKp06dombNmrz77ruEh4djZmbGvyn/8L8u9vx9qQrjNjkwslcbzMw0uLu7k5ycfFfX7N69O2ZmZjg5OamZI/v27aN///6Ym5tTrVo1WrZsSWRkJBUqVMDT05Pq1asDULduXdq1aweAVqtl9+7dAPz555/07duXc+fOkZmZiYODAwA+Pj68+eabDBgwgJ49e+bpPPEk0+l0JCcns2bNGjp16pRn25UrVxg8eDCnTp1Co9HkySBp3bo1FStWBMDJyYnff/+dixcv4ufnh52dHQB9+/bl5MmTQM6b8Y8//pju3buzYsUKli1bVuB4TFN7bt26Re/evVm7di39+vVTzwdw4sQJHBwcaNCgAQCDBw9m0aJFtG7dmurVq+Pp6QlAhQoV1PP++uuvREVFsWPHjjzrISdr6sCBAwQEBKjrTBkuUPDr7E5MY4Wcx3jAgAF0796d7t27F+t4IR5ndztNU5S8gwcPsmXLFg4fPoylpSUXL14kMzMTgC+++KLAY7Kzswvddrfq1q2rTs9dsmQJH3zwAStXrnwg5xbPJslIEUII8cRKSkrC3NycqlWroigKCxcuxGAwYDAYOHPmDO3atWP16tWkpKQQHR2NwWCgWrVqVLM2x/WFyliXLaPOqTc3NycrK+uurm9paan+vThd8HLvb2Zmpi6bmZmp1x49ejSjRo3iyJEjLFmyhIyMDAAmTpzIF198QXp6Oj4+Pk9Vm8yuXbsyfvz4PNN6AKZMmYK/vz/x8fH8+OOP6mMBeR/L4jx3Pj4+JCcnExYWRnZ2Ns7OzkXuX7p0aTp06EB4eLi6rly5cndzW3nUrVuXa9euqYGd3IxGI5UqVVJfuwaDgWPHjqnbC3qdlSpVKk8h3NyPze1j3bp1KyNHjuTw4cN4enre9etciMdN1fKWWJbK+zHGspQZVctbFnKEKGnnzp3D1tZW/X1ma2tLjRo1gJypk6buq9bW1rz11lu4uLhw8ODBfNtMNmzYoNYqW79+Pc7Ozri4uNCiRYs7juXq1avqtM3cCptOmp2dzfjx43F2dkan06kZpCbp6el07Nix0AC9eDpJIEUIIcQTKSUlhWHDhjFq1Cg0Gg3t27dn8eLFatbCyZMnuX79OleuXKFq1aqULl2a3bt38/vvvz/Ucfn6+rJu3Tqys7NJSUkhPDwcLy+vYh9/5coVteBq7m/LEhMT0Wq1vPPOO3h6ej5VgZSgoCCmTZuGVqvNsz73Y2Gq/1EUb29v9uzZQ2pqKrdu3WL9+vV5tg8aNIiXXnqJV1555Y7nUhSF/fv3U7du3XzbGjZsSHJyMqdPnwZg1apVtGzZkoYNG3Lu3DkiIyOBnNospqBF7dq12bhxI4MGDeLo0aN5zlehQgUcHBzU8SqKQmxsbJHjq127NgkJCdy8eZPLly+za9euAvczGo2cPXsWf39/PvroI65cuUJaWhrly5d/aursiGePvU05JnVqpAZTTK3s7W3uPdgpHq527dpx9uxZGjRowIgRI9izZ0+B+12/fh1vb29iY2Np3rx5sc49Y8YMfv75Z2JjY/nhhx8K3CcxMRG9Xk/dunWZN28eb775Zr59CptOunTpUpKTkzEYDMTFxTFgwAD1mLS0NF588UX69+/Pa6+9VqzxPiqmboPOzs4EBARw48aNEhlH7mCYRqNJ1mg0tnc4RKXRaMI0Gs0JjUZj+O+n93/r0x7ScE3X9dNoNFuK2kcCKUIIIZ4Y6enpavvjNm3a0K5dO6ZNmwbkTN1wcnLCzc0NZ2dnhg4dSlZWFgMGDCAqKgqtVstXX32Fo6PjQx1jjx490Ol0uLi40KpVKz7++GOee+65Yh8fHBxMQEAA7u7ueepozJ8/X/02rHTp0nTs2PFhDL9E1KxZkzFjxuRb//bbbzNp0iRcXV2LlUVRvXp1goODadq0KT4+PjRq1CjP9gEDBvDvv//my3zJzVQjxdnZmezs7Dy1SkzKlCnDihUrCAgIQKvVYmZmxrBhw7CwsGDdunWMHj0aFxcX2rZtmydTxNHRkdWrVxMQEKAWFzZZvXo1X375JS4uLjRu3Jjvv/++yHutVasWffr0wdnZmT59+uDq6lrgftnZ2QwcOBCtVourqytjxoyhUqVKvPjii3z33XdSbFY8kczMNHRo/Bwrg7xY0N+VlUFedGj83APt2iMeLGtra6Kjo1m6dCl2dnb07du3wAC5ubk5vXr1uqtz+/j4EBgYyLJly8jOzi5wH9PUnsTERObPn8/rr7+eb58rV64QEBCAs7Mz48aNU4PeO3fuZOjQoWq3tipVqqjHdOvWjVdeeYVBgwbd1ZgfBVOnw/j4eCwsLAgJCSnWcY9h1uIARVH0//1sKOnBqBRFeSp+3N3dFSGEEEKIwqxfv14ZOHBgSQ9DCCGeeevXr1e6dOmiKIqitGzZUomMjFQURVHKlSuXZ7/c26ytrdX1q1atUgYPHqwuHzp0SJkyZYpSu3Zt5eLFi3nOcebMGaVx48bq8o0bNxQrKytFURRl9+7dSufOnRVFUZTBgwcrn376qXpM7dq1FUVRlJ49eyo7duzIdw+1a9dWhg8frgwcOFAxGo13/Rg8bLkfy8WLFyvDhw9X0tLSlFdeeUXx9PRU9Hq9snnzZkVRFGXFihXKiy++qPj7+ystWrQocr8ePXoo7du3V+rVq6dMmDBBvcbPP/+sNGnSRHF1dVV69+6tXLt2TVGU/38OgSggGbBVcqapDgQiAAOwBDBXbvuMD4QBHgWsT/vvT2tgF3AYOAJ0+2+9PXAcCAVOAquBNsB+4BTg9d9+5YDl/40jJtfxfsCW26+b+0cyUoQQQjxyRqNCUkoah5JSSUpJeyZbVppSbk0/s2fPBvKmwK5fv55GjRrh7++f7/i///6b3r17F/t6oaGh/P333+ry/XQbyN0BwfQTGrrysX5OR48ezcSJE5kyZUpJD0UIIZ45J06c4NSpU+qywWCgdu3ad3WOatWqcezYMYxGI9999526PjExEW9vb2bMmIGdnR1nz54t8jz79u0rcNpmYdNJ27Zty5IlS9RMjUuXLqnbZsyYQeXKlRk5cuRd3cujlJWVxbZt29BqtcyaNYtWrVoRERHB7t27mTBhAtev53S7Onz4MBs2bGDPnj1F7ldQ17yLFy8yc+ZMdu7cyeHDh/Hw8GDevHmFjkmj0TQC+gI+iqLogWxgQCG7r841tcfmtm0ZQA9FUdwAf+B/Go3GlJpWD/gf4Pjfz0tAc2A8YGoDOBn4VVEUr/+On6PRaIo1R1C69gghhHikjEaF7Uf/UVtXmua2P2tp2aaU26J8+eWXLFu2LN888aysLGrUqKF2KCqO0NBQnJ2d1eJ+9yt3BwTTczp4ecRDeU6zsrLUlOp7dXtxQCGeRYqi4Ovry+TJk9XpgevXr+fLL79k+/btJTw68TRLS0tj9OjRXL58mVKlSlGvXj2WLl16V+eYPXs2Xbp0wc7ODg8PD9LScspkTJgwgVOnTqEoCq1bt8bFxSXfsaYaKYqiYGFhUWA3oLfffpvBgwczc+ZMOnfurK4fMmQIJ0+eVKfWvvbaa4waNUrd/umnnxIUFMTbb7/Nxx9/fFf39DCZpkNDTv22V199lWbNmvHDDz8wd+5cIKdQ+R9//AHkBIxM05Z27NhR6H4Fdc27fPkyCQkJ+Pj4AJCZmUnTpk2LGl5rwB2I/C/uYQVcKGTfAYqiRBWyTQN8oNFoWgBG4Hmg2n/bziiKcgRAo9EcBXYpiqJoNJoj5GSsALQDumo0mvH/LZcBXihq4CYSSBFCCPFIJadeV4MokNOy8sOfjuH4XHlpW5nLjBkz2LdvH6+++ipdu3alcePGbNq0ibS0NLKzs1m5ciVdunQhPj6e7Oxs3nnnHbZv346ZmRmvvfYao0ePVs+1YcMGoqKiGDBgAFZWVhw8eBDICS78+OOPamFWR0dHrl+/zujRo4mPj+fWrVsEBwfTrVu3Isea+zlN/uFTrv95goB5mbz6cn8WzP0QgJ9++ok333yTcuXK4ePjQ1JSElu2bCn0eqGhoXnut7DChEKI4tNoNISEhBAQEIC/vz9ZWVm8++67EkQRD527uzsHDhwocFtYWJj6d1NwpKBtvXv3LjATc9OmTUVe297envT09AK3+fn54efnB0DTpk3zdFabOXMmkNMlbd68efkyLJKTk9W/r1ixosgxlISCvrBRFIWNGzfSsGHDPOt/++23PN3eitqvoK55iqLQtm1b1qxZU9zhaYCViqJMuotbKsgAwA5wVxTllkajSSYnGAJwM9d+xlzLRv4/DqIBeimKciLP4DSaatyBTO0RQgjxSF24dlMNopjczDJy4drNQo54Opm+KTL9rFu3Ls/2qVOn4uHhwerVq5kzZw6QN+02t6I6CkDOm0/TuQwGA1ZWVkBO+8nDhw8zfPhw9VunotJ5czN9u6fX6+nQsikXT+d0manZ5hUaj/gcp1FL2LcvnLi4ODIyMhg6dCjbtm0jOjqalJQU9TzFTTMWQjwYzs7OvPjii3z00UfMmDGDQYMGsWzZMhYtWqTuExwczNy5c1EUhQkTJuDs7IxWq1V/T4WFheHn50fv3r1xdHRkwIABamtue3t7pk2bhpubG1qtVu0wdv36dYKCgvDy8sLV1fWOBZXF402m6D6Z2rdvz8KFC9V/rzExMfe1n0mTJk3Yv3+/2s3u+vXreYJSBdgF9NZoNFUBNBpNFY1Gc3dzvXJUBC78F0TxB+72HD8Do03TgTQaTcGV2wsgGSlCCCEeqarlLbEsZZYnmGJZyoyq5S2LOOrpU5ypPbfLnXab286dOxk2bFiBHQWK0rNnTyDnm0LTN3qFpfPe3gEn99SepJQ0dVrPpfg9pET+BEo2ZW5dJSEhAaPRSJ06dXBwcACgf//+akp3UenDhd2vEOL+mAIdFhYWREVFkZCQwBtvvKHWefj222/5+eef2bRpEwaDgdjYWC5evIinpyctWrQAcj5YHT16lBo1auDj48P+/fvVaYimIO3nn3/O3Llz+eKLL9Sg6fLly7l8+TJeXl60adMmz7fg4skgU3SfXFOmTOGNN95Ap9NhNBpxcHBgy5b8XX6Lu5+JnZ0doaGh9O/fn5s3c74YmzlzJg0aNChwf0VREjQazXvADo1GYwbcAkYCv9/lLa0Gfvxvuk4UOQVm78b7wHwg7r9xnAG6FOdACaQIIYR4pOxtyjGpU6N8b8DsbeTN9J086A8cpvRcU2ouFJ7OWxTTczrt61/5Z98GXEd9zpTeXqybOylP+9+CFDfNWIhHadasWXzzzTeYm5tjZmbGkiVL8Pb2LvbxoaGhtGvXTq1JNGTIEN58802cnJzue2zW1tZ5pj+EhoYSFRXFZ599VugxYWFhWFhY0KxZMyDnd0nfvn2xtrbG0tISV1dXLly4wN9//01KSgqVK1emVq1azJs3j/79+2Nubk61atVo2bIlkZGRVKhQAS8vL2rWrAmAXq8nOTlZDaTcT5D2SZOamkrr1q0B+OeffzA3N8fOzg6AiIgILCwsSnJ4D4VM0X0y3D5NCnK+xFmyZEm+9YGBgQQGBt71frmDK61atSIyMjLfMbmnZymKYp/r7+uAdfkOyEVRFL9C1lv/9+dFoLBiLM659g/M9fdk0zZFUdKBoQWcP4ycjkGFkkCKEEKIR8rMTEOHxs/h+Fx5Lly7SdXyltjblJNvse6DqaOAv78/pUqV4tKlS/kyOcqXL8+1a9fueC5TOu/ChQvRaDTExMTg6lp0pqvpOVU61OGNHyqzaoQ/5Yw3eGX7Nvz9/WjYsCFJSUkkJydjb2+fZxrTvVxPiIfp4MGDbNmyhcOHD2NpacnFixfJzMws9vHZ2dn5ijsXVNjyUQoLC8Pa2loNpACYmZlhZvb/s/wDAgLYsGED//zzD3379r3jOQuqk3D7tvsN0j4JbGxs1Oy84OBgrK2tGT9+vLr9QRTLLsjDOm9xFDVFVwIpD57RqJCcel3eMz1mpEaKEEKIR87MTEMdO2ua1LGhjp31M/mG4PYaKRMnTrzncw0ZMoQXXngBnU6Hi4sL33zzTb59AgMDGTZsGHq9vtCie5CTznvr1i10Oh2NGzcutF1w7hoper2ezz5bSGf/pvh4e9DJ14OBAweo1futrKz4/PPP6dChA+7u7pQvX16t+F/c6z3r/P39+fnnn/Osmz9/PsOHD+eHH35Q22cXV2BgoNr1aciQISQkJBS6b1hYWKFFIu/G9OnTmTQpb11Bg8FAo0aNimznXdS23O3CO3XqxOXLl+97nOfOncPW1lYNBtja2qoBkV27duHq6opWqyUoKEhNYbe3t+edd97Bzc2NNWvWqMWdTf/eco/T2tqayZMn4+LiQpMmTTh//jyQ82+qSZMmaLVa3nvvPayt7/4D6Y8//oi3tzeurq60adOG8+fPk5ycTEhICJ988gl6vZ69e/cWeGzfvn1Zu3YtGzZsICAgAMjp9LFu3Tqys7NJSUkhPDwcLy+vux4X3H3NhSeZ6fett7c3b7/9NomJiervP19fX44fP86VK1eoXbs2RmNOQOL69evUqlWLW7duYTAYaNKkCTqdjh49evDvv/8COa/3N954Aw8PDz799NMSuz/TFN3cnsUpuo9C7q54Y9bEMHh5BNuP/iM1aR4HiqI8FT/u7u6KEEIIIR5P165dUxRFUYxGozJ8+HBl3rx5JTyiJ8uSJUuUwMDAPOu8vb2VPXv23NP5Bg8erKxfv75Y+06bNk2ZM2fOPV0ntxMnTigODg551r3zzjvK9OnTCz3m1q1bRZ6zZcuWSmRk5H2PLbdr164pLi4uSv369ZXhw4crYWFhiqIoSnp6ulKzZk3lxIkTiqIoyssvv6x88skniqIoSu3atZWPPvqo0HHlXgaUH374QVEURZkwYYLy/vvvK4qiKJ07d1a++eYbRVEUZfHixUq5cuUKHJ+ZmZni4uKi/tSqVUsZOXKkoiiKcunSJcVoNCqKoijLli1T3nzzTUVRCn4OC1rn7Oys+Pn5qctGo1EZP3680rhxY8XZ2VlZu3atoiiKsnv3bqVz587qfiNHjlRWrFihPhYpKSmKoihKZGSk0rJlS0VRFOXGjRvK66+/rjg7OytOTk55jn9amB7TwYMHK507d1aysrIURVGUVq1aKSdPnlQURVEOHTqk+Pv7K4qiKF27dlV+/fVXRVEUZe3atcqrr76qKIqiaLVa9XU3ZcoUZezYsYqi5LyOhg8f/ihvqUDZ2UZla9zfSvPZuxTPmb8ozWfvUrbG/a1kZxtLemhPncQL19TH2fTTfPYuJfHCtZIe2l0DopTHIG7woH4kI0UIIYS4T9K94M6WLVuGXq+ncePGXLlyhaFD801JFkXo3bs3W7duVaeYJCcn8/fff+Pr60toaCijRo0Ccr4JHzNmDM2aNaNOnTpq1omiKIwaNYqGDRvSpk0bLly4oJ47d7bE9u3bcXNzw8XFhdatWxeYzZA7mwVQMyfOnTtHixYt0Ov1ODs758t8aNCgAZUrV+a3335T13377bf079+f5ORknJ1zprOHhobStWtXWrVqpY7BtC09PZ1+/frRqFEjevTokSe7yt7enosXLwLQvXt33N3dady4sVrY2DTWgrJBcrO2tiY6OpqlS5diZ2dH3759CQ0N5cSJEzg4OKjFEwcPHkx4eLh6XHGmwwBYWFjQpUtOLUN3d3e1herBgwfVTJCXXnqp0ONNhapNPzNmzFC3/fnnn7Rv3x6tVsucOXM4evRooecJDg7OMwUF4MiRI+zevVtd1mg0zJkzh/j4eI4cOaLeo5+fX57aCJ999plaNyE5ORlbW1sAPDw81PoIppoLR44c4ejRo0UWrnwaBAQEYG5uTlpaGgcOHCAgIAC9Xs/QoUM5d+4ckPOaMU11XLt2LX379uXKlStcvnyZli1bAvf+OnuYTNM5VwZ5saC/KyuDvKTQ7EMinQ4fX1IjRQghhLgP0r2geMaNG8e4ceNKehhPrCpVquDl5cW2bdvo1q0ba9eupU+fPvzXsTGPc+fOsW/fPo4fP07Xrl3p3bs33333HSdOnCAhIYHz58/j5OREUFBQnuNSUlJ47bXXCA8Px8HBQa21M2zYsDx1H7788ssCx/jNN9/Qvn17Jk+eTHZ2Njdu3Mi3T//+/Vm7di3e3t4cOnSIKlWqUL9+fTWYYHL48GHi4uKoUqVKnm2LFy+mbNmyHDt2jLi4ONzc3Aocy/Lly6lSpQrp6el4enrSq1cvbGxsuH79Ok2aNGHWrFm8/fbbLFu2jPfeey/f8ebm5vj5+eHn54dWq2XlypV3rN1T3OLIpUuXVp+322uL3K/Ro0fz5ptv0rVrV8LCwggODn5g5xZ3x/R6MBqNVKpUqcAubV27duXdd9/l0qVLREdH06pVqwILhBZ03pJmmqIrNVEeLul0+PiSjBQhhBDiPhTWvSA59XoJj0w8bUxBCMj59rp///4F7te9e3fMzMxwcnJSMy7Cw8PV7is1atSgVatW+Y47dOgQLVq0UNtU323raU9PT1asWEFwcDBHjhyhfPny+fbp27cvGzZswGg0FnkPhbW+Dg8PZ+DAgQDodDp0Ol2Bxy9YsEDNOjl79iynTp0CCs8Gye3EiRPq/pBTx6V27do0bNiQ5ORkTp8+DcCqVavUrIHbFbe4c25NmjRh48aNAOrzXBRTJlzihTSupt/CaFS4cuUKzz//PAArV668r/E8KBqNRn3OIKdIqp2dnfo8PCqBgYGULVs2z+PwxhtvoNFo1EymuxEaGoqdnR2urq7Ur1+f9u3bc/bs2Xz7VahQAQcHB9avXw/kZIfFxsYCOdlPnp6ejB07li5dumBubk7FihWpXLmymtFV1OssdzaZeDqZuuKZatJIp8PHhwRShBBCiPsgabfiUenWrRu7du3i8OHD3LhxA3d39wL3y91NRVEe/DSzUqVKqQUyjUajOt2oRYsWhIeH8/zzzxMYGMhXX32V79hatWrh4ODAnj172LhxY6HTFO7nW/ewsDB27tzJwYMHiY2NxdXVVW3DXZxskLS0NAYPHoyTkxM6nY6EhASCg4MpU6YMK1asICAgAK1Wi5mZGcOGDStwDMUt7pzb/PnzmTdvHjqdjtOnT6sFmQuSuwDl6t9+Z+ex82w/+g9Tp04jICAAd3d3dXoNwIsvvsh3331XZLHZh6VcuXLEx8erj8Mvv/yiBnuK60Fl7dSrV4/vv/8eyHnt/vrrr3c9ltz69u1LTEwMp06dYuLEiaxbt67A6WKrV6/myy+/xMXFhcaNG6tjMJ3j66+/zvNvYeXKlUyYMAGdTofBYGDq1Kn3PEbxZJNpVI8vCaQIIYR4rPzzzz/069ePunXr4u7uTqdOnTh58mSRx8yfPz/PNILCul3cXtvhbl2+fJnPP/88z7rc3Qsip7Qn/rOhHP1sKEO6t1Y7nRTVdUSI4rK2tsbf35+goKBCMzkK06JFC7X7yrlz5/LUwTBp0qQJ4eHhnDlzBoBLly4B+bMZ7O3tiY6OBuCHH37g1q1bAPz+++9Uq1aN1157jSFDhnD48OECx9K/f3/GjRtHnTp1qFmz5l3fh6krVXx8PHFxcfn2uXLlCpUrV6Zs2bIcP36cQ4cO3dU13N3dOXDgAAkJCcTFxbFp0yY1KNG6dWtiYmI4cuQIy5cvV4NWueuCAPTq1YsTJ05gMBiwsrIiLCwMDw8PgDxTN3r37k1oaCgAzz//PIcOHVKnLJn2v11aWlqeTDhbt/bU7DyKD386hkvzNiQlJREdHc2cOXPU+iQNGjQgLi4Og8GAr6/vXT0eD0KnTp3YunUrAGvWrMnz+r106RLdu3dHp9PRpEkT9TkNDg7m5ZdfxsfHh5dffpnk5GR8fX1xc3PDzc1N/f1qNBoZMWIEjo6OtG3blk6dOhX6e75fv35qTZKwsDB8fHzytBAurLbO7bWDCuLv78+bb75JVlYWoaGh1KtXT+288+abb7JmzRpiY2OpWrUqnTp1AuDixYuMHz8eRVHw9PSkT58+ODk5MX36dBRFYfny5WzevJl3330XDw8PUlJS+PHHH+/1aRBPKOl0+HiSQIoQQojHhqIo9OjRAz8/PxITE4mOjubDDz8s8Bu+3G4PpDwMWVlZBQZScqfdmpW2wP2NZazfsY85H81WW73WqFHjvgI4Qpj079+f2NjYuw6k9OjRg/r16+Pk5MSgQYNo2rRpvn3s7OxYunQpPXv2xMXFRf2G/PZshtdee409e/bg4uLCwYMH1eyRsLAwXFxccHV1Zd26dYwdO7bAsQQEBHD06NG7vgeA4cOHk5aWRqNGjZg6dWqBWTkdOnQgKyuLRo0aMXHiRJo0aXLX1ykJ0dHR6PV6dDodn3/+Of/73/8K3fdJy4Tr168fa9euJSMjg7i4OLy9vdVt06ZNw9XVlbi4OD744AMGDRqkbktISGDnzp2sWbOGqlWr8ssvv3D48GHWrVvHmDFjANi0aRPJyckkJCSwatUqDh48WOg4GjRoQEpKCv/++y9r1qyhX79+ebYvX76cyMgo1m8L46O5nxB94nfOn7/Aa6+9xsaNG4mNjVWn6BTEzc2N48ePAzBo0CA++ugj4uLi0Gq1TJ8+vcjH6PPPP6dy5cokJCTw/vvvq8FKgFmzZhEVFUVcXBx79uwpMIB4u9TUVLU9/XPPPcfzzz+vLpuyyIQQ906KzQohhHhs7N69m9KlS+dJl3dxcQFyPqTNnTtX7fQwatQoPDw8uHr1Kn///Tf+/v7Y2tqq37RPnjyZLVu2YGVlxffff0+1atUA2LlzJ7Nnz+bq1avMmzePLl26kJ2dzcSJEwkLC+PmzZuMHDmSoUOHEhYWxpQpU6hcuTLHjx/Hzc2NxMRE9Ho9bdu2Zc6cOWrareNz5XGeYc7KIC/sbcqx8fg+KleuDOR8W92lSxfi4+MJDQ3lhx9+4MaNGyQmJtKjRw8+/vhjICfjYOzYsfnGvX79eqZPn67On8/dwUE8W7p3755vuk5gYKDaMcWU3WBiyn7QaDR89tlnBZ7TlLUA0LFjRzp27JhnuymbIbfcWR4fffQRkNNdZPDgwXe8B1tbWzWLxcTe3p74+Ph893P7Nisrq0Lrh+Sud7Jt2zYgZwpMcup1Lly7SVJKGlev/n9mTe/evR+rTDFfX1+1dsadPGkFKHU6HcnJyaxZs0bNxjDZt2+fWhumVatWpKamcvXqVSCnGKuVlRUAt27dYtSoURgMBszNzdVMxX379hEQEICZmRnPPfcc/v7+RY6lZ8+erF27lt9++40lS5bk2fbpp5+yau0Gzl/N4Oa//xC04Ee6O5bH17d4tYNM/zYL6rxj6shUmH379qnBR2dn5zz1f7799luWLl1KVlYW586dIyEhodD6QCY2NjZqgdvg4OA8BaOFEPdPMlKEEEI8NuLj4wut+1CYMWPGUKNGDXbv3q0GUUydOWJjY2nRogXLli1T909OTiYiIoKtW7cybNgwMjIy+PLLL6lYsSKRkZFERkaybNkydXrD4cOH+fTTTzl58iSzZ8+mbt26GAwG5syZo57TlHZ7MyOdnm2b4+TUiCFDhjBlypQCx2wwGFi3bh1Hjhxh3bp1aoHCwsY9Y8YMfv75Z2JjY/nhhx/u6vER4lmVu47ImDUxDF4ewfaj/zwV7cmfxAKUXbt2Zfz48XeViZS7Vs4nn3xCtWrViI2NJSoq6p6zKvr27cuUKVNo27YtZmb//1EoLCyMrdt38NzAOTQetYSy1etxM+Mm66POcv1m8Wq0xMTE0KhRoyL3yV1jyFS7pyhnzpxh7ty57Nq1i7i4ODp37lys4wqya9cuXF1d0Wq1BAUFcfNmTgaTvb09kyZNQq/X4+HhweHDh2nfvj1169YlJCTknq4lxNNOAilCCCGeOkV15ujTpw9mZmbUr1+fOnXqcPz4cXbs2MFXX32FXq/H29ub1NRUtWuHl5eX+k3knVhZWWEwGDh+/Djbt29n0KBBBRb7bN26NRUrVqRMmTI4OTnx+++/FzluHx8fAgMDWbZsGdnZ2ff6sIjHhKnbyqGkVJJS0p6KD/aPo6e5o9aTWIAyKCiIadOmodVq86z39fVl9erVQE4ww9bWlgoVKuQ7/sqVK1SvXh0zMzNWrVql/i708fFh48aNGI1Gzp8/nyfDqiC1a9dm1qxZjBgxIt/5y1hXIMvMgvSUP0j78xgAls87cujAvny1g263Z88eli5dymuvvVZk553cNYZyT/n08fHh22+/BXKmNB05cgSAq1evUq5cOSpWrMj58+fVbKu7lZGRQWBgoBrEz8rKYvHixer2F154Qa2hY6ondujQIaZNm3ZP1xPiaSdTe4QQQjw2GjduXGgtkdzf4kHR3+QV1ZnDtD73sqIoLFy4kPbt2+fZFhYWds/dQ5o2bcrFixdJSUnJty13V5Xc4yts3CEhIfz2229s3boVd3d3oqOjsbGxuadxiZJlypIwfcA3ZRI87h+CnzSpqal0aOnHn//e4Fbav2g0ZpQql9MF569u+6hjV3BB6nsVHBzMsmXLsLOzIyMjA39/fxYtWpQn46G4QkNDadeuHTVq1ChyP1Mm3IO+l4elZs2aal2T3IKDgwkKCkKn01G2bNk8bZtzGzFiBL169eKrr76iQ4cO6u/mXr16sWvXLpycnKhVqxZubm5FdjwCGDp0aL51HTp0YN6CRcR/+iqWtjWxrpmTWWJdsQoffrKQnj17YjQa1VotAOvWrWPfvn3cuHEDBwcHNm7cqGakrFy5kmHDhnHjxg3q1KnDihUrABg/fjx9+vRh6dKldO7cOc/9mbpFOTo60rhxYypWrEj9+vVxdXXF0dGRWrVq4ePjc6eHukDZ2dk4ODjQoEEDIGe60aJFi3jjjTeAnIwhAK1WS1paGuXLl6d8+fJYWlpy+fJlKlWqdE/XFeJpJYEUIYQQj41WrVrx7rvvsnTpUl5//XUA4uLiuHLlCvb29iQkJHDz5k3S09PZtWsXzZs3B/6/q0jurhmFWb9+PYMHD+bMmTMkJSXRsGFD2rdvz+LFi2nVqhWlS5fm5MmTBbbEvL17SVGOHz9OdnY2NjY2910INzExEW9vb7y9vdm2bRtnz56VQMoTqrAsCcfnyj8xH4ifBDY2Nmzfc5DByyNI+jkUM0srqjcPwLKUGc/blC/0uKysrDxdXG5fLsq4ceMYP348RqORFi1asGfPnjvW6yhIaGgozs7OdwykPClydyky8fPzw8/PD8ipObJ58+Z8+wQHB+dZrl+/fp5aPabaPGZmZsydOxdra2tSU1Px8vLKl/UC+esHmeTOWNz9y8+FBjqD+vXMc9zttXxup9frC+wY5ejomOc+Zs6cCUCZMmX4+uuvKVOmDImJibRp04batWsXOfY7Zd/cDVOA38zMLE+w38zM7IG1nxbiaSKBFCGEEI8NjUbDd999xxtvvMFHH31EmTJlsLe3Z/78+dSqVYs+ffrg7OyMg4MDrq6u6nGvv/46HTp0UGulFOWFF17Ay8uLq1evEhISQpkyZRgyZAjJycm4ubmhKAp2dnYFvrG3sbHBx8cHZ2dnOnbsmKdOCkB6ejp6vR7IKTq4cuVKzM3N7/txmTBhAqdOnUJRFFq3bq0W4BVPnqK6rUgg5cEy1REZ9osGBbj1z2nSD64k4NtMbG1tCQ0NpXr16vj5+aHX69m3bx/9+/fnxx9/VJdffPFFQkNDOXnyJKVLl+bq1au4uLioywXJzMwkIyNDLTZtMBjUzIS6deuyfPlyKleuXOD6Xbt2ERUVxYABA7CysuLgwYNqsVVRuC5dunD58mUyMzOZMmUKzz333D2dJ3fx8AvXblK1vCX2NuUeSbbYjRs38Pf359atWyiKwueff46FhcUDO7+5uTnJycmcPn2aevXq5ZluJIS4e5qC5m4/iTw8PJSoqKiSHoYQQgghRKGSUtIYvDwiX7eVlUFeEkh5CIxGhXHvTCbb3IIDu7axbcuPVKtWlXXr1vHzzz+zfPly/Pz8cHJyUlub3778yiuv0K1bN7p3787SpUs5ceJEvtbEuaf2/P7773Ts2JFvvvkGyOlYs3DhQlq2bMnUqVO5evUq8+fPL3S9n58fc+fOxcPD49E+WHeQuwPSowwwiPtn6trj6urK+PHjycrKwtPTk8WLF2NpaYm9vT1RUVFqgDEqKkrt8pV7mxD3Q6PRRCuK8nj9YrsPkpEihBDioZE33kLkZcqSuH3qwOPcbeVJZmamoXI5C0qVKsXpE8do374dkFMvonr16up+ffv2zXNc7uUhQ4bw8ccf0717d1asWJGnC1hupqk9t27donfv3qxdu5aOHTsW2Ab3XtrjliSp7fNkyz1NKiYmJt/23NObbp+ylHubEOL/SSBFCCHEQyFvvIXIrySnDjzLFEWhcePGHDx4sMDttxeVzr3s4+NDcnIyYWFhZGdn4+zsXOS1SpcuTYcOHQgPD6djx473P/jHgNT2EUKIvKT9sRBF0Gg0DBw4UF3OysrCzs5ObU96L+zt7enVq5e6vGHDhiKLlRVHVFRUgZXwhShJT3PrUSHuh6nbSpM6NtSxs5YgyiNgaWlJSkqKGki5desWR48eLfbxgwYN4qWXXuKVV165476KorB//37q1q1baBvcotrj3k1R60elqNo+4tGQtulCPF4kkCJEEcqVK0d8fDzp6ekA/PLLLwV28gDuqqJ5dHQ0CQkJ9zSm26+TlZWFh4cHCxYsuKfzCfGwyBtv8ST7888/6datG/Xr16du3bqMHTuWzMzMkh5WHjdv3qRNmzbo9XrWrVuXZ1toaCh///23umxvb8/FixfzncPa+s7ZBMnJyVhZWaHX63FycsLPz4/Y2Fh1+9SpU9m5c2eeY3744Qdmz54N5EwrmDt3rrotLCyMihUrotfr0ev1tGnThm7duuX54uJuBAYG5mubfvs1zczMOH/+PC1btsTKyory5cvz1ltvATnFYBMSErh8+bJaF+V2169f599//6V///5AwY/bjBkzqFGjBs7OzmRnZzNixAggpw2un58fOp0Og8HA1KlT1fUTJkzItz4wMJBhw4ah1+vV9x8lrWp5SyxL5f3YYFnKjKrlLQs5QjxIpgzPwcsjGLMmhsHLI9h+9B8JpghRgmRqjxB30KlTJ7Zu3Urv3r1Zs2YN/fv3V79BCg4OJjExkaSkJF544QXee+89XnnlFTIzMzEajWzcuJH69evnO+dbb73FrFmzWL16dZ71ly5dIigoiKSkJMqWLcvSpUvR6XT5rtOwYcM8y0OHDmXu3Lls2bKFPXv2MHbsWCAnoyY8PJzy5Qtv9SjEw2J64317UU154y0ed4qi0LNnT4YPH873339PdnY2r7/+OpMnT87XqelhKG7LXVOtA4PBkG/bg26hW7duXQwGA9nZ2dSsWZPly5fz6aefAjkBhNt17dqVrl27Fno+X19ftmzZ8kDGdiem+hAzZ85k8uTJTJs2Lc92U4DIFEiJj4/Pd46FCxfy4osvUqlSpSKvYW1tzfjx4/Od38rKKk/LW9P6gtrj9urVK0/m6uNAavuULJlaJcTjRzJShLiDfv36sXbtWjIyMoiLi8Pb2zvP9oSEBHbu3MmaNWsICQlh7NixGAwGoqKiqFmzZoHn7NOnD4cPH+b06dN51k+bNg1XV1fi4uL44IMPGDRoUIHXKWjZZO7cuSxatAiDwcDevXulbaIoMaY33qZvMeWNt3hS/Prrr5QpU0adxmFubs4nn3zC8uXLuXHjBp07d1Y/FLu6uqqBhKlTp7Js2TLCwsLw8/Ojd+/eODo6MmDAAExdEqOjo2nZsiXu7u60b9+ec+fOATmdYt544w08PDzUAIXJpUuX6N69OzqdjiZNmhAXF8eFCxcYOHAgkZGR6PV6EhMT1f03bNigttDNndWwcOFC3Nzc0Gq1HD9+XN2/Y8eOVKpUCVdXV77//ntGjRpFaGgoABMnTqRt27acPn2a8ePH89tvv3H58mVWrVqFXq9n6dKl2NnZ4eDgQJs2bahVqxbTpk2jdu3a2NjY5LnO8ePH8fLyUpeTk5PRarVATlDB19cXgJdffpmqVatSvnx5rK2tmTNnDpGRkfTs2ZOvvvoKe3t7zMzMGDBgABkZGWzcuJHw8HCaNWtGnTp18mWnFGTevHk4Ozvj7OzMn3/+qd7ryZMnKVeuHNWqVSMgIICZM2dSvnx5Ll68yK5du/D39wdygl1ubm64uLjQunVr9bwJCQn4+flRp06dQjNF58yZg6enJzqdTg3qTJ06lfnz56v7TJ48Od/roCB3moJcVGbQ3TDV9pnVphqx779I6qo3mDSwA82b+3DixAkgJ9PoTlOfDQYDP/300x2vV1im1P3cw5Psac/w1Gg0aoYY5LyXNQUnQ0JC+Oqrrwo9tjivu9v5+fnxoLu9Fpb1V9QYXnjhBXJ30O3evbv62v/777/p3bv3Ax1jUczNzdHr9Tg7OxMQEMCNGzceyHmbNWt2z8dqNBo/jUZz7yd4yCSQIsQd6HQ6kpOTWbNmDZ06dcq3vWvXrmqwomnTpnzwwQd89NFH/P7774UGMczNzZkwYQIffvhhnvX79u3j5ZdfBqBVq1akpqZy9erVfNcpaNnEx8eHN998kwULFnD58uVifaspxMNgeuO9MsiLBf1dWRnkJYVmxRPh6NGjuLu751lXoUIFXnjhBU6fPo2vry979+7lypUrlCpViv379wOwd+9eWrRoAeRki8yfP5+EhASSkpLYv38/t27dYvTo0WzYsIHo6GiCgoKYPHmyeo3MzEyioqLyfKCAgoPsVatW5YsvvsDX1xeDwUDdunXV/Xv37o2HhwerV6/GYDCo/1fY2tpy+PBhhg8frn4YzczMxM3NjebNm7N7924mTJjArVu3AEhNTeW7775jx44d1KtXj/feew83NzcqVqzI5MmTMRgMBAQE0LlzZ+bMmUO/fv24evUqtra2TJ8+HWdn5zwfeh0dHcnMzOTcuXPs3buXZs2acfHiRWbNmqXuc/HiRcLDw6lTpw4XL17kzTffZNq0aTg5Nebgwd94b9p0mvu3xd3dnYEDB/Lbb79ha2vLuXPn2LdvH1u2bGHixIkAfPLJJ+r0Ib1ez7Vr1wgJCaFhw4ZMnjyZWbNmcejQIc6dO8eJEyd4++23KV26NBcuXOD8+fNUqFCBzZs3c/XqVWrXro27uzvTp08nJSWFzMxMNm7cSGxsLOvXr1fHf/z4cX7++WciIiKYPn26+lia7Nixg1OnThEREYHBYCA6Oprw8HCCgoLUD4tGo5G1a9cWa6rTnaYgd+3aVX087peZmYYXbMpRv15dEuLjiI2NZfDgwXzwwQfFPkdxAylPmuTk5HxFiO8U9Lmb+nZP+9QqS0tLNm3aVGAgYtiwYXm+WHyaVKpUSf3/4/Lly2pgHaBGjRrFCgo/KFZWVhgMBuLj47GwsCAkJKRYx92ptMGBAwfuZ1h+gARShHiSde3alfHjx6tzo3PLXdn/pZde4ocffsDKyopOnTrx66+/FnrOl19+mfDwcM6ePVusMRTVUSC3iRMn8sUXX5Ceno6Pj0+ebwOFeNSkqKZ4Gvn6+hIeHs7+/fvp3LkzaWlp3LhxgzNnztCwYUMAvLy8qFmzJmZmZuj1epKTkzlx4gTx8fG0bdsWvV7PzJkz1WwIyN+C16SoIPvd6NmzJwDu7u5qS9Ps7Gy++eYbwsPD8fPzIyMjg7S0NAAqVqxImTJleOeddzh58iQtWrSgWrVqlC1bltq1awM5tWR27NjBm2++yZw5c8jMzFSvY2dnl691ap8+fdi9eze+vr4899xzhIeH5wkmHTp0iJSUFH7//Xe8vb3ZsGEDFhYWbDxwjCtZZmTYOvJj2G/4936FmJgY9u7dS7Vq1ejevTtmZmY4OTlx/vx5IKcdscFgUH/Kly/PsGHDGDFiBBMmTKBbt25YW1tja2tLTEwMMTEx3Lx5Ex8fH/R6PZs3b+b48eO4urry999/c+rUKU6dOsWhQ4cwMzPDwcEBgCpVqqjj79y5M5aWltja2lK1alV1LCY7duxgx44duLq64ubmxvHjxzl16hT29vbY2NgQExOjbrexsSnW82qaggyoU5BNQkNDGTVqVL5jEhMT6dChA+7u7vj6+qrvFdavX4+zszMuLi5qULAoV69epXLlyvnWX79+naCgILy8vNRMp8zMTKZOncq6devUuj5paWm88soraLVadDodGzduVM8xefJkXFxcaNKkSb7HsbB7uHbtGg4ODmoA6+rVq3mWHyd3U9+uqAzP7OzshznMR6JUqVK8/vrrfPLJJ/m25Q5InT59mjZt2uDi4oKbm5uaiZeWllZgBuCuXbtwdXVFq9USFBTEzZv5M3iGDx+Oh4cHjRs3zjPtb+LEiTg5OaHT6fJN14OcQHO7du1o3LgxQ4YMyZNZ8vXXX+Pl5YVer2fo0KGFPkemrHeATZs2qb87IW9wLjQ0lO7du9O2bVvs7e357LPPmDdvHq6urjRp0oRLly4BsGDBAnXM/fr1w2g0Ur9+fVJSUoCcIG29evXU5cL4+vpy+vTpArMhTc/Jyy+/jI+PDy+//DKhoaF069YNPz8/6tevz/Tp09VzmTJswsLCABpqNJoNGo3muEajWa3RaDQAGo2m03/rojUazQKNRrNFo9HYA8OAcRqNxqDRaHw1Go29RqP5VaPRxGk0ml0ajeaF/44P/e+4AxqNJkmj0TySVB4JpAhRDEFBQUybNk1NQS5MUlISderUYcyYMXTr1i3ffOjcSpcuzbhx4/L8p+Hr66vWTQkLC8PW1pYKFSrc1VgTExPRarW88847eHp6SiBFCCHukpOTE9HR0XnWXb16lT/++IN69erh6elJVFSUmoHi6urKsmXL8mSxWFr+/zfF5ubmZGVlqS14TR/sjxw5wo4dO9T9CguQPyimMZnGYzJr1iyaN2+OwWDgjz/+UDNYSpUqRUREBB07dqRcuXLY2tqSmJhIamoqkZGRAIwePZpGjRoxb948lixZgqIo6nXMzMzyfVvZt29fdu/ezfXr19FoNPnqiCmKQp06dXjrrbfUIrBVq9dg4c4TWFSpQca/51DMzAlPe45fdu9h3759VKtWLc/jbfpAs23bNjUbpTgURaFcuXLq8xMYGMj//vc/DAYDNWrUIDIykldffbVYj3FBj7PpGpMmTVKvcfr0afWcQ4YMITQ0lBUrVhAUFFSsMcOdpyAX5PXXX2fhwoVER0czd+5ctTDujBkz+Pnnn4mNjeWHH34o8NjExET0ej1169Zl3rx5vPnmm/n2mTVrFq1atSIiIiJPptOMGTPo27cvBoOBvn378v7771OxYkWOHDlCXFwczs7OvPTSS1y/fp21a9dStmxZqlevzrJlywq9h40bN/LXX38xYsQIoqOjycrKUgNLa9eupWfPnpQuXbrQxyI5OZlvvvmm0O2nTp2iS5cu1K1bF3d3d/z9/QkPDy9w34KyTPz8/HjnnXfw8vKiQYMGap0905SU4OBgZs2aVWBAac2aNWi1Wp57rhpzxrykZngentGVnSvm4Oqq5+DBg1hbW98x8FRYUA2KV3T6YRs5ciSrV6/mypUrhe4zYMAARo4cSWxsLAcOHKB69epAwRmAGRkZBAYGsm7dOo4cOUJWVhaLFy/Od85Zs2YRFRVFXFwce/bsIS4uTs3GO3r0KHFxcbz33nv5jps+fTrNmzfn6NGj9OjRgz/++AOAY8eOsW7dOvbv34/BYMDc3DxfTUST1q1bEx4eTnZ2NmvXri00mA4QHx/Ppk2biIyMZPLkyZQtW5aYmBiaNm2qZrPNnj2bmJgY4uLiCAkJwczMjIEDB6rX37lzJy4uLtjZ2RV6naysLLZt24ZWq72rkgMRERFs3LiRuLg41q9fX9jUKSvgDcAJqAP4aDSaMsASoKOiKO6AHYCiKMlACPCJoih6RVH2AguBlYqi6IDVQO5IZHWgOdAFmF3oDT5AEkgRohhq1qxZrPTLb7/9FmdnZ/R6PfHx8XdMRXz11VfzvMkKDg4mOjoanU7HxIkTWbly5V2Pdf78+Tg7O6PT6ShdujQdO3a863MIIcSzrHXr1ty4cUN9c5qdnc1bb71FYGAgZcuWxcLCglq1arF+/XqaNm2Kr68vc+fOveM3+A0bNrynFrz3EmQvbgtdc3Nzfv75ZxISErh58ybh4eHs2rULyPmW98qVK/j7+/Pcc88RGxuLra0tPj4+asr5lStXKFu2LECx/s+qW7cuZmZmnDp1qsAPDU2aNOHs2bNqiv/169dJz7hJZraRyo1bcO1MHGWfq4uxTAXO/XOeEydOFJgRATm1X0wBi9x8fX3ZvHkzN27c4Pr161y8eBFXV1d8fX25fv26Wr+sZcuWLFq0iLS0NMqXL8+pU6e4cOECTZo0wWg0cubMGQD12+DiaN++PcuXL1ezfv766y8uXLgAQI8ePdi+fTuRkZG0b9++2Oe80xTk26WlpXHgwAECAgLUb8xNUwp8fHwIDAxk2bJlhX6Lbio8nJiYyPz583n99dfz7bNjxw5mz56NXq9XM51MHzRz27lzJyNHjgRygkyBgYG0aNECCwsLTp8+zdq1a6lUqVK+zKbc99CpUyfOnTun3kOtWrVYsWIFACtWrCiyZXVWVlaRgZSMjAw6d+7M66+/TmJiItHR0SxcuJCkpKQC9y8syyQrK4uIiAjmz5+f59v63I9D7oBSq1at+Pvvv3nnnXf49ddfGTZsGGfPniVu/06a1LHhxo3rNGnShNjYWJo3b8716/+/3KJFiwIDT4+7ChUqMGjQoEKzdK5du8Zff/1Fjx49AChTpoz6u6ewDEAHBwcaNGgAwODBgwsMgH377be4ubnh6urK0aNHSUhIULPxXn31VTZt2qReJ7fw8HB1+l3nzp3V30O7du0iOjoaT09P9Ho9u3btKvT1Ym5uTvPmzVm7di3p6enY29sX+vj4+/tTvnx57OzsqFixIi+++CIAWq1W/feh0+kYMGAAX3/9tTq1P/e0weXLlxf67yE9PR29Xo+HhwcvvPACr7766l2VHGjbti02NjZYWVnRs2dP9u3bV9BlriuK8qeiKEbAANgDjkCSoihn/ttnTUEH/qcpYPrHuoqcwInJZkVRjIqiJADVijjHAyPFE4QogumNTm5+fn74+fkB/1+l32TixIl3nIuc+82ApaVlnvaUVapUYfPmzfmOuf06ty/nHtPChQuLvL4QQoiiaTQavvvuO0aMGMH777+P0WikU6dOeWpB+Pr6smvXLqysrPD19eXPP/9Ui6UWxsLCgg0bNjBmzBiuXLlCVlYWb7zxBo0bNy7yuODgYIKCgtDpdJQtW7ZYAQtTC10rKys1cHO7rKwsypcvT5kyZbh+/ToVKlSgQoUK6n1cu3aNbt26cfXqVZKTk1myZAkA7777Lm3atKFBgwa8+eabTJgwgaNHjxa700yrVq0ICQmhT58++bbZ2dnRvXt3Vq9erdbSMN7KxMLcDBudH8mbP+HfhH1cS4qhalnNHTNFC+Lm5kZgYKBa+LZ69eo0bNiQhg0b0qJFC7RaLdbW1lSvXh1vb2+aNm1KamoqrVq1wsXFhUOHDmFhYUHPnj0xGo1UrVqVX375pVjXbteuHceOHaNp06ZATibA119/TdWqVbGwsMDf359KlSphbm5+V/dkmoIcFhZGampqkfsajUYqVapUYLenkJAQfvvtN7Zu3Yq7uzvR0dFFTjHq2rVrgR/MFEVh48aN6lQ3k99++63Qc/36669YWFgwbNgwxo8fj0ajoXbt2nTu3JktW7aQnZ3Njh07OHv2LCtWrMDCwgKDwUBycjJdunQhPj6esLAwqlSpQnJyMtu2beP06dMEBQVx69YtgoOD6datG6GhoWzatIm0tDSys7O5efMmx44dQ6/XM3jwYMaNG6eOafXq1TRt2jRPBypTkWL4/+6NCQkJ/Pnnn4SFhaldFMPCwrhx4wYnT57k5MmT1K5dm759+5KcnMysWbNYvHgxN27cUIN0S5cuJTExkZEjR5KSkkJ6ejqurq7Y2dlhZmaGm5sb27dv5/3338fc3Jx69eqh0Wj4/fffsbCwYOzYsWrh4wULFrBx40ZsbGxYvXo11arl/Vx55swZXnrpJdLS0ujWrVuhz8mj9sYbb+Dm5lZk8Ksgd8oEK8yZM2eYO3cukZGRVK5cmcDAQDIyMtRsvF27drFhwwY+++yzIqfr56YoCoMHD85XB7Ew/fr1o0ePHvne298u9z2amZkVmPm3detWwsPD+fHHH5k1axZHjhyhVq1aVKtWjV9//ZWIiAhWr17N2bNn1UDMsGHD1P8rCvqdUJjbMyj/m6VT6PJ/cvfrzubBxiJyz9t6JPPIJZAihBBCCHGbWrVq8eOPPxa6/f333+f9998HcooC5p4fnzu4DfDZZ5+pf9fr9QV+K/rf/PECFRZkv/06ud3eQjd3EN/Dw4OwsDBiY2OpW7cuS5YsUYMkt4uIiMi3rnnz5mRkZKjLw4YNU/9uag8dGBhIYGBggedcvHhxvhT73G/gbw8UGY0K24/+w4c/HcPz/e1qfYjCilcX9CUI5BRzNHnzzTcLnJJS3A9Lue/f5PYPQrnbKOce09ixYxk7dmy+441GI4cOHcpTvLa4goKCqFSpElqttsjXEuR88+/g4MD69esJCAhAURTi4uJwcXEhMTERb29vvL292bZtG2fPni0ykLJv3748hY5N2rdvz8KFC1m4cCEajYaYmBhcXV3zZUq1bduWRYsWMX/+fI4ePYqTk1Oh1/ryyy8pU6YMY8eOZfTo0djY2LBo0SI6d+6MoijExsaq+w4aNIg+ffrQq1cvQkNDuXz5Ml5eXrRp0waAw4cPExcXR5UqVfIEP2539OhR3Nzcinw8ExIS2L59e74pZOnp6Vy6dAmdTsfUqVPp27ev2g1l7dq1fPHFF8yfP1+dJgc505VCQkKoX78+c+bM4X//+1+ec5YtW5aMjAzKlCnDgQMH8PDwYO/evZQqVUqtX+Tk5ESnTp0IDQ3liy++4OOPP853nrFjxzJ8+HAGDRrEokWLiry/R6lKlSr06dOHL7/8Mt/0tvLly1OzZk02b95M9+7duXnzZpH1YRo2bEhycjKnT5+mXr16rFq1ipYtW+bZ5+rVq5QrV46KFSty/vx5tm3bhp+fn1r3qlOnTvj4+FCnTp1852/RogXffPMN7733Htu2bePff/8FcjIau3Xrxrhx46hatSqXLl3i2rVral2p2/n6+jJp0qQC6zDeDaPRyNmzZ/H391ezXNLS0qhUqRJDhgxh4MCBvPzyy5ibm1OrVq1iBU1M2ZBTpky5YzbkL7/8wqVLl7CysmLz5s0sX768uEM/AdTRaDT2/03nyZ2qeA3IfcEDQD9yslEGAHuLe5GHQQIp4plhNCokp17nwrWbVC1vib1NOSl8KYQQ4pkUEhLCggUL8rTcfVyZOoA5Plf+qf0/PCEhgS5dutCjR498dWOKo7hTkE1Wr17N8OHDmTlzJrdu3aJfv364uLgwYcIETp06haIotG7dGhcXl3zHmmqkKIqChYUFX3zxRb59pkyZwhtvvIFOp8NoNOLg4MCWLVvw9/dXp/xMmjSJ9957j5EjR+Ls7My///6bJ2gxcuRI9u3bR1paGr6+vuzYsYPY2FiOHz/O119/TaVKlVixYgWfffYZZ86c4fvvv1en1w0YMIAJEybw22+/qQGO3NOL2rZtm6dIcHH16NGDU6dO0aBBAzZt2gTkZOXY2dlRvXp1Dh8+DORM9zp9+jSDBw/m8OHDVKpUiapVq5KSkkJGRgY9evSgTJkylCpViq5du2IwGJg/f746XclUUyk1NZWLFy9iNBqJiYlhwIABXLt2jaSkJMLDw3n33XfZvn072dnZaiZZamoqO3bsQKvVkpmZqRZFzm3//v1qHZaXX36Zd955564fi4flrbfeyhN8zm3VqlUMHTqUqVOnUrp06SKDjmXKlGHFihXq4+np6Zkn6Avg4uKCq6srjo6O1KpVCx8fH+D/s/EyMjJQFIV58+blO/+0adPo378/jRs3plmzZrzwwgtATo2tmTNn0q5dO4xGI6VLl2bRokWFBlI0Gk2BxWzvVnZ2NgMHDuTKlSsoisKYMWOoVKkS8P+ZY3eb6XM32ZBeXl706tWLP//8k4EDB+Lh4VGsayiKkq7RaEYA2zUazXUgMtfmH4ENGo2mGzD6v58VGo1mApAC3N0NPWiKojwVP+7u7ooQhcnONipb4/5Wms/epXjO/EVpPnuXsjXubyU721jSQxNCCPGQZWcblcQL15SDiReVxAvXnsrf/c/CPT5KM2fOVJycnBStVqu4uLgohw4dKnL/wYMHK+vXr1cURVFatmypREZG3tX1UlJSlFKlSimLFy++5zHfjdq1ayvOzs6KVqtV2rZtq5w7d67Yx545c0Zp3LjxAx/Tzp07lRYtWuRZl5KSotSuXVtRFEXp2bOnsn379iLHs3v3bqVz587K+vXrlSpVqijHjx/Pt/+KFSuUkSNHqsumYwryxRdfKIMGDcqzLjIyUmnZsqWiKIoybdo0Zc6cOYqiKMrRo0cVvV6vVKhQQXFxcVF69OihzJkzR309NG7cWImOjlYqV66sTJkyRb3uuHHjlJkzZyr9+/dXSpUqpeh0OmXjxo2KoijKN998ozg7Oyt2dnaKn5+foiiK8tVXXymlS5dWvLy8lOzsbMXb21spVaqU8sMPPyiKoihOTk5Kq1at1HszjTX3fVepUkW5deuWoiiKcuXKFaVcuXIF3r94OkRGRirNmzd/aOe//d9UYYAopYDP8YD1f39qgM+BcQXt97j9SLFZ8UxITr3Ohz8d42aWEYCbWUY+/OkYyanXS3hkQgghHibTtJDByyMYsyaGwcsj2H70H4xG5c4HPyGehXt8lA4ePMiWLVvU6R87d+6kVq1aD/Wa69evp0mTJmoHjEdh9+7dxMXF4eHhkaf+T1GKW3viXrRq1YqMjIw8075u3Lih/r19+/YsXrxYbWV88uRJrl/P/z4uPj6eiRMn0rt3bxYuXKhOu4uJiSnwukUVZn7ppZfYv39/ng5GuceUm5OTE5988gm+vr4YDAZ0Oh2QM23P9O18lSpV2LlzJ5s3b8bb25s1a9bw448/YmlpyTfffIOnpyfvvfcePXv2RFEUnJycOHLkCCNGjKBz584Aauvw+vXrY2ZmRpUqVahevTrNm+fU3bSwsODjjz8GCi8A7ePjo7bdLayjjHg6zJ49m169ehW7ZksJeU2j0RiAo0BFcrr4PPYkkCKeCReu3VSDKCY3s4xcuJa/n7wQQoinx7MQSH8W7vFROnfuHLa2tmoxR1tbW2rUqAHktAf29PTE2dmZ119/PU9tnNstX76cN954Q11etmxZnkKmua1Zs4Y5c+aS/Mef/LD/CEkpaRiNSqFtbQMDAxkzZgzNmjWjTp06ahclyKlT4+npiU6nY9q0aXe83xYtWnD69Gmys7OZMGGCeqypbk5YWBi+vr507do1Xw2TpKQkXF1diYyM5OjRo3h5eaHX69HpdJw6deqO185No9GwefNm9uzZg4ODA15eXgwePJiPPvoIyGkP7eTkhJubG87OzgwdOrTAwI6zszOnT59m/vz53Lp1C51OR+PGjZkyZUqB19XpdJibm+Pi4sInn3ySZ5uVlRVbtmwhJCSEOnXq0LRpU2bOnFlgO9zicnNzo2/fvri4uNCxY0c8PT3VbatXr+bLL7/ExcWFxo0b8/333+c73t7eHkVR1GlMzZs3p1KlSmrXmODgYAICAnB3d8fW1rbAMXz66acsWrQIrVbLX3/9dc/3cjujUSEpJY1DSanqa1iUrIkTJ/L777+rgbaHITAwsNDpWMWhKMonSk6LYydFUQYoilJwtPIxoynqP4AniYeHh1JIv2ohSEpJY/DyiDzBFMtSZqwM8qKOnXUJjkwIIcTDdCgplTFr8n8TvaC/K03qFF5E80nyLNzjo5SWlkbz5s25ceMGbdq0oW/fvmqRykuXLqm1NV5++WX69OnDiy++SGBgIF26dKF37974+fkxd+5cHB0dcXFx4fjx45QuXZpmzZqxZMmSfJ2Gzp49S6tWrfh0UzhDx7yFpkx5avv1ZVKnRnTW1eCHH37gxRdf5O2336ZChQq89957BAYGcv36ddatW8fx48fp2rUrp0+fZseOHWzYsIElS5agKApdu3bl7bffztea297enqioKGxtbRk1ahTlypWjbt26XLhwgffee4+bN2/i4+PD+vXr+f333+ncuTPx8fE4ODioXXI2btxIv379CA0NxcXFhdGjR9OkSRMGDBhAZmYm2dnZedqjPimkpt69yV0U+maW8Y5FocWzR6PRRCuKUrziKU8AyUgRzwR7m3JM6tQIy1I5L3nTL3d7m3J3OFIIIcSTrGp5S/V3v4llKTOqlrcs5Ignz7Nwj4+StbU10dHRLF26FDs7O/r27UtoaCiQMx3G29sbrVbLr7/+ytGjR4s8T6tWrdiyZQvHjx/n1q1bBbZrXrduHW27dOfDn45R0dmP1LjdalaRhYUFXbp0AcDd3T1P96Xu3btjZmaGk5OTmqmyY8cOduzYgaurK25ubhw/frzQzBB/f3/0ej1Xr15l0qRJ7Nixg6+++gq9Xo+3tzepqanqsV5eXnmKlqakpNCtWzdWr16tFqRt2rQpH3zwAR999BG///77ExtEkWly90Yy48SzRrr2iGfCs1DxXwghRH6mQPrt35I+TYH0Z+EeHzVzc3O1vbRWq2XlypX069ePESNGEBUVRa1atQgODi6wDXJuQ4YM4YMPPsDR0VHtmDF58mS2bt0K5LR9XrNmDX/89TdXb64C4Na1VDIu/gm2NTEvVRqNRqOOKfdUFtPUI0CdYqQoCpMmTWLo0KF3vMfdu3fnmfqhKAoLFy6kffv2efYLCwujXLm8r6WKFSvywgsvsG/fPnW6z0svvYS3tzdbt26lU6dOLF4cQh0X7yfqfVdhwQDH58pLBvMdFDWNXh478TSSQIp4ZpiZaahjZy2/zIUQ4hnyLATSn4V7fJROnDiBmZmZ2obYYDBQu3ZtNWhia2tLWloaGzZsoHfv3kWey9vbm7Nnz6qFawFmzZrFrFmzgJyCqWlpafx25JQ6BfmvXStJjdtNnXaDudtnsH379kyZMoUBAwZgbW3NX3/9RenSpalatWqhx5ibm6PVarlw4QKHDh0iISGBihUrcvLkSZ5//vkCj7GwsOC7777DxsYGRVEYOnQoSUlJ1KlThzFjxvD777/z7Y79HIvW3PU0j+TkZBo1akTDhg3JzMykRYsWfP7555iZFZxIv3nzZho0aKAGdKZOnUqLFi1o06aNOs2quK1YJRhw70yZcbdPo5fMOPG0kkCKEEIIIZ5qz0Ig/Vm4x0clLS2N0aNHc/nyZUqVKkW9evVYunQplSpV4rXXXsPZ2ZnnnnsuT5HQovTp0weDwaAWA81tzZo19OjRI09WUeXGviStm8Wk+bPp8/7djb1du3YcO3aMpk2bAjnTi77++usiAylWVlYYDAaMRiNarRZHR0dsbGyws7Nj8+bNhR5Xrlw5qlatSkhICNWrVychIYFVq1ZRunRpKlSxI9N3JMZ7zOyoW7cuBoOBrKwsWrVqxebNm+nZs2eB+27evJkuXbqogZQZM2bc8fyFkWDAvZPMOPGskWKzQgghxBNu1qxZfPPNN5ibm2NmZsaSJUvw9vZ+pGMIDg5m2bJl2NnZkZGRgb+/P4sWLSr0W+QHKTU1ldatWwPwzz//YG5ujp2dHQARERFYWFgUeJypaGZ8fPxDH6N4dnXp0oVx48apr9HClFSRU2tra9LS0gAICQkhLi6Ojh07MnPmTDIzM7GxsWH16tVUq1aN1NRU+vfvz19//UXTpk355ZdfiI6OJi0tjQ4dOtCkSRMOHDiAQyMdyVW8+PvXldy6fpk6AZOwrunIUCeFLz6eSkZGBlZWVqxYsYKGDRvmGc/t/y4nTpxIlSpVqFy5MkuXLiUzM5N69eqxatUqDAYDPj4+2NvbU7FiRTZu3MjgwYOxtrZm+/bthWakhIaGEhUVla/TyIMsmOrn58e5c+coU6YMFhYWLFu2DL1ef5fPzoPzKH7fSaFeURQpNiuEEEKIx8bBgwfZsmWLOnVg586d1KpVq0TGMm7cOAwGAwkJCRw5coQ9e/Y8kuva2NhgMBgwGAwMGzZMHYfBYCg0iCLEw3b58mUaNGiAlZXVHYMo8P9ZRU3q2FDHzvqRfwDNyspi27ZtaLVamjdvzqFDh4iJiaFfv358/PHHAEyfPp3mzZtz9OhRevTowR9//KEef/r0ad566y2OHz/OX8mJXD6yG8fX5lOrw1DO7VmDZSkzPFwas3fvXmJiYpgxYwbvvvtukWO6ceMGu3btQqvV0rNnTyIjI4mNjaVRo0Z8+eWXNGvWjFKlSjFnzhwMBgN169a9r8fANE1uZZAXC/q7sjLI6766zqxevZrY2FhGjBjBhAkT7mtsT4KSfg0L8ShJIEUIIR4hc3Nz9Hq9+pO7A0Nuly9f5vPPPy/0PNbW956+b29vz8WLF+/5ePF4OXfuHLa2tmrhSVtbW2rUqAHkfa6joqLw8/MDYM+ePepr0NXVlWvXrpGWlkbr1q1xc3NDq9Xy/fffA/9fr+C1116jcePGtGvXjvT09CLHlJmZSUZGhjqVwWAw0KRJE3Q6HT169ODff/8Fcr6xfeedd/Dy8qJBgwbs3bsXgOzsbCZMmICnpyc6nY4lS5ao99qiRQv0ej3Ozs7q/gWJjo6mZcuWuLu70759e86dO6eud3FxwcXFhUWLFt314/2gaTQa3nrrLXV57ty5BAcH39c5DQYDP/30032O7P8tX74crVaLTqfD2dlZfW08jkJDQxk1apS6bDQqJKWkcSgplaSUtEfafaVSpUqcPHmS9evXP7Jr3ov09HT0ej0eHh688MILvPrqq/z555+0b98erVbLnDlz1O5E4eHhDBw4EIDOnTvnma7k4OCAVqvFzMwMV52WQb27UKa0OVbVHLh1+TyTOjWiknkWAQEBODs7M27cuEK7HiUmJqLX6/Hx8aFz58507NiR+Ph4fH190Wq1rF69usiOSSaZmZm8/fbbeHp64unpyf79+/Ptk5KSQq9evdR9Dh48QB07a7Z/tZCZ74yh1f+xd95hUR3fH34X7IoVewFURCm7SwcBQVFRMdgLNtBoorHFxJqmMSYxaqwxmmKPLfZu7EEsUVBQ7KJYsAGKgqICO78/+O79sVLELjrv8+yj994p597dHXbOnPmcRg2pWbMm06dPV+q0bt0aR0dHbGxs+P33359qh7u7O7GxsQA5jrUjR440GJPGjBnDpEmTAJg4caIyHo4ePRrIfWw+f/48jRs3RqPR4ODgQHR0tIE9MTExeHl54eDggIODA/v37wegf//+rF+/HoA2bdrQq1cvIGMM+PLLL596nxLJe4UQ4p14OTo6ColEInnbKV68eJ7KXbx4UdjY2LxwO9lhZmYm4uLinru+5O0iKSlJaDQaYWlpKfr16yf27NmjXMv8Xh8+fFh4e3sLIYRo2bKlCA0NVeqnpqaK1NRUcffuXSGEEHFxcaJWrVpCp9OJixcvCmNjY3H06FEhhBAdOnQQixYtymLH6NGjRZUqVYRGoxGlS5cWgYGByjU7OzvFrq+//loMHjxYCCGEt7e3+Oyzz4QQQmzatEn4+voKIYT47bffxHfffSeEEOLhw4fC0dFRXLhwQUyaNEmMGzdOCCFEWlqauHfvXrZ2TJgwQbi7u4tbt24JIYRYtmyZ6Nmzp2LLv//+K4QQYujQobl+z14HhQsXFubm5sr7NHHiRDF69OgXanPevHmif//+L8E6Ia5cuSJq1qwpEhMThRAZn5cLFy68lLZfBZnvPT1dJzYduyY8x+8UzuO2C8/xO8WmY9dEerpOKZ+amvqmTH1ryO7vibe3t1i3bp0QQojdu3crY4dGoxHR0dFKuTJlyoi4uLgsf7OCgoLE8uV/i+hbSWL1v0eEZd16Ij1dJ4KCgsS0adOEEBl/58zMzLL0ndPfP3NzcxERESGEyHifg4KChBBCqFQqYWZmJjQajdBoNKJ48eLCz89PCCFEhQoVxB9//CGEEOLSpUuibt26Sn395yQwMFDs3bs3S5nRo0cLd3d38fDhQxEXFyfKli0rHj9+LIQQIiEhQQghxIMHD4SNjY2Ij4/P9hkePnxYCCHElClTxKhRo4QQIsex9siRI6JBgwZK/Xr16onLly+Lf/75R/Tp00fodDqRnp4u/P39xb///pvr2Ozi4iJWr14thBAiJSVF3L9/3+C53r9/X6SkpAghhDh79qzQz6OWLl0qhg4dKoQQwtnZWbi6ugohhAgODhZbt27Nco8SybMAhIm3wG/wsl4yIkUikUjeILmtTOlX5PIaDrxhwwZcXV2xt7encePG3Lx5E8jQj2jatCk2Njb07t1bSZP5zTffMHXqVKX+l19+ybRp017uDUpeOSVKlCA8PJzff/+d8uXL06lTJ+bPn59rHQ8PDz777DOmT5+uCGoKIfjiiy9Qq9U0btyY2NhY5TNkYWGh7O13dHTMMZJKv6Xm1q1b3L9/n2XLlnH37l0SExPx9vYGICgoiJCQEKWOXkAyc7vbtm1j4cKFaLVaXF1dSUhI4Ny5czg7OzNv3jzGjBnD8ePHMTExydaOR48eERUVRZMmTdBqtYwbN46rV6+SmJhIYmIiDRo0AKB79+55ecSvlAIFCvDRRx8xZcqULNeeXCnXr6bb2dmRmJiIEIJy5cqxcOFCAHr06ME///zDN998w/Lly9FqtSxfvpzbt2/TunVr1Go1bm5uSvaYMWPG0KtXL3x8fLKsuOu5desWJiYmShRciRIlsLCwALJf9c4tsqlu3boEBwdTp04dunbtyo4dO/Dw8MDS0pJDhw4BGZo27u7u2NvbU79+fc6cOQNkRJq0bduWZs2aYWlpyfDhwxUb582bR506dXBxcTGIOAg/E0OPwE4cmdGPE7P6Ex99jB83n2LIiC/p3r07Hh4eb8Vn4G3k7t27SsaeBQsWKOcbNGjAkiVLANiyZYsSXZYd+m0e9jXKUMjYCCMjlUG7TxunniQpKYnKlSuTmprK4sWLlfMFChRg9OjRyna+zDokd+7cYcKECWi1WgICArh3756iB6Nnx44dDBgwINsy/v7+FC5cGFNTUypUqKCMidOnT0ej0eDm5saVK1c4d+5ctjZ37doVCwsLvv/+e/r37w+Q41hrb2/PrVu3uHbtGpGRkZQpU4bq1auzbds2tm3bhr29PQ4ODpw+fVrpL7uxOSkpidjYWNq0aQNAkSJFKFasmIFdqamp9OnTBzs7Ozp06MDJkycB8PLyYu/evZw8eRJra2sqVqzI9evXOXDgAPXr13+m90siedeRWXskEonkNaIPoYaMH0ArVqxgzZo1lCxZkvj4eNzc3AgICGD8+PFERUURERGR57b1e9pVKhV//vknEyZM4Oeff1b2tH/zzTds2rSJOXPmANCrVy/atm3Lp59+ik6nY9myZcpkRpK/MDY2xsfHBx8fH+zs7FiwYAHBwcEUKFAAnS4j+4Q+dStkOOr8/f3ZvHkzHh4e/PPPPxw8eJC4uDjCw8MpWLAg5ubmSh39tiF9X0/b2lOwYEGaNWtGSEgIzZs3z7Wsvm1jY2PS0tKAjInGjBkz8PPzy1I+JCSETZs2ERwczGeffUaPHj2ylBFCYGNjw4EDBwzOJyYm5mrLm6J///6o1WoD5wDA4MGDGTJkCJ6enly+fBk/Pz9OnTqFh4cH+/btw8zMjJo1a7J371569OjBgQMHmDVrFmPHjjUQ0hw4cCD29vasXbuWXbt20aNHD2VsOX36NLt37yYpKQkrKyv69etHwYIFFRs0Gg0VK1bEwsICX19f2rZtywcffABkTBJHjhxJmzZtePjwITqdTkmL++SYBhmOlxUrVjB37lycnZ1ZsmQJoaGhrF+/nh9++IG1a9dSt25d9u7dS4ECBdixYwdffPEFq1atAjK2LB09epTChQtjZWXFwIEDlUl0eHg4pUqVomHDhtjb2wPw5YihlHdvi4m5LY8Sb3F2wUhMBs/l/uM0Tp48SWhoKEWLFn2l721+ZcyYMXTo0IEyZcrQqFEjLl68CMDo0aMJDAzExsaG+vXrU6NGjWdqd/jw4QQFBTFu3Dj8/f2fqe53332Hq6sr5cuXx9XVlaSkJABFI2X69OmsXLnSoI4Qgnnz5uHh4ZFjuzqdjoMHD1KkSJEs154c+9LS0tizZw87duzgwIEDFCtWDB8fH4PxNTOLFy/G0dGRYcOGMXDgQFavXs3ixYtzHGs7dOjAypUruXHjBp06dVLuYdSoUXz88ccGbcfExDzz2KxnypQpVKxYkcjISHQ6nXLvVatWJTExka1bt9KgQQNu377N33//TYkSJXJ0XEsk7yvSkSKRSCSvEX2aST2pqal88cUXhISEYGRkZBAF8KxcvXqVTp06cf36dR4/fqysGoeEhLB69WrAcE+7ubk55cqV4+jRo8pqWLly5V7sBiWvnTNnzmBkZISlpSWQMdk0MzMDMt7j8PBwmjdvrkxGIUN/wM7ODjs7Ow4fPszp06e5e/cuFSpUoGDBguzevZtLly49t01CCPbt24e9vT2lSpWiTJky7N27Fy8vLxYtWqREp+SEn58fs2bNolGjRhQsWJCzZ89StWpV4uPjqVatGn369OHRo0ccOXIkW0dK4cKFiYuL48CBA7i7u5OamsrZs2exsbGhdOnShIaG4unpabCq/SYpWbIkPXr0YPr06QYT+x07digrxYCyUu7l5UVISAhmZmb069eP33//ndjYWMqUKUPx4llTjYaGhirvf6NGjUhISODevXvA/6+4Fy5cWFlxr1atmlLX2NiYrVu3cvjwYXbu3MmQIUMIDw/n888/z7LqDbmPaXoNDQAbGxt8fX1RqVTY2dkp0Uh3794lKCiIc+fOoVKpSE1NVWzx9fWlVKlSAFhbW3Pp0iXi4+Px8fFRsjR16tSJs2fPAhB+IIRHBSPR/S8KL/3hAwqkP6J4oQIEBARIJ8r/eDJCA6BVq1a0atUqy/ly5cqxbdu2LOdNTU0NssFkjjYxNzdXrrm7uyvvD8C4ceOytJW5fGb69etHv379spw3MjIy+J707t0bfSbPDh06sH//fsWR8mTECmSkjJ4xY4YS/ZldmczcvXuXMmXKUKxYMU6fPs3BgwdzLAsZOkjfffcdtWrVeupY26lTJ/r06UN8fLwi1u3n58fXX39N165dKVGiBLGxsQbOzicxMTGhWrVqrF27ltatW/Po0SPS09Oz3EO1atUwMjJiwYIFBtfd3NyYOnUqu3btIiEhgfbt29O+fftc71EieR+RW3skEonkDZJ5ZSoiIoKKFSvmuLL1NAYOHMiAAQM4fvw4v/32W57a6d27N/Pnz2fevHmKqJwkf5GcnExQUBDW1tao1WpOnjypiJWOHj2awYMH4+TkhLGxsVJn6tSp2NraolarKViwIM2bN6dr166EhYVhZ2fHwoULqVu37jPbMmXKFEUINj09nU8++QTI2BowbNgw1Go1ERERfPPNN7m207t3b6ytrXFwcMDW1paPP/5YWQnWaDTY29uzfPlyBg8enG19IyMjVq5cyYgRI9BoNGi1WkVMcd68efTv3x+tVqtsc3sb+PTTT5kzZw73799XzulXyvVbFmJjYylRogQNGjRg79697N27V3EirFy5Ei8vr2fuN7sV9ydRqVS4uLgwatQoli1bZuCUe5LcxrTMfRkZGSnHRkZGSr9ff/01DRs2JCoqig0bNhiMY3mx1cBuIfhr/XYcP/0D2wG/4frl33zVxoHSxQpm63CSvHtMnz6dsLAw1Go11tbWzJ49+7nKZKZZs2akpaVRr149Ro4ciZub21PtKFq0KJ9//jkTJ07Mday1sbEhKSmJqlWrUrlyZSDD0dOlSxfc3d2xs7Ojffv2SjROTixatIjp06ejVqupX78+N27cMLj+ySefsGDBAjQaDadPnzb4Pnh5eZGWlkbt2rVxcHDg9u3bzzW2SCTvPG9apOVlvaTYrEQiyQ88Keo3depUMWDAACGEELt27RKAuHjxooiPjxc1atTIcztCCKHVakVYWJgQIkMYTi8OOHDgQEW4c/PmzQJQhC0fPXok6tSpIywsLERaWtoL359EInk2Mn+Xhw0bJqpXr66IzQYGBooJEyYo1/WikkIIYWlpqQhEjh8/XlSrVk2sXbtWCCHEypUrRY8ePZSyAwcOFGPHjhVCZAiHarVaIUSGmObEiROVcjY2NuLixYsG9sXGxorw8HDl+I8//hD+/v5CCCFcXV3FmjVrhBAZosD379/PcUzLTox0xYoVQghDcdHWrVuLlStXKvbpxUifFND19/cXu3fvFteuXRM1atQQ8fHx4vHjx8LT09NARPSnn34S0beSxIHoeLFh5z6Rnq7Lct/Pw5UrV0RAQICoXbu2sLCwEP379xcPHz58oTazY/fu3WLfvn3K8axZs8SCBQtyLJ+erlPud/Oeg4oAa5kyZYS5ubnQaDSKqHNe23yS3MTQMwusSjKIj49X3oeKFSsqotylSpUS9erVeyV9voggfW4AikC4EHkTx16zZo04ceKEcjxv3jwRGxv7SuyTvN0gxWYlEolE8rLIaWWqXLlyeHh4YGtrm63Y7IMHD6hWrZrymjx5srKn3dHREVNTU6Xs6NGjCQkJwcbGhtWrVxvsaS9UqBANGzakY8eOBhELkjfHm0zXKnmzfP755wapyXNbKXd1daVOnTpAxgpybGwsnp6eADRs2JCTJ08qYrNjxowhPDwctVrNyJEjDcRDn0ZqaipDhw6lbt26Snt6UersVr1fNLJp+PDhjBo1Cnt7+6dGnABUrlyZMWPG4O7ujoeHB/Xq1VOuTZ8+nfDwcFr71qdXSy82/r0QIyPVM9mTHUII2rZtS+vWrTl37hznzp0jJSUli8bNy2DPnj1KNBVA3759s93OBhljx9YTNwiae4hBS4/yw8H7/LBoC0eOHCUgIICJEycSERHBjh07lDppaWm5tvm6eRfHv3LlyilRZX379lVEuSMiIjAyevNTsbx8z/QULlyY1atXG4xTT2Pt2rUGW6/mz5/PtWvXnslGieRtRCXeorDWzKhUqhggCUgH0oQQTrmVd3JyEvr9kBKJRCLJGzqdDgcHB1asWKFobEjeHPqJ0I+bT/EoTUfhAkaMalGPZjaVXsoEMD+g0wliEu5zK+kRFUwKY16u+Htz75L8wc6dO/n2228Nsk/du3cPMzMzrly5wsqVKw3Eflu2bMnQoUPx8fFh27ZtjB49mkePHlGrVi3mzZtHiRIlMDc3JygoiA0bNpCamsqKFSsoUqQIbm5uGBsbU758eWbMmMHOnTspUaKE0p6rqyu7d+8mMTGR736ewS8nC/IoTafYVbiAEQt6uTB22ABatmxJ+/bt8fHxQavVEhoaSmBgIElJSQZt2tvbs3fvXu7fv8/ChQv58ccfOX78OJ06dWLcuHHExMTQrFkzHB0dOXLkCDY2NixcuFARXp00aRJOTk453mtOvA/j35gxY5RnHRMTQ/PmzfH09GT//v1UrVqVdevWUbRoUaKjo+nfvz9xcXEUK1aMP/74g7p16xITE0OvXr2Ij4+nfPnyzJs3jxo1anDx4kW6dOlCcnIyrVq1YurUqSQnJyOEYPjw4WzZsgWVSsVXX31Fp06d2LNnD19//TVlypTh9OnTnDp1ipEjR7Jnzx4ePXpE//79s4jbQkbWri+//JLk5GS+//57Jk2aRHJyMmPGjMnWtqtXr9KyZUtKlSpFqVKlCAwM5LvvvqNq1aoULVqUAwcOSK2i9wiVShX+tDl9fuLNu0Fzp6EQQvsuPXCJRCJ5Wzh58iS1a9fG19dXOlHeEmIS7iuTCIBHaTp+3HyKmIT7T6n5bvDkinrQ3ENsPXEj36xKv4ur6ZKsnDhxAkdHR4NzJUuWxNzcnPPnz+dYLz4+nnHjxrFjxw6OHDmCk5MTkydPVq6bmppy5MgR+vXrx6RJkzA3NzeIYMhOpyItLY1Dhw4xdepUJo3/wcCJAhljyK2kR1nqPX78mLCwMD7//PMs1woVKkRYWBh9+/alVatWzJw5k6ioKObPn09CQgKQIXL9ySefcOrUKUqWLMmvv/76TPeaHe/j+Hfu3Dn69+/PiRMnKF26tKI/9NFHHzFjxgzCw8OZNGmSojc1cOBAgoKCOHbsGF27dmXQoEFARoavfv36cfz4cUVbBWD16tVEREQQGRnJjh07GDZsGNevXwfgyJEjTJs2jbNnzzJnzhxKlSrF4cOHOXz4MH/88YeSqelJ+vfvz+LFi7l7967B+exsq1+/vkE01IgRI3BycmLx4sVERERIJ4okX/O2O1IkEonkrSW/T5qsra25cOECP//885s2RfI/biU9yvNE6F0kP0+k8rsT6E1gbGysiBN36NCBBw8eEBMTg62t7TO14+Pjo2RpMTc3V7Yd1K9fP9vywcHBWdLk5saZM2eUKI569eqxbNmyZ7JPz8GDBzl58iQeHh5otVoWLFhgkLGlbdu2ADg6OipZjJ5G5jq3rl2lcAHDn/aFCxhRwaRwlnr61LrZoU9XbWdnh42NDZUrV6Zw4cLUrFmTK1euAFC9enUlE063bt0IDQ19pnvNjvdx/LOwsFAyBOnf9+TkZPbv30+HDh3QarV8/PHHivPjwIEDdOnSBYDu3bsrz33fvn0EBgYq5/Xoo46MjY2pWLEi3t7eHD58GAAXFxclu9+2bdtYuHAhWq0WV1dXEhISOHfuXLY2Z84ylpmcbJNI3lXe5vTHAtimUqkE8JsQ4vcnC6hUqo+Aj4BnzmMvkUgkL8L7EIIsef1UMClM4QJGWULzs5sIvYvkNpGqWT7nLQFvAzk5gepWMnnrbX9TZE4H37VrV2bPnq04Bl4GmbVFXoRBgwYxZMgQJR3wH3/8waJFiwzK3Lt3jxs3bmBlZUVUVBQ63f9/jvWZh4QQNGnShKVLl/6/WGEmjQx9VqK8ZCTKro5KpDOqRb0sf5fMy2XNUJRb1qLM2ZSezLSkt0ulMvw79+Rx5nvNK+/j+PdkJqqUlBR0Oh2lS5dWvht55cn34Glk/gwIIZgxYwZ+fn55qvvpp5/i4OBAz549n6lPieRd4m2OSPEUQjgAzYH+KpWqwZMFhBC/CyGchBBO5cuXf/0WSiSS95b8vHIueXsxL1ecUS3qKavKuU2E3kX0E6nM5JeJ1Pu4mv4y8fLyUrbFpKen06dPH2xsbGjatCkpKSlER0fj4OCglD937pzBcXbo9TiEEAwYMAArKysaN27MrVu3lDJjx47F2dkZW1tbPvroo2xTYl+/fp1q1aopx7179+bBgwf06dOHVq1a4e3tTfXq1bG2tqZo0aKYm5uzefNmbGxssLKyUlbmq1SpwsqVK2ndujW2tracOXOG4cOH4+zszLVr1/jpp5+y9G1iYvLUVLeZaWZTiQW9XJgeaM+CXi6vzLl/+fJlDhw4AMCSJUsUoWM9bm5u7Nu3T3lP79+/z9mzZ3Nt830f//SULFkSCwsLVqxYAWR8fiMjI4GMKCt9RNTixYuV7V4eHh4G5/V4eXmxfPly0tPTiYuLIyQkBBcXlyx9+vn5MWvWLFJTUwE4e/asQSr2JylbtiwdO3Zkzpw5yrmcbHvyM/ysn2mJ5G3lrXWkCCFi//fvLWANkPVbL5FIJG8IOWmSvAqMjFSvbSL0NpKfJ1L52Qn0pklLS2PLli3Y2dkB2etG1KpVi1KlSimr9PPmzcvzaviaNWs4c+YMJ0+eZOHChQaRKgMGDODw4cNERUWRkpLCxo0bs9QfMmQIjRo1onnz5kyZMoW7d++yZs0awsLC2LRpExEREbRv356bN28SFhZGkSJFSExMJDU1lTp16mBsbMy5c+coV64caWlpnD17FmNjY/z9/YmMjOTQoUNUqVKFyMhIAwFbgA8++IA1a9ag1WrZu3fvU+/VyEhFzfIlcKtZjprlS7yyscPKyoqZM2dSr1497ty5Q79+/Qyuly9fnvnz5xMYGIharcbd3Z3Tp08/1fb3efzLzOLFi5kzZw4ajQYbGxvWrVsHwIwZM5g3bx5qtZpFixYpGbSmTZvGzJkzsbOzIzY2VmmnTZs2qNVqNBoNjRo1YsKECVSqVClLf71798ba2hoHBwdsbW35+OOPnxoV9WSWsZxs69y5MxMnTsTe3p7o6GiCg4Pp27cvWq2WlJSUF35WEsmb4q3M2qNSqYoDRkKIpP/9fzswVgixNac6MmuPRCJ5nVyISyZo7qFssyPIMH6J5PnJr1l75Ha/Z8fY2Fhxnnh5efHzzz9z7do1mjRpougz/PTTT6SmpvLVV1+xePFiDh06xOTJk6lTpw6HDh2iXLlyBplizM3NCQsLw9TUlBIlSpCcnMynn36KWq2mV69eQIauSJcuXWjfvj2rVq1iwoQJPHjwgNu3bzNw4EBGjhyZxdZr166xdetW1q1bx5kzZ4iMjGTp0qXs2rWLvn37EhgYSNOmTbGxsUGlUpGQkMDYsWMB+PrrrylfvjwBAQE0bNhQEfEcOnQoK1eupHTp0gAkJyczatQoPvzww1f96CUSieS1I7P2vB4qAqEqlSoSOARsys2JIpFIJK+b/LxyLpG8zbyuFfWXjVxNf3b0GikRERHMmDGDQoUKAVl1I/Qr4+3atWPLli1s3LgRR0dHypUr90L9P3z4kE8++YSff1vAH+v20L5LUI4r5FWqVKFXr16sW7eOAgUKEBUVBWToUtSvX59Lly5RuXLlp+pUPKlLMWrUKOUZnD9//qU6UfRivvrX+PHjcy2/fv36HMvklLY4JSUFb29v0tPTs1zLLOrbu3dvTp48+Yx3kHdysu+bb75hx44dL72/H374weA4J2HjvNC5c+cchV0lEsnby1vpSBFCXBBCaP73shFCfP+mbZJIJJLMyEmTRCJ5kvzqBMovFClSBD8/P/r16/dMIpcNGjRQdCKuX7/O7t27AXjwIIXHaTqGb7xI//n7+XPRUs7fypqBbevWrYp2xI0bN0hISKBq1aoAbN++ndu3b5OSksLatWvx8PDAy8uLtWvX8uDBA+7fv8+aNWuyTV3s5+fH3LlzSU5OBiA2NtZAv+VFyeyoioiIyDbSJjMBAQFPLfMkc+fOpW3bthgbG+da7s8//8Ta2vqZ2n4ZjB07lsaNG7+09vTZ+sZ9/4NBtr4XETbu168fEyZMeFkmSiSS18Rb6UiRSCSS/ICcNEkkEsnrpWvXrhgZGdG0adM812nTpg2WlpZYW1vTo0cP3N3dAUhML4iJxo8jkz/k7IKRFKtSh73n4rOIhm/btg1bW1s0Gg1+fn5MnDhR0ZlwcXGhXbt2qNVq2rVrh5OTEw4ODgQHB+Pi4oKrqyu9e/fG3t4+i11NmzalS5cuuLu7Y2dnR/v27V+LCKe5uTmjR4/GwcEBOzs7Rbtk/vz5DBgwAICLFy8qdn311Vc5trV48WIlm1Fuor76FNXp6ekEBwdja2uLnZ0dX3/9Nba2tvzxxx84Ozuj0WioV6+eEvERHBxMv379cHNzo2bNmnz22Wc0aNCAevXqERwcbGDLkCFDsLGxwdfXl7i4OBITE3Fzc1OiYsaPH0+JEiVwdHRk0KBBtGzZEoAxY8YwadIkpR1bW1sl/XTr1q1xdHTExsaG2bN/Y/C3k7Ayq0LKg/tYVjXF0cMbnU4YCBsPGzYMCwsLSpYsyfLlywHYs2cPPj4+tG/fnoIFC9KuXTsuXryIra0tXl5e7NixI0+ZmjJH+WRO+y2RSF4/b3P6Y4lEIpFIJBLJO4o+EiMz5ubmyrYZyNARyUxoaCg9e/Y0iIDYs2eP8n/9BDhz+yqVil9++SVLXwcvJFDJN5hKvsEG559Mtz158mQmT56c7T1Uq1aNtWvXZjn/2Wef8dlnn+V6bwCDBw9m8ODB2bb9oqSkpKDVapXjUaNG0alTJwBMTU05cuQIv/76K5MmTeLPP//MYle/fv3o0aMHM2fOzLb9x48fc+HCBczNzQFDUd+bN29ibW2t6NLoiYiIIDY2VnkOx44dY82aNbRt25Y+ffoAGRFEhw4dUurcuXOHAwcOsGbNGoKDg9m3bx82NjY4OzsTERGBVqvl/v37ODk5MWXKFMaOHcu3337L0KFDOXPmDJCxjevnn3/GxcWFXbt2ERgYmKdnOHfuXMqWLUtKSgq16tThblohbD+dx7Gfu1G392ROLR7D4ZMXlPKrV68mIiKCP//8k/HjxzNs2DAaNMhIPHr06FFOnDhBWFgYly5dUpwgRkZG1K5dm8jISBwdHfNkl0QiefNIR4pEIpFIJBKJ5IV4HSLBbdq0ITo6ml27dr2U9vSZlp4UDX9XMi3pt/ZkR9u2bQFwdHRk9erVWa7v27ePVatWAdC9e3dGjBiRpUx8fLwilAsQEhJCYGAgxsbGVKlShUaNGmWpU7NmTS5cuMDAgQPx9/enTp06AERFRfHVV1+RmJjIlStXqFevHpCxrUqr1eLs7EzTpk0pUKAA//zzD3Z2dlSvXp2goCClbSenDA3Lbt260bZtW+Lj40lKSmLo0KFs2LCBKlWqoNPpaN++PQcPHkQIoaS7vnr1Kt7e3iQnJxMTE8OtW7cwNzdn+vTprFmzBoCb165TrUVfChYvBUDxKpaUtW/C7NmzFFv79OmDiYkJ69ato3Dhwnh7e7Nz506mTZtGeno6Y8aMQQiBra0tV69eJS0tja5du3Lo0CEGDRrE9u3bKVasGGPHjmXDhg2kpKRQv359fvvtt6fq70gkkteL3NojkUgkEomE77//HhsbG9RqNVqtlv/+++9NmyTJJ+gzFgXNPcSgpUcJmnuIrSduZNEaeVHWrFnDsWPHMDU1fSntvahoeHBwcLaRLvkBvaBvZjHfJ3naxL1o0aI8fPjwmfotU6YMkZGR+Pj4MHv2bMVBo3+Wx48fx8fHR9GkgYztMmFhYXz00UcUKPD/a8D79u2jadOmREZGolKpqFy5soHt48ePx8TEhEmTJjFkyBAgIypk6tSp/PLLLzx48IB9+/ahUqlYs2YNK1euJDw8nBIlSjBp0iT27NnDjh07OHDgQEYfRiqKl/v/PgBKV7fi2sWzCCHo06cPAQEBfPPNN9y4cUMps2zZMmxtbfHx8aFNmzZcvnwZY2Nj0tPTOXPmDJ988gmNGzfGxMSEX3/9FchbWm6JRPJmkY4UiUQikUjecw4cOMDGjRs5cuQIx44dY8eOHVSvXv1NmyXJJ8Qk3FfSPgM8StPx4+ZTWbRG3jakaHjOeHh4sGzZMiBDByU7ypQpQ3p6uuJMyUnUNzPx8fHodDratWvHuHHjOHHiBABJSUlUrlyZ1NRUjh07ZuDEyS4jTlJSEg8ePMDV1RXIcLZs3rwZgCVLluDp6WlQ3srKimvXrmFnZ0e1atVYsWIFJUuWJCYmhkKFCilpt62srLh58ybXr1/n7t27lClThmLFinH69GnS09Lo6FSdwgWMUBkVoKBKRzunahQrVACdToeFhQUBAQH8/fffdOnShcePHxMSEkJMTAxNmjQBwN/fnzJlyih2Va9eHQ8PD86ePUvv3r0JDQ0FYPfu3bi6umJnZ8euXbuU5ySRSN4epCNFIpFIJPmStWvXolKpFKHEV0lYWBiDBg164XZeZzrQZ+H69euYmpoqq9SmpqZUqVIlR1HK27dv07p1a9RqNW5ubhw7dgwAOzs7EhMTEUJQrlw5Fi5cCECPHj3Yvn07DRo0MNhq4OnpSWRk5Ou9WclL51bSI4PtMZDhTLmV9OgNWZR33mXRcL1Giv71LBl5pk2bxsyZM7GzsyM2NjbHck2bNlUm/zmJ+mYmNjYWHx8ftFot3bp1Y9y4cdy5c4fvvvsOV1dXPDw8MDExMUiBXaRIkafaW7x4cQ4dOoStrS27du3im2++MbhetGhRhgwZQkREBI6OjkofaWlpNG7cmOLFi5OamoqHhwd169Zl0aJFNGvWjLS0NOrVq8fIkSMpWbIkJo/iWNDLhcAePbk5fyBrfp+Mra2N0k+bNm1Qq9UMGjSIgwcPMmHCBIMomidRqVTcvHmTokWLUrZsWVQqlZKWe+XKlRw/fpw+ffo8c+SPRCJ5Dej3B+b3l6Ojo5BIJBLJ+0PHjh2Fp6en+Oabb7K9npqa+potejpBQUFixYoVr6UvnU4n0tPT81Q2KSlJaDQaYWlpKfr16yf27NkjhBDCzMxMTJ8+XQghxMyZM8WHH34ohBBiwIABYsyYMUIIIXbu3Ck0Go0QQoiPP/5YbNy4URw/flw4OTmJ3r17CyGEqF27tkhOThbz588XgwcPFkIIcebMGSH/dr8bRN9KEp7jdwrncduVl+f4nSL6VtKbNk3yigkPDxfdunV7oTYcHR3Fzp07hRBCJCQkCEtLS3H+/HkhhBDe3t7i8OHDStnRo0eLiRMnCiGEcHV1FWvWrBFCCPHw4UNx//59g3bj4+NFjRo1lOPNmzcLf39/odPpRL9+/YSHh4eYN2+eePTokahVq5bYv3+/EEKIx48fi6ioqCx2rlu3Tjg5OYn4+HghhBBHjx4V1atXF9euXRMpKSmievXqit2dO3cW/v7+QgghBg4cKL777jvFBkDExcWJixcvCkAMGjRI/Pnnn+LDDz8UkyZNEnfu3BEVKlQQDx48EElJScLGxkaMHj1aCGH4N+TJZyN59yhevPibNsHgO/c87N69W5QsWVJoNBoBPAB2ABXEW+A/eNGXjEiRSCQSSb4jOTmZ0NBQ5syZo4SfQ0b2Di8vLwICArC2tub+/fv4+/uj0WiwtbVVUlGGh4fj7e2No6Mjfn5+XL9+HchIJzlixAhcXFyoU6cOe/fuVdp9WqrMnPrKicypK+fMmUOdOnVwcXGhT58+SgrS6Oho3NzclBSk+hSbABMnTsTZ2Rm1Ws3o0aOBjIwlVlZW9OjRA1tbW65cuZKn51miRAnCw8P5/fffKV++PJ06dWL+/PmAoSilPiNKaGgo3bt3B6BRo0YkJCRw7949vLy8CAkJISQkhH79+nH8+HFiY2MpU6YMxYsXp0OHDmzcuJHU1FTmzp2bJX2pJH9gbGyMVqvF1taWDh06UKGoioGeVbh9eAOQu9ZITEwMtra2r9vkfI9OJ7gQl8zBCwlciEt+6fozz4uDgwMNGzYkPT39udtYuHAh3333HVqtlkaNGjF69Ghq1ar11HqLFi1i+vTpqNVq6tevb6BLAlCuXDk8PDywtbVl2LBhbNy4kZCQEGxsbLh7967yOSxUqBArV65kxIgRaDQatFot+/fvz9JfQEAAvXr1on79+tStW5c+ffrw119/UblyZYoUKcLvv/+Ov78/Dg4OVKhQQak3evRopd/Vq1dTo0YN5ZqVlRWHDh1i0qRJ3Llzh379+lG6dGn69OmDra0tfn5+ODs7P++jlUheO9lpLnl5eemjUU8Ch4H+T5ZRqVT5LwnOm/bkvKyXXNWSSCSS94e//vpL9OrVSwghhLu7uwgLCxNCZKx8FCtWTFy4cEEIIcTKlSuVqAghhEhMTBSPHz8W7u7u4tatW0IIIZYtWyZ69uwphMhY4fvss8+EEEJs2rRJ+Pr6Ku3qVxefXJ2xsbERFy9ezLavJ8luNTE2NlaYmZmJhIQE8fjxY+Hp6Sn69+8vhBDC399fLFmyRAghxKxZs5TVqX/++Uf06dNHiTrx9/cX//77r7h48aJQqVTiwIEDz/9whRArVqwQLVu2FGZmZiIuLk4IIcThw4eFt7e3EEIIrVYroqOjlfLVqlUTd+/eFZcvXxbu7u6ic+fOIjo6WrRs2VJMnTpVeaZCCNG3b1+xYsUKYWFhIW7fvv1CdkreDJlXSbt06SJ+/vlnER19QVjWrScORMeL6FtJIj1dl23dixcvChsbm9dl6jtBerpObDp2TYn68Ry/U2w6di3HZyyRvGqMjIyERqMRNjY2on379lmigV413t7eok6dOkKtVov69euL06dP57luTmPQ4cOHxcCBA1+mmS9MdhEp69evFy4uLkKr1QpfX19x48YNkZ6eLszMzMSdO3eUcrVr1xY3btwQt27dEm3bthVOTk7CyclJhIaGCiEyfsv07NlTeHt7CwsLCzFt2jSl7rhx44SlpaXw8PAQnTt3Vn7znD9/Xvj5+QkHBwfh6ekpTp06JYTI+G3z8ccfCxcXFzFkyBADezP/fgLCgF+ATzMOGQMsAvYBSwFzYBdwDNgJ1ACMgYuACigNpAMN/lc/BLD8XztzgT3ABWCQkBEpEolEIpFkZenSpXTu3BmAzp07s3TpUuWai4sLFhYWQIZmx/bt2xkxYgR79+6lVKlSnDlzhqioKJo0aYJWq2XcuHFcvXpVqZ9dBEZeyK6vvHDo0CG8vb0pW7YsBQsWpEOHDsq1AwcOKMddunRRzm/bto1t27Zhb2+Pg4MDp0+f5ty5cwCYmZnh5uaWZ7sBzpw5o9QHiIiIwMzMLMfyXl5eigDlnj17MDU1pWTJklSvXp34+HjOnTtHzZo18fT0ZNKkSTRo0ECp27t3bwYNGoSzs7OB6KIkf+Ll5cX58+f54otRXIm5SN+2vsya8C0qFQwbNgxbW1vs7OyyjdBKT09n2LBhSmTVb7/9BmR8pry9vWnVqhU1a9Zk5MiRLF68GBcXF+zs7IiOjiYpKQkLCwslu8u9e/cMjt8l8quYr+TdRZ9aOyoqikKFCjF79uzXbsPixYuJjIwkKCiIYcOG5alOThmqICN99vTp01+Wea8MT09PDh48yNGjR+ncuTMTJkzAyMiIVq1aKam6//vvP8zMzKhYsSKDBw9myJAhHD58mFWrVtG7d2+lrdOnT/PPP/9w6NAhvv32W1JTUwkPD2fZsmVERESwefNmDh8+rJT/6KOPmDFjBuHh4UyaNIlPPvlEuXb16lX279/P5MmTs9i8d+9etFotgBpoTIbTQ4810FgIEQjMABYIIdTAYmC6ECIdOPO/cp7AEcBLpVIVBqoLIfQ/XuoCfoALMFqlUhV8/qecN6QjRSKRSCT5itu3b7Nr1y569+6Nubk5EydO5O+//+Z/qxMUL/7/2wnq1KnDkSNHlK0xY8eORQiBjY0NERERREREcPz4cbZt26bUeVpa0AIFMjI06NGLAGbX16tCCMGoUaOUezh//jwffvghYHj/eSU5OZmgoCCsra1Rq9WcPHmSMWPG5Fh+zJgxhIeHo1arGTlyJAsWLFCuubq6UqdOHSBjkh0bG2uQQcPR0ZGSJUvSs2fPZ7ZT8naRlpbGli1bsLOzY/z48dSqVYuIiAgmTpzI6tWriYiIIDIykh07djBs2DBlC52eOXPmUKpUKQ4fPszhw4f5448/uHjxIgCRkZHMnj2bU6dOsWjRIs6ePcuhQ4fo3bs3M2bMwMTEBB8fHzZt2gRkpJht27YtBQu+8t/Or538JOb7tm5Bkrw69M7UDRs24Orqir29PY0bN+bmzZtAxt+LXr164ePjQ82aNRVnRXbbYXft2kXr1q2Vtrdv306bNm1y7b9BgwacP3+emJgYvLy8cHBwwMHBQdme9eSW38xcuHABe3t7Dh8+nGULb15tBti5cyf29vbY2dnRq1cvHj3K+G7mJNj+Ily9ehU/Pz/s7OyYOHGiktGpU6dOij3Lli2jU6dOAOzYsYMBAwag1WoJCAjg3r17JCcnAxlZpAoXLoypqSkVKlTg5s2b7N27lzZt2lCsWDFKlixJQEAAkPE7Yf/+/XTo0AGtVsvHH39sMKZ36NABY2PjbG3OtLXnGDAPmJDp8nohRMr//u8OLPnf/xeR4TgB2As0+N/rx/+ddyZjm5CeTUKIR0KIeOAWUDHPD/U5kY4UiUQikeQrVq5cSffu3bl06RIxMTFcuXIFCwsLRc8kM9euXaNYsWJ069aNYcOGceTIEaysrIiLi+PAgQMApKamPlNqSXNzc44cOQLAkSNHlIlfdn3lBWdnZ/7991/u3LlDWloaq1atUq65ubkpx5m1YPz8/Jg7d67yYyg2NpZbt27l+R6exNHRkf3793Py5EmOHTvG6tWrMTU1JSYmBlNTUyBjtW7Pnj0AlC1blrVr13Ls2DEOHjyIWq1W2lq0aBFLlmT8Dqpfvz46nY5y5cop169du4ZOp6Np06bPba/kzaLPBuPk5ESNGjUUJ15mQkNDCQwMxNjYmIoVK+Lt7W2wsgkZkVULFy5Eq9Xi6upKQkKCEhnl7OxM5cqVKVy4MLVq1VI+L3Z2dkqkWO/evZk3bx4A8+bNe2edcxVMClO4gOFP9sIFjKhgUjiHGm8GnU6w9cQNguYeYtDSowTNPcTWEzekM+UdJrMzNbtICT3ZRT5s3bqVKlWqEBkZSVRUFM2aNaNhw4acPn2auLg4ION73atXr1xt2LBhA3Z2dlSoUIHt27dz5MgRli9fbpBp78iRI0ybNo2zZ88q586cOUO7du2YP39+tjo0ebX54cOHBAcHs3z5co4fP05aWhqzZs1S2jE1NeXIkSP069fPQF/teRk4cCADBgzg+PHj/Pbbb8pijru7O+fPnycuLo61a9cq0bU6nY6DBw8qCy+xsbGK3lrm7Fg5LR7p0el0lC5dWmknIiKCU6dOKdefYRFnPRkOET15Ca0LAbzIiDbZTMYWHx8yHCx6MnuW04FXrrkiHSkSiUQiyVcsXbo0ywpVu3btDLb36Dl+/DguLi5otVq+/fZbvvrqqzwLC+ZEu3btuH37NjY2Nvzyyy9K9EV2fT1JWlqawQ8XgKpVq/LFF1/g4uKCh4cH5ubmyragqVOnMnnyZNRqNefPn1fON23alC5duuDu7o6dnR3t27cnKSkJnU7wOF331q4GL1y4EFdXV77//nuMjORPkPyKPqw/IiKCGTNmUKhQoedqRwjBjBkzlLYuXryoOEwyf0+MjIyUYyMjI+XHvoeHBzExMezZs4f09PRXKmKrUqno1q2bcpyWlkb58uWVFez169czfvz4V9K3ebnijGpRT3Gm5CbmCxlC1jVq1FCi9ABat25tIFadE5MnT6Zu3brY2dmh0Wj47LPP8rxd6lVuQTI3Nyc+Ph4gT/chebVk50zNKVICso98yG47rEqlonv37vz1118kJiZy4MABmjdvnq0NXbt2RavVsm/fPiZNmkRqaip9+vTBzs6ODh06cPLkSaVs5i2/AHFxcbRq1YrFixej0WiybT+vNp85cwYLCwvlt0BQUBAhISFKO8+7XTgn7t69S9WqVQEMokFVKhVt2rThs88+o169esoCRtOmTZkxY4ZS7n+RITnSoEED1q5dS0pKCklJSWzYkCEiXrJkSSwsLFixYgWQMX5HRkY+zy14AtE5XNsPdP7f/7vy/46SQ0B9QCeEeAhEAB+T4WB5Y+Q/dVyJRCKRvNfs3r07y7nMK08+Pj7K//38/PDz88tSXqvVGvzQ0aOPuACUiAx9m/p2ixYtarAVSI+5uXm2fenR6XScOnVKyUaRua8uXbrw0UcfkZaWRps2bZTQ5qpVq3Lw4EFUKhXLli3jzJkzSp3BgwczePDgTO1nrAZXDP6FQUuPKpOtZjaVMDJS5WjX66RHjx706NHjTZsheQWYmJiQlJSkHHt5efHbb78RFBTE7du3CQkJYeLEicrqKWR8P2fNmkWjRo0oWLAgZ8+eVSYIeaVHjx506dKFr7/++qXdS3YUL16cqKgoUlJSKFq0KNu3bzewNSAgQAmBfxEUEcNMjkYjIxXNbCpRt5IJt5IeUcGkMObliuf6vS5dujT79u3D09OTxMTELNuqsmP27Nls27aNgwcPUrp0aR4/fszkyZNJSUnJ05ap3LYg1SwvnR/vEnpnamYGDhzIZ599RkBAAHv27DHYHppd5IN+O+zmzZv56quv8PX15ZtvvqFnz5588MEHFClShA4dOlCgQPbT1cWLF+Pk5KQcjxkzhooVKxIZGYlOp6NIkSLKtSejJUqVKkWNGjUIDQ3Nst3nWW1u1apVrs/qaduFc+PBgwdUq1ZNOf7ss88YM2YMHTp0oEyZMjRq1EiJioWM7T3Ozs5K1j2A6dOn079/f9RqNWlpaTRo0CBXTRsHBwc6deqERqOhQoUKBtE6ixcvpl+/fowbN47U1FQ6d+6coyMqM5k0UqyB7kDvHIoOBOapVKphQBzQE0AI8UilUl0BDuqbBAKB40/t/BUiHSkSiUQieWPodIKYhPt5nhzkV65du0bjxo1p2LBhtj/axowZw44dO3j48CFNmzZVHCnh4eEMGDAAIQSlS5dm7ty5WerqyWk1uG4lEzmJkbxyMqeabd68ORMmTODAgQNoNBpUKhUTJkygUqVKBiuyvXv3JiYmBgcHB4QQlC9fnrVr1z5Tv127duWrr74iMDDw5d5QNrRo0YJNmzbRvn17li5dSmBgoLKlcP78+YSFhfHLL78QHBxMyZIlCQsL48aNG0yYMIH27dsDKJpOjx49ok2bNnz77bfExMTg5+eHq6sr4eHhdOzYkeTkZCZOnJil7c/6dOPKlSs8fPiQwYMH89FHH2Vra+fOnVm2bBmenp6sXr2atm3bGkQI/PTTT/z1118YGRnRvHlzxo8fz/fff09ISAilS5cGMtICjxw5UqmzdOlSfvjhB4QQ+Pv789NPPwEZESKDBw9m9dr1xCalU6vrtxQsUYbE0we4/u8SPlxWiMoVy7N48WIqVqxIXFwcXbp04dq1a7i7u7N9+3bCw8MxNTWldevWebo/ydtHTpESOXHt2jXKli1Lt27dKF26NH/++ScAVapUoUqVKowbN44dO3Y8U//VqlXDyMiIBQsW5JqSu1ChQqxZswY/Pz9KlChhIOb+rDYPHz6cmJgYzp8/T+3atVm0aBHe3t55tjs3MuuxZSYn542Tk5NBJBpkLAplJ/b9pA5aVFSU8v8vv/ySL7/8MksdCwsLtm7dmuV8ZsfNk/j4+HD37l0AVCrVSSGEsq1HCGFghBDiEtAou3aEEF6Z/r+E/9dSya6dVxeemAnpSJFIJBLJG0EfQaGf/L+NERQviypVqhiEGT9JTvumvby88hw6K1eDJa8LvTbPk+i1cfRMnDhRcQboMTc3V36wGxkZ8cMPP/DDDz8YlMkcAQaG0VtPXgsNDaV9+/bK5P9V0rlzZ8aOHUvLli05duwYvXr1ylabCeD69euEhoZy+vRpAgICaN++Pdu2bePcuXMcOnQIIQQBAQGEhIRQo0YNzp07x4IFC3BzcyMuLg53d3fl2S1fvlyZ1MydO5eyZcuSkpKCs7Mz7dq1M9Ag0uPr60ufPn1IT09n2bJl/P7773z33XcAbNmyhXXr1vHff/9RrFgxbt++rQhQZt7+kJlr164xYsQIwsPDKVOmDE2bNmXt2rW0bt2a+/fv4+bmxnffjaPjh/05HL6Fit5dKFdTzZRhH9LctjJz585hwoQJ/Pzzz3z77bc0atSIUaNGsXXrVubMmaP0k9f7k7x95BYpkR3Hjx9n2LBhGBkZUbBgQQNdka5duxIXF0e9evXy3P8nn3xCu3btWLhwIc2aNXuqZkfx4sXZuHEjTZo0oUSJEpQsWfKpfWRnc5EiRZg3bx4dOnQgLS0NZ2dn+vbtm2e7JfkX6UiRSCQSyRtBRlC8XPSClJmdKW+jIKVE8rIYOHAgW7ZsYfPmza+lP7VaTUxMDEuXLqVFixa5lm3dujVGRkZYW1sr2Usypy2HDIfUuXPnqFGjhkHa8vLly1OzZk0OHjyIpaUlp0+fxsPDA8gI09enOL1y5Qrnzp3L1tFgbGyMp6cny5YtIyUlBXNzc+Xajh076NmzJ8WKFQMyxKPv3btnUP+ff/5hxIgRJCYmsmTJEuLi4vDx8aF8+fJAxkQ3JCSE1q1bU6hQIVq2bIlKpaJd0wYYb9rCkEB77lw5z+TPgxl54zqPHz9WnDShoaHKPTRr1swgDXpe70/yZsnOmdqqVatsIyVyinzIbTtsaGgoffr0ybH/zM5VPZaWlhw7dkw51kdMPel8zezMLV26tIEItr7cs9rs6+vL0aNHs5zXR+DpdIKyZnUZP3cVF+KS39no2/cN6UiRSCQSyRtBRlC8XPSClE9G+OQkSCmR5PetdZkFFF8XAQEBDB06lD179pCQkJBjucz6CvpQe33a8o8//tigbExMTJbV886dO/P3339Tt25d2rRpg0qlYs+ePezYsYMDBw5QrFgxfHx8DDRnnqRz5860adMm11TmekqWLEmJEiW4ePEiFhYWir5Uy5Ytefz4ca51CxYsiEql+t//C1C0gAq3muXw6dUuR82M7HjW+5O8mzg6OlK8eHF+/vnnN23KS+F9ir5935CS+ZL3jqtXr9KqVSssLS2pWbMmAwYMUPK950aLFi1ITEx85msvg7t379KjRw9q165NrVq16Nq1K3fu3Hlqvd69e+e6nSAvSKV8yasiv6T0zC/oBSkX9HJheqA9C3q5yB9qkhyRqWqfj169ejF69Gjs7Oyeue6zpC1v06YN69atY+nSpXTunJHE4u7du5QpU4ZixYpx+vRpDh48mG1dPV5eXowaNSqLfkyTJk2YN28eDx48AOD27dsAjBo1in79+im/Z4QQiiPDxcWFf//9l/j4eNLT01m6dOlTdSBy0szw8PDg77//BjKidPS/Z571/iQvB51OcCEu+a3J9hYeHk5ISEiWDHf5lVeZzUryZpGOFMl7hRCCtm3b0rp1a86dO8e5c+dISUlh+PDhT627efPmLHuwhRDodLpsr71MPvzwQ2rWrMn58+eJjo6mdu3aBAcHP7Xen3/+ma2w5ZMCXLkJckkkr4pnTekpeTpGRipqli+BW81y1CxfQjpRJDkif9w/H9WqVTPIEvYs5JS2PDvKlClDvXr1uHTpEi4uLkDGNpi0tDTq1avHyJEjla1AOaFSqRg6dCimpqYG55s1a0ZAQABOTk5otVpFo6lfv374+vri6uqKWq3Gw8MDe3t77O3tqVy5MuPHj6dhw4ZoNBocHR2fmq1Er5nh6OhoYMPo0aPZtm0btra2rFixgkqVKmFiYvLM9yd5caRD9dWTW/StJH+jelLZN7/i5OQkwsLC3rQZkrecnTt38u233xqkPb137x5mZmZcuXKFlStXKsr4AC1btmTo0KH4+Phgbm5OWFgYycnJBur6mzdvxtvbW7nWvHlzPD092b9/P1WrVmXdunUULVoUHx8fJk2ahJOTE/Hx8Tg5ORETE8OJEyfo2bMnjx8/RqfTsWrVKiwtLRX7zp8/T5MmTTh//jzGxsZAhuOjVq1a/PPPP1y/fp1JkyaxceNGAAYMGICTkxPBwcEGfZYoUYKPP/6YHTt2MHPmTJo1a2ZwHBMTw/Tp03n8+DGurq78+uuvGBsbK/dtampKiRIlchQZlEieh/y+tUAiya8cvJDAoKVZ9/RPD7THrabUpJC8Oh49eoSxsTEFChTgwIED9OvXL0sqXcnr4UJcMkFzD2XR1lrQy0VusX1JyGf8/6hUqnAhhNPTS+YPZESK5L3ixIkTODo6GpwrWbIk5ubmnD9/Ps/tnDt3jk8++YQTJ05gZmaW5Vr//v05ceIEpUuXZtWqVbm2NXv2bAYPHkxERARhYWEG+eIBTp48iVarVZwokCEiZ29vz6lTp/Js8/3793F1dSUyMhJPT0+D43LlyrF8+XL27dtHREQExsbGLF68OM9tSyTPi4ygkEjeDHJrneRNcfnyZZydndFoNAwaNIg//vjjTZv03iKjJV49Mvr23UWKzUokz0Fmdf0nsbCwQKvVAhmCWXrF7pxwd3fn+++/5+rVq7Rt29YgGuVlYmxsTLt27bI93rlzJ+Hh4Tg7OwOQkpJChQoVXokdEonk7SchIQFfX18Abty4gbGxsZKt49ChQxQqVMig/LBhw9i8eTMtWrTAxsaGpk2bUqVKlddutyTvvK/ixDIK7s1jaWmZbYYTyetHZnt79ej1y+pWMpHjzjuGdKRI3iusra1ZuXKlwbl79+5x48YNrKysiIqKQqf7/z8mOanF55abPrM4lrGxMSkpKQAUKFBAaTtzu126dMHV1ZVNmzbRokULfvvtNxo1amRgc0REBDqdDiOjDG+2TqcjMjISBwcHLl++nCebixQpYhDVkvlYCEFQUBA//vhjjvclkUjeH8qVK6eE2o8ZM4YSJUowdOjQHMv//vvv3L59G2NjY3x8fLC1tZWOlLec9/HHvcyeIZEY8r46VF83+ujb920rz7uO3Nojea/w9fXlwYMHLFy4EMjQGvn8888ZMGAARYsWxdzcXHFaXLlyhUOHDr20vs3NzQkPDwcwcOZcuHCBmjVrMmjQIFq1asWxY8cM6tWuXRt7e3vGjRunnBs3bhy+vr7UqFEDMzMzTp48yaNHj0hMTGTnzp3PbJuvry8rV65Usgfcvn2bS5cuPc9tSiSSd5Tg4GCDsUufxSsgIIDk5GQcHR1Zvnw5YWFhdO3aFa1Wy6ZNm2jdurVSZ/v27bRp0+Z1my7Jgfdta50U2JVIDJHZ3iSS50c6UiTvFSqVijVr1rBy5UosLS0pV64cRkZGfPnll0BGSj4LCwusra0ZNGgQDg4OL63voUOHMmvWLOzt7ZV0wgB///03tra2aLVaoqKi6NGjR5a6c+fO5dy5c9SqVYvy5ctz8OBBZs+eDUD16tXp2LEjtra2dOzYEXt7+2e2zdramnHjxtG0aVPUajVNmjTh+vXrz3+zEonkvWH9+vUULVqUiIgIOnXqhJOTE4sXLyYiIoIWLVpw+vRp4uLiAJg3bx69evV6wxZL3lekHkTeMDY2RqvVKq/x48e/kn5atGihpFp+Gnv27GH//v3K8ZOO3WfF3NwcOzs75R6flompd+/enDx5Uqmb+Xfc07h58yZdunShZs2aODo64u7uzpo1a57b9pdNZofq+sV/8vBhinJN7zB/Hh48eEDXrl2xs7PD1tYWT09PmbBA8k4hs/ZI3mv2799PYGAga9asealOk1fJmTNn8Pf3Z/r06bRo0eJNmyORSN5x9Ft7oqKiaNmyJe3btwcwyOKV+f+Zs4UBfP/99xQrVoyePXtib2/PuXPnKFBA7iyWvH5k9oy88aoz9AkhEEIo25XzwpNbDIODgw3Go2clc0bCV1lXCEH9+vUJCgqib9++AFy6dIn169czcOBAg7JpaWmvbGxMT0832N6dE0/e24t8Fn788Ufi4uKYPHkykPH71dzc3GAL/IvyKp+Z5OUjs/ZIJO8Q9evX59KlS/nGiQJgZWXF+fPnpRNFIpG8VjLrPOl0Oh4/fpynej179uSvv/5i6dKldOjQQf7olbwxZPaMF8Pc3JxRo0ah1WpxcnLiyJEj+Pn5UatWLSVKFmDixIk4OzujVqsZPXo0ADExMVhZWdGjRw9sbW25cuWKQWTHwoULUavVaDQaunfvbtBvTEwMs2fPZsqUKWi1Wvbu3QtASEgI9evXp2bNmgbRKdn1nxdOnz6Ni4uLQb92dnZAhoP4eRZsd+3aRaFChRQnCmQkLNA7UebPn09AQACNGjXC19eX+/fv06tXL1xcXLC3t2fdunVARnRHx44dsba2pk2bNri6uir2LF26VIn6GDFihNJPiRIl+Pzzz9FoNHz//fdP3WY5ffp0rl27RsOGDWnYsKFy/ssvv0Sj0eDm5sbNmzcBiIuLo127djg7O+Ps7My+ffuy3Pv169epWrWqcmxlZUXhwoWJiYmhbt26BAcHU6dOHbp27cqOHTvw8PDA0tKSQ4cO0bBhQ6ZPn467uzv29vbUr1+fL774gn79+jF48GCsra2VZzZ//nxat25NkyZNMDc355dffmHy5MnY29vj5ubG7du3iY6ONvitf+7cuTz99o+JiWHJkiU5Xj979iwtWrTA0tISBwcHOnbsqDyjvBATE4OtrW2215418knyBtB7hfP7y9HRUUjeP9LTdSL6VpI4EB0vom8lifR03Zs2SSKRSN4pRo8eLSZOnCi+++47MXz4cCGEEGvWrBEZPyEyKF68uPL/li1bil27dhm00bJlS1GlShVx8uTJ12O0JN8SHx8vNBqN0Gg0omLFiqJKlSrK8aNHj164/Zf1u0H/vciMmZmZiIuLE0II4e7u/sK2vimMjIyUZ67RaMSyZcuEEBn39+uvvwohhPj000+FnZ2duHfvnrh165aoUKGCEEKIf/75R/Tp00fodDqRnp4u/P39xb///isuXrwoVCqVOHDggNKP/nlFRUUJS0tL5dklJCRksenJ5x0UFCTat28v0tPTxYkTJ0StWrVy7f9JzMzMhK2trXKPkydPFkIIodFoxIULF4QQQowfP1589913QgghvL29xeHDhw3szgvTpk0Tn376aY7X582bJ6pWrarc86hRo8SiRYuEEELcuXNHWFpaiuTkZDFx4kTx0UcfCSGEOH78uDA2NhaHDx8WsbGxonr16uLWrVsiNTVVNGzYUKxZs0YIIQQgli9fLoQQQqfTCSsrK3Hr1i0hhBCBgYFi/fr12T6XzPcGKOWGDRumPI/AwECxd+9eIYQQly5dEnXr1s3S1tGjR0X58uWFm5ub+PLLL8XZs2eFEEJcvHhRGBsbi2PHjon09HTh4OAgevbsKXQ6nVi7dq1o1aqV+O2330SXLl1EamqqEEKI7du3izJlyoh///03yzObN2+eqFWrlvJZLFmypJg1a5YQIuNzOmXKFCGEED4+PuLo0aPKc54+fXqO74ue3bt3C39//2yvpaSkiNq1axs8x927d4vjx48blNPfQ3ZcvHhR2NjYZHvtWT5n+QUgTLwFfoOX9ZLLQpJ8i1Tfl0gkktdHnz59aNWqFRqNhmbNmuWYvSw4OJi+fftStGhRDhw4QNGiRenatStxcXHUq1fvNVudf1CpVHTt2pW//voLyAhZr1y5Mq6urmzcuJH169dz8uRJRo4c+dL7nj9/PmFhYfzyyy95rnPo0CGGDx9ObGwsJiYmVK5cmfHjxysr+M/b97NmjNKTOcT/ye1lmXld2TMy63nkN/SaR9kREBAAgJ2dHcnJyZiYmGBiYkLhwoVJTExk27ZtbNu2TdFrS05O5ty5c4o4vpubW5Y2d+3aRYcOHZTtJGXLls2Tna1bt8bIyAhra2slCiCn/hs0aJCl/u7du7Nsz+nYsSPLly9n5MiRLF++nOXLl+fJlrzSv39/QkNDKVSoEIcPHwagSZMmyj1v27aN9evXM2nSJCAjE+Ply5cJDQ1l8ODBANja2qJWqwE4fPgwPj4+Snr6rl27EhISQuvWrTE2NqZdu3ZAxvjSvXt3/vrrL3r27MmBAweUxAu5UahQIVq2bAmAo6Mj27dvB2DHjh2KZgxkZMBMTk420FTRarVcuHCBbdu2sWPHDpydnZW/CRYWFspYYWNjg6+vLyqVCjs7O2JiYmjfvj2jRo2iXbt2REdHk5aWRlJSEl5eXixcuBATExPKli1LcHAwsbGxJCUlodFomDBhAqVKleKDDz7gp59+YsWKFTx69IgbN27Qu3dvpk6dyvXr19mzZw/29vY0adJEiY4pWbIkYWFh3LhxgwkTJtC+fXtGjhzJqVOn0Gq1BAUFMWTIEOX+lixZgru7Ox988IFyzsfHB8gY11avXk1ycjLp6els2rSJVq1acefOHVJTUxk3bhytWrUCMsaurl27cuTIEWxsbFi4cCHFihUDYMKECWzZsoWiRYuyZMkSateuTVxcHH379uXy5csATJ06FQ8Pj6e+l5KXj3SkSPItOanv161kIvc6SyQSyUtizJgxyv8PHjyo/P+nn35S/p95D327du2UH+96QkND6dOnz6sz8h2gePHiREVFkZKSQtGiRdm+fbtBWHxAQIAyic3Mm9AIuHnzJh07dmTJkiXUr18fyHiPo6Ojn9mRkhfCw8P57LPPSE5OxtTUlPnz51O5cmV8fHzQarWEhoYSGBiIj48Pn332GUeOHGHAgAGsWbNGKefq6sru3btJTExkzpw5eHl5kZ6ezogRI9i6dStGRkb06dOHgQMH5tjfs6DXltDpdAwYMIBdu3ZRvXp1ChYsSK9evWjfvj2bN2/ms88+o3jx4nh4eHDhwgU2btzIv//+q0yaVSoVISEhmJiYvPTn+jzo9S2MjIwMtC6MjIxIS0tDCMGoUaP4+OOPDerFxMTk6Hx9UVsgI8Je/292/eeVTp060aFDB9q2bYtKpcLS0vKFbLSxsWHVqlXK8cyZM4mPjzdw8mV+LkIIVq1ahZWV1Qv1C1CkSBEDXZSePXvywQcfUKRIkTxvsyxYsCAqVcbipLGxMWlpaUDG9s6DBw9SpEiRXOuXKFGCtm3b0rZtW4yMjNi8eTPt2rXL8tnJ/LlKS0ujbNmyFCtWjAoVKrBu3TpGjBjB7NmzFVsKFiyo1E9MTKR9+/b079+fgIAAjIyM2Lt3L+vWrePrr7/m+PHjDB8+nGLFitGnTx9+/vlnSpUqxeeff84nn3zCrl27gIytSKGhoZw+fZqAgADat2/P+PHjmTRpEhs3bsxyb1FRUTg6OuZ470eOHOHYsWOULVuWtLQ01qxZQ8mSJYmPj8fNzU0Zz8+cOcOcOXPw8PCgV69e/Prrr4rzuFSpUhw/fpyFCxfy6aefsnHjRgYPHsyQIUPw9PTk8uXL+Pn5cerUqdzfSMkrQWqkSPItUn1fIpFI8oZOJ7gQl8zBCwlciEtGp3t9QvOOjo4cO3aMbt26vbY+8ystWrRg06ZNQIbuQWBgoHJt/vz5DBgwAPj/qB9XV1eGDx/OoUOHDLQEzpw5o9Rp27YtzZo1w9LSkuHDhyvtzZs3jzp16uDi4mKgb7BhwwZcXV2xt7encePG2e73/+WXXwgKClKcKACenp6KBkNMTAyNGjVCrVbj6+urrJyuWLECW1tbNBqNQYTAtWvXsrVx48aNTJ06FS8vL5ydnQkPD8fb21uJaoiPj+eXX35h//79fPTRR3h4eLBy5UocHR0JCAjgiy++IDg4mIsXL5KWlsahQ4eYOnUq3377LQC///47MTExREREcOzYMbp27UpqaioDBw5k5cqVhIeH06tXLyWz35PoNTv0r2vXrmUps3r1amJiYjh58iSLFi3iwIEDQEakwccff8yWLVsIDw9XMlsBTJo0iZkzZxIREcHevXspWrRotv2/jfj5+TF37lzFuRobG8utW7dyrdOoUSNWrFhBQkICALdv385SxsTEhKSkpFfSf2Zq1aqFsbEx3333HZ06dcpzvZxo1KgRDx8+ZNasWcq5Bw8e5Fjez8+PGTNmKI6ho0ePAhlZJf/++28ATp48yfHjxwFwcXHh33//JT4+nvT0dJYuXYq3t3e2bVepUoUqVaowbtw4evbsmW2ZvD7npk2bMmPGDOU4uwimffv2cefOHQAeP37MyZMnMTMze2rbeipWrKg4CBYsWJCjI87BwQGVSmUQmRQSEkLPnj0VB43emfH48WMGDRpEWFgYH3/8sUGGyuwinF6EzJFGQgi++OIL1Go1jRs3JjY2VumjevXqSkRJt27dCA0NVdrQ/w0IDAxUxo4dO3YwYMAAtFotAQEBSjSQ5PUjI1Ik+ZYKJoUpXMAoi/p+BZOXpwYukUgk+Z03vQ0yPDz8lffxrtC5c2fGjh1Ly5YtOXbsGL169VKENZ/k6tWr7N+/H2NjY+7du8fevXspUKAAO3bs4IsvvlBWwSMiIjh69CiFCxfGysqKgQMHUqBAAUaPHk14eDilSpWiYcOGylYIT09PDh48iEql4s8//2TChAn8/PPPBn2fOHGCoKCgHO9j4MCBBAUFERQUxNy5cxk0aBBr165l7Nix/PPPP1StWtUg7W12NlavXh1fX19MTEz46aefmD17Nhs2bKBgwYKK0+Hu3bvUrl2bw4cPc/bsWdLT02nSpAnnz5/nypUr3L9/n4EDBxITE0Pbtm2BDMdeTEwMkDEh6du3r7IyX7ZsWaKiooiKiqJJkyZARraTnKJRhgwZYrDtyNzcPEuZ0NBQOnTogJGREZUqVVJEPE+fPk3NmjWxsLAAMiZKv//+O5Axaf7ss8/o2rUrbdu2pVq1ajk+61dBSkoKWq1WOW7WrFmeUyA3bdqUU6dO4e7uDmREJPz111+5ZoyxsbHhyy+/xNvbG2NjY+zt7Zk/f75BmQ8++ID27duzbt06gwl8XvuvUKFClrINGzZU7FKr1cpWl06dOjFs2DAuXryYp3vODZVKxdq1axkyZAgTJkygfPnyFC9e3CCiLzNff/01n376KWq1Gp1Oh4WFBRs3buSTTz4hKCgIa2tr6tati42NDaVKlVK21DVs2BAhBP7+/sqWkex42jbLjz76iGbNmlGlShV2796dYzvTp0+nf//+qNVq0tLSaNCggYHgMEB0dDT9+vVDCIFOp8Pf35927dpx6dKlPDy5jKhHPz8/6taty+PHjylZsmS25TJH1ugdUNmh0+koVaoURYsW5dy5c1k+k9lFOOWGjY0N//77b47XMzt+Fi9eTFxcHOHh4RQsWBBzc3MePnwIoETZ6Ml8nN3/8xoNJHn1SEeKJN+iV99/cnIg1fclEonk/5HbIPMParWamJgYli5d+tTMbB06dFAmAnfv3iUoKIhz586hUqlITU1Vyvn6+lKqVCkArK2tuXTpEvHx8Qa6Cp06deLs2bNAhoOmU6dOXL9+ncePHysT/dxwdXXl3r17NG3alGnTpnHgwAFWr14NQPfu3ZUoEw8PD4KDg+nYsaPi2MjJxurVq3PixAmOHDmCTqejWLFifPvtt3Tu3JkmTZpw6tQpkpKS6Nu3LyEhIVy7do1q1aoRERGBj48Pd+7cUaJJtm/frkySMm9PyA4hBDY2Nsrq75tg5MiR+Pv7s3nzZjw8PPjnn3+oW7fua+s/PT092/N6BxRkREUFBwdne23w4MHK1qTMREVF5die3vGWE3Xq1OHYsWPKsZeXl8H1zCvyOfWfU99PMnTo0Cy6PHv27MlT3eyoXLkyy5Yty/bak8+xaNGi/Pbbb1nKFSlShL/++osiRYoQHR1N48aNleiOwMBAg+g1PdlFKTxtm+XAgQMN0jJnbqN9+/ZKumlTU9On6sf06NGDHj16ZDlvbm5u8FnI7DTLfM3X15d27dpx5swZBg4cqESSeXp6GjgRGjZsaJAGOyYmhq1btzJ27Fh27NhBcHAwt2/fpmzZspiYmODo6IixsTFCCI4dO4ZGo8nxHnKL0OnSpQs//vgjmzZtwt/fH8iIhMlO4+fu3btUqFCBggULsnv3bgNn0uXLlzlw4ADu7u4sWbIET09P5VpmvR69c1AfDTRs2DAgwxGd2fEpeX3IrT2SfIuRkYpmNpVY0MuF6YH2LOjlIoVmJRKJ5AnkNsj8RUBAAEOHDs12YpSZzKudX3/9NQ0bNiQqKooNGzYoK51guMr6NCcCZEykBgwYwPHjx/ntt98M2tJjY2PDkSNHlOP//vuP7777jrt37+ba9uzZsxk3bhxXrlzB0dFR2cqRnY0XL15UtuxUrlwZFxcXHj58SGpqKnXr1mXLli2oVCpcXFwIDQ3lzJkzpKWlKQ4QNzc3Nm7cmK39epo0acJvv/2mPJPbt29jZWVFXFyc0k5qaionTpzI9b5yw8PDg1WrVqHT6bh586YyIbeysuLChQvKpDzzpFSvNTNixAicnZ05ffr0c/X9Jrf0vYu8yef54MEDPD090Wg0tGnThl9//ZVChQo9Uxv5cZtlYGAgkZGRTx0Pn6RZs2YEBATg5OSEVqtl0qRJtGnThiJFinDnzh00Gg02NjZKeumcUKvVGBsbo9FomDJlisG1okWLsnHjRmbMmIGlpSXW1tb8+uuvioM6M127diUsLAw7OzsWLlxo4Bi1srJi5syZ1KtXjzt37tCvXz/l2p07d1Cr1UybNk3pf/r06YSFhaFWq7G2ts4SCSR5fciIFEm+5nWp70skEkl+RW6DzF/06tWL0qVLY2dnZ7AKnht3795VhGmf3BKRHa6urgwePJiEhARKlizJihUrlFXZzG0tWLAg2/r9+/fH1dUVPz8/RScls+5D/fr1WbZsGd27d2fx4sVK9EB0dDSurq64urqyZcsWrly5kqON9+7do1ChQhQrVozffvuN5s2bc+zYMSZOnEjz5s2ZOnUqJUuWpEyZMiQkJHDz5k3Wr1/P4MGDOXLkCJcvX8bJyYmOHTvmGKbfu3dvzp49i1qtpmDBgvTp04cBAwawcuVKBg0axN27d0lLS+PTTz/Fxsbmqc81O9q1a8fOnTuxtramevXqODg4KNsLfv31VyUDlrOzs1Jn6tSp7N69GyMjI2xsbGjevPkz9/umt/S9a7zp52liYkJYWNgLtZEft1m2bt06y/c3cxTPk+Nd5giakSNH5jnLWU7tFCxYUBGjzY66deuydevWLOefjDQyNTXNMcotJ0ep3sn65DawvEQDSV4P0pEikUgkEsk7jNwGmb+oVq0agwYNeqY6w4cPJygoiHHjxikh5rlRuXJlxowZg7u7O6VLlzYICx8zZgwdOnSgTJkyNGrUKFudiEqVKrF8+XJGjBhBbGwsFSpUwNTUlG+++QaAGTNm0LNnTyZOnEj58uWZN28eAMOGDePcuXMIIfD19UWj0eSYZlefZvvPP//kn3/+oWXLlgQEBBAcHExKSgozZsxgw4YNODk5oVaruXHjBvb29oSEhBikPx49ejRnz57FwcEByJiE6CcoBQoUYPLkyUyePNmgb61WS0hISK7PMHM2Kz2Zt3zoJ2JGRkZMmjSJEiVKkJCQgIuLi5LZqGHDhpw+fRohBP3791cyueSmAZJX5Ja+l4t8nhKJ5ElUeRHTyQ84OTmJF/XUSiQSiUTyLqLTCWIS7nMr6REVTApjXq64XJWWSF4TPj4+JCYm8vjxY4YPH66sVE+ZMoUFCxbw+PFj7O3t+eOPPyhWrNhL6fPghQQGLT2a5fz0QHvcapZ7KX28T8jn+WLIv0ESAJVKFS6EcHp6yfyBjEiRSCQSieQdR26DfH3ICYMh8nmQ4xatIUOGMGTIkFfSp9zS93KRz/P5edPboiSSV4UUm5Vki7GxMVqtFltbWz744AODNIXZMX/+fAYMGPBabIuJicHW1tbg3JgxY5g0adJL60O/5/tJgoODWbly5UvrR/JqKVHCcNL4PJ9Tc3Nz4uPj81S2RYsWT/2uSCSSdxf9hCFo7iEGLT1K0NxDbD1x470V+ZTP482h39JXuEDGT325pe/FkM/z+clpW1RMwv03bJlE8mJIR4okW4oWLUpERARRUVGULVuWmTNnvmmTXgt65f79+/e/YUsk+ZHNmzdTunTpN22G5C1E75zWaDQ4ODg81xjzww8/GBzn5PDNCXNzc+zs7NBqtdjZ2T01W0FiYiK//vqrchwTE8OSJUueqc+3mbVr16JSqXLNiOLj4/NUgcfMZUxMTF5owrBnz55sPxtCCExNTblz5w4A169fR6VSERoaqpQpX768kgUnO6ZPn069evXo2rUrjx49onHjxmi1WpYvX25wDy/TISwnUG8Omdnw5SKf5/MjM8dJ3lWkI0XyVNzd3YmNjQUMfzDGx8djbm6ulLty5Qo+Pj5YWloqud4B/vrrL1xcXNBqtXz88cekp6cDhtECK1euVPYMr1ixAltbWzQaDQ0aNHhme//44w+cnZ3RaDS0a9dOySQQHR2Nm5sbdnZ2fPXVV0r/e/bswcvLi4CAAKytrQ1sE0IwYMAArKysaNy4Mbdu3XpmeyRvJ3FxcbRr1w5nZ2ecnZ3Zt28fAAkJCTRt2hQbGxt69+6tqMVPnDiR6dOnAxnh2I0aNQJg165ddO3aFTCMXvnuu++wsrLC09OTwMDAlxoxJcl/6J3TkZGR/Pjjj4waNSrPdYUQ6HS6LI6U53HG7N69m4iICCUrSW68646UpUuX4unpydKlS19amwKee8KQlpaWoyNFpVLh5uamZH3Yv38/9vb2StkzZ85Qrlw5ypXLWavh119/Zfv27SxevJijRzO0HiIiIujUqZNBuZfpEJYTqDeLfkufW81y1CxfQk76XxD5PJ8P/baozMhtUZJ3AelIkeRKeno6O3fuJCAg4KllDx06xKpVqzh27BgrVqwgLCyMU6dOsXz5cvbt20dERATGxsYsXrw413bGjh3LP//8Q2RkJOvXr8+2THR0NFqtVnllzqHetm1bDh8+TGRkJPXq1WPOnDkADB48mMGDB3P8+HGqVatm0N6RI0eYNm0aZ8+eNTi/Zs0azpw5w8mTJ1m4cKGMVMlnpKSkGHxO9BklIOPzMGTIEA4fPsyqVavo3bs3AN9++y2enp6cOHGCNm3acPnyZQC8vLzYu3cvAGFhYSQnJ5OamsrevXuzOPz0bUZGRrJly5YXTlkoebe4d+8eZcqUUY4nTpyIs7MzarWa0aNHAxlOCysrK3r06IGtrS0ffvih8nnWO+4yO6Oza+NZbJg8eTK2trbY2toydepUICN1pH6sHTZsGCNHjmTv3r1otVqmTJnyMh7FGyM5OZnQ0FDmzJnDsmXLlPMpKSl07tyZevXq0aZNG1JSUpRr/fr1w8nJCRsbmxyfsQqI3TKb49N7c3ruMFLvJ1K4gBEp8bE0a9YMR0dHvLy8lCiY4OBg+vbti6urKx07dmT27NlMmTIFrVarjDd66tevr/wN2r9/P0OGDDFwrHh4eJCcnIyvry8ODg4GUUd9+/blwoULNG/enJ9++olu3bpx+PBhtFot0dHRBv3oHcIxMTHUq1ePPn36YGNjQ9OmTZXncfjwYdRqtfLZeHK7rR45gZJIJHJblORdRYrNSrJF/4M9NjaWevXq0aRJk6fWadKkibIa1rZtW0JDQylQoADh4eE4Ozsr7VaoUCHXdjw8PAgODqZjx460bds22zK1atUySJmYOQ1hVFQUX331FYmJiSQnJ+Pn5wfAgQMHWLt2LQBdunRh6NChSh0XFxcsLCyy9BMSEkJgYCDGxsZUqVJFiUKQ5A/0UQB65s+frzg1duzYwcmTJ5Vr9+7dIzk5mZCQEFavXg2Av7+/Mtl0dHQkPDyce/fuUbhwYRwcHAgLC2Pv3r1KpIqeffv20apVK4oUKUKRIkX44IMPXvGdSt529GPqw4cPuX79Ort27QJg27ZtnDt3jkOHDiGEICAggJCQEGrUqMG5c+dYsGABbm5uQEa0XnapYnNqI7uIvoYNGyKE4MKFC/z9998AhIeHM2/ePP777z+EELi6uuLt7c348eOJiopS+tyzZw+TJk1i48aNr+YhvUbWrVtHs2bNqFOnDuXKlSM8PBxHR0dmzZpFsWLFOHXqFMeOHVNS5gJ8//33lC1blvT0dHx9fTl27Bhqtdqg3QcP7vNJy4YcVH3ChW0LuLnnL77/bRbjPu3G7NmzsbS05L///uOTTz5RPgNXr15l//79GBsbM2bMGEqUKGHw90mPh4eHEu156NAhvv32W6ZNmwZkOFLq169PkSJFWLNmDSVLliQ+Ph43NzcCAgKYPXs2W7duZffu3ZiamuLq6pqn9/LcuXMsXbqUP/74g44dO7Jq1Sq6detGz549+eOPP3B3d2fkyJE51peptyUSiX5bVN1KJu+16LTk3UM6UiTZop+APnjwAD8/P2bOnMmgQYMoUKAAOl1GmO7Dhw8N6qhUqizHQgiCgoL48ccfs/SRuXzmtmbPns1///3Hpk2blMlrbuHKTxIcHMzatWvRaDTMnz8/R7X8zBQvLn/UvW/odDoOHjxIkSJF8lS+YMGCWFhYMH/+fOrXr49arWb37t2cP3+eevXqvWJr8w/GxsbY2dkpx507d851ovW8tGjRgiVLluRpC8LNmzf58MMPuXLlCqmpqZibm7N58+Y89aOPAoiJiWH//v106dIl1/Lm5uaEhYVhampqcD6zU+/AgQP06NGDqKgotm3bxrZt27C3twcyIiXOnTtHjRo1MDMzU5wouZFTG9k5UvQT6ejoaHx9ffHx8SE0NJQ2bdoo42Dbtm3Zu3dvniIR8ytLly5l8ODBQMZndOnSpTg6OhISEqJseVKr1QaOkr///pvff/+dtLQ0rl+/zsmTJ7M4UoyMjPj+s4+4evcRR11L8fWAnnialaDd/v106NBBKffo0f9vbenQoQPGxsZPtdnZ2ZmjR49y//59UlNTKVGiBDVr1uT8+fPs37+fzz//HCEEX3zxBSEhIRgZGREbG8vNmzepVKnScz0nCwsLtFotkOFMjomJITExkaSkJNzd3YGMhYmcHDJyAiWRSEBmjpO8m8itPZJcKVasGNOnT+fnn38mLS0Nc3NzwsPDAbJkr9m+fTu3b98mJSWFtWvX4uHhga+vLytXrlS0RW7fvs2lS5cAqFixIqdOnUKn07FmzRqlnejoaFxdXRk7dizly5fnypUrz2RzUlISlStXJjU11WAbkZubG6tWrQIwCOXOjQYNGrB8+XLS09O5fv06u3fvfiZbJG8vTZs2ZcaMGcqxfpLboEEDRQdiy5YtirgjZGzvmTRpEg0aNMDLy4vZs2djb2+fxYno4eHBhg0bePjwIcnJye/ECn5e0TsM9K+X7UTR64U8i47DN998Q5MmTYiMjOTkyZOMHz8+z/3pt1K8TH0Qd3d34uPjiYuLQwjBqFGjlOd1/vx5PvzwQyDvDt7c2siJWrVqUbFiRYOorPeF27dvs2vXLnr37o25uTkTJ07k77//VvSQsuPixYtMmjSJnTt3cuzYMfz9/bMsJujRTxjsa5ShcEFjQFC6dGmD78WpU6eU8nl9n4sVK4alpSVz585VImXc3NzYvHkzt27dwsrKisWLFxMXF0d4eDgRERFUrFgxRzvzQuHC/78Fx9jYWBFkfxakroREIpFI3kWkI0XyVOzt7VGr1SxdupShQ4cya9Ys7O3ts6SEdXFxoV27dqjVatq1a4eTkxPW1taMGzeOpk2bolaradKkCdevXwdg/PjxtGzZkvr161O5cmWlnWHDhmFnZ4etrS3169dHo9E8k73fffcdrq6ueHh4ULduXeX81KlTmTx5Mmq1mvPnz1OqVKmnttWmTRssLS2xtramR48eygqcJP8zffp0wsLCUKvVWFtbKzo7o0ePJiQkBBsbG1avXk2NGjWUOl5eXly/fh13d3cqVqxIkSJF8PLyytK2s7MzAQEBqNVqmjdvjp2dXZ4+b+8y5ubmjBo1Cq1Wi5OTE0eOHMHPz49atWoZaBzlRS/kypUrBsK+CxcuRK1Wo9Fo6N69e5a+r1+/bqCLpI8i6N+/v6LD1KZNG3r16gXA3Llz+fLLL4H/1yF5Uh8kPT2doUOHYmtri1qtNnDKzZgxQ9GoyC4jzOnTp0lPT6dcuXL4+fkxd+5ckpOTAYiNjc1R1LpgwYKkpqZmOf8sbei5desWFy9exMzMDC8vL9auXcuDBw+4f/8+a9aswcvLCxMTE5KSkpQ6Tx7nV1auXEn37t25dOkSMTExXLlyBQsLC0XvSO8wi4qK4tixY0DG1r/ixYtTqlQpbt68yZYtW7JtW6fTKYsMS5YswdPTk5IlS2JhYcGKFSuADMdXZGRktvWf9ozr16/P1KlTlb9F7u7uTJs2DTc3N1QqFXfv3qVChQoULFiQ3bt3KwsXL5PSpUtjYmLCf//9B+R9YUIikUgkkncKIcQ78XJ0dBQSSW7cv39f6HQ6IYQQS5cuFQEBAW/YIsm7TFJSkhAi43Pn6OgowsPD37BFrwcjIyOh0WiU17Jly4QQQpiZmYlff/1VCCHEp59+Kuzs7MS9e/fErVu3RIUKFYQQQvzzzz+iT58+QqfTifT0dOHv7y/+/fdfcfHiRaFSqcSBAweUfszMzERcXJyIiooSlpaWIi4uTgghREJCQhabtm7dKkqVKiV8fHzEuHHjRGxsrBAiYxwYOnSoEEIIZ2dn4erqKoQQIjg4WGzdulUIIUTx4sWFEELs3r1b+Pv7K23++uuvol27diI1NdWgXzMzMzF9+nQhhBAzZ84UH374YZbnolarxcaNG5W2pk6dKmxtbYWtra1wc3MT58+fFxcvXhQ2NjYG9zF8+HBRt25d0aVLFwPbcmrjSczMzIStra3QaDTC2tpazJkzR7n2888/CxsbG2FjYyOmTJminA8MDBQ2NjZi6NCh4vHjx6Jhw4ZCrVaLyZMnZ2lfz/Xr10WnTp1EzZo1hYODg2jevLk4c+ZMjuVfBkFBQWLFihVCCCE+/PBDceLEiRzL+vj4iC1bthicmzZtmujbt6948OCB6NSpk6hVq5YwMjISxYoVE5aWlkKj0Yju3bsLS0tL0ahRI9GmTRsxb948IYQQ3t7e4vDhw0KIjPdkyJAhQqVSiYYNG4pbt24JIYS4cOGC8PPzE2q1WtSrV098++23WewWQogzZ84IOzs7odFoREhISBbb//77bwGIc+fOCSGEePjwoShUqJD44YcfhBBCxMXFCTc3N2FrayuCg4NF3bp1xcWLF4UQ//+dESLr5znzPejLPfkZnDhxohg9erQQQoiDBw8qdg4aNEjUr18/x+ctkUgkEokQQgBh4i3wG7ys1xs34GW9pCMlZ9LTdSL6VpI4EB0vom8lifR03Zs26Y0QEhIi1Gq1sLOzE15eXsoPUYnkVRAYGCg0Go2wsrJSJjnvA5kn95kxMzMTV69eFUIIMWfOHNG7d2/lWvXq1cWdO3fE559/LszMzBSHQ61atcSff/4pLl68KMzNzbO0FxcXJ6ZPny6++OKLp9qVkJAgFi9eLLp16yYqVKggbt26Ja5evSpcXV3FiRMnRFBQkAgICBDXrl0TVlZW4t69ewb38+TEs23btmLbtm253ufBgweFr6/vU217l9DpdMLNzU3MmjVLORcREZGtUyA79I6pZ+VJh8SLkp0j61nI6XvwrqB3FAshxI8//igGDRr0Bq2RSCQSSX7gXXOkyK097zg6nWDriRsEzT3EoKVHCZp7iK0nbqDT5bwX/F3Fy8uLyMhIjh07RkhICLVr137TJkmeAZ1OcCEumYMXErgQl/zWf4aXLFlCREQEp0+fZtSoUW/anLcCvd6CkZGRgfaCkZERaWlpCPHieiE5UbZsWbp06cKiRYtwdnYmJCSEqlWrkpiYyNatWxXdm7///psSJUpgYmLywvf5vJoS+Zndu3dTsGBB+vbtq5zTaDR4eXkhhFBS5drZ2bF8+XIgIxuQl5cXAQEBWFtbs2fPHnx8fGjfvj1169ala9euGSs/ZGQY8vb2xtHRET8/P65fv45OJ0h6mMrZm0lciEvGx8dHyc6VOUX0ypUrCQ4OBjIyINna2qLRaLIV5c2JnNq7ePEi7u7u2NnZ8dVXXylldDodn3zyCXXr1qVJkya0aNFC2fqT3b3kFzZt2oRWq8XW1pa9e/ca3LNEIpFIJO8D0pHyjhOTcF9JOwjwKE3Hj5tPEZNw/w1bJpHkHekQfD94Hq2PRo0asWLFChISEoAMIdEn2bVrFw8ePAAyxKijo6MV7Rs3NzemTp2qOFImTZqUre6NXrtC79CrZe/O5Okzefw4Ncd+30eioqJwdHTM9trq1auJiIggMjKSHTt2MGzYMMV5cOTIEaZNm8bZs2cBOHr0KFOnTuXkyZNcuHCBffv2kZqaysCBA1m5ciXh4eH06tWLL774gq0nbhB6Lp65oRcJmnuI2/cfP3VsGDt2LP/88w+RkZGKTs6TREdHo9Vq0Wq19O/fP9f2Bg8eTL9+/Th+/LiB5tfq1auJiYnh5MmTLFq0iAMHDgBkey96XZ78QKdOnYiIiCAqKopNmzZRvnz5N22SRCKRSCSvFZn++B3nVtIjxYmi51GajltJj2QKMkm+ISeHYN1KJvJz/JaRkpKipEsFaNasWZ6z5DRt2pRTp04pQpolSpTgr7/+yjU1rI2NDV9++SXe3t4YGxtjb2/P/PnzDcqEh4czYMAAJX177969cXZ2BjIi1bZt20bt2rUxMzPj9u3b2TpS1Go1xsbG1K5nC5belHNpxbXEg9SuZ0OZEkXp06cPAwYMyNN9vq+EhoYSGBiIsbExFStWxNvbm8OHD1OyZElcXFywsLBQyrq4uCgCwVqtlpiYGEqXLk1UVBRNmjQBID09ndLlKvDj5lOk/y9i5VGajksJD7h2NyVXWzw8PAgODqZjx460bds22zK1atVSsnk9jX379ilZ4bp3786IESOUe+7QoQNGRkZUqlSJhg0bAnDmzJks95LZASORSCQSieTtRjpS3nEqmBSmcAEjA2dK4QJGVDApnEstieTtQjoE8w/p6enZno+JiVH+HxwcrGyJePLa4MGDGTx4cJb6UVFRObYXFBREUFBQjjYNGzaMYcOGZXvtww8/VLYPFSxYkPv3DaP19NExBQsW5M/l6wmae0j5LFZt1pfCBYxY0MtF+RxmtsvJyYk9e/bkaNe7iI2NjbJ15Vl4cutWdml3hRDY2NgoUR0ABy8kMGjpUYO6Qgju3H8MYJCaPHMa4NmzZ/Pff/+xadMmHB0dCQ8Pp1y5ck+1M6f2nrz2NLK7F4lEIpFIJPkHubXnHce8XHFGtahH4QIZb3XhAkaMalEP83IvpjcgkbxO9A7BzEiH4Ksnv+nS6DE2Nkar1aLRaHBwcGD//v25lk9MTOTXX39Vjvfs2UPLli2zlLuV9IjTKyaScisjpWzkpG4k373DraRHBuXGjBnDpEmT8mzv/PnzKV++PFqtFhsbG9q3b69sRXpZZE4XnRf27Nnz1OeWHY0aNeLRo0f8/vvvyrljx46xd+9evLy8WL58Oenp6cTFxRESEoKLi0ue27aysiIuLs5ge0xi7IUsY4NKpaJM8UIAVKxYkVOnTqHT6VizZo1SJjo6GldXV8aOHUv58uW5cuVKnmzIqT0PDw8lDfDixYsNzq9atQqdTsfNmzcVx1p293LixIk8PwuJRCKRSCRvFulIeccxMlLRzKYSC3q5MD3QngW9XGhmUwkjo7yvnEkkbxrpEHz95GddmqJFiypaHD/++ONTxX6fdKTkRAWTwtTtMIyiFcyUcy/LoafXnDhx4gSFChVShFjfFM/rSFGpVKxZs4YdO3ZQq1YtbGxsGDVqFJUqVaJNmzao1Wo0Gg2NGjViwoQJVKpUKc9tFypUiJUrVzJixAg0Gg1arZZLJ48yqkU9jP8XDVK4gBFm5YpRpVRRAMaPH0/Lli2pX7++wdaZYcOGYWdnh62tLfXr10ej0eTJhpzamzZtGjNnzsTOzo7Y2FjlfLt27ahWrRrW1tZ069YNBwcHSpUqle29PM/zlkgkEolE8mZQ6ZXw8ztOTk5Cr9IvkUjePXQ6QUzCfW4lPaKCSWHMyxWXDsFXyIW4ZINtLECWbSxvKyVKlFC25KxYsYLFixezdu1akpOTadWqFXfu3CE1NZVx48bRqlUrOnfuzLp167CysqJJkyb4+/szZswYTE1NFfHUv/76CyFA6+qBkVt3ClWy5Nikbsxbt4NOnjb8+OMPLFiwgAoVKlC9enUcHR0ZOnQof/zxB7///juPHz+mdu3aLFq0iGLFihnYO3/+fMLCwvjll19IS0ujXbt29OzZk9atW7NhwwbGjRvH48ePKVeuHIsXL6ZixYrExcXRpUsXrl27hru7O9u3byc8PJyiRYvSsWNHrl69Snp6Ol9//TWdOnXC3NycoKAgNmzYQGpqKitWrKBu3brcvn2bXr16ceHCBYoVK8bvv/9OyZIlcXNzw9jYmPLlyzNjxoxsdWPeFt72sSE5OZkSJUqQkJCAi4sL+/bteyYHkkQikUgk7wIqlSpcCOH0pu14WUiNFIlEki8wMlJRs3yJt34S/66Qn3Vp9IK3Dx8+5Pr16+zatQuAIkWKsGbNGkqWLEl8fDxubm4EBAQwfvx4oqKiFGHRPXv2cPToUU6cOEGVKlXw8PBg3759eHp6UrZ4IT4NsKFSLRva/1YY37oVOXr0CMuWLSMiIoK0tDQcHByUzDVt27alT58+AHz11VfMmTOHgQMHZrF5+fLlhIaGcv36derUqcMHH3wAgKenJwcPHkSlUvHnn38yYcIEfv75Z7799lsaNWrEqFGj2Lp1K3PmzAFg69atVKlShU2bNgFw9+5dpQ9TU1OOHDnCr7/+yqRJk/jzzz8ZPXo09vb2rF27ll27dtGjRw8iIiLo27cvJUqUYOjQoa/mTXqJvO1jQ8uWLUlMTOTx48d8/fXX0okikUgkEsk7gNzaI5FIJJIs5GddGv3WntOnT7N161Z69OiBEAIhBF988QVqtZrGjRsTGxvLzZs3s21DnzXGyMhIyRqjp1qZYrjVLEcBIxVGRir27t1LmzZtKFasGCVLliQgIEApGxUVhZeXF3Z2dixevDhHHQz91p4bN25gZ2fHxIkTAbh69Sp+fn7KOX390NBQOnfuDGRkRipTpgwAdnZ2bN++nREjRrB3715KlSql9KHPTuPo6KjcT2hoKN27dwcy9E0SEhK4d+8ekCGImh81ct429uzZQ0REBCdPnjQQWZZIJBKJRJJ/kY4UiUQikWThXdGlcXd3Jz4+nri4OBYvXkxcXBzh4eFERERQsWLFLJlX9GSXNeZ5CA4O5pdffuH48eOMHj06x/70qFQqPvjgA0JCQgAYOHAgAwYM4Pjx4/z2229PrV+nTh2OHDmCnZ0dX331FWPHjs1yT3m5HyEEp28k5UuNHIlEIpFIJJJXjXSkSCQSiSQL74pQ9enTp0lPT6dcuXLcvXuXChUqULBgQXbv3s2lSxnZd0xMTEhKSnruPho0aMDatWtJSUkhKSmJDRs2KNeSkpKoXLkyqampBtlcciM0NJRatWoBGVtzqlatCsCCBQuUMh4eHvz9998AbNu2jTt37gBw7do1ihUrRrdu3Rg2bBhHjhzJtS8vLy/Frj179mBqakrJkiVJNSrM9sgYZXvXozQdP24+RUzC/dyak0gkEolEInkvkI4UieQt4+bNm3Tp0oWaNWvi6OiIu7u7QZrNzFy7do327du/dBvWrl3LyZMnleP58+dz7dq1PNefP38+AwYMMDjn4+PDyxCEjomJwdbWNttr586do2XLltSqVQtHR0caNmyorOznRE6pajP3ExYWxqBBg17Y9vyGXnvCrWY5apYvkW+cKHqNFK1WS6dOnViwYAHGxsZ07dqVsLAw7OzsWLhwIXXr1gWgXLlyeHh4YGtry7Bhw565PwcHBzp16oRGo6F58+Y4Ozsr17777jtcXV3x8PBQ+suO5cuXo9VqUavVHD16lK+//hrI+Hx26NABR0dHTE1NlfKjR49m27Zt2NrasmLFCipVqoSJiQnHjx/HxcUFrVbLBx98wMmTJ9FoNFy/fp1Dhw5l6XfMmDGEh4ejVqsZOXKk4qzRevoSHxVK1C8fkxRzHPh/jZxXydSpU3NN/dy7d2+DselJnjfbUF6IiYlhyZIlebqW3RiYV9LT05XPr/5lampKp06dnqs9iUQikUgkrwD9vvH8/nJ0dBQSSX5Hp9MJNzc3MWvWLOVcTEyMmD59epayqampr8yOoKAgsWLFCuXY29tbHD58OM/1582bJ/r3729w7lnbyImLFy8KGxubLOdTUlKEpaWlWLdunXLu+PHjYt68ebm2N3r0aDFx4sQ89yORvA08fPhQGQP2798vLEetGAAA8h1JREFUNBpNljLFixdX/r9161bRoEGDPLcffStJeI7fKZzHbVdenuN3iuhbSS9se26YmZmJuLi4bK+lpaU9tX5O3+fcyOtYunv3buHv75+na9mNgc/LtWvXRLVq1cTx48dfSnsSiUQikbwJgDDxFvgNXtZLRqRIJG8Ru3btolChQvTt21c5Z2ZmpmT5mD9/PgEBATRq1AhfX1+DqIn58+fTtm1bmjVrhqWlJcOHD1famDNnDnXq1MHFxYU+ffooK6UxMTE0atQItVqNr68vly9fZv/+/axfv55hw4ah1Wr56aefCAsLo2vXrmi1WlJSUhg5ciTW1tao1ernyuqxbds23N3dcXBwoEOHDkqq2rFjx+Ls7IytrS0fffQR4n/p2cPDw9FoNGg0GmbOnJltm4sXL8bd3d1A6NPW1lYRd7x9+zatW7dGrVbj5ubGsWPHlHKRkZG4u7tjaWnJH3/8kaXtPXv20LJlSyBjBb9Xr174+PhQs2ZNpk+f/sz3L5G8KJcvX8bZ2RmNRsOgQYOy/dxm5t69e4ogrRCCYcOGYWtri52dHcuXLwcy0vT6+vri4OBAq0bu+BS9lK1GztatW3FwcECj0eDr6wvk/P3K6fty//59/P390Wg02Nrasnz5cqZPn861a9do2LAhDRs2BDJSWX/++edoNBoOHDhgENn2pB0xMTHMnj2bKVOmoNVq2bt3b7ZjHGRo1/Tt2xdXV1eDsRIyxkUvLy8cHBxwcHBQIlxGjhzJ3r170Wq1TJkyxaBOdteuXbuW7Xic0/iXHUIIgoKClPcLYOfOndjb22NnZ0evXr149OhRruclEolEIpG8At60J+dlvWREiuRdYNq0aeLTTz/N8fq8efNE1apVRUJCghDCMGpi3rx5wsLCQiQmJoqUlBRRo0YNcfnyZREbGyvMzMxEQkKCePz4sfD09FRWSlu2bCnmz58vhBBizpw5olWrVkKI3CNS4uPjRZ06dYROpxNCCHHnzp1s7TQ1NRUajUZ5FS9eXBw+fFjExcUJLy8vkZycLIQQYvz48eLbb78VQgjlvoQQolu3bmL9+vVCCCHs7OzEv//+K4QQYujQodlGigwZMkRMnTo1x2c3YMAAMWbMGCGEEDt37lRW8EePHi3UarV48OCBiIuLE9WqVROxsbEGzzbzavPo0aOFu7u7ePjwoYiLixNly5YVjx8/zrFfyYuRnq4T0beSxIHoeBF9K0mkp+vetEn5BiMjI6HRaISVlZUoWbKkCAsLE0IIsXLlStG4cWORlpYmbty4IapXry6uXbsmUlNTxd27d4UQQsTFxYlatWqJ8zfvGTz7W7duiWrVqokLFy4IIf7/O5vb9yu778vKlStF7969FVsTExOFEFkjUgCxfPly5Vg/FuVkx5MRKbmNcf7+/tlGudy/f1+kpKQIIYQ4e/as0P++eNaIlOzG49zGv+z4+eefRfPmzZXxNiUlRVSrVk2cOXNGCCFE9+7dxZQpU3I8L5FIJBLJ2wIyIkUikbwu+vfvj0ajMdBcaNKkCWXLls22vK+vL6VKlaJIkSJYW1tz6dIlDh06hLe3N2XLlqVgwYJ06NBBKX/gwAG6dOkCQPfu3QkNDX2qTfr2P/zwQ1avXk2xYsWyLadP56p/OTk5AXDw4EFOnjyJh4cHWq2WBQsWKKKfu3fvxtXVFTs7O3bt2sWJEydITEwkMTGRBg0aKHbmhTZt2mBra6ukfM0tzWurVq0oWrQopqamNGzYMFsticz4+/tTuHBhTE1NqVChQo4pdCUvhk4n2Hrihswc85zklAY6NDSUwMBAjI2NqVixIt7e3hw+fBghsqaHLq67b6CRc/DgQRo0aICFhQWAMhbl9v3K7vuSW5rmzBgbG9OuXbss53Oy40lyG+M6dOiAsbFxljqpqan06dMHOzs7OnTokKsmS25kNx7nNv49SWRkJFOnTmXevHmoVBn6RGfOnMHCwoI6deoAEBQUREhISI7nJW83a9euRaVScfr0aeXcs+pztWjRgsTExDz3uXHjRuzt7dFoNFhbW/Pbb7/lWv5VaYQ9qcUmkUgk+Y0Cb9oAiUTy/9jY2LBq1SrleObMmcTHxytOCIDixXNOP/uyUrbmRoECBTh06BA7d+5k5cqV/PLLL+zatSvP9YUQNGnShKVLlxqcf/jwIZ988glhYWFUr16dMWPGPDXVa2ZsbGwMJg5r1qwhLCwsT1uP9JOUnI6f5HU8ZwnEJNznx82nsmSOqVvJhJrlS7xh6/IXmdNA50Tm9NAFCxbE3Nz8mb6DOZHd90Wfpnnz5s189dVX+Pr68s0332SpW6RIkWydHS+DnMbSKVOmULFiRSIjI9HpdBQpUuS52s/uvnMa/54kJSWFrl27MmvWLCpWrPhc/UvefpYuXYqnpydLly7l22+/zXLdycnJ4O9/dmzevDnP/aWmpvLRRx9x6NAhqlWrxqNHj4iJicm1Tl5seB7Wrl1Ly5Ytsba2fultSyQSyetARqRIJG8RjRo14uHDh8yaNUs5l1sGi7zg7OzMv//+y507d0hLSzNw1NSvX59ly5YBGZMoLy8vIGs62MzHycnJ3L17lxYtWjBlyhQiIyOfyR43Nzf27dvH+fPngQythLNnzyoTNlNTU5KTk1m5ciUApUuXpnTp0spKck4pZLt06cK+fftYv369ci7zs8spzSvAunXrePjwIQkJCezZs8cgAkjy5riV9Ehxouh5HZlj3kUyp4H28vJi+fLlpKenExcXR0hICC4uLjmmh86Mm5sbISEhXLx4EcjQRoHcv1/ZkVOa5rymos7Jjifr5zTG5cbdu3epXLkyRkZGLFq0iPT09Kfa9ix2Zzf+PcnQoUPx9vbG39/f4LyVlRUxMTFK/UWLFuHt7Z3jecnbS3JyMqGhocyZM0f5jD5JZn2u5ORkevbsiZ2dHWq1Wvlbbm5uTnx8PACtW7fG0dERGxsbfv/99yztJSUlkZaWRrly5YAMZ5+VlRXw/7pBTk5O1KlTh40bN2axISfNo5iYGOrVq0efPn2wsbGhadOmpKSkABAdHU2zZs1wdHTEy8uL06dPZ9Fii46OfinPVCKRSF4n0pEikbxFqFQq1q5dy7///ouFhQUuLi4EBQXx008/PXebVatW5YsvvsDFxQUPDw/Mzc2VMPoZM2Ywb9481Go1ixYtYtq0aQB07tyZiRMnYm9vT3R0tPIDS6vVkpSURMuWLVGr1Xh6ejJ58uRnsqd8+fLMnz+fwMBA1Go17u7unD59mtKlS9OnTx9sbW3x8/MzcGbMmzeP/v37o9VqFQHaJylatCgbN25k9uzZ1KxZE3d3d8aNG8dXX30F5JzmFUCtVtOwYUPc3Nz4+uuvqVKlyjPdE2SIYurZvHkzderUyTFk/21g2LBh2NjYZEn3+2T62ODgYMWp9bqpYFKYxIhtPL4Xr5y7vHYyd69lTJ4zTyDywrOWz+/klAa6TZs2qNVqNBoNjRo1YsKECVSqVCnH9NCZKV++PL///jtt27bl/9i787ioqveB458Loqi472YJlhswzLAriKLmriguqbmA5pZrVqaZJpotpuWWuWVipbgvpWmGgoobmwMiWghiln4NNVFwieX8/qC5P4bdFcTzfr141dzl3DODzNw55znPo9Vq1ZK8Bf195SV7mebZs2erf6ejRo2ic+fOarLZ/OTXjx49erBjxw412Wx+73EFGTt2LOvWrUOr1XLu3Dk1csXOzg5TU1O0Wm2uZLMF7cvZ77ze/7K7fPkyX3/9NQcPHjQqgTxo0CDMzc1Zu3Yt/fr1Q6PRYGJiwpgxY/LdLpVcu3btonPnzjRp0oQaNWoQERFR4PEfffQRVapU4fTp00RHR9OuXbtcx3z77bdEREQQHh7OkiVLuH79utH+6tWr4+XlRcOGDRk4cCDr168nM/P/B6sTExMJDQ1lz549jBkzJs+ItHPnzvHLL78QGhrK7NmzSUtLAyAuLo5x48Zx5swZqlatqg70jBo1iqVLlxIREcGCBQsYO3Ysbm5ueHl5MX/+fPR6PS+//PIDv36SJEnFTcnvS8mzxsnJSRgy+UuSZCwlJQULCwvS09Px9vZm+PDheHt7F3e3ShULCwtSUlI4cOAAo0eP5pdffnnqN4fp6emUKVO0FZtVqlThxo0buZZN+Pn5YWFhoS6J8vX1pXv37vTt2/eR+5eRkfFAyzQyMwU6V3dMWgyhbN3GauWYzjZ1MTFRsLS0JDw8nJo1axapvQc9XpIk6Unp3r07kyZNokOHDixZsoQ//viDBQsWkJiYSPfu3YmJiSE4OJgFCxawe/duHB0d2bhxI40bNzZqJ/v7mp+fHzt27ACyBkV++eUXWrRokevap0+fJjAwkO+++w6tVou/vz++vr60bt2a4cOHA9C6dWuWLFnCzZs31T74+flhZmbGBx98AEDz5s359ddfSU9Pp0OHDsTFxQEwb9480tLSeOutt6hVq5Ya9QJw//59zp49+1g/WyRJejYoihIhhHj8awWLiYxIkaQnJDNTkJCUwomE6yQkpRRrgkw/Pz90Oh22trZYWVnRq1evYutLaXb48GFGjhzJ7t271UGUH374QZ15Hz16tLpMIL8SqJaWlrz33ntoNBpcXFzUUP2kpCT69OmDs7Mzzs7OHD16FMj63Q4ZMgR3d/dciXhFPmVuvby8SElJwdHRUd0G5Fk+1vC83NzcaNSokVF0yvz583F2dsbOzo5Zs2bl+ZrkLF+b3+thYWHB5MmTsbGxoX379iQlJbF9+zYSzkZza++X3Fw/mZUDNXw+YSCRkblnbvNrN6elS5fi4OCARqNRIwEKKt27YMEC9VxbW1sSExPzLN0LWWW627Rpg6OjI506deLKlSt59uFBlaT3EkmSHt2NGzc4ePAgI0aMwNLSkvnz57N58+Z8Iy6LIjg4mMDAQI4fP05UVBT29vb55jjSaDRMnjyZX3/91Wi5b1HyheWXIyyv7ZmZmVStWtUo8fzZs2cf+jlKkiSVJHIgRZKegJJWbWTBggVq9Y4lS5YUmkxVenD379+nV69e7Ny5U10ScfbsWTZt2sTRo0fR6/WYmpqyfv16rl27xty5cwkMDCQyMhInJyejJVKG8O3x48fz1ltvATBp0iQmT55MWFgY27ZtY8SIEerxsbGxBAYG5kpguX37dvR6PVFRUQQGBjJlyhSuXLnCjz/+qFZ0MSyJgKxBnDFjxjB58mT0er2aT+LKlSuEhISwe/dupk2bBmQNBMXFxREaGoperyciIiLPKiGpqam4uroSFRVFjRo18nw9DMc5OTlx5swZ2rRpw+zZs+nbty9OTk5s3hjA77GnsX6pVp6vfX6vc15q1qxJZGQkb775pjpIMmvWLOzt7YmOjuaTTz5h6NCh+f+igX379lG/fn2ioqKIiYmhc+fOpKWlMWHCBLZu3UpERATDhw9XZ20fRUl7L5Ek6dFt3bqVIUOGcPHiRRITE7l06RJWVlbq4HVeOnTowLJly9TH//zzj9H+5ORkqlWrRoUKFTh37hwnTpzI1UZKSgrBwcHqY71eT8OGDdXHW7ZsITMzk/j4eBISEowiSR5G5cqVsbKyYsuWLUDW4L4hr1pR8wpJkiSVVHIgRZKegPyqjSReTy3mnklPipmZGW5ubqxZs0bdduDAASIiInB2dkan03HgwAESEhIKLYE6cOBA9b/Hjx8HIDAwkPHjx6PT6fDy8uLWrVtqFIuXlxfly5fP1af8ytw+qF69emFiYoK1tbVa6nn//v3s378fe3t7HBwcOHfunBrWnV328rX5vR4AJiYm6qDO4MGDi1SK26CgdnMylMN2dHRUq1UUVLo3L3mV7v3tt9+IiYmhQ4cO6HQ65s6dy59//lnk55Af+V4iSaVPQEBAruW1ffr0KbCa04wZM/jnn3+wtbVFq9USFBRktL9z586kp6fTvHlzpk2blueSHiEEn3/+OU2bNkWn0zFr1iz8/f3V/S+99BIuLi506dKFFStWPHTFquzWr1/PmjVr0Gq12NjYsGvXLiB3LjZJkqRnTYktf6woSmdgMWAKfCOE+KyYuyRJRVZQtRFZtrV0MjExYfPmzbRv355PPvmE6dOnI4TAx8eHTz/91OjYn376qcASqNkjhgz/n5mZyYkTJ/K8sS2oJPbjkD1k2xB6LoTg/fffZ/To0QWem718bX6vR17yi5q6du0azs7ORuHhOdv19PRUq0zkNHXqVKZPn16kstVlypQxSsRoCJNv0qQJS5YsYcCAASxbtozy5cvTr18/bGxs1IGvx0W+l0hS6ZNzEARg4sSJ6v/HxMQAWe9lnp6eQNbyx7ySOGcvX7x3794Cr1upUqUCyyW/+uqrrFixwmhb9j74+fkZ7TP0M+f/G3JsAVhZWbFv375c13J3dyc2NrbA/kqSJJVkJTIiRVEUU2AZ0AWwBgYqiiILzUvPjNqVylGujPGfV7kyJtSuVC6fM6TSoEKFCuzZs0edgWvfvj1bt27l77//BrLWxV+8eLHQEqiGnBubNm2iZcuWAHTs2JGlS5eqx+j1+kL7k1+Z24IUNdy6U6dOfPvtt2pUzF9//aU+z/zk93pA1kCRIf/Khg0baNWqVZ79+fvvv9HpdEaDUDnbTU9PzzM/iRCCRYsWYW1t/HGSX+leS0tLtSxvZGSkWmr38uXLmJub065dOzZu3Iirqyv79+/nzz//VAdS0tLSOHPmTKGvY2Hke4kklXwyj5EkSdLzp6RGpLgA54UQCQCKomwEegJy6Fp6JljWqMj7XZurIfmGaiOWNZ5s5IBU/KpXr86+ffto3bo1ixcvZu7cuXTs2JHMzEzMzMxYtmwZLVq0UEug3r9/H4C5c+fSpEkTIGvtu52dHeXKlVMHDJYsWcK4ceOws7MjPT2d1q1b55o5zMnb25vjx4+j1WpRFEUtc1uQHj160LdvX3bt2mU0cJNTx44dOXv2rDrQY2FhwQ8//EDt2rXzPcfa2jrP16Nhw4ZUrFiR0NBQ5s6dS+3atdXBJEPp7fLly/Prr7+SnJzM8uXLmT59utqulZUVtWrV4qWXXqJcuXKkp6erZY4tLCwYPXo0gYGB3L9/n549e6olcH///XecnJzUwaAtW7ZQoUIF/v77b2bNmsWuXbuIj4/nlVdeoXXr1urv5/Tp07z55ptcu3aNq1evsnz5chYsWICDgwMDBgwgLS2NatWq8dZbb9G/f392796NpaUl3333HQsWLEBRFLUcb1JSEmPGjOGPP/4AYNGiRbRs2ZKmTZty7NgxLGvUZGrnpvRr70KzUYuxqFJdvpdIUgliyGOU8/PeUF3sWZF9iY8kSZJUBEKIEvcD9CVrOY/h8RDgq4LOcXR0FKXd3LlzhbW1tdBoNEKr1YoTJ04Ud5fydOHCBWFubi60Wq36c/HiRdGnT5+HbnP58uVi3bp1j7GXT15GRqaI//u2OB5/TcT/fVtkZGQWd5ekZ0DDhg1FUlJScXfjqatYsWKhx/zwww9i+PDhQgghWrZsKcLDw4UQQnzxxRdi2LBhQgghoqKihKmpqQgLCxNCCAGITZs2qW20adNG3Xf9+nUhhBDp6emiTZs2IioqSgiR9TtYsmSJEEKIZcuWiTfeeCNXX4KCgkS3bt2EEEJcu3ZNNGzYUMTExIhZs2aJ+fPnq8fZ2NiICxcuiJiYGNG4cWP1d2u49sCBA8WRI0eEEEJcvHhRNGvWTAghhJ+fn1i4cKEQQoi9e/eJTt285HuJJJVA8X/fFq0+OyCc5/6q/rT67ICI//t2cXdNegpMTEyEVqsVNjY2onv37uKff/4p8HgfHx+xZcuWx3Lt7J9nRZHXtYvy2fsk+yQ9X4BwUQLGGh7XT4lc2lNUiqKMUhQlXFGU8KSkpOLuzhN1/Phxdu/eTWRkJNHR0QQGBvLiiy8Wd7fy9fLLLxuVu3vppZeMyqY+qDFjxhRaSaOkMTFRaFTLghaNatColsUzNTP1PJMh2iVXQEAAAwYMALISFRqidQ4fPszgwYMBsLOzw87OTj0ne7LbnDZv3oyDgwP29vacOXPGaL1+Xklpczpy5Aj29vZ07NiRadOmYWNjk2/fDx48SL9+/ahZsyaQFbkE/59EWFEUmjZtyvnz57G1tSU9PZ3vvvsOAH//tYwfM7LQ9xJfX99C32eLckxRmJqaotPpsLGxQavV8sUXX6j5ZMLDw43yPTyox9VHSXoaCspjJJV+hgp4MTExVK9e3aiykiRJpVtJHUj5C8g+StDgv21GhBCrhBBOQginWrXyLotZWly5coWaNWuqSR9r1qxJ/fr1AYiIiKBNmzY4OjrSqVMnNTfA6tWrcXZ2RqvV0qdPH+7cuQNk3aS++eabtGjRgkaNGhEcHMzw4cNp3rw5vr6+6jUtLP4/keHWrVvVfVu2bFGzxrdu3bpI/U9MTMTW1hbICh/t3bs3nTt3pnHjxrz33ntG1/zggw/QarW0aNFCrRDi5+enlioNCwvDzs4OnU7HlClT1HYTExPx8PDAwcEBBwcHjh07BmTlPPD09KRv3740a9aMQYMGqQkzJSm7klBqNjExUf2y/TwxLK/Jz40bNzh48CAjRozA0tKS+fPns3nz5kL/lrMnu83uwoULLFiwgAMHDhAdHU23bt3UZLLw/wl2C0pK6+HhwalTp4iIiGDMmDFA/glq82NIIlyxYkXu3r1LWloaBw8e5Pjx49y6dYuDBw8SGhpKly5dCmznaTN8eThz5gy//vore/fuZfbs2QA4OTmxZMmSYu6hJD0dMo+RZNCyZUv++ivr64per6dFixbY2dnh7e2dq1w1wJw5c3B2dsbW1pZRo0apn2eenp5MnToVFxcXmjRpopbFvnv3LgMGDKB58+Z4e3tz9+5dta0333wTJycnbGxsmDVr1gP3XQih3lNrNBp1eW1+2wHmzZuHRqNBq9Uybdo0dfuWLVty9V2SSqOSOpASBjRWFMVKUZSywADgx2LuU7Hq2LEjly5dokmTJowdO5ZDhw4BWQkNJ0yYwNatW4mIiGD48OF88MEHQNaMalhYGFFRUTRv3tyoLOs///zD8ePHWbhwIV5eXkyePJkzZ85w+vTpQpNYzpkzh19++YWoqCh+/DHvX0t8fDw6nQ6dTse4ceNy7dfr9WzatInTp0+zadMmLl26BGQl3WzRogVRUVG0bt2a1atX5zp32LBhrFy5Er1eb/QFqXbt2vz6669ERkayadMmoxnRU6dOsWjRImJjY0lISODo0aMFPkfp+SRLzZZcW7duZciQIVy8eJHExEQuXbqElZUVR44coXXr1mzYsAHIqhwRHR1daHu3bt2iYsWKVKlShatXrxZa7aKo8ktQ265dO7Zs2cL169eBrIEhyDuJcO3atVm1ahVXr15l8ODB9OnTh2nTpuHs7IydnR0rV64Esm5wx48fT9OmTXn11VeNkv3md4Oes6+GXDLh4eFqZY5Dhw6p79/29vaFJh829Perr75CCEFwcLBaNSkpKYkOHTpgY2PDiBEjaNiwoXrNjz76iKZNm9KqVSsGDhyoDpZnl99EgSSVFIacaIbBFJkT7fmUkZHBgQMH8PLyAmDo0KHMmzeP6OhoNBqNOtCc3fjx4wkLCyMmJoa7d++ye/dudV96ejqhoaEsWrRIPXf58uVUqFCBs2fPMnv2bCIiItTjP/74Y8LDw4mOjubQoUP5fg5OmTJFfX/X6XTq9u3bt6PX64mKiiIwMJApU6Zw5cqVfLfv3buXXbt2cfLkSaKioowmRfPquySVRiVyIEUIkQ6MB34BzgKbhRCPXv7gGWZhYUFERASrVq2iVq1a9O/fH39/f3777TdiYmLo0KEDOp2OuXPn8ueffwJZXyg8PDzQaDSsX7/eqIJEjx49UBQFjUZDnTp10Gg0mJiYYGNjk28Yu4G7uzu+vr6sXr2ajIyMPI/JvrQnrzDH9u3bU6VKFczNzbG2tlYrd5QtW1a9Ac8rpP7mzZvcvn1bTXD5+uuvq/vS0tIYOXIkGo2Gfv36GYXpu7i40KBBA0xMTNDpdIU+R+n5JEO0S66AgAC8vb2NtvXp04eAgADefPNNUlJSaN68OR9++CGOjo6FtqfVarG3t6dZs2a8/vrruLu7P5Z+9unThxs3bmBjY8NXX32lJqi1sbHhgw8+oE2bNmi1Wt5++20gK4lweHg4d+7cwdraWk0g3KhRI0xMTLh9+zaVKlWiSpUqhIWFERYWxurVq7lw4QI7duzgt99+IzY2lu+++06NwoOCb9ALs2DBApYtW4Zer+fIkSOUL1++0HMaNWpERkZGrspNs2fPpl27dpw5c4a+ffuqSXXDwsLYtm0bUVFR7N27l/Dw8FxtFjRRIEklhYmJQmebuqwb7sKSgfasG+7yzCWalR7e3bt30el01K1bl6tXr9KhQweSk5O5efMmbdq0AcDHx4fDhw/nOjcoKAhXV1c0Gg0HDx40uk/Pa3lpQctYC1qqmt38+fONlt4bhISEMHDgQExNTalTpw5t2rQhLCws3+2BgYEMGzaMChUqAP+/XDW/vktSaVRSq/YghPgZyL/Y/XPI1NQUT09PPD090Wg0rFu3DkdHR2xsbNSSm9n5+vqyc+dOtFot/v7+BAcHq/sMYesmJibq/xseG8LYFeX/bwKyh6evWLGCkydPsmfPHhwdHYmIiKBGjRoP9FyyXzN76LyZmZl63YJC6vOycOFC6tSpQ1RUFJmZmZibmxd6PUnKzhCinX0wpThCtE1NTdFoNKSnp9O8eXPWrVun3qyUJJmZmbz11lscPHgQRVEwNzdn8+bNWFlZPfZrBQUFAVlL9cqWLYubm5tR1NnGjRvzPC/nkqHs74P5VanIfuPn5ORkdI6B4b04p/Lly7N///482/Xx8cHHx8doW82aNdm0aRN79uzJdeObkZGBra0t0dHRREdHq3lDkpOTiYuL4/Dhw+oNbv369WnXrp16blBQEJ9//jl37txRB3Z69OiRZ79ycnd35+2332bQoEH07t2bBg0aFOm8vISEhLBjxw4AOnfuTLVq1QA4evQoPXv2xNzcHHNz8zz7ln2iwPB61KtX76H7IklPiiEnWqNaFoUfLJUqhmWOd+7coVOnTixbtizX+3xe7t27x9ixYwkPD+fFF1/Ez8/vgZeXGhiWqoaFhVGtWjV8fX0LXVb6JD1I3yXpWVYiI1Kk3H777Tfi4uLUx3q9noYNG9K0aVOSkpLUgZS0tDR1RPv27dvUq1ePtLQ01q9f/8DXrFOnDmfPniUzM1O9EYasZTuurq7MmTOHWrVqqctynoaqVatSqVIlTp48CRh/eUpOTqZevXqYmJjw/fff5xstI0n5KSkh2tmT15UtW7bQMsfFZdOmTVy+fJno6GhOnz7Njh07qFq1apHOzcwU/H7l5gMn9Q0ODjaKvCit3nvvPe7evcv8+fMRQrB06VJ1BvHChQt07Ngx33MNN+hbt27l9OnTjBw5Ms+b6uz5XLLvnzZtGt988w13797F3d2dc+fOFdrfhIQETE1NCyx//aCEENjY2KjP+/Tp0/kOUkmSJBWnChUqsGTJEr744gsqVqxItWrV1Pwg33//vRqdYmB4z61ZsyYpKSlFSrCd3zLWx7FU1cPDg02bNpGRkUFSUhKHDx/GxcUl3+0dOnRg7dq1av5Fw3JVSXqeyIGUZ0RKSgo+Pj5YW1tjZ2dHbGwsfn5+lC1blq1btzJ16lS0Wi06nU79kvHRRx/h6uqKu7s7zZo1e+BrfvbZZ3Tv3h03NzejWcApU6ag0WiwtbXFzc0NrVb72J5nUaxZs4aRI0ei0+lITU2lSpUqAIwdO5Z169ah1Wo5d+4cFSvK9cnSgymJIdoeHh6cP3+eGzdu0KtXL+zs7GjRooV6A+Xn54ePjw8eHh40bNiQ7du3895776HRaOjcuTNpaWkAHDhwAHt7ezQaDcOHD+f+/azlSpaWlsyaNQsHBwc0Go36pTk0NJSWLVtib2+Pm5sbv/32W66+XblyRR28BGjQoIEacWBhYcHkyZOxsbGhffv2GCqreXp6MmnSJJpqdHQaMQ3fuWuw09rTqKk1w4YNM+pXzvwdiYmJrFixgoULF6LT6UptErukpCT0ej0zZszAw8ODTp06sXz5cvV3+fvvv5Oamkrr1q3VG9wrV66oUTtFvUG3tLRU19hv27ZN3R4fH49Go2Hq1Kk4OzsXOpCSlJTEmDFj1OpD2bm7u7N582YA9u/fryZcdHd356effuLevXukpKTkufSooIkCSZKkksbe3h47OzsCAgJYt24dU6ZMwc7ODr1ez4cffmh0bNWqVRk5ciS2trZ06tQJZ2fnQtvPbxnr41iq6u3tjZ2dHVqtlnbt2vH5559Tt27dfLd37twZLy8vnJyc0Ol0eea4kqRSr7jrLz+uH0dHRyE9H27fvq3+/6effiomTpxYjL2RpMevYsWKQggh0tLShJeXl/j666/F+PHjhZ+fnxBCiAMHDgitViuEEGLWrFnC3d1d/Pvvv0Kv14vy5cuLn3/+WQghRK9evcSOHTvE3bt3RYMGDcRvv/0mhBBiyJAhYuHChUIIIRo2bCiWLFkihBBi2bJl4o033hBCCJGcnCzS0tKEEEL8+uuvonfv3rn6eenSJdGwYUOh1WrF22+/LSIjI9V9gPjhhx+EEELMnj1bjBs3TgghRJs2bcQg3xGi1WcHhOOsPcKsci2heWutaPXZAdGr30CjfiUlJQkhhAgLCxNt2rRRn+/8+fMf7QUugUxMTIRWqxXW1tbCzs5OzJ8/X2RkZAghhMjIyBDvv/++sLW1FTY2NsLT01PcvHlTZGZminHjxokmTZqIV199VXTp0kVs2bJFCCHEBx98IBo1aiTc3NyEr6+vmDVrlhBCCB8fH/WYw4cPi8aNGwtHR0fxzjvvqK/x+PHjhY2NjdBoNGLAgAHi3r17D9TfoKAg0a1bNyGEEFevXhXt2rUTNjY2YsSIEaJu3bpqe7NmzRKNGzcWrVq1Er179xarVq3K1cdTp04JDw8PYWdnJ6ytrdVjJEmSJEl6tgDhogSMGzyuH0WUkjKwTk5OIq9kdSVRZqYg8Xoqf9++T+1K5bCsUVEmJXsAmzZt4tNPPyU9PZ2GDRvi7+9PaS9/LT1fDDlSICsi5YsvvsDV1ZVt27bRqFEjAF588UXOnDnDl19+iZmZGR988AGZmZmUL1+ee/fuoSgKH374IdWrV6dt27ZMmDBBTXZ34MABli1bxvbt27G0tOTo0aO88MILnDx5kg8++IDAwEAuXbrExIkTiYuLQ1EU0tLS8oxMuH//PgcPHuTgwYOsWbOGLVu20L59e0xNTbl//z5lypQhISGB3r17o9fr8fT05LXRb+OfUIE7V+K5uHsZzUd+CcCQl24TtON7tV/h4eHUrFmT8PBw3n33XYKDg/Hz88PCwoJ33333Kf02pEdx//59TE1NKVOmDMePH+fNN99UExympKRgYWHBnTt3aN26NatWrcLBwaF4OyxJkiQ9d7LfdwHs3LkTS0vL4utQKaUoSoQQwqm4+/G4lNhks6VVZqZg35n/qSVWDTkYinv5wLOkf//+9O/fv7i7IUlPjCFHSlFlTx6dPWFz9uTRRTk/e2K4mTNn0rZtW3bs2EFiYmKeiVUN53bp0oUuXbpQp04ddu7cSfv27XMdl33JR/2aVSn3Rzp3srdTxoSqFczUx/nl75CeLX/88QevvfYamZmZlC1b1qik/ahRo4iNjeXevXv4+PjIQRRJkoqVnOh8fj3ofZckgcyR8tQlXk9VB1Egq7Tqpz+fJfF6ajH3TJKkkszDw0NNGh0cHEzNmjWpXLlykc5t2rQpiYmJnD9/Hsg78V1OycnJvPDCC0D+1W0iIyO5fPkykFXBJzo6moYNG6qPDbk5NmzYQKtWrdTz6lcpz/tdm1OlbkP+vfk/Mm9e4f2uzQn8cavar/zyd1SqVInbt28X6XkXl8xMQUJSygMn0i2NGjduzKlTp4iKiiIsLMwoD8CGDRvQ6/WcO3eO999/vxh7KUnS884w0enzbSgTA07h820o+87877l+/36epaSk0L59ezV/3K5du4Csqn7Nmzdn5MiR2NjY0LFjR+7evQtAWFgYdnZ26HQ6pkyZgq2tbXE+BekpkAMpT9nft+8blVaFrMGUv2/fL6YeSZL0LPDz8yMiIgI7OzumTZvGunXrinyuubk5a9eupV+/fmg0GkxMTBgzZkyB57z33nu8//772Nvb5xvV8vfff9OjRw9sbW2xs7OjTJkyjB8/HoCKFSsSGhqKra0tBw8eNEq0Z0jq+/3oVixYupK7+xYw9fWOmJr+f79mzZrFpEmTcHJywtTUVD23R48e7Nixo8Qmm5U345L0fFAUhcGDB6uP09PTqVWrFt27dy/GXmV90Stfvjw6nU79+ffff/H391ffn1esWMF3331XYDt6vZ6ff/75aXS5RJATnc+3u3fvqn8v3t7emJubs2PHDiIjIwkKCuKdd97BkA4jLi6OcePGcebMGapWrapO9gwbNoyVK1ei1+uN7luk0kvmSHnKEpJS8Pk21GgwpVwZE9YNd6FRLYti7JkkSdLjY2FhQUpKSnF346mT7/GS9HywsLDglVde4fjx45QvX569e/fy/vvv06BBgzyrUOUlPT2dMmUe7yr7xMREunfvTkxMjNF2f39/wsPD+eqrr4rUzoMe/6w7kXCdiQGncm1fMtCeFo1qFEOPpKcp5z1LWloakydP5vDhw5iYmPDbb79x4cIF7t27R4cOHYiLiwNg3rx5pKWlMX78eLRaLRcvXgQgOjqa119/Pdff4fOutOVIkREpT5lljYq837U55cpkvfSGHCmWNWSpXkkqjeQyj+eLjDqUpOdH165d2bNnDwABAQEMHDhQ3ZdfCXl/f3+8vLxo164d7du3JyUlhWHDhqHRaLCzs1Nnty0s/n/gdevWrfj6+gKwZcsWbG1t0Wq1tG7d+qH67efnp5ar9fT0ZOrUqbi4uNCkSROOHDnCv//+y4cffsimTZvQ6XRs2rTpoa7zLKldqZx6b25QrowJtSuVK6YeScVp/fr1JCUlERERgV6vp06dOmq+NkNeOTDOLSc9f2Sy2afMENLerG4lmcxKkkq55zm59PMYjQL/fzOeMyJF3oxLUukzYMAA5syZQ/fu3YmOjmb48OHqksNmzZpx5MgRypQpQ2BgINOnT1cHSSIjI4mOjqZ69epMnTqVKlWqcPr0aQD++eefAq85Z84cfvnlF1544QVu3ryZ5zHx8fHodDoA3N3dWbZsWYFtpqenExoays8//8zs2bMJDAxkzpw5z1VEimGiM+fntZzofD4lJydTu3ZtzMzMCAoKUiNN8lO1alUqVarEyZMncXV1ZePGjU+pp1JxkgMpxcDERKFRLQsZ5i1JpVx+a66b1a0k//5LKXkzLknPDzs7OxITEwkICKBr165G+5KTk/Hx8TEqIW/QoUMHqlevDkBgYKDRl65q1aoVeE13d3d8fX157bXX6N27d57HvPzyy0YVSP78808WL17MhQsX2Lt3LzVr1sTb2xuAmzdvcvz4cQCuXbvGqVO5l7c8Knt7e9auXYtOpyM9PZ2qVauyYsUKNceMo6Mjq1evfqTKXX5+flhYWPDuu+8+1PlyolPKbtCgQfTo0QONRoOTkxPNmjUr9Jw1a9YwcuRITExMaNOmDVWqVHkKPZWKkxxIkSRJekIKWuYhB1JKJ3kzLknPFy8vL959912Cg4O5fv26ur2gEvIVKxY+sJq9ZHz2EvArVqzg5MmT7NmzB0dHRyIiIqhRI/8cHkIIevfujYODA+7u7ixevBgnJyf27dvHtGnTADAxyVrS0rVrV6PE4A8rZ+4Xd3d3jh07hk6nIyoqiiZNmnDs2DEGDx5Mamoq8fHxaLXaR77uo5ITnc+vnFG0NWvWVAcYc8qe9yT7wJ2NjQ3R0dEAfPbZZzg5lZpUIFI+ZI4USZKkJ0SuuX4+GW7GWzSqQaNaFnIQRZJKseHDhzNr1iw0Go3R9qKUkIes6JTsS28MS3vq1KnD2bNnyczMZMeOHer++Ph4XF1dmTNnDrVq1eLSpUsF9u/gwYOYm5vj4eEBZOV06Ny5M6Ghody5c8fo2ICAAG7cuEFycjJTpkzh1q1bAKSmpvLiiy+SlpZGfHw8nTt3xtHREQ8PD86dOweAr68vY8aMwdXVlffee8+oXTc3N44dOwbAsWPHGDNmjBoxExoaiqOjI6ampnz55ZfY2tpia2vLokWL1PPz2/7xxx/TpEkTWrVqpeagkaTiyk23Z88edDodtra2HDlyhBkzZjyV60rFR0akSJIkPSFymYckSVLp1qBBAyZOnJhr+3vvvYePjw9z586lW7du+Z4/Y8YMxo0bh62tLaampsyaNYvevXvz2Wef0b17d2rVqoWTk5M6Yz5lyhTi4uIQQtC+fftCIznOnDmDo6Oj0bZy5cpRrVo1zp8/n+c5VapUwcnJidDQUHQ6HW3atKFTp06YmZkxatQoVqxYQePGjTl58iRjx47l4MGDQNYSomPHjuUq/eru7q5+qTx27BizZs0iICCA27dvc+zYMdzc3IiIiGDt2rWcPHkSIQSurq60adOGzMzMfLdv3LgRvV5Peno6Dg4OuZ6n9Pwpztx0/fv3p3///k/0GlLJIssfS5IkPUGZmYLE66lymYckSZL01C1ZsoQLFy6wcOFCo+329vasW7eOGzdusGDBAnbv3m1U8njDhg0cPnyYFStW4O3tzdixY2nZsiW1atWiadOmajv379/n7Nmz+Pr60rZtW3x8fPLsR4MGDQgPD6dLly5ERkYydepUOnbsyMKFC5kwYQK//fYb169fZ86cOUDW0qhatWohhMhze2ZmJjdu3FC3v/3229SvX/+hc6RIpUNCUgo+34bmSvi+briLXLJVAsjyx5IkSVKRyWUekiRJUnGxtrYmIiLCaNutW7f4448/eOWVV/I9z8vLi3379nHjxg0iIiJo164dmZmZVK1aFb1er/6cPXtWPaeg3C9ubm5s2bKFevXqoSgKLVq04OjRo2qZaEl6HArKTSdJj5scSJEkSZIkSZKeS8WVT+Fpad++PXfu3OG7774DICMjg3feeQdfX18qVKiQ73kWFhY4OzszadIkunfvjqmpKZUrV8bKyootW7YAWYlso6KiitQPNzc3Fi1apA6atGzZku+++466detSpUoVPDw82LlzJ3fu3CE1NZUdO3bg4eGR7/bWrVuzc+dO7t69y+3bt/npp58e8ZWSSgOZm056muRAiiRJkiTlYGFhHALs7+/P+PHjn/h1g4ODqVKlCjqdjubNmzN79uwCj/f39+fy5cvq40WLFuVKIClJUt4M+RR8vg1lYsApfL4NZd+Z/5WqwRRFUdixYwdbtmyhcePGNGnSBHNzcz755JNCz+3fvz8//PCDUd6H9evXs2bNGrRaLTY2NuzatatI/XB3dychIUEdSKlXrx4ZGRm4ubkB4ODggK+vLy4uLri6ujJixAjs7e0L3N6/f3+0Wi1dunTB2dn5IV4dqbQx5KYzDKbI3HTSkyRzpEiSJBXg6tWrTJ48mRMnTlCtWjXKli3Le++9h7e3t9Fxly9fZuLEiWzdujXfthITE+nevbtR6byH5enpyYIFC2R5vSfEwsLCqBxi9twBRZGz/GfOx/kJDg5W8xWkpqai0+nYtGkTDg4OeR6f89+BpaUl4eHh1KxZs0j9hKwZ6pzJISXpeSDzKUilQVHvU562mzdv8vLLL3Pt2jUUReH48eO4ublx6dIlGjRoQHJyMlZWVly7dk0twf0oDJ+HDg6OMjddCSVzpEiSJD0nhBD06tWL1q1bk5CQQEREBBs3buTPP/80Oi49PZ369esXOIgilR4//fQTrq6u2Nvb8+qrr3L16lUA/Pz8GDJkCO7u7gwZMiTX49atW6slPwFatWpVYFh8xYoVcXR05Pz58+j1elq0aIGdnR3e3t78888/bN26lfDwcAYNGoROp2Px4sVcvnyZtm3b0rZtWwD2799Py5YtcXBwoF+/furgkKWlJVOnTsXBwUEN05ek582zmE+htC9Fkh5MUe9THkZ6evojnV+1alXq1aun5tE5duwY9vb2ainsEydO4OLi8lgGUbKTuemkp6XQf7mKotR4Gh2RJEkqaQ4ePEjZsmUZM2aMuq1hw4ZMmDABf39/vLy8aNeuHe3btycxMRFbW1sgK3qhZ8+eeHp60rhxY6PlGRkZGYwcORIbGxs6duzI3bt3AfL8olzQdoPMzEx8fX3V0pLS43H37l10Op368+GHH6r7WrVqxYkTJzh16hQDBgzg888/V/fFxsYSGBhIQEBArsdvvPEG/v7+APz+++/cu3evwNKl169f58SJE9jY2DB06FDmzZtHdHQ0Go2G2bNn07dvX5ycnFi/fj16vZ5JkyZRv359goKCCAoK4tq1a8ydO5fAwEAiIyNxcnLiyy+/VNuvUaMGkZGRDBgw4DG/epL0bHjW8ik8D0uRpAdT0H0KZN1zTJkyBWdnZ+zs7Fi5ciWQNQAzZcoUbG1t0Wg0bNq0CciKivTw8MDLywtra2syMzMZO3YszZo1o0OHDnTt2lWdNIqIiKBNmzY4OjrSqVMnrly5kqt/bm5u6sDJsWPHmDx5stFjd3f3fPuYkpJC+/btcXBwQKPRqMvIUlNT6datG1qtFltbW7Xv2eU1iXDw4EF69eqlHvPrr78We9SO9GwryhDgCUVRtiiK0lVRFDmkJ0nSc+PMmTP5LqkAiIyMZOvWrRw6dCjXvtDQULZt20Z0dDRbtmzBsPQwLi6OcePGcebMGapWrcq2bdsA8vyiXNB2yJotGjRoEI0bN2bu3LmP86k/98qXL29UmcJQYhPgzz//pFOnTmg0GubPn8+ZM2fUfV5eXpQvXz7Px/369WP37t2kpaXx7bff4uvrm+e1jxw5gr29PR07dmTatGk0aNCAmzdv0qZNGwB8fHw4fPhwoc/hxIkTxMbG4u7ujk6nY926dVy8eFHdnz3vgSQ9j561fAqJ11P59OezahTN/fRMPv35LInXU4u5Z1JxKew+Zc2aNVSpUoWwsDDCwsJYvXo1Fy5cYPv27ej1eqKioggMDGTKlCnqQEhkZCSLFy/m999/Z/v27SQmJhIbG8v333/P8ePHAUhLS2PChAls3bqViIgIhg8fzgcffJDr+u7u7urASUJCAv369VPvh44dO4abm1u+fTQ3N2fHjh1ERkYSFBTEO++8gxCCffv2Ub9+faKiooiJiaFz585G18xvEqFt27acO3eOpKQkANauXcvw4cMf/ZcgPbcKX7ANTYBXgeHAEkVRNgP+Qojfn2jPJEmSSphx48YREhJC2bJlGTduHB06dKB69ep5HtuhQwdq1MgK6OvduzchISH06tULKysrdDodAI6OjiQmJpKcnJzri3K/fv3y3W4wevRoXnvttTxvXqQnZ8KECbz99tt4eXkRHByMn5+fui9n+c/sjytUqECHDh3YtWsXmzdvzlWS1MDDw4Pdu3erj5OTkx+qn0IIOnTooEbH5FRQqVJJeh6YmCh0tqlLs7qVnol8CgUtRZI5XSQwvk8JCwtj//79REdHq1EkycnJxMXFERISwsCBAzE1NaVOnTq0adOGsLAwKleujIuLC1ZWVgCEhITQr18/TExMqFu3rrps9LfffiMmJoYOHToAWZEv9erVy9UfNzc3Pv30Uy5cuIClpSXm5uYIIUhJSSEiIgJXV1eWL1+eZx8bNGjA9OnTOXz4MCYmJvz1119cvXoVjUbDO++8w9SpU+nevTseHh5G18w+iQDw77//0rJlSxRFYciQIfzwww8MGzaM48ePq9WsJOlhFBqRIrL8KoQYCIwEfIBQRVEOKYoiC79LklRq2djYEBkZqT5etmwZBw4cUGczCvoimjOAz/C4XLn/Dxk3NTV9pDXIbm5uBAUFce/evSId/7///Y8BAwbw8ssv4+joSNeuXfn999/VJUnh4eFMnDjxgfpgaWnJtWvXHrjvz7Lk5GReeOEFANatW/dA544YMYKJEyfi7OxMtWrVinROlSpVqFatGkeOHAHg+++/VwfXKlWqxO3bt9Vjsz9u0aIFR48e5fz580BWOPTvv8s5EEnK7lnKp/CsLUWSnrzC7lOEECxdulSNrrxw4QIdO3YssM2iDLILIbCxsVHbPX36NPv37891XOPGjbl58yY//fSTWrHJ0dGRtWvXYmlpiYWFRb59XL9+PUlJSURERKDX66lTpw737t2jSZMmREZGotFomDFjhlHEqKFvHTp0UNuLjY1lzZo1AAwbNowffviBgIAA+vXrV6Qk8JKUnyLlSFEUZZKiKOHAu8AEoCbwDrDhCfdPkiSp2LRr14579+6xfPlydVtRS8v++uuv3Lhxg7t377Jz5051ZiQv+X1RLugLNMAbb7xB165dee211wodkBFC4O3tjaenJ/Hx8URERPDpp5+qiVIBnJycWLJkSZGe3/PMz8+Pfv364ejo+EDVcSDrBrJy5coMGzbsgc5bt24dU6ZMwc7ODr1er+Zs8fX1ZcyYMeh0Ou7evcuoUaPo3Lkzbdu2pVatWvj7+zNw4EDs7Oxo2bIl586de6DrSpJUcjxrS5GkJ6+w+5ROnTqxfPly0tLSgKz8XKmpqXh4eLBp0yYyMjJISkri8OHDuLi45Grf3d2dbdu2kZmZydWrVwkODgagadOmJCUlGS31yb7MNbsWLVqwePFidSClZcuWLFq0SL0vyq+PycnJ1K5dGzMzM4KCgtSlqZcvX6ZChQoMHjyYKVOmGA0kGa6X3yRC/fr1qV+/PnPnzn3gz2FJykUIUeAP8DswE2iQx76phZ3/tH4cHR2FJD0tgBg0aJD6OC0tTdSsWVN069at0HMvXLggzM3NhVarFc2bNxejR48WGRkZT7K70iO4fPmy6N+/v7C0tBTOzs7C09NTbNy4Uaxdu1aMGzdOPe7ChQvCxsZGCCHE2rVrRc+ePYWnp6d45ZVXhJ+fX65jhBBi/vz5YtasWUIIIU6dOiVcXV2FRqMRPXv2FDdu3Chwe5s2bURYWJgQQogPP/xQDBgwoMB/RwcOHBAeHh65tmfvU1BQkPpv+Pr166Jnz55Co9EIV1dXERUVJYQQ4tq1a6JDhw7C2tpavPHGG+Kll14SSUlJ4sKFC6JZs2ZixIgRwtraWnTo0EHcuXNHCCHEqlWrhJOTk7CzsxO9e/cWqampD/hbKD3++usv0bhxY/k3L0nSQ8nIyBTxf98Wx+Ovifi/b4uMjMzi7pJUzPK7TxFCiIyMDPH+++8LW1tbYWNjIzw9PcXNmzdFZmamePfdd4WNjY2wtbVVj89+H2A4f/To0aJp06bi1VdfFe3btxf79+8XQmTdn3h4eAg7OzthbW0tVq1alWf/Pv/8c2FmZqbeE1y4cEEAoly5ckZ9fOGFF0T16tXVPiYlJYkWLVoIW1tb4evrK5o1ayYuXLgg9u3bJzQajdBqtcLJyUm9F8p+X3TgwAHh5OQkNBqN0Gg04tVXXxVnzpwRQggREBAgXF1dH/evQZw8eVK0adNGvPLKK8Le3l507dpVREdHP/brPMuAcFECxg0e109RBlKUQvYvLe4nIeRAivSUVaxYUWi1WvVD4eeffxZarTbPgZS0tDSjx9m/uKalpQkPDw+xbdu2J99p6anJOchSEixevFi89dZbubbnN5Ayfvx4dQDowIEDQqvVCiGEmDBhgpg9e7YQQojdu3cLQB1IMTU1FadOnRJCCNGvXz/x/fffCyGyBl8MPvjgA7FkyZIn8hzzUpK+dKxbt040aNBAbN68udj6IEmSJEkP4vbt20KIrM/yRo0aiStXrjyWditWrGj0+EHvnXLeXxfVuHHjxDfffPNQ5+bnf//7n2jYsKE4evSouu3IkSNix44duY592H4/iuK4Zl5K20BKoQvD/nvSBck/Xl2SSrGuXbuyZ88e+vbtS0BAAAMHDlSXYPj5+REfH09CQgIvvfRSvskey5Qpg5ubG+fPn2f16tWsWrWKf//9l1deeYXvv/+ecuXK8corr5CQkEBycjI1atQgKCiI1q1b07p1a9asWcPly5eZNGkSkJWH4/Dhw1SqVOmpvQ5S6RQSEqJWFGrXrh3Xr1/n1q1bHD58mO3btwPQrVs3ozwfeSXSBYiJiWHGjBncvHmTlJQUOnXq9FSeg6FUqKHKhSEMvrNN3WLJgzB06FCGDh361K8rSZIkSQ+re/fu3Lx5k3///ZeZM2dSt27dJ37NpKQkxowZwx9//AGgLgXKeX/dtGlTLly4QEJCAn/88QcLFy7kxIkT7N27lxdeeIGffvoJMzMzPD09WbBgAaNHjyY1NZXg4GAWLlxIt27dmDdvHgAWFhZMmjSJ3bt3U758eXbt2kWdOnXy7Ut2X331FT4+Pri5uanbWrVqpf6/r68v5ubmnDp1Cnd3dwYMGMCkSZO4d+8e5cuXZ+3atTRt2hR/f39+/PFH7ty5Q3x8PN7e3nz++edAVgWmefPmUbVqVbRaLeXKleOrr74q8muV33cR6eEVpfyxJEl5GDBgABs3buTevXtER0fj6upqtD82NpbAwMAC37ju3LnDgQMH0Gg09O7dm7CwMKKiomjevDlr1qzB1NSUpk2bEhsbS0hICA4ODhw5coT79+9z6dIlGjduzIIFC1i2bBl6vZ4jR44YlV6VsmRmChKSUjiRcJ2EpBQyMwsbH340vr6+fPXVV0/0Gg/KxsYm3yoxj0t+iXQNr8fp06eZNWtWkZPjPipZKlSSJEl6ljzt+5WiCA4OVpO2+vr6PrZ27969i06nU38Mub8AJk2axOTJkwkLC2Pbtm2MGDFC3Zfz/jo+Pp6DBw/y448/MnjwYNq2bcvp06cpX748e/bsMbrmTz/9xJ07dwgKCkKv1xMWFsbOnTuBrFwqLVq0ICoqitatW7N69epC+2JQWBlqgD///JNjx47x5Zdf0qxZM44cOcKpU6eYM2cO06dPV4/T6/Vs2rSJ06dPs2nTJi5dusTly5f56KOPOHHiBEePHjXKd/Ygr5X0eMlUxZL0kOzs7EhMTCQgIICuXbvm2u/l5ZXvoEZ8fDw6nQ5FUejZsyddunTh0KFDec7ae3h4cPjwYS5cuMD777/P6tWradOmDc7OzkBWIrC3336bQYMG0bt3bxo0aPDknvQzqKRFJRSXdu3aMX36dFatWsWoUaMAiI6Ozre0roeHB+vXr2fmzJkEBwdTs2ZNKleuTOvWrdmwYQMzZsxg7969/PPPP4Ve+/bt29SrV4+0tDTWr1+vVrx50mSpUEmSJOlZ8bzdr5QvXx69Xq8+9vf3Jzw8HIDAwEBiY2PVfbdu3SIlJQXIfX/dpUsXzMzM0Gg0ZGRk0LlzZwA0Go0aGWsQFhaGp6cntWrVAmDQoEEcPnyYXr16UbZsWbp37w5kRdX++uuvBfbFwiL/+whXV1du3bpFx44dWbx4MQD9+vXD1NQUyKr+5+PjQ1xcHIqiqIl2Adq3b0+VKlUAsLa25uLFi1y7do02bdpQvXp1tS1DAt0Hea2kx+txRKSUvr9sSSoiLy8v3n33XQYOHJhrX0Hl415++WX0ej2nTp3Cz88PyH/WvnXr1hw5coTQ0FC6du3KzZs3CQ4OxsPDA4Bp06bxzTffcPfuXdzd3WVVjhxkVEIWRVHYsWMHgYGBvPzyy9jY2PD+++/nG6Lr5+dHREQEdnZ2TJs2TS3zO2vWLA4fPoyNjQ3bt2/npZdeKvTaH330Ea6urri7u9OsWbPH+rwKIkuFSpIkSc8Keb/y/zIzMzlx4oRawvivv/5SBy5y3l8bomFNTEwwMzNDURT1cWEVDbPLfm72qNqC+mKQswz1yZMn+eijj4wmq7L3e+bMmbRt25aYmBh++ukno0jd/KJ781OU1+rq1au8/vrrNGrUCEdHR1q2bMmOHTuK/No8TYqilFEU5RNFUeIURdH/9/PBQ7ZlqShKzOPuo0GRB1IURamQz67Fj6kvkvTMGT58OLNmzUKj0TxyWzln7Q1cXFw4duwYJiYmmJubo9PpWLlyJa1btwayols0Gg1Tp07F2dlZDqTkUFBUwvOmfv36bN68mfj4eM6cOcOePXto3LgxMTFZnzGenp7s3r0bgOrVq7Nz506io6M5ceIEdnZ2ANSoUYP9+/dz5swZVq9ezcWLF6lZsyaWlpZqOwDvvvuuOkj45ptvcuHCBUJDQ1m6dCn+/v5P5fnKUqGSJEnSs0Ler/y/jh07snTpUvVx9siVR+Hi4sKhQ4e4du0aGRkZBAQE0KZNm0fuy7hx4/D39+fYsWPqtuxlqHNKTk5Wo3OLck/k7OzMoUOH+Oeff0hPT1dz2BWlf0IIevXqRevWrUlISCAiIoKNGzfy559/5rrOgww8PaiMjIyiHjoXqA9ohBA6wAMwe0LdeiSFDqQoiuKmKEoscO6/x1pFUb427BdC+D+57klSydagQQMmTpz4WNrKb9a+XLlyvPjii7Ro0QLIWnJx+/ZtdfBm0aJF2NraYmdnh5mZGV26dHks/SktSmNUQklcQ10SmZgodLapy7rhLiwZaM+64S6lNkRakiRJeraVxvuVh7VkyRLCw8Oxs7PD2tqaFStWPJZ269Wrx2effUbbtm3RarU4OjrSs2fPR+5L3bp12bRpE++//z6vvPIKbm5ubN26lfHjx+fZ5nvvvcf777+Pvb19kQYvXnjhBaZPn46Liwvu7u5YWlqqy38K69/BgwcpW7YsY8aMUbc1bNiQCRMmAFkDOV5eXrRr14727duTmprK8OHDcXFxwd7enl27dgFZA0OvvfYa1tbWeHt74+rqqi7FCggIQKPRYGtry9SpU9XrWFhY8M4776DVavn4448BXjbsUxSlg6IoRmEx/wVujAQmCCHuAQghbgsh/LId87aiKDH//bz137Y5hv//7/HHiqJMytG2qaIo8xVFCVMUJVpRlNGFvvCFUAoryqMoykmgL/CjEML+v20xQgjbR7344+Tk5CQMv0xJkiSD0rbmuLQ9H0mSJEmS5Oe7VDBDXpb09HS8vb0ZPnw43t7ehZ63ZMkSLly4wMKFC/Pc7+/vz4wZM4iOjqZ69epMnz4da2trBg8ezM2bN3FxceHUqVMsX76cuLg4Vq5cSUxMDDqdjhMnTlC/fn1atGhBREQE1apVo2PHjkycOJFevXqhKAqbNm3itddeQwiBiYnJPeAlIUSSoigbgAAhxE+GviiKYgesM4w55KQoiiPgD7QgK73ISWAw8A+wXQjhoCiKCRAHuACVgN1CCFtFUUYBtYUQcxVFKQccBfoJIS4U7TeQW5GSzQohLhnWjP2nyLE5kiRJxckQldCsbiX+vn2f2pXKYVmj4jN7U5LfGupmdSvJBKqSJEmS9Iwqbfcr0uPl5+dHYGAg9+7do2PHjvTq1euh2hk3bhwhISGULVuWsLAwADp06KAmst2/fz8//vgjCxYsAODevXv88ccfhISEMGlSVpCHIRIeCk7ga2pqSp8+fQAM+WeuA4MVRVkLtASGFtRXRVGGAZOAGoAb0ArYIYRI/W//dsBDCLFEUZTriqLYA3WAU0KI64qiVMrWXEfATlGUvv89rgI0Bp7oQMolRVHcAKEoitl/T+bsw15QkkqSzExB4vXUUv+BpSgKgwYN4ocffgCy1kDWq1cPV1dXNSdGXk6fPs2QIUMA+OOPP6hSpQpVqlShZs2aTJw4kdjYWKZNm4avry/du3enb9++RucbMrDnVQrYwsJCzSr+pJmYKDSqZVEqBhpkJRpJkiRJKp2e1fuV5+V+ujgZBjYelI2NjVFOlWXLlnHt2jWcnJzUbdkT4Qoh2LZtG02bNn34zv7H3NxcrVT0n+tkRZDcA7YIIXKuazoPvKQoSqX/lvSsBdb+lzDWlIJ9A/gCdYFv89ivkLVk6JcHfyZ5K0qy2THAOOAF4C9A999jSXqmGUIofb4NZWLAKXy+DWXfmf+VynwTFStWJCYmhrt37wLw66+/5luCNvtaTY1Go2YB9/LyYv78+ej1egIDA/Hy8mLatGlPpf/S/5NrqAv3v//9jwEDBvDyyy/j6OhI165d1TKBT4qvry9bt24FYMSIEUalCB/FokWLMDc3z7dMdWEeZ18kSZIkKafn6X76WdSuXTvu3bvH8uXL1W0FJcLt1KkTS5cuxZD+49SpUwC4u7uzefNmAGJjYzl9+jTwwAl804DLwAxgbc6dQog7wBrgK0VRzCErtwlQ9r9DjgC9FEWpoChKRcD7v20AO4DOgDOQ12DJL8Cb/wWGoChKk//aeGiFDqQIIa4JIQYJIeoIIWoLIQYLIa4/ykUlqSR43srMde3alT179gBZSaGyl2z28/NjyJAhuLu7qxEohfH39zdKohUYGIiTkxNNmjQxinK5dOkSnp6eNG7cmNmzZ+fZ1vz583F2dsbOzo5Zs2YBkJqaSrdu3dBqtdja2rJp06YHfs6lkaxEUzAhBN7e3nh6ehIfH09ERASffvopV69eLdL5jyNj/TfffIO1tfUjtwNZf6vOzs5s3779gc/NyMh4rH2RJEmSpJyet/vpZ42iKOzcuZNDhw5hZWWFi4sLPj4+zJs3L8/jZ86cSVpaGnZ2dtjY2DBz5kwAxo4dS1JSEtbW1syYMQMbGxuqVKnyMAl81wOXhBD5rXD5ALgCxCiKcoqsgZJ1wGUhRCRZOVJCycqP8o0Q4hSAEOJfIAjYLITIKw3JN0AsEPlfhMtKipjmJD9FqdpTS1GU6YqirFIU5VvDz6NcVJJKguetzNyAAQPYuHEj9+7dIzo6GldXV6P9sbGxBAYGEhAQ8FDtJyYmEhoayp49exgzZgz37t0DIDQ0lG3bthEdHc2WLVvImRR6//79xMXFERoail6vJyIigsOHD7Nv3z7q169PVFQUMTExdO7c+eGeeCkjK9EULCgoCDMzM6Ps9FqtFg8PD4QQTJkyBVtbWzQajTo4FxwcjIeHB15eXlhbWxMcHIynpyd9+/alWbNmDBo0SJ2ZiYiIoE2bNjg6OtKpUyeuXLmSqw+enp7qv3MLi/8Pz966dSu+vr4AbNmyBVtbW7RarVrKPKf4+HhSUlKYO3eu0d9lQZnzs2fIP378eK6+TJ48GRsbG9q3b09SUpLa30mTJqHT6bC1tSU0NBTI+ttt2bIl9vb2uLm58dtvvz34L6SYmJqaotPpsLGxQavV8sUXX5CZmVn4idlkHyz28/N76LDq7Pz8/HjhhRfQ6XQ0btyY3r17P9aIoez/3iRJkp6G5+1++llUr149Nm7cyIULFwgNDSUoKIj+/fsDWRG12Zfgly9fnpUrV3L69GnOnDmjTo6am5vzww8/EBsby/z580lOTqZhw4YADBw4kNOnTxMTE2M0QJPPEv5WwOr8+iqESBNCTBNCvCKEsBdCuAkhPv5voAQhxJdCCNv/fhYZzvsvyWwLsiJaDG0lGgrkCCEyhRDThRCa/85tK4R4uHDf/xRlFGYXWSNBgcgks1IpYlgikf3NvzQvkbCzsyMxMZGAgAC6du2aa7+Xlxfly5d/6PZfe+01TExMaNy4MY0aNeLcuXNAVgKrGjVqANC7d29CQkKM1mXu37+f/fv3Y2+flaA7JSWFuLg4PDw8eOedd5g6dSrdu3fHw8PjoftW2jyra6ifhpiYGBwdHfPct337dvR6PVFRUVy7dg1nZ2d1ECMyMpKYmBisrKwIDg7m1KlTnDlzhvr16+Pu7s7Ro0dxdXVlwoQJ7Nq1i1q1arFp0yY++OADvv32wecW5syZwy+//MILL7zAzZs38zxm48aNDBgwAA8PD3777TeuXr1KnTp1+Prrr6lWrRqxsbFq5nyD1NRUXF1d+eKLL3K1l5qaipOTEwsXLmTOnDnMnj1bvXm6c+cOer2ew4cPM3z4cGJiYmjWrBlHjhyhTJkyBAYGMn36dKN11iVZ+fLl0ev1APz999+8/vrr3Lp1K9+ouKdp8uTJvPvuuwBs2rSJdu3acfr0aTVRX2HS09MpU+aRJtEkSZIem+ftfro4FWcumjt37tC2bVvS0tIQQvD1119TtmzZwk801hy4A7zzOPumKIo1sJusRLRxj7PtghQlR0oFIcRUIcRmIcQ2w88T75kkPWHP4xIJLy8v3n33XaNlPQbZE009jByVvdTH+W03EELw/vvvq7lYzp8/zxtvvEGTJk2IjIxEo9EwY8YM5syZ80j9k6SQkBAGDhyIqakpderUoU2bNmrGehcXF6ysrNRjXVxcaNCgASYmJuh0OhITE/ntt9+IiYmhQ4cO6HQ65s6dy59//vlQfXF3d8fX15fVq1eTkZH3HEVAQAADBgzAxMSEPn36sGXLFvV5DBgwADDOnA8YZcjPycTERJ2BGjx4MCEhIeo+w3tC69atuXXrFjdv3iQ5OZl+/fpha2vL5MmTOXPmzEM91+JWu3ZtVq1axVdffYUQIteyxO7duxMcHAzA2rVradKkCS4uLhw9ejTP9uLj4+ncuTOOjo54eHhw7tw5bt++jZWVFWlpaQDcunXL6HF++vfvT8eOHdmwYQMAlpaWXLt2DYDw8HA8PT2B3Msvz5w5g4uLCzqdDjs7O+Lict835rVk8sMPP2TRokXqMR988AGLFy8u/EWUJEnKx/N4P10cijsXTaVKlQgPDycqKoro6Gi6dOnyMM2cFUK0FkI81nAlIUSsEKKREOKxDtAUpihTGrsVRekqhPj5ifdGkp6i57HM3PDhw6latSoajUb94vC4bNmyBR8fHy5cuEBCQgJNmzbl1KlT/Prrr9y4cYPy5cuzc+fOXLP3nTp1YubMmQwaNAgLCwv++usvzMzMSE9Pp3r16gwePJiqVavyzTffPNb+SqWTjY2NmvT1QeQcSCxX7v9n0kxNTUlPT0cIgY2NDcePHy9yu9kHDg3L3QBWrFjByZMn2bNnD46OjkRERKiRW5BVMSsuLo4OHToA8O+//2JlZWU0AJCXPDLkF6lveQ14zpw5k7Zt27Jjxw4SExPVL/XPokaNGpGRkcHff/+d7zFXrlxh1qxZREREUKVKFdq2batGymU3atQoVqxYQePGjTl58iRjx47l4MGDeHp6smfPHnr16sXGjRvp3bs3ZmZmhfbNwcFBjeArSGxsLCEhIZQvX54JEyYwadIkBg0axL///ptrMC77kkkhBF5eXmq0Ue/evXnrrbfIzMxk48aN6lIuSZKkh/E83k8Xh/xy0TSrW0lGKBeTokSkTCJrMOWuoii3FEW5rSjKrSfdMUl6GgxLJFo0qkGjWhal/k2/QYMGTJw48Ym0/dJLL+Hi4kKXLl1YsWIF5ubmQNbMfp8+fbCzs6NPnz5Gy3oAOnbsyOuvv07Lli3RaDT07duX27dvc/r0aXXGdfbs2cyYMeOJ9FvKsnPnThRFMfpCl5iYiK2tbaHndu3aNd/lKXnJnrfjcWvXrh16vZ7p06er26Kjozly5AgeHh5s2rSJjIwMkpKSOHz4MC4uLuj1em7cuKEeHxISwu3bt3O13bRpU5KSktSBlLS0tEKjNOrUqcPZs2fJzMxkx44d6vb4+HhcXV2ZM2cOtWrV4tKlS0bnBQQE4OfnR2JiIomJiVy+fJnLly9z8eLFfDPnFyYzM1MdZNqwYQOtWrVS9xnyxYSEhKhlzpOTk9XqXv7+/kW6xrPs5MmTeHp6UqtWLcqWLatG72SXkpLCsWPH6NevHzqdjtGjR6t5ckaMGMHatVlFCNauXcuwYcOKdF1D/p3CZF9+2bJlSz755BPmzZvHxYsXcy3LzL5k0jBQExcXh6WlJTVq1ODUqVPq/uwDeJIkPdsM+aEMP4mJiQ/VTl55oW7evEmNGjXU96zjx4+jKAp//vknJiYKNcpm0NWpMZY1KjyW++knea/wLJK5aEqeQiNShBCVnkZHJEl6cvJK9uTp6WkUNl6YnF+kfH191cSZ+X3Jyn5MQX2aNGkSkyZNMtr/8ssv06lTp0L7JT0eAQEBtGrVioCAgAfOI/HzzyUnYFFRFDVh6ssvv4y5uTmWlpYsWrSIVq1acfz4cbRaLYqi8Pnnn1O3bl30ej3//POP2kZISEiefzNly5Zl69atTJw4keTkZNLT03nrrbewsbHJtz+fffYZ3bt3p1atWjg5OantTpkyhbi4OIQQtG/fHq1Wa3Texo0bc72u3t7ebNy4kfHjx+Pj44O1tTXNmjVTM+cXpmLFioSGhjJ37lxq165tVAnL3Nwce3t70tLS1Kix9957Dx8fH+bOnUu3bt0Kbb8kS0hIwNTUlNq1a1OmTBmjxLPZI4UKk5mZSdWqVdX8K9m5u7uTmJhIcHAwGRkZRRqEhKzSkoYB5ux9y9mv7FFTr7/+Oq6uruzZs4euXbuycuVK2rVrp+43LJkcPXp0ruuNGDECf39//ve//zF8+PAi9VGSpGdD9vxQOQkhEEJgYlKUefTcqlatSr169Th79izW1tYcO3YMe3t7jh07xmuvvcaJEydwcXF56PalgslcNCVPUar2uBtqLCuKMlhRlC8VRXnpyXdNkqScMjMFCUkpnEi4TkJSylNbFymVbikpKYSEhLBmzRo2btyY5zEFVYrJntfhhx9+UCOJRo8enW/+j5xu3LhBr169sLOzo0WLFkRHRwNZg3zDhw/H09OTRo0asWTJEvWcjz76iKZNm9KqVSsGDhyozp6VLVsWGxsbKlWqhKIozJo1i8aNG/PPP/8QFxeHiYkJFStWpHnz5iQmJrJv3z5u3bqFTqfj0KFDhIaGcuPGDXQ6HfHx8YwYMYIVK1ZgZ2fH7Nmz2bVrF1FRUdSqVYvY2FicnJw4efIkDRs2pHfv3vz111/s3LkTgL59+xIfH8+JEyf46quv1EHH7du3qxnuFy9enGtpTUJCAs2aNTPa9uWXXzJ16tQCM+fnHAAKDg42igL78ssviYmJ4eDBg0bJTQcPHsypU6eIiYnBxcUFyIp6+P333zl16hRz58596JnN4paUlMSYMWMYP348iqJgaWmJXq8nMzOTS5cuqUtbXF1dOXToENevXyctLU3NSZNd5cqVsbKyUvcJIYiKilL3Dx06lNdff73I0Sjbtm1j//79ao4aS0tLIiIi1H35SUhIoFGjRkycOJGePXuqfy8GnTp14ttvv1X/Pfz111/qsiZvb2/27dtHWFiYHKyWpFIuMTGRpk2bMnToUGxtbbl06VKe+ZMAPv74Y5o0aUKrVq3yrdLm5ubGsWPHADh27BiTJ082euzu7k5GRgZTpkxRr7Fy5Uog6/Opffv2ODg4oNFo2LVrF5CVCL1bt25otVpsbW2NBvkN9u/fT8uWLXFwcKBfv36kpKRw8OBBevXqpR7z66+/4u3t/Vhet5JI5qIpeYqSI2U5oFUURUtWht1vgO+BNk+yY5IkGTMkmTKsjzS8gcrSt9Kj2rVrF507d6ZJkybUqFGDiIiIXJVvCqoUY3D27Fk2bdrE0aNHMTMzY+zYsaxfv56hQ4cW2odZs2Zhb2/Pzp07OXjwIEOHDiUy8hT/pP5LmD6GzT/upUbZTJo3b8abb76JXq9n27ZtREVFkZaWhoODg1Gf86pCk9c19Ho9Y8aMwcLCQq2k4uXlRffu3enbty+QVfFq6dKltGnThg8//JDZs2erCTvLli1LeHg4ixcvpmfPnkRERFC9enVefvllJk+e/ESWTTymzPml2t27d9HpdKSlpVGmTBmGDBnC22+/DWRFjlhZWWFtbU3z5s1xcHAAsspD+vn50bJlS6pWrZrnv3GA9evX8+abbzJ37lzS0tIYMGCAGlE0aNAgZsyYkWdCb4OFCxfyww8/kJqaiq2trdGg1qxZs3jjjTeYOXNmgTlpNm/ezPfff4+ZmRl169Y1WsoGWUsmz549S8uWLYGsssg//PADtWvXpmzZsrRt25aqVasWOZ+OJEnPBsN7H4CVlRULFy4kLi6OdevW0aJFi3zzJ1WsWJGNGzei1+tJT0/P9Zlq4O7uzqFDhxgxYgQJCQn069dPHSg5duwY06ZNY82aNVSpUoWwsDDu37+Pu7s7HTt25MUXX2THjh1UrlyZa9eu0aJFC7y8vNi3bx/169dnz549ACQnG1ekvXbtGnPnziUwMJCKFSsyb948vvzyS2bOnMnYsWNJSkqiVq1arF27tlRH2clcNCVPUQZSMoQQQlGUnsBXQog1iqK88aQ7JkmSMZlkSnpSAgIC1KVVAwYMICAgINcNVEhIiHpMzkoxBgcOHCAiIgJnZ2cg64audu3aRepDSEiIOgPfrl07rl+/zvaTcew49ReZNWwYtT6K97s2p3bt2ly9epWjR4/Ss2dPzM3NMTc3p0ePHkbt5VWFJq9r3LpVcMqv5ORkbt68SZs2WXMHPj4+9OvXT93v5eUFgEajwcbGhnr16gFZyU0vXbr0RAZSDJnzH1Rey5WAx554uiQoKBJKURTWr1+f575hw4blGU2SffmjlZUV+/bty/P8kJAQ+vbtS9WqVfPc7+fnV+BSSg8PD37//fcCrw8wbdo0pk2bluu4wpZMQtbypBMnTuQZcSNJ0rMt59KexMREGjZsSIsWLQDj/EmQ9Z4RFxfH7du38fb2pkKFCsD/f7bl5ObmxqeffsqFCxewtLTE3NwcIQQpKSlERETg6urK8uXLiY6OVnNyJScnExcXR4MGDZg+fTqHDx/GxMSEv/76i6tXr6LRaHjnnXeYOnUq3bt3x8PDw+iaJ06cIDY2Fnd3dyAr+XrLli1RFIUhQ4bwww8/MGzYMI4fP8533333WF/PksaQ21He95cMRRlIuaUoyvvAYKC1oigmRTxPkqTHqKAkU/INVXpYN27c4ODBg5w+fRpFUcjIyEBRFObPn//AbQkh8PHx4dNPP33kfqVnCr7Y/xsZmQKTcmXVgcMMFNLT0ws9v7Cy24+LobqPiYmJUaUfExOTIvVTKj0mTJjA3r17S1TOoJxiY2Pp3r073t7eNG7cuLi7I0nSU5A9v1J++ZOyl0UvSOPGjbl58yY//fSTGvHm6OjI2rVrsbS0xMLCAiEES5cuzbV00N/fn6SkJCIiIjAzM8PS0pJ79+7RpEkTIiMj+fnnn5kxYwbt27fnww8/NOpzhw4dCAgIyNWfYcOG0aNHD8zNzenXrx9lysivqNLTU5RsQL8B94E3hBD/AxoAcjGWJD1lhiRT2ckkU9Kj2rp1K0OGDOHixYskJiZy6dIlrKysOHLkiNFxRakU0759e7Zu3armYrhx4wYXL14sUj88PDzUKIHg4GAqVa1ORhnjSiT30zPJyBBqf3766Sfu3btHSkoKu3fvNjo2ryo0Oa9Rs2ZNKleuTKVKlYyq9GR/XKVKFapVq6a+Ht9//70anSI9Hc9KbqilS5dy/vx5mjRpUtxdyZe1tTUJCQl88cUXxd0VSZKKQX75k1q3bs3OnTu5e/cut2/f5qeffsq3jRYtWrB48WJ1IKVly5YsWrRIjRjp1KkTy5cvJy0tDYDff/+d1NRUkpOTqV27NmZmZgQFBan3B5cvX6ZChQoMHjyYKVOmEBkZmet6R48e5fz580BWThVD5F79+vWpX78+c+fOLXJuKkl6XIoybOckhBhleCCE+ENRlDtPsE+SJOXBkGQqZ44UmWRKehQBAQFMnTrVaFufPn1ybR87dmyhlWKsra2ZO3cuHTt2JDMzEzMzM5YtW6YmQs2uW7dumJmZAVk3YStXrmT48OHY2dlRoUIFFi1bxacnjT9qypUxwdQ0K7LE2dkZLy8v7OzsqFOnDhqNxqg/eVWhMSSuNVxj3bp1APTo0YO+ffuya9culi5dyoABAxg5ciRLlixh69atrFu3jjFjxnDnzh0aNWqklriVnjyZG0qSJOnxyS9/koODA/3790er1VK7dm11iW5e3N3d+fnnn9VE5i1btiQhIQE3NzcgqzJYYmIiDg4OCCGoVasWO3fuZNCgQfTo0QONRoOTk5OaUP306dNMmTIFExMTzMzMWL58udH1atWqhb+/PwMHDuT+/axSv3PnzlUHrQcNGkRSUhLNmzd/vC+WJBVCMdQCz7VDUd4ExgKNgPhsuyoBR4UQg59894rOyclJyFrjUmmXmSlIvJ4qk0xJT11GRgZpaWmYm5sTHx/Pq6++ym+//fbEkpwW5Qt0SkoKFhYW3Llzh9atW7Nq1So1cahUOiQkpeDzbWiuco/rhrvIJY3Sc8HU1BSNRkN6ejrNmzdn3bp1ah4LSZJg/Pjx2Nvb88YbMoVnSacoSoQQwqnwI58NBS3t2QD0AH7877+GH8eSNogiSc8LQ5KpFo1q0KiWhRxEkZ6aO3fu0KpVK7RaLd7e3k+8UowhO/264S4sGWjPuuEuuaIQRo0ahU6nw8HBgT59+pT4QZSdO3eiKArnzp17Iu0HBwfTvXt3AH788Uc+++yzx9Ju9vLWeUlMTMTW1vaxXCungnJDSdLzwJA8NCYmhrJly7JixYri7pL0FDwrSxqLm6OjI9HR0QweLL+aSk9fvkt7hBDJQDKQfw0/SZIkqcR4khFLD1sp5lEUlp1+w4YNT7U/jyogIIBWrVoREBDA7Nmzn+i1vLy88q268Cwx5IbKGZEic0NJzyMPDw+io6NJTU1lwoQJxMTEkJaWhp+fHz179iQjI4Np06YRHBzM/fv3GTduHKNHj2bAgAEMGTKEbt26AeDr66smHc7r+CtXrtC/f39u3bpFeno6y5cvz1VJRXpy5JLGoouIiCjuLkjPsaIkm5UkSZJKOMONl8+3oUwMOIXPt6HsO/M/OYtVQqSkpBASEsKaNWvYuHGjuj04OBhPT0/69u1Ls2bNGDRoEIYltz///DPNmjXD0dGRiRMnqtEmqampDB8+HBcXF+zt7dm1a1eu6/n7+zN+/Hgg60vTxIkTcXNzo1GjRmpJypSUFNq3b4+DgwMajSbPdnL68ssvsbW1xdbW1qjKQ0ZGBiNHjsTGxoaOHTty9+5dADw9PZk6dSouLi40adJETdp75swZXFxc0Ol02NnZERcXl2f7ljUqMlxrQcziN7iw40vOLBlB6q7Z1Kkgb1+k50t6ejp79+5Fo9Hw8ccf065dO0JDQwkKCmLKlCmkpqayZs0aqlSpQlhYGGFhYaxevZoLFy7Qv39/NVn4v//+y4EDB+jWrVu+x2/YsIFOnTqh1+uJiopCp9MV75N/ziReT1UHUQC1al3i9dRi7pkkSdnJOxFJkqRSQN54lWy7du2ic+fONGnShBo1ahjNop06dYpFixYRGxtLQkICR48e5d69e4wePZq9e/cSERFBUlKSenx+X6IKcuXKFUJCQti9ezfTpk0DshLy7tixg8jISIKCgnjnnXfIL28aZM38rV27lpMnT3LixAlWr17NqVOnAIiLi2PcuHGcOXOGqlWrsm3bNvW89PR0QkNDWbRokRqJs2LFCiZNmoReryc8PJwGDRrk2X5UlJ42TWrx742/+MLvPU7HxPDyC3XYsWP7g/8SJOkZdPfuXXQ6HU5OTrz00ku88cYb7N+/n88++wydToenpyf37t3jjz/+YP/+/Xz33XfodDpcXV25fv06cXFxdOnShaCgIO7fv8/evXtp3bo15cuXz/d4Z2dn1q5di5+fH6dPn6ZSpUrF/TI8V+SSRkl6Nshi25IkSaVAQTdeMiln8QsICGDSpEkADBgwgICAABwdHQFwcXGhQYMGAOh0OhITE7GwsKBRo0ZYWVkBMHDgQFatWgXA/v37+fHHH1mwYAGA+iWqIL169cLExARra2uuXr0KgBCC6dOnc/jwYUxMTPjrr7+4evUqdevWzbONkJAQvL29qVgxq1JY7969OXLkCF5eXlhZWamz1o6OjiQmJqrn9e7dO9f2li1b8vHHH/Pnn3/Su3dvGjduXGj7Q7t7AuDkZNy+JJVmhhwp2Qkh2LZtG02bNs21fenSpXTq1ClXO56envzyyy9s2rSJAQMGFHr84cOH2bNnD76+vrz99tsMHTr08T0pqUBySaMkPRtkRIokSVIpYLjxyk7eeJUMN27c4ODBg4wYMQJLS0vmz5/P5s2b1eiPcuX+/3dkampKenp6ge0ZvkTp9Xr0ej1//PFHoWUfs1/DcN3169eTlJREREQEer2eOnXqcO/evYd6jgU9B8O+7Ntff/11fvzxR8qXL0/Xrl05ePDgQ7cvSc+bTp06sXTpUvVv2RAZ1qlTJ5YvX05aWhoAv//+uxqt1r9/f9auXcuRI0fo3LlzgcdfvHiROnXqMHLkSEaMGEFkZOTTforPNcsaFXm/a3P1M92QI8WyRsVi7pkkSdnJgRRJkqRSQN54lVxbt25lyJAhXLx4kcTERC5duoSVlZWaLyQvTZs2JSEhQY282LRpk7ovvy9RDyo5OZnatWtjZmZGUFAQFy9eLPB4Dw8Pdu7cyZ07d0hNTWXHjh0PnYAyISGBRo0aMXHiRHr27El0dPRjbV+SSrOZM2eSlpaGnZ0dNjY2zJw5E4ARI0ZgbW2Ng4MDtra2jB49Wh107NixI4cOHeLVV19VK67ld3xwcDBarRZ7e3s2bdqkRtNJT0dRqtZJklT85NIeSZKkUsBw49WsbqUnUrVHengBAQFMnTrVaFufPn0ICAigf//+eZ5Tvnx5vv76azp37kzFihVxdnZW982cOZO33noLOzs7MjMzsbKyYvfu3Q/cr0GDBtGjRw80Gg1OTk40a9Ysz+PS09MpV64cDg4O+Pr64uLiAmR9CbO3t3+oZTabN2/m+++/x8zMjLp16zJ9+nSqV6/+2NqXpNIiJSUl17by5cuzcuXKXNtNTEz45JNP+OSTT3LtMzMz48aNG0U63sfHBx8fn0fsufQoCqtaJ0lS8VMKSiz3LHFychJPuzSnJEmSJD0pKSkpWFhYIIRg3LhxNG7cmMmTJz/VPiQlJaHT6fjrr7+e6nUlqTR6kiXqJUkqGkVRePvtt/niiy8AWLBgASkpKfj5+T1wWytWrKBChQoMHTpULSvet29fPD09WbBgAU5OTkVqJ/u5T8KDtq/X67l8+TJdu3YFsioMli1bFjc3t0fqh6IoEUKIor0ozwC5tEeSJEmSSqDVq1ej0+mwsbEhOTmZ0aNHP9Xr//jjj3h4ePDpp58+1etKUmkkS9RLUslQrlw5tm/fzrVr1x65rTFjxpTKRMx6vZ6ff/5ZfRwcHMyxY8eKsUclkxxIkSRJkord1atXef3112nUqBGOjo60bNmSHTt2PHK7hc2eeHp6Ulg047///stbb73FK6+8QuPGjenQpRs/Hj1NQlIKmZkCC4us0OvExERsbW0BCA8PZ+LEiY/U98mTJ6PX64mNjWX9+vVUqFDBaL+fn59auedJ8PLy4ty5c6XyJlGSnjZZol6SSoYyZcowatQoFi5cmGtfUlISffr0wdnZGWdnZ44ePUpmZiaWlpbcvHlTPa5x48ZcvXq1SJ/D+/fvp2XLljg4ONCvX788l+vl5d69ewwbNgyNRoO9vT1BQUEA+Pv707t3bzp37kzjxo1577331HPWrFlDkyZNcHFxYeTIkYwfP17dFxgYiJOTE02aNFGXA+d1jX///ZcPP/yQTZs2odPpmDdvHitWrGDhwoXodDqOHDlCYmIi7dq1w87Ojvbt26uVA319fXnzzTdp0aIFjRo1Ijg4mOHDh9O8eXN8fX2L9LyfJTJHiiRJklSshBD06tULHx8fNmzYAMDFixf58ccfi9xGeno6ZcqUyfX4ccygTJ8+ndu3b3P27Dl+PZfEW3MW8nr/fujGL2N6N+s8z3FycipySO/TkvM1kiTp6ZEl6iWp5Bg3bhx2dnZGgxAAkyZNYvLkybRq1Yo//viDTp06cfbsWXr27MmOHTsYNmwYJ0+epGHDhtSpU6fQ61y7do25c+cSGBhIxYoVmTdvHl9++SUffvhhoecuW7YMRVE4ffo0586do2PHjvz+++9AVsTIqVOnKFeuHE2bNmXChAmYmpry0UcfERkZSaVKlWjXrh1arVZtLzExkdDQUOLj42nbti3nz5/P9xpz5swhPDycr776CoC7d+9iYWHBu+++C0CPHj3UXErffvstEydOZOfOnQD8888/HD9+nB9//BEvLy+OHj3KN998Y8j1Vr4Iv55nhoxIkSRJkorVwYMHKVu2LGPGjFG3NWzYkAkTJgBZH/4eHh44ODjg4OCgDo4EBwfj4eGBl5cX1tbWuR4DarQIwLx589BoNGi1WqZNm2bUh8zMTHx9fZkxY4bR9jt37rB27VoWLlzIpZv3+PTns1TVdUQpY8a13yP49Oez5JVqLDg4mO7duxc4k/XTTz/h6uqKvb09r776KlevXgWyIk2GDx+Op6cnjRo1YsmSJeq5H3/8MU2aNKFVq1b89ttv6vb4+Hg6d+6Mo6MjHh4enDt3DsiaHRozZgyurq65bhglSXp6ZIl6SSo5KleuzNChQ40+XyEramP8+PHodDq8vLy4desWKSkp9O/fX62et3HjxnwTxed04sQJYmNjcXd3R6fTsW7dukIr5BmEhIQwePBgAJo1a0bDhg3VgZT27dtTpUoVzM3Nsba25uLFi4SGhtKmTRuqV6+OmZkZ/fr1M2rvtddew8TEhMaNG9OoUSPOnTtX4DUKcvz4cV5//XUAhgwZQkhIiLqvR48eKIqCRqOhTp06aDQaTExMsLGxAShVb3hyakqSJEkqVmfOnMHBwSHf/bVr1+bXX3/F3NycuLg4Bg4cqC7HiYyMJCYmBisrK4KDg40eZ7d371527drFyZMnqVChglH1ivT0dAYNGoStrS0ffPCB0Xnnz5/npZdeonLlysQmXFdnlCu+0IS7f1/k/ssOFJThwMTEJN+ZrFatWnHixAkUReGbb77h888/V5PfnTt3jqCgIG7fvk3Tpk158803iY6OZuPGjej1etLT03FwcMDR0RGAUaNGsWLFCho3bszJkycZO3YsBw8eBODPP//k2LFjmJqaFu0XIknSY2coUW9Y3iNL1EtS8XrrrbdwcHBg2LBh6rbMzExOnDiBubm50bEtW7bk/PnzJCUlsXPnzlyTLvkRQtChQwcCAgIea9/Llfv/8QhTU1O1zHlBFEUp8PHjYuibiYmJUT9NTEwASlV2bRmRIkmSJJUo48aNQ6vVqiV/09LSGDlyJBqNhn79+hEbG6se6+LiYjRokvOxQWBgIMOGDVPzjFSvXl3dN3r06DwHUXLKb0a5sLuC/Gay/vzzTzp16oRGo2H+/PmcOXNGPadbt26UK1eOmjVrUrt2ba5evcqRI0fw9vamQoUKVK5cGS8vLyCrus+xY8fo168fOp2O0aNHc+XKFbWtfv36yUEUSSpmhhL164a7sGSgPeuGu9DZpq6s2iNJxaR69eq89tprrFmzRt3WsWNHli5dqj7W6/VA1qCDt7c3b7/9Ns2bN6dGjRpFukaLFi04evQo58+fByA1NbVIER8AHh4erF+/HoDff/+dP/74g6ZNm+Z7vLOzM4cOHeKff/4hPT2dbdu2Ge3fsmULmZmZxMfHk5CQQNOmTfO9RqVKlbh9+7Z6bs7Hbm5ubNy4EYD169fj4eFRpOdU2siBFEmSJKlY2djYEBkZqT5etmwZBw4cICkpCYCFCxdSp04doqKiCA8P599//1WPrVjReDY35+OicHNzIygoiHv37uXa9/LLL/PHH39w+/ZtdUa5XBkTUv+Ko3I9K97v2pzCJnVyzmT17t0bgAkTJjB+/HhOnz7NypUrja7/ILNNmZmZVK1aFb1er/6cPXtW3f8wr4kkSY+fiYlCo1oWtGhUg0a1LOQgiiQVs3feeceoes+SJUsIDw/Hzs4Oa2trVqxYoe7r378/P/zwQ5GX9QDUqlULf39/Bg4ciJ2dHS1btlSX3uY0evRoGjRoQIMGDWjZsiVjx44lMzMTjUZD//798ff3N7o3yOmFF15g+vTpuLi44O7ujqWlJVWqVFH3v/TSS7i4uNClSxdWrFiBubl5vtdo27YtsbGx6HQ6Nm3aRI8ePdixY4eabHbp0qWsXbsWOzs7vv/+exYvXlzk16RUEUKUih9HR0chSQYmJiZCq9UKGxsb0bdvX5GamirCwsLEhAkTHvu12rRpI5o0aSLs7OyEm5ubOHfuXL7HXrhwQdjY2AghhFi7dq0YN25crmOWL18u1q1b99j7KUklVWZmpnBxcRFff/21uu3ixYuiYcOGQggh3nrrLbFgwQIhhBDffvutyProEiIoKEh069ZNPSfnYyGEqFixohBCiL1794qWLVuK1NRUIYQQ169fF0Jk/f2GhYWJL774QvTo0UOkpaXl6t/kyZPFiBEjRHp6usjIyBTzl64UzWy14vzVWyIjI1O9Rva/75x9effdd8XgwYNFly5d1G06nU6Eh4cLIYTw9fUVbdq0EUIIMWvWLDF//nz1OBsbG3HhwgUREREhNBqNuHPnjrh165Z45ZVX1ONatmwpNm/erL6eer1eCCGEj4+P2LJlS0EvvyRJkiRJpcDt27eFEEKkpaWJ7t27i+3btxdzj4wB4aIEjBs8rh8ZkSKVSuXLl0ev1xMTE0PZsmVZsWIFTk5OuZJKFaQo6w0N1q9fT1RUFD4+PkyZMuVhuqwqrTXpJSk/iqKwc+dODh06hJWVFS4uLvj4+DBv3jwAxo4dy7p169BqtZw7d+6hIiw6d+6Ml5cXTk5O6HS6XOUK3377bezt7RkyZAiZmcaVNT799FPMzc1p0qQJTZs24dAvP7H/5594uXalIs8o5zWT5efnR79+/XB0dKRmzZqFtuHg4ED//v3RarV06dJFXfoEWe9Ba9asQavVYmNjw65du4rUL0mSJEl6VmVmChKSUjiRcJ2EpBQyMwvKWlb6+fn5odPpsLW1xcrKil69ehV3l0o1ReRVbuAZ5OTkJAzJByXJwsJCrdO+YsUKoqOjee2111iwYAG7d+8mNTWVCRMmEBMTQ1paGn5+fvTs2RN/f3+2b99OSkoKGRkZaj6DW7dukZ6ezvLly3OtA/T09GTBggU4OTlx7tw5evfuzZkzZ3jvvffYu3cviqIwY8YM+vfvT2JiIt27dycmJgZ/f3+1tNiePXuYO3cuP/30E1999ZVaYmzJkiWsWLGCMmXKYG1tzcaNGzl06BCTJk0Csr6AHj58mEqVKj3111iSJEmSJEmSikNmpmDfmf/lSuAscw+VXIqiRAghnIq7H4+LjEiRSrX09HT27t2LRqMx2v7xxx/Trl07QkNDCQoKYsqUKaSmpgJZVUC2bt3KoUOH2LBhA506dUKv1xMVFYVOpyvwej/99BMajYbt27er5wQGBjJlyhSj5I/Z7dixg88++4yff/4516z0Z599xqlTp4iOjlbXaS5YsIBly5ah1+s5cuQI5cuXjpLs2cvUAvj7+zN+/Pindn1fX1+2bt1apGN37tyJoihG61wN5W7zkvO5Fcbf35/Lly+rjxctWsSdO3ceqA1JkiRJkqTSKvF6qjqIAnA/PZNPfz5L4vXUYu6Z9LyQAylSqXT37l10Oh1OTk689NJLvPHGG0b79+/fz2effYZOp8PT05N79+7xxx9/ANChQwe1ooezszNr167Fz8+P06dP5xv5MWjQIHQ6HUePHmXBggWEhIQwcOBATE1NqVOnDm3atCEsLCzXeQcPHmTevHns2bOHatWq5dpvZ2fHoEGD+OGHHyhTJqtaubu7O2+//TZLlizh5s2b6nbp6QkICKBVq1aPvZydwbM+kCJDbSVJkiRJepL+vn1fHUQxuJ+eyd+37xdTj6TnjRxIkUolQ44UvV7P0qVLKVu2rNF+IQTbtm1Tj/njjz9o3rw5YFzhonXr1hw+fJgXXngBX19fvvvuuzyvt379evR6PTt37uTFF18scj9ffvllbt++nW8ptD179jBu3DgiIyNxdnYmPT2dadOm8c0333D37l3c3d3zzf5dmvz000+4urpib2/Pq6++ytWrV4GstaDDhw/H09OTRo0aqTlwEhMTad68OSNHjsTGxoaOHTty9+5dAFavXo2zszNarZY+ffoYDVAcPnwYNzc3GjVqlG90SkpKCiEhIaxZs0Yt/WZw69YtunXrRtOmTRkzZoxRro3JkydjY2ND+/bt1Wo0er2eFi1aYGdnh7e3N//88w9bt24lPDycQYMGoSgKL7zwAhcvXuTFF1+kRYsWefbp5s2bfP311/m+fqampuh0OvUnMTEx1zFdu3bl5s2b+bZRVIZQW59vQ5kYcAqfb0PZd+Z/cjBFkiRJkqTHpnalcpQrY/xVtlwZE2pXyr+yjSQ9TiVuIEVRFD9FUf5SFEX/30/X4u6TVPp06tSJpUuXYsgRdOrUqTyPu3jxInXq1GHkyJGMGDHCqERrQTw8PNi0aRMZGRkkJSVx+PBhXFxcch3XsGFDtm3bxtChQzlz5ozRvszMTC5dukTbtm2ZN28eycnJpKSkEB8fj0ajYerUqTg7O5eagRRDFJHh58MPP1T3tWrVihMnTnDq1CkGDBjA559/ru47d+4cv/zyC6GhocyePZu0tDQA4uLiGDduHGfOnKFq1aps27YNgN69exMWFkZUVBTNmzdnzZo1altXrlwhJCSE3bt3M23atDz7uWvXLjp37kyTJk2oUaMGERER6r7Q0FCWLl1KbGws8fHxbN++HYDU1FScnJw4c+YMbdq0Yfbs2QAMHTqUefPmER0djUajYfbs2fTt2xcnJyfWr19PxYoV+euvv2jYsCGXLl3ixIkTefapsIGU7AOLer0eS0tLdZ8QgszMTH7++WeqVq2abxs5ZWRk5LldhtpKkiRJkvSkWdaoyPtdm6uDKYYcKZY1HjwhvSQ9jBI3kPKfhUII3X8/Pxd3Z6TSZ+bMmaSlpWFnZ4eNjQ0zZ87M87jg4GC0Wi329vZs2rRJTfJaGG9vb+zs7NBqtbRr147PP/+cunXr5nlss2bNWL9+Pf369SM+Pl7dnpGRweDBg9FoNNjb2zNx4kSqVq3KokWLsLW1xc7ODjMzM7p06fLgL0AJlPPL/pw5c9R9f/75J506dUKj0TB//nyjQadu3bpRrlw5atasSe3atdVoFSsrKzWnjaOjoxqFERMTg4eHBxqNhvXr1xu11atXL0xMTLC2tlbbySkgIIABAwYAMGDAAKPlPS4uLjRq1AhTU1MGDhxISEgIACYmJmq1lsGDBxMSEkJycjI3b96kTZs2APj4+HD48OECX6OUlBTat2+Pg4MDGo1Grcwybdo04uPj0el0RaoalZiYSNOmTRk6dCi2trZcunQJS0tLrl27pr4Ojo6O2NjYsGrVKvU8CwsL3nnnHbRaLcePH8+z7dIYamuI6LGxsUGr1fLFF1/kquzzOPz444989tlnj9xOXjl8HsSD5vTx8/NTqyA9SK4hw7kvvPCCOoA6bdo0VqxYkW/0nyRJkiQBmJgodLapy7rhLiwZaM+64S4y0az0VMnkClKpZKjYk52npyeenp5A1pf2lStX5jrG19cXX19f9bGPjw8+Pj4FXis4ODjXNkVRmD9/PvPnzzfabmlpSUxMTK5r2dvbExsbC2R9sTAwfBHPbunSpQX2pzSaMGECb7/9Nl5eXgQHBxu9RuXK/X8Ip6mpqVq2Oud2w9IeX19fdu7ciVarxd/f3+j3l/2cvCqa3bhxg4MHD3L69GkURSEjI0P9XUPW7z27nI8L256TIUrn8uXL+Pj4sGvXLnbs2EHlypW5du0aLVq0wMvLi88++4yYmBj0en2B7UDWANPChQuJi4tj3bp1eS4X+vbbb6levTp3797F2dmZPn36UKNGDVJTU3F1deWLL77It8+GUNvsgynPeqitYZAP4O+//+b111/n1q1bamTR4+Ll5YWXl9cjt5M9h09efUxPTy9RuZUmT57Mu+++W9zdkCRJeubt3LkTb29vzp49S7NmzZ7qtU1NTY2KO+zcuZPXX3+dY8eOGVWtzI+lpSXh4eG5Ci8UxMREoVEtCxrVerAJAEl6HEpqRMp4RVGiFUX5VlGU3Bk4/6MoyihFUcIVRQk35ByQJClrRvny5cv07dv3odvw8/NDURTOnz+vblu0aBGKolBYqfF9+/bh4uJCs2bN0Ol09O/fX03mW5CBAwdiZ2fHwoULuXLlChs3bsTe3p6///6bGTNmALBu3bqHfk4At2/fpl69eqSlpbF+/foHOnfr1q0MGTKEixcvkpiYyKVLl7CysuLIkSNA1tKeCxcukJmZyaZNm2jVqhWQtUzLMEu/YcMGWrVqRZUqVahWrZp67vfff69Gp1SqVInbt2+rX+CbNm3KV199hRCC6dOnY2dnx6uvvspff/2Vb+RMdtmjfXbs2AFkLSvLL+fKkiVL0Gq1tGjRgkuXLhEXFwdk3ST16dOnwGuV9lDb2rVrs2rVKvX3kZGRwZQpU3B2dsbOzk4doA0ODsbT05O+ffvSrFkzBg0apA7OWVpaMmvWLDWyyBA5kr1S1ZYtW7C1tUWr1dK6desi9y+/HD7BwcF4eHjg5eWFtbU1kH/kEeSd0yc+Pp7OnTvj6OiIh4dHoREvc+bMwdnZGVtbW0aNGpXn4GReske4hIWFYWdnp0Zb2draAnDnzh1ee+01rK2t8fb2xtXVtdD3JUmSpNKusGT4hsmmJyGvZcTHjh17YteTpOJWLAMpiqIEKooSk8dPT2A58DKgA64A+U59CiFWCSGchBBOtWrVejqdl54qWf3j4dWvX/+BQuzzotFojL6MbdmyBRsbmwLPiYmJYcKECaxbt45z586h1+sZNGhQnglOsxNCEBYWRnR0NJMnTyYyMpJXXnmFU6dO8emnn5KSkoKjo+MDzVTk5aOPPsLV1RV3d/cHnq0JCAjA29vbaFufPn3UGxZnZ2fGjx9P8+bNsbKyUo+tWLEioaGh2NracvDgQTX/y7p165gyZQp2dnbo9Xp1u6+vL2PGjOHu3bvcvXuXUaNG0blzZzQaDUlJSURERKDX66lTpw737t17qNche1Ll7IKDgwkMDOT48eNERUVhb2+vXsPc3BxTU9MC230eQm0bNWpERkYGf//9N2vWrKFKlSqEhYURFhbG6tWruXDhApCVe2nRokXExsaSkJDA0aNH1TZq1qxJZGQkb775pjpokN2cOXP45ZdfiIqK4scffyxy3wrK4RMZGcnixYvV5NbffvstERERhIeHs2TJEq5fvw7kn9Nn1KhRLF26lIiICBYsWMDYsWML7Mv48eMJCwsjJiaGu3fvsnv37jyPW7hwobq055dffjHaN2zYMFauXIlerzf6t/f1119TrVo1YmNj+eijj4yepyRJ0vOoqAPpmZmZjB07lmbNmtGhQwe6du2q3i9mX+YbHh6uRnIfOnRIfZ+2t7fn9u3bRepTXktFMzIyePfdd9Vl6tkjrZcuXZprkkGSSqpiie0VQrxalOMURVkN5H3nJZV6huofhsSVhpntZ+lLmaIoavliyJoJqFevHq6urvl+qYCsD70FCxYUeEx+LC0tEUIYhVH6+/uzc+dOUlNTiYuL49133+Xff//l+++/p1y5cvz8889qyefsevXqxa5du5gxYwbx8fFUqVIFMzMzdf++ffuYPn06GRkZ1KxZkwMHDjBv3jymT5+uVkECjJYreHp6smDBApycnLh27RpOTk4kJiby8ssvExcXh06nw9vbmyNHjmBqakrbtm0JCgpi0KBBJCQkEBwcTFhYGH379iUmJgZHR0eEECiKYhQymv3/sy8bePPNN3nzzTdzPVd/f3+jx3ktDwsKCsq1beLEier/55fjJK+2AHQ6XZ4JZPv06UOfPn2wsLCgfPnyTJgwgQkTJrB48WLOnz+PmZkZQUFBXLx4Efj/CJbHITk5mWrVqlGhQgXOnTuXb4LbgjxPobb79+8nOjpavQlNTk4mLi6OsmXL4uLiQoMGDQDUakmGKKXevXsDWfl7DEmJs3N3d8fX15fXXntNPbYoAgIC1FxOhhw+jo6OQFYOHysrK/XYJUuWqBFKhsijGjVq5Mrp07t3b1JSUjh27Bj9+vVTz79/v+C8N0FBQXz++efcuXOHGzduYGNjQ48ePXIdl3NpjyH/zs2bN7l9+zYtW7YE4PXXX1ffE0NCQtTnabgZlyRJep7lNZBueP+PjIwkJiYGKysrtm7dSmJiIrGxsfz99980b96c4cOHF9j2ggULWLZsGe7u7qSkpGBubp7rmJzLiA2fLzmtWrWKxMRE9Ho9ZcqU4caNG+o+wyTD119/zYIFC/jmm28e8tWQpCev5CyS/o+iKPWEEFf+e+gN5L+YTirV8qv+0axupWfmC1rFihXV2djy5cvz66+/8sILLxRLX2JiYjh16hT37t3jlVdeYd68eZw6dYrJkyfz3Xff8dZbb+U6p3Llyrz44ovExMSwa9cu+vfvz9q1awFISkpi5MiRHD58GCsrK/WD8MyZMw+V7+DHH3+ke/fuai4KIQQWFhZ5tnXq1CnOnDlD/fr1cXd35+jRo+oX1NJs0KBB9OjRA41Gg5OTkxpRU6NGDdzd3bG1taVLly65cvM8iM6dO7NixQqaN29O06ZN813+8zxLSEjA1NSU2rVrI4Rg6dKldOrUyeiY4ODgfPP3wP/n48m53WDFihWcPHmSPXv24OjoSEREBDVq1CiwX4Xl8MkehZQ98qhChQp4enrmG92kKAqZmZlUrVo13zw8Od27d4+xY8cSHh7Oiy++iJ+f30NHT0mSJEmFK+pAekhICP369cPExIS6devStm3bQtt2d3fn7bffZtCgQfTu3VudJMguez6xggQGBjJmzBg1V1f2ibzCJhkkqSQpiTlSPlcU5bSiKNFAW2BycXdIKh6lpfpH165d2bNnD5D1ITdw4EB1X2hoKC1btsTe3h43Nzd+++23XOenpKQwbNgwNBoNdnZ2ahnfgIAANBoNtra2TJ06Ndd5f/75J3Fxcfj6+qqlfE+ePEmvXr24c+eO+iGo0WgKXHYzYMAANm7cqCYwMzhx4gStW7dWP5izfxD+eeMOJxKuE/HbRXQ6HU2aNMlz+cLDMsz0m5iYqDP9pVHOSJaaNWty/PhxTp8+zdq1azl79qxaynjDhg3ExMTkOYiSs53sSY8NEhMTqVmzJuXKlWPv3r2cPXuWnTt3qrk+8mrneZSUlMSYMWMYP348iqLQqVMnli9frpbd/v3330lNffRSz/Hx8bi6ujJnzhxq1arFpUuXCj2nsBw+2RUUeZRXTp/KlStjZWXFli1bgKyBzqioqHz7Yhg0qVmzJikpKQ+1zLBq1apUqlSJkydPAhiFqru7u7N582YAYmNjOX369AO3L0mSVFoYBtJHjBiBpaUl8+fPZ/PmzWpuqvyW8+ZUpkwZtSpd9sHvadOm8c0333D37l3c3d2f2LKbwiYZJKkkKXEDKUKIIUIIjRDCTgjhlS06RXrOGKp/ZPcsVv8wDETcu3eP6OhoXF1d1X3NmjXjyJEjnDp1ijlz5jB9+vRc53/00UdUqVKF06dPEx0dTbt27bh8+TJTp07l4MGD6PV6wsLC2LlzZ65z//33X9555x0++eQTbt26xYYNGwgJCaFatWp8/fXXQFZp3oI+rLp3787333/PSy+9ROXKlQt8rpmZgqovNGLy1zuYGHCKt3bG88n3exk5cqT6JTy/D+kHUdBMvyQ9boZwZRsbG1599VU6duzIrFmzABgxYgTW1tY4ODhga2vL6NGjH8u/xylTpqgDpW5ubmi12kLPKSyHT3adO3cmPT2d5s2bM23aNKPIo/xy+qxfv541a9ag1WqxsbFRy2/npWrVqowcORJbW1s6deqEs7NzUZ+6kTVr1jBy5Eh0Oh2pqalUqVIFgLFjx5KUlIS1tTUzZszAxsZG3SdJkvS8eZCBdHd3d7Zt20ZmZiZXr141ql5oaWmp5pwyTNxB1uC+RqNh6tSpODs7P9JASocOHVi5cqX6WZl9aY8kPUtK3NIeSTIwVP/ImSPlWav+YWdnR2JiIgEBAXTt2tVoX3JyMj4+PsTFxaEoijqrnV1gYKDRTGy1atU4fPgwnp6eGJIsDxo0iMOHD9OrVy+jc8uWLYtGoyEiIoLq1avTvn17FEXBzMysSFV0ACpUqMC8efNo0qSJ0fYWLVowduxYLly4oC7tuZlRlpuvdOaP72ZRrn5TqN2QT38+i9ONZKqUz3q7MXxIu7i4PHIy3GdJZqYg8Xoqf9++T+1K5bCsUfGZyfXzvMvIyMh3n4mJCZ988gmffPKJ0fbs5dYBvvrqK/X/s0dQOTk5qTex2UuiP0xIc2E5fLL3xxB5lJf8Io+srKzYt29fru3Zy5FnzzU0d+5c5s6dW2Cfs5+b1zYbGxuio6MB+Oyzz3BycgKyEh//8MMPmJubEx8fz6uvvkrDhg0LvJYkSc+mjz/+mA0bNmBqaoqJiQkrV640mpQqSXbv3s3MmTPJzMwkLS2NSZMmMXr06Cd+3YCAgFzRyYaBdEPOq+zbDxw4gLW1NS+++CIODg7qQPSsWbN44403mDlzptFnxqJFiwgKCsLExAQbGxu6dOny0H0dMWIEv//+O3Z2dpiZmTFy5Ei1Yp0kPUvkQIpUYhmqfzSrW+mZ//Lp5eXFu+++S3BwsFoZA2DmzJm0bduWHTt2kJiYaPSh9SjKli0LZOU2MFAURY3kMORPKKoBAwbk2larVi1WrVpF7969yczMpHbt2ny0ciNlalryUrexJGz7nMz7dyhToTLl7Zry1RefAVmJX1977TVWrVpFt27dHuVpPjNKQ+Jk6emSA29Z9uzZw6effkp6ejoNGzZUB2ru3LlD27ZtSUtLQwjB119/rb7vSZJUehw/fpzdu3cTGRlJuXLluHbtGv/+++8Tu156erqau+NBpaWlMWrUKEJDQ2nQoAH3799/akuPH2Qg3cTEhAULFmBhYcH169dxcXFBo9EA4OHhoVZ2yy57ZZ385DUIb9iWfUlxmTJl+PLLL/nyyy+Njs1vkkGSSio5kCKVaKWl+sfw4cOpWrUqGo3G6IMhOTlZTT6bs2qMQYcOHVi2bBmLFi0C4J9//sHFxYWJEydy7do1qlWrRkBAABMmTACylvNYWlrSoEEDXnnlFSBrpjv7dUNCQujevbu6zzALnl1eM8WAUTtdunQxmpVISEqhXBkTqjZ1pWrTrNmicmVMWDHcRf0dNmvWTJ1hBtQZ65x5O3Je3/BhXNBMf0lVGhInlxbPwgCFHHj7f/379881mwpZlarCw8OLoUeSJD1NV65cUfN3QVbeJYOIiAjefvttUlJSqFmzJv7+/iQnJzN06FBCQ0OBrC/nPXr04PTp03keX69ePTw9PdHpdISEhDBw4EBOnz5N9+7d6du3L5BVwjclJYUrV67Qv39/bt26RXp6OsuXL8fDw0Ptz+3bt0lPT1cTg5crV46mTZsCWfdalStXJjw8nP/97398/vnn9O3bl5SUFHr27Mk///xDWloac+fOpWfPniQmJtK5c2ccHR2JjIzExsaG7777jgoVKuT7PB5E9+7duXnz/9q79/ge6/+P449rh2ZYOY76Vg7lMNvns89mm7PmLOSYkJhjiigdKflK0oFSqJQSwgg5fEvSQiM0GzPHcmiRwlAY2+xw/f6YfX6bHXywmc3zfru59flc1/u6rtc1n2Z7Xe/36/UvFy9e5NVXX6Vy5crX/pckcou66WqkiBRHd999d5YnAxlefPFFRo8ejZ+fX651FcaMGcM///yDj48Pvr6+rFu3jjvvvJO33nqLZs2a4evrS926denUqRMzZszg5MmTOdZauREylmNl1LYpqsux8ltxKZxc1GUkKEJmRTAidDshsyJYvfsYaWlmYYeWRW6Jt9hT11/EVkSkKGndujVHjhyhZs2aDB06lJ9++glIn/0xfPhwlixZQlRUFAMGDOCVV16hdu3aXLx4kd9//x2ARYsW0aNHj1zHZ7h48SKRkZE899xzucayYMEC2rRpQ3R0NDt27LC3+s1Qrlw5OnbsSJUqVejVqxfz58+314SD9KTQxo0b+eabb+xNAEqUKMGyZcvYtm0b69at47nnniM1NY3Dp87z66+/0qlXP3bv3sPtt9/ORx99dMX7cNT69euJjo5mz549OT5ME5ErMzKqORd1AQEBpp5OSXFTFJ6eX64oxlzQDsXFEzIrIksyxc3FiTmZZuoUR87OzlgsFkzTxNnZmenTp9OwYUNiY2Pp0KFDts5Bmf3111+MGDHiuuroHDlyhIceesj+/mJKGr8dOEjFoA7c02YwkPPfQ9WqVYmMjMzy5BPSWxKXLFmSvn375nrNyMhI5s6dy9SpU6857i2HTjEidHu27VN7+VG/et4tkEVEipvU1FQ2bNjAunXr+OSTT+z1kho2bEj16tXtY+68807WrFnDxIkTcXJyYtSoUfj7+7No0SKSkpJyHR8cHMxrr73GAw88AKTPHslpRkp4eDgDBgzgscceo3PnztkSKRl27txJWFgYc+fOxdfXl9mzZ9OvXz9atWpF7969gfRZdefOnSM5OZmRI0cSHh6Ok5MTv/76KzNXbeGD1buJ+eQZgkYvZHQ7L247vofp06cxYcKEXO9D5GZnGEaUaZoBhR1HftHSHpGbVFGd3l9clmPlp+JSOPlqubu7Ex0dDcD333/P6NGj7U8Tr+Suu+667mLE99xzj/36APO+28CAnt2o3LCbfVvGzCBHPq9PPPHEFccEBATYC6Jeq4yOZZcn3opaxzIRkfzg7OxsX9ZrsViYM2cOdevWxdvbm82bN2cb36NHD7p3707Xrl0xDIMaNWqwc+fOXMdD1vbAmbsLpqWl2WuyNG3alPDwcL799lv69evHs88+m2Ni3WKxYLFY6NOnD9WqVbMv3c7ccTDjQfb8+fOJi4sjKioKV1dX7r63Ch+s3s3F1DTAsM9IHFIjEcMwME0zz/sQkRtHS3tEHJCWZnIoLp4th05xKC7+hiwF0PT+4iOjcPKcAUFM7eXHnAFBN31CLL+dPXuWsmXLZtseGxtLkyZN8Pf3x9/fn02bNtm3+/j4ALB7926CgoKw2WxYrVb2798PwLx58+zbhwwZkmcB5cTERF5/7gnu7zwCV49y6ddY+QF7Px5G33aN7e2MM7zzzjtYLBaCgoI4cOAAkF63Z/LkyUB6rZ6XXnqJoKAgatasaW8xuX79env9oWulJXIiIul+/fVX+/d8gOjoaKpUqUKtWrWIi4uzJxSSk5PZvXs3APfddx/Ozs68/vrr9hpLeY2/XOYWwCtXrrR3VPzjjz+oVKkSgwcPZtCgQWzbti3LcfHx8VnqyGXEmpczZ87g6emJq6sr69at4+iRw5eSKHDxzAniD+8hKSWNrxaF0rhx46u6DxEpWJqRInIFhTUzJK+6GprtUfTcijN1EhISsNlsJCYm8vfff7N27dpsYzw9Pfnhhx8oUaIE+/fvp1evXtmKiM6YMYOnn36a3r17c/HiRVJTU9m7dy+LFi3i559/xtXVlaFDhzJ//vxcl928+OKLNGvahI7DBtr/X67ediBjH65Hq9oVadWqJTExMVitVgDuuOMOdu7cydy5c3nmmWf45ptvsp0zJSWFiIgIVq1axWuvvUZYWFg+fNWKV8cyEZHrER8fz/Dhw/n3339xcXHh/vvv59NPP+W2225jyZIljBgxgjNnzpCSksIzzzyDt7c3kD4r5YUXXrDXSrnS+MwGDx5Mp06d8PX1pW3btvbZKuvXr2fSpEm4urpSunRp5s6dm+U40zR55513GDJkCO7u7pQqVSrXRgIZevfuzUMPPYTFYiEgIID7atTkNmcnLqamUaLCPRz/ZSWxy96lXJCNJ5988qruQ0QKlhIpIldQWB1XNL1firrMS3s2b95M3759s9VFSU5O5qmnniI6OhpnZ+cc2y42aNCAN954gz///JOuXbtSo0YNfvzxR6KioggMDATSkzaenp45xvHdd98RFhZGVFQUbm4l7AmKsKXzGBMynlEpKfz999/s2bPHnkjp1auX/b8jR47M8bxdu3YFoG7duvne4vJWTLyJiFyubt269pmKl7PZbISHh+e47/nnn+f55593aPzlbXYrVarEli1b7O/ffvttAEJCQggJCck1Vg8PD1atWpXjvssTKhmdCCtUqJBlmU7Gw7v/zluH4eRMnV4vZ3t4l9d9i8iNo0SKyBUU1syQW7WuhhRPDRo04OTJk8TFxWXZPmXKFCpVqsSOHTtIS0ujRIkS2Y599NFHqVevHt9++y3t2rXjk08+wTRNQkJCePPNN/O87okTJxgyZAgrVqzA3d0dgOoVS2PExzH7k2ls3bqVsmXL0q9fPxITE+3HGYaR4+vMMta7Ozs759p1S0RE/p8K0uctY0Zi6Ud86b+sBHMGBOlrJHKTUiJF5AoKa2aIpvdLcbJv3z5SU1MpX748Fy5csG8/c+YMd999N05OTsyZMyfHOieHDh2ievXqjBgxgsOHDxMTE0Pr1q3p1KkTI0eOxNPTk9OnT3Pu3Lls69EHDBjA8OHD8fPzy7L97NmzlCpVijvuuIPjx4/z3XffERwcbN+/aNEiRo0axaJFi2jQoEH+fjFERG5BRbWI/o3m5GTQtK43B3/bW9ihiEgelEgRuYLCnBlSnKf3Hz9+nJEjR7JlyxbKli3LbbfdxosvvkiXLl2u6XzBwcFMnjz5ujumSP7JqJEC6WvH58yZg7Ozc5YxQ4cOpVu3bsydOzfLWvTMvvrqK7788ktcXV2pXLkyL7/8MuXKlWPChAm0bt2atLQ0XF1d+fDDD7MkUjZv3sy3337LkSNHmD9/vn17q1atmDRpEn5+ftSuXZt77rmHRo0aZbnmP//8g9Vqxc3NjdDQ0Hz8qoiI3JoKa6m0iEhBMDLabxV1AQEB5uUFCkXyi6ai5i/TNGnYsCEhISH2lrJ//PEHK1euZPjw4Vc8PiUlBReXrHlgJVJERERuXlsOnWJE6PZs26f28qN+9fKFEJGI3EiGYUSZpllsflBX+2MRB2TMDKlfvTzVK5ZWEuU6rV27lttuu82eRAGoUqUKw4cPJzExkf79+2OxWPDz82PdunVAeqG2jh070rx5c1q0aEFCQgI9e/bEy8uLLl26kJCQYD9XaGgoFosFHx8fXnrpJfv20qVL88orr+Dr60v9+vU5fvz4jbvpIq4wWoDnN2dnZ2w2G97e3vj6+vLuu++SlpZ25QMz+euvv3j44YcdHh8fH8+QIUO47777qFu3LsHBwfzyyy9XG3o2wcHB2bobASxevBgvLy+aNWuW7+cWEbkeGUulM1MRfREpqrS0R0RuuN27d+Pv75/jvg8//BDDMNi5cyf79u2jdevW9k4u27ZtIyYmhnLlyvHee+9RsmRJ9u7dS0xMjP18f/31Fy+99BJRUVGULVuW1q1bs3z5cjp37sz58+epX78+b7zxBi+++CIzZ85kzJgxN+y+i6risq49cxehEydO8Oijj3L27Flee+01h45PSUnhrrvuYsmSJQ5fc9CgQVSrVo39+/fj5OTE77//zp49e7KMMU0T0zRxcrr+Zxuff/45M2fOpHHjxg6Nz2l2l4hIQVARfREpTjQjRUQK3bBhw/D19SUwMJCNGzfy2GOPAVC7dm2qVKliT6S0atWKcuXKARAeHm4fZ7Va7W1rt27dSnBwMBUrVsTFxYXevXvb2wTedtttdOjQASiYlrXFVW7r2mNPnS/kyK6dp6cnn376KdOnT8c0TYdnQsXGxuLj4wOkJwSDgoKw2WxYrVb279+f5RoHDx7kl19+YcKECfYkSbVq1Wjfvj2xsbHUqlWLvn374uPjw5EjR3jhhRfw8fHBYrGwaNEi+3nefvttLBYLvr6+jBo1Kss10tLS6NevH2PGjGH8+PFs3LiRgQMH8sILL+TL7C4RkfySUUR/zoAgpvbyY86AoCKXkBcRyaDHUCJyw3l7e7N06VL7+w8//JCTJ08SEBDA3XffnetxORUivRqurq72VrZqWeu4wmoBXtCqV69OamoqJ06cYN68eQ7NhMqcfJsxYwZPP/00vXv35uLFi9k6Du3evRubzZatwG6G/fv3M2fOHOrXr8/SpUuJjo5mx44dnDx5ksDAQJo2bUp0dDQrVqzgl19+oWTJkpw+fdp+fEpKCr1798bHx4dXXnkFSF82l1Er6N13372u2V0iIvmtOBfRF5Fbi2akiMgN17x5cxITE/n444/t2zJa4jZp0sTeYeW3337j8OHD1KpVK9s5mjZtyoIFCwDYtWsXMTExAAQFBfHTTz9x8uRJUlNTCQ0N5YEHHijoWyrWboV17Y7OhMqsQYMGTJw4kbfffps//vgDd3f3q7pmlSpVqF+/vv36vXr1wtnZmUqVKvHAAw+wdetWwsLC6N+/PyVLlgTIEseQIUOyJFGu9Z5ym90lIiIiIjlTIkVEbjjDMFi+fDk//fQT1apVIygoiJCQEN5++22GDh1KWloaFouFHj16MHv2bNzcsv/C/uSTTxIfH4+Xlxdjx46lbt26ANx555289dZbNGvWDF9fX+rWrUunTp1u9C0WKxnr2jOSKcVlXfuhQ4dwdnbG09Mzz3G5zYR69NFHWblyJe7u7rRr1461a9dm2e/t7c2OHTuyzVS50nkd1bBhQ9atW0diYuJVH3u91xYRERG5lWlpj4gUijvvvJOFCxfmuO+LL77Itq1fv37069fP/t7d3T3X43v16kWvXr2ybY+Pj7e/fvjhh6+q+8qtLGNde+3KHsWmBXhcXBxPPPEETz31FIZh2GdCNW/ePMtMqG3btuV6jkOHDlG9enVGjBjB4cOHiYmJoXnz5vb99913HwEBAfz3v//l9ddfxzAMYmNj2b17N97e3lnO1aRJEz755BNCQkI4ffo04eHhTJo0idtuu43x48fTu3dv+9KejJkkAwcOJDw8nEceeYSvv/46W9FYR+8pY3ZX8+bNs8zuEhEREZGcKZEiItclLc0k9tT5YvMLtuSsOKxrT0hIwGazkZycjIuLC3369OHZZ58FYOjQoTz55JNYLBZcXFxynQmV2VdffcWXX36Jq6srlStX5uWXX8425rPPPuO5557j/vvvx93dnQoVKjBp0qRs47p06cLmzZvx9fXFMAzeeecdKleuTNu2bYmOjiYgIIDbbruNdu3aMXHiRPtxzz77LGfOnKFPnz72JXEZHL2nJ598kv79++Pl5YWXl5d9dpeIiIiI5MwwTbOwY8gXAQEBZmRkZGGHIXJLKS5tcUXk5uTs7IzFYiElJQUvLy/mzJljrxdzuejoaP766y/atWt3zdcbO3YsTZs2pWXLlg6NHzduHDNnzqRixYqcP38ei8XChAkTqFOnzjXHkFnp0qWzzKQTEREpqgzDiDJNM6Cw48gvqpEiItesOLbFlaIhLc3kUFw8Ww6d4lBcPGlpxeOhgGTl7u5OdHQ0u3bt4rbbbmPGjBm5jo2OjmbVqlXXdb3x48c7nETJMHLkSKKjo9m/fz89evSgefPmxMXFOXy8uoeJiIgUPUqkiMg1y6strkhByZgJFTIrghGh2wmZFcHq3ceUTCnmmjRpwoEDBzh//jwDBgwgKCgIPz8/VqxYwcWLFxk7diyLFi3CZrOxaNEixo0bx+TJk+3H+/j4EBsbS2xsLF5eXgwePBhvb29at25NQkICkF6LacmSJUB6UiUwMBAfHx8ef/xxHJnB26NHD1q3bm3vKFa1alVOnjwJQGRkJMHBwUD6TJY+ffrQqFEj+vTpw+7duwkKCsJms2G1Wtm/f3+2c0+aNInAwECsViv//e9/gfQZNO+//759zCuvvMIHH3xw9V9cERERuSpKpIjINbsV2uLKzUczoW49KSkpfPfdd1gsFt544w2aN29OREQE69at44UXXiA5OZnx48fTo0cPoqOj6dGjR57n279/P8OGDWP37t2UKVOGpUuXZhvz1FNPsXXrVnbt2kVCQgLffPONQ7H6+/uzb9++K47bs2cPYWFhhIaGMmPGDJ5++mmio6OJjIzk7rvvzjJ2zZo17N+/n4iICKKjo4mKiiI8PJwBAwYwd+5cANLS0li4cKG9lbWIiIgUHBWbFZFrltEW9/IaKUW9La7c3PKaCVWUi+FKdhkFgiF9RsrAgQNp2LAhK1eutM82SUxM5PDhw1d13mrVqtnPW7duXWJjY7ONWbduHe+88w4XLlzg9OnTeHt789BDD13x3I7WnuvYsSPu7u4ANGjQgDfeeIM///yTrl27UqNGjSxj16xZw5o1a/Dz8wPSO5Dt37+fpk2bUr58ebZv387x48fx8/OjfPnyDl1fRERErp0SKSJyzYpjW1y5+WXMhMqcTNFMqOIpo0ZKZqZpsnTpUmrVqpVl+y+//JLlvYuLC2lp//8ZSUxMtL/O3L3I2dnZvrQn89ihQ4cSGRnJPffcw7hx47Icn5ft27cTEBCQLYbLjy9V6v8Tzo8++ij16tXj22+/pV27dnzyySdZWmmbpsno0aMZMmRItusNGjSI2bNnc+zYMQYMGOBQjEVF5mLD1apV48svv6RMmTKFHZaIiIiW9ojI9cloi1u/enmqVyytJIoUuIyZUBnLyjQT6tbSpk0bpk2bZp/5sX37dgA8PDw4d+6cfVzVqlXZtm0bANu2beP33393+BoZSY8KFSoQHx9vr5tyJUuXLmXNmjX06tXLHkNUVJR9X24OHTpE9erVGTFiBJ06dSImJibL/jZt2jBr1ix7B5+jR49y4sQJIL119urVq9m6dStt2rRx+B6LgszFhsuVK8eHH35Y2CGJiIgASqSIiEgRkzETas6AIKb28mPOgCC13L6FvPrqqyQnJ2O1WvH29ubVV18FoFmzZuzZs8debLZbt272JTnTp0+nZs2aDl+jTJkyDB48GB8fH9q0aUNgYGCuY6dMmYLNZqNGjRrMmzePtWvXUrFiRQD++9//8vTTTxMQEICzs3Ou5/jqq6/w8fHBZrOxa9cu+vbtm2V/69atefTRR2nQoAEWi4WHH37YnjS67bbbaNasGY888kie1yjqGjRowNGjR4H0Dk3169fHarXSpUsX/vnnHwCCg4N56aWXCAoKombNmmzYsAGA2NhYmjRpgr+/P/7+/mzatAmA9evXExwczMMPP0zt2rXp3bu3w0uzRETk1mYUl38wAgICzMjIyMIOQ0REROSGSUtLw9/fn8WLF2errVLUlS5dmvj4eFJTU+nZsycDBw6kbdu2WK1Wpk2bxgMPPMDYsWM5e/Ys77//PsHBwdStW5d3332XVatW8d577xEWFsaFCxdwcnKiRIkS7N+/n169ehEZGcn69evp1KkTu3fv5q677qJRo0ZMmjSJxo0bF/ati4gUO4ZhRJmmGVDYceQXzUgRERGRApeWZnIoLp4th05xKC5e7arzwZ49e7j//vtp0aJFsUuiwP8XG65cuTLHjx+nVatWnDlzhn///ZcHHngAgJCQEMLDw+3HdO3aFchaRDg5OZnBgwdjsVjo3r07e/bssY8PCgri7rvvxsnJCZvNlmPhYRERkcup2KyIiIgUqLQ0k9W7j2Xr8KUlWdenTp06HDp0qLDDKDAZNVIuXLhAmzZt+PDDDwkJCcnzmIxCws7OzqSkpADpy68qVarEjh07SEtLo0SJEtnGX36MiIhIXjQjRURERApU7Knz9iQKpLerfnPVXmJPnS/kyKQoKFmyJFOnTuXdd9+lVKlSlC1b1l7/5Msvv7TPTsnNmTNnuPPOO3FycuLLL78kNTX1RoQtIiLFmGakiIiISIE6cS4pS7tqSE+mnDiXRPWKpQspKilK/Pz8sFqthIaGMmfOHJ544gkuXLhA9erV+eKLL/I8dujQoXTr1o25c+fStm3bLK2nRUREroWKzYqIiEiBOhQXT8isiCzJFDcXJ+YMCFIiRURE5BagYrMiIiIiV6Fq+VKMbueFm0v6jx0ZNVKqltfMABERESl6tLRHRERECpSTk0Fb78rUruzBiXNJeHq4UbV8KRWavYWkpZnEnjqvv38RESkWNCNFRERECpyTk0H1iqWpX7081SuW1i/Rt5CMrk0hsyIYEbqdkFkRrN59TC2w5ZZlGAbPPfec/f3kyZMZN24cADNmzGDu3LlXfc7Y2Fh8fHyuO7bg4GBq1aqFzWbDZrOxZMkSAEqXLthlmOvXr6dDhw4Feg2R/KQZKSIiIiJSYHLr2lS7sodq5Mgtyc3Nja+//prRo0dToUKFLPueeOKJQorq/82fP5+AgGJTykKkQGhGioiI3DScnZ3tT8FsNhuxsbE0bNgQyPq0LTIykhEjRlz39fr160e1atXs15s6dSoAVatW5eTJkwBZrr9gwQKHz/3XX3/x8MMP5zkm83VEiqu8ujaJ3IpcXFx4/PHHmTJlSrZ948aNY/LkyQAcOHCAli1b4uvri7+/PwcPHsQ0TV544QV8fHywWCwsWrQo2zliY2Np0qQJ/v7++Pv7s2nTJgD+/vtvmjZtis1mw8fHx95G/GrEx8fTokUL/P39sVgsrFixwn7N2rVr069fP2rWrEnv3r0JCwujUaNG1KhRg4iICADOnz/PgAEDCAoKws/Pz368SFGjGSkiInLTcHd3Jzo6Osu2jB8AMwsICMi3p2WTJk3KM+GRcf2MRMqjjz7q0Hnvuusu+5RokVuZp4cbbi5O2bo2eXq4FWJUIoVr2LBhWK1WXnzxxVzH9O7dm1GjRtGlSxcSExNJS0vj66+/Jjo6mh07dnDy5EkCAwNp2rRpluM8PT354YcfKFGiBPv376dXr15ERkayYMEC2rRpwyuvvEJqaioXLlzI9bru7u4A/Pjjj5QvX96+r0SJEixbtozbb7+dkydPUr9+fTp27AikJ34WL17MrFmzCAwMZMGCBWzcuJGVK1cyceJEli9fzhtvvEHz5s2ZNWsW//77L0FBQbRs2fJ6v5wiN5xmpIiIyE0tp3XZmddSZ356B+Dj40NsbCznz5+nffv2+Pr64uPjk+NTu6u5/qhRo9iwYQM2m40pU6bQvn17YmJiAPDz82P8+PEAjB07lpkzZ2aZQZOamsrzzz+Pj48PVquVadOmZblGQkICDz74IDNnzrymGEVuZuraJJLd7bffTt++fe0zIS937tw5jh49SpcuXYD0BEbJkiXZuHEjvXr1wtnZmUqVKvHAAw+wdevWLMcmJyczePBgLBYL3bt3Z8+ePQAEBgbyxRdfMG7cOHbu3ImHh0eO154/fz7R0dFER0dnSaIAmKbJyy+/jNVqpWXLlhw9epTjx48DUK1aNSwWC05OTnh7e9OiRQsMw8BisRAbGwvAmjVreOutt7DZbAQHB5OYmMjhw4ev+esoUlg0I0VERG4aCQkJ2Gw2IP0HsmXLll3zuVavXs1dd93Ft99+C8CZM2dyHPfCCy8wYcIEAL788kssFkuO49566y0mT57MN998A0BSUhIbNmygSpUquLi48PPPPwOwYcMGZsyYkeXYTz/9lNjYWKKjo3FxceH06dP2ffHx8fTs2ZO+ffvSt2/fa75fkZuVujaJ5OyZZ57B39+f/v375+t5p0yZQqVKldixYwdpaWmUKFECgKZNmxIeHs63335Lv379ePbZZ6/635358+cTFxdHVFQUrq6uVK1alcTERCC99ksGJycn+3snJydSUlKA9ETM0qVLqVWrVpbzZiRjRIoKzUgREZGbRsbSnujo6OtKogBYLBZ++OEHXnrpJTZs2MAdd9yR47hJkybZr5lbEiUnTZo0ITw8nJ9//pn27dsTHx/PhQsX+P3337P9gBgWFsaQIUNwcUl/flGuXDn7vk6dOtG/f38lUaRYU9cmkezKlSvHI488wueff55tn4eHB3fffTfLly8H0pP3Fy5coEmTJixatIjU1FTi4uIIDw8nKCgoy7FnzpzhzjvvxMnJiS+//JLU1FQA/vjjDypVqsTgwYMZNGgQ27Ztu+qYz5w5g6enJ66urqxbt44//vjjqo5v06YN06ZNwzTTu3Zt3779qmMQuRkokSIiIkWai4sLaWn/X3sh48lYzZo12bZtGxaLhTFjxtiX3uSXwMBAIiMj2bBhA02bNsXPz4+ZM2dSt27dqzpPo0aNWL16tf2HSpFb1fLlyzEMg3379tm3ZV4iN3v2bJ566ql8veb69eu544478PPzo1atWjRt2tQ+6yw/9OvXL8daSdfS6jU4OJjIyMj8Ck1uEs8991yuRce//PJLpk6ditVqpWHDhhw7dowuXbpgtVrx9fWlefPmvPPOO1SuXDnLcUOHDmXOnDn4+vqyb98+SpVKX0a3fv16fH198fPzY9GiRTz99NNXHW/v3r2JjIzEYrEwd+5cateufVXHv/rqqyQnJ2O1WvH29ubVV1+96hhEbgZa2iMiIkVa1apV7b/4bNu2jd9//x1I75pTrlw5HnvsMcqUKcNnn312Xdfx8PDg3Llz9ve33XYb99xzD4sXL2bs2LHExcXx/PPP8/zzz2c7tlWrVnzyySc0a9bMvrQnY1bK+PHjGT9+PMOGDeOjjz66pthKly5NfHx8lm0zZsygZMmS9O3bl379+tGhQ4crdhHKEBwczOTJk/Ms6Dtu3DhmzpxJxYoVSUlJYeLEifaCgzmZOHEiL7/8MgD//vsvCxYsYOjQoQ7FI7eG0NBQGjduTGhoKK+99toNu26TJk3s30Oio6Pp3Lkz7u7utGjR4obFUBBSU1NxdnYu7DAkB5m/X1eqVClL0ddx48bZX9eoUYO1a9dmO37SpElMmjQpy7aqVauya9cu+3EZNbwA3n77bQBCQkIICQnJM7b169fnGXOFChXYvHlzjmMyrg/pic+cYnN3d+eTTz7JdmxwcDDBwcF5xiZyM9GMFBERKdK6devG6dOn8fb2Zvr06dSsWROAnTt3EhQUhM1m47XXXmPMmDHXdR2r1YqzszO+vr72lpVNmjTB09MTd3d3mjRpwp9//kmTJk2yHTto0CDuvfde+1PEy9sof/DBByQkJOTZveFqPfHEEwW+XGjkyJFER0ezePFiBgwYkGVm0OUmTpxof/3vv/9eddLINM08zy9FW3x8PBs3buTzzz9n4cKFuY47cuQIwcHB1KhRw55syTxrBWDy5Mn2X0anTp1KnTp1sFqt9OzZ84px2Gw2xo4dy/Tp04HsM0oyik+vX7+eBx54gE6dOlG9enVGjRrF/PnzCQoKwmKxcPDgQfsxYWFhBAQEULNmzRxnu+TWDjYhIYGePXvi5eVFly5dSEhIsB8TGhqKxWLBx8eHl156KUt8zz33HL6+vmzevJl58+bZvw8OGTLEvsRDRESuj2akiIjITePyWRWZt2V+opX5yZW7uztr1qzJdlzVqlVp06ZNntfL/MQss4zuApmv7+rqmu3J4Ouvv87rr78OpLc7zrw8J3O8Li4uvPfee7z33nu5XueLL77IM9arNW7cOEqXLp1lhszatWuZOnWqfc39Dz/8wEcffXTd9Wi8vLxwcXHh5MmT/Pjjj0ycOBHTNGnfvj1vv/02o0aNshcS9vb2JjU1lYMHD2Kz2WjVqpX96epXX31FUlISXbp04bXXXiM2NpY2bdpQr149oqKiWLVqFVWqVLmuWOXmtGLFCtq2bUvNmjUpX748UVFROS6Ti4iIYNeuXZQsWZLAwEDat29PhQoVcj3vW2+9xe+//46bmxv//vuvQ7H4+/tne9qfkx07drB3717KlStH9erVGTRoEBEREXzwwQdMmzaN999/H0j//zwiIoKDBw/SrFkzDhw4kOU8ubWD/eSTTyhZsiR79+4lJiYGf39/IH223UsvvURUVBRly5aldevWLF++nM6dO3P+/Hnq1avHu+++y969e3n77bf5+eefcXV1ZejQocyfP1/1mPJRWppJ7KnzKqIscgtSIkVEROQW0axZM4YOHUpcXBwVK1bkiy++YMCAAdd93l9++QUnJyeSk5Nz/AXvrbfeYvr06URHRwPpv1ju2rXL/n7NmjXs37+fiIgITNOkY8eOhIeHc++997J//37mzJlD/fr1rztOuXmFhoba6zX07NmT0NDQHBMprVq1srdj7dq1Kxs3bqRz5865ntdqtdK7d286d+6c57jMHK1XFBgYyJ133gnAfffdR+vWrYH0Qtfr1q2zj3vkkUdwcnKiRo0aVK9ePUsNGEj//K9cudLexj2jHWx4eDgjRoyw34fVagVg69atBAcHU7FiRSC9ZkV4eDidO3fG2dmZbt26AfDjjz8SFRVFYGAgkD7DxdPT06F7kytLSzNZvfsYb67aS1JKmr2td1vvykqmiNwClEgREZECoSd1Nx/DMOjTpw/z5s2jf//+bN68mblz517z+aZMmcK8efPw8PBg0aJFREZG5voLXl7WrFnDmjVr8PPzA9JnAe3fv597772XKlWqKIlSzJ0+fZq1a9eyc+dODMMgNTUVwzBynBViGEa297kVnAb49ttvCQ8P53//+x9vvPEGO3futHfPys327dvx8vICshazTktL4+LFi/ZxjrR6zS3mzHJrB3stSpQoYa+LYpomISEhvPnmm9d9Xsku9tR5exIFICkljTdX7aV2ZQ+qVyxdyNGJSEFTjRQREcl3GU/qQmZFMCJ0OyGzIli9+xhpaepMU9j69+/PvHnzCA0NpXv37lf8pTIvGTVSNmzYkGNtGEeZpsno0aPtbagPHDjAwIEDAezdJqT4WrJkCX369OGPP/4gNjaWI0eOUK1aNTZs2JBt7A8//MDp06dJSEhg+fLlNGrUiEqVKnHixAlOnTpFUlKSvQ5JWloaR44coVmzZrz99tucOXMmx+WDmcXExPD6668zbNgwIH2JXlRUFAArV64kOTn5qu9v8eLFpKWlcfDgQQ4dOpQtYZJbO9imTZva6ynt2rXLXjw0KCiIn376iZMnT5KamkpoaCgPPPBAtuu2aNGCJUuWcOLECSA9YXW1rWoldyfOJdmTKBmSUtI4cS6pkCISkRtJiRQREcl3uT2piz11vpAjk7vuuou77rqLCRMm0L9//3w9d16/4Lm6utp/Cb28A1KbNm2YNWuW/Zfco0eP2n/5k+IvNDSULl26ZNnWrVs3QkNDs40NCgqiW7duWK1WunXrRkBAAK6urowdO5agoCBatWplb8eamprKY489hsViwc/PjxEjRlCmTJls59ywYYO9/fGwYcOYOnWqvWPP4MGD+emnn+zFW68lsXfvvfcSFBTEgw8+yIwZMyhRokSW/bm1g33yySeJj4/Hy8uLsWPH2pc63Xnnnbz11ls0a9YMX19f6tatS6dOnbJdt06dOkyYMIHWrVtjtVpp1aoVf//991XHLznz9HDDzSXrr1JuLk54erjlcoSIFCeGo+tAb3YBAQFmZGRkYYchIiLAlkOnGBG6Pdv2qb38qF+9fCFEVLw5OTlx11132d8/++yznD171l5s9vL2xwsXLuT9999ny5YtOZ6vcePGfPzxx1gsFgYNGsQTTzyRrRVyTsVsIf2X4suLzQK89NJLrFy5En9/f+bPn8+jjz5KTEwMDz74IJMmTeKDDz6wt6guXbo08+bNw9nZmQ4dOmRpqSkicjNQjRSRq2MYRpRpmgFXHlk0KJEiIiL57lBcPCGzIrJMe3ZzcWLOgCCtHb8JPPXUU/j5+dmXz2SWlJTE/fffz65du7jjjjsKITopyopCbSRnZ2csFov9/fLly3n00UfZtGlTjvtiY2OZPHlyjq2LM5s6dSoff/wx/v7+zJo1i/bt23Py5ElGjx5Njx49Cux+pPAUhc+7yM2iuCVSVGxWRETyXdXypRjdzivbk7qq5VXvorDVrVuXUqVK8e6772bbFxkZSZ8+fRg6dKiSKHLVisoTend3d3vHqAybNm3Kti8lJQUXF5csbcrz8tFHHxEWFsbdd99tn+11+XWkeHFyMqhesbQeEIjcgjQjRURECoSe1F0bfd2kqCoqM9FKly6drehsxjZ3d3cCAgIoW7Ys+/btY+/evfTu3ZvVq1dz7733cu+99xIcHExAQADjxo1j+/btVKhQAScnJ2JjY6lSpQoXLlzg1KlTpKSkkJaWxmeffcaGDRs4duwYcXFxnD17loYNGzJnzpxC+gqIiNx4xW1GiorNiohIgch4Ule/enmqVyytZIAD1O1IirKi0sUkISEBm82GzWbLVuQ2KSmJTZs2sX//fry9vfn8888pVaoUjRs3ZuvWrWzbto3Tp08D6d11KleuzA8//ECFChUoX748W7Zs4a+//uL777+natWqPP/88/To0YNFixbx3nvvERUVRYkSJdi7d29h3LqIiOQTJVJERERuEup2VPQ4Oztjs9nw9vbG19eXd999l7S0tCsfmE9mz56NYRiEhYXZty1fvhzDMFiyZEmex/br188+ZsOGDXh7e2Oz2UhISLimWIpKF5OM5TvR0dEsW7Ysyz43NzeaNm3K3r17WbZsGWvWrGHNmjVs2LCBevXqkZCQQFxcHJDeQcjV1RUnJydsNhspKSn286xdu5YzZ87w1ltvAZCcnEz79u3x8vLi4MGDWbpWiYhI0aNEioiIyE2iqDzRl/+X8Uv57t27+eGHH/juu+947bXXso3L/Et2frNYLCxcuND+PjQ0FF9f36s6x/z58xk9ejTR0dG4u7tfUxwZtZEykilFtTZS5hbHpmkyfPhwmjRpQnR0NM899xw1atQA0pMuiYmJQHpCLcOuXbuYM2cOfn5+ODs7k5aWRpkyZbBarXTs2JHJkydrRoqISBGnRIqIiMhNoqg80ZeceXp68umnnzJ9+nRM02T27Nl07NiR5s2b06JFC+Lj42nRogX+/v5YLBZWrFhhP3bu3LlYrVZ8fX3p06cPALGxsTRv3hyr1UqLFi04fPhwjtdt0qQJERERJCcnEx8fz4EDB7DZbPb948ePJzAwEB8fHx5//HEur4/32Wef8dVXX/Hqq6/Su3dvTNPkhRdewMfHB4vFwqJFiwDo27cvy5cvtx/Xu3fvLPfg5GTQ1rsycwYEMbWXH3MGBN10hWavVps2bVi5cqV9lpGbmxsREREAnDlzht9//z3L+DNnztCrVy9Gjx6Nm1v6/7e33347NWvWJCYmhgULFtCzZ0927NhxY29ERETylRIpIiIiN4ni8kT/Vla9enVSU1M5ceIEANu2bWPJkiX89NNPlChRgmXLlrFt2zbWrVvHc889h2ma7N69mwkTJrB27Vp27NjBBx98AMDw4cMJCQkhJiaG3r17M2LEiByvaRgGLVu25Pvvv2fFihV07Ngxy/6nnnqKrVu3smvXLhISErK18R00aBAdO3Zk0qRJzJ8/n6+//pro6Gh27NhBWFgYL7zwAn///TcDBw5k9uzZQHrCYNOmTbRv3z7LuYpbbaRBgwZRpUoVNm7ciI+PD9988w2nTp2iX79+xMbGUrNmzSzjv/vuO/744w8mT57Mhg0b7Amt+fPn4+rqyrlz52jcuHGWBJSIiBQ9an8sIiJyk8h4ol+7soe69hQTrVq1oly5ckD6MpGXX36Z8PBwnJycOHr0KMePH2ft2rV0796dChUqANjHb968ma+//hqAPn368OKLL+Z6nZ49ezJ16lTOnDnDu+++y8SJE+371q1bxzvvvMOFCxc4ffo03t7ePPTQQ7mea+PGjfTq1QtnZ2cqVarEAw88wNatW+nYsSNDhw4lLi6OpUuX0q1bN1xcit6Pkpd37Mm87fL6ME5OTsyfP/+K55w+fTrTp08H0hNXl6tWrRo1a9bk448/pkWLFtcStoiI3ESK3r9+IiIixVjGE/2bqV2sOO7QoUM4Ozvj6ekJZK23MX/+fOLi4oiKisLV1ZWqVavaa2xcr6CgIHbu3EnJkiWzzJJITExk6NChREZGcs899zBu3Ljrumbfvn2ZN28eCxcu5IsvvsiP0Iu9f//9l6CgIHx9fZVEEREpJrS0R0RERCQfxMXF8cQTT/DUU09hGNlnEZ05cwZPT09cXV1Zt24df/zxBwDNmzdn8eLFnDp1CsDeXrdhw4b2IrLz58+nSZMmeV7/rbfeyjITBbAnTSpUqEB8fPwVO/lAes2VRYsWkZqaSlxcHOHh4QQFBQHpnX7ef/99AOrUqXPFcxWktDSTQ3HxbDl0ikNx8VnahOe170YrU6YMv/32G4sXLy60GEREJH9pRoqIiIjINUpISMBms5GcnIyLiwt9+vTh2WefzXFs7969eeihh7BYLAQEBFC7dm0AvL29eeWVV3jggQdwdnbGz8+P2bNnM23aNPr378+kSZOoWLHiFWeAPPjgg9m2lSlThsGDB+Pj40PlypUJDAy84j116dKFzZs34+vri2EYvPPOO1SuXBmASpUq4eXlRefOna94noKUlmayevcxe7vwjHpCbb3T48xtn5bJiYhIfjAur9xeVAUEBJiRkZGFHYaIiIhIsXXhwgUsFgvbtm3jjjvuKLQ4DsXFEzIrIku7cDcXJ+YMSJ85k9s+LZkTESkchmFEmaYZUNhx5Bct7RERERGRKwoLC8PLy4vhw4cXahIF4MS5pCyJEoCklDROnEvKc5+IiEh+0NIeERERueWlpZnEnjqvbkl5aNmypb2uS2Hz9HDDzcUp26wTTw83++vc9omIiFwvzUgRERGRW1pGvY2QWRGMCN1OyKwIVu8+VqgFSiVvVcuXYnQ7L9xc0n+UzaiDUrV8qTz3iYiI5AfNSBEREZFbWuyp8/bCpJC+DOTNVXupXdlDNTVuUk5OBm29K1O7skeOs4jy2iciInK9lEgRERGRW1peNTWUSLl5OTkZVK9YOse/o7z2iYiIXC8t7REREZFbWka9jcxUU0NERERyU2iJFMMwuhuGsdswjDTDMAIu2zfaMIwDhmH8ahhGm8KKUUSKn9KlC/fpZNWqVbFYLFitVlq3bs2xY8dyHRsdHc2qVavs79evX8+mTZuu6/qxsbH4+Phc1zlEihvV1BAREZGrUZgzUnYBXYHwzBsNw6gD9AS8gbbAR4ZhON/48ERECsa6deuIiYkhICCAiRMn5jouPxIpKSkp1xynyK0io97GnAFBTO3lx5wBQbT1rqyaGiIiIpKjQkukmKa51zTNX3PY1QlYaJpmkmmavwMHgKAbG52IFGfx8fG0aNECf39/LBYLK1asANJna9SuXZt+/fpRs2ZNevfuTVhYGI0aNaJGjRpEREQAcP78eQYMGEBQUBB+fn7243fv3k1QUBA2mw2r1cr+/fvzjKNp06YcOHCAxMRE+vfvj8Viwc/Pj3Xr1nHx4kXGjh3LokWLsNlsvP3228yYMYMpU6Zgs9nYsGEDcXFxdOvWjcDAQAIDA/n5558BGDduHH369KFRo0b06dOnAL+SIsVHRk2N+tXLU71iaSVRxM7Z2RmbzYavry/+/v7XPTNQRESKvpux2Ox/gC2Z3v95aZuISL4oUaIEy5Yt4/bbb+fkyZPUr1+fjh07AnDgwAEWL17MrFmzCAwMZMGCBWzcuJGVK1cyceJEli9fzhtvvEHz5s2ZNWsW//77L0FBQbRs2ZIZM2bw9NNP07t3by5evEhqamqecXzzzTdYLBY+/PBDDMNg586d7Nu3j9atW/Pbb78xfvx4IiMjmT59OgAJCQmULl2a559/HoBHH32UkSNH0rhxYw4fPkybNm3Yu3cvAHv27GHjxo24u7sX4FdSRKT4c3d3Jzo6GoDvv/+e0aNH89NPPxVuUCIiUqgKNJFiGEYYUDmHXa+YprkiH87/OPA4wL333nu9pxORW4Rpmrz88suEh4fj5OTE0aNHOX78OADVqlXDYrEA4O3tTYsWLTAMA4vFQmxsLABr1qxh5cqVTJ48GYDExEQOHz5MgwYNeOONN/jzzz/p2rUrNWrUyPH6zZo1w9nZGavVyoQJE+jfvz/Dhw8HoHbt2lSpUoXffvvtivcRFhbGnj177O/Pnj1LfHw8AB07dlQSRUQkn509e5ayZcsC6bMbO3XqxD///ENycjITJkygU6dOxMbG8uCDD9K4cWM2bdrEf/7zH1asWIG7uzsHDx5k2LBhxMXFUbJkSWbOnEnt2rUL+a5ERORqFWgixTTNltdw2FHgnkzv7760Lafzfwp8ChAQEGBew7VE5BY0f/584uLiiIqKwtXVlapVq5KYmAiAm9v/d+lwcnKyv3dycrLXGzFNk6VLl1KrVq0s5/Xy8qJevXp8++23tGvXjk8++YTmzZtnu/66deuoUKHCdd9HWloaW7ZsoUSJEtn2lSqlIpkiIvkhISEBm81GYmIif//9N2vXrgXynt24f/9+QkNDmTlzJo888ghLly7lscce4/HHH2fGjBnUqFGDX375haFDh9rPJyIiRcfN2P54JdDTMAw3wzCqATWAiEKOSUSKkTNnzuDp6Ymrqyvr1q3jjz/+uKrj27Rpw7Rp0zDN9Pzt9u3bATh06BDVq1dnxIgRdOrUiZiYGIfO16RJE+bPnw/Ab7/9xuHDh6lVqxYeHh6cO3fOPu7y961bt2batGn29xlTz0VEJP9kLO3Zt28fq1evpm/fvpimaZ/daLVaadmyZbbZjTabDYC6desSGxtLfHw8mzZtonv37thsNoYMGcLff/9diHcmIiLXqjDbH3cxDONPoAHwrWEY3wOYprkb+ArYA6wGhpmmmXehAZGbQEYxOh8fH7p3786FCxcK/JoffPABzzzzjP39kCFDaNny/yeCTZs2jREjRuTLtYpD29yUlBTc3Nzo3bs3kZGRWCwW5s6de9XTql999VWSk5OxWq14e3vz6quvAvDVV1/h4+ODzWZj165d9O3b16HzDR06lLS0NCwWCz169GD27Nm4ubnRrFkz9uzZg81mY9GiRTz00EMsW7bMXmx26tSpREZGYrVaqVOnDjNmzLjqr4mIiDiuQYMGnDx5kri4uCyzG6Ojo6lUqVKOsxudnZ1JSUkhLS2NMmXKEB0dbf+TUddKRESKlkIrNmua5jJgWS773gDeuLERiVyfzMXoevfuzYwZM3j22WeveFxKSgouLtf2v2KjRo3sMxkAduzYQWpqKqmpqTg7O7Np0yY6dep0Tecujnbv3s19991HhQoV2Lx5c45jdu3aZX89e/Zs++uqVava97m7u/PJJ59kO3bUqFGMGjUqzxgy6qxkVqJECb744ots28uVK8fWrVuzbLt8lsuiRYuyHTdu3Lhcr5/5PkRE5Ors27eP1NRUypcvf9WzG2+//XaqVavG4sWL6d69O6ZpEhMTg6+v7w2KXkRE8svNuLRHpMhr0qQJBw4cyLVN7uzZs+nYsSPNmzenRYsWxMfH29vfWq1Wli5dyqxZs7LMNpk5cyYjR47Mch2bzcZvv/1GQkICZ86cwd3dHZvNxs6dOwHYtGkTjRo14uDBg7Rt25a6devSpEkT9u3bB8D//vc/6tWrh5+fHy1btrRPSf7pp5+w2WzYbDb8/PyyLCcBSE1N5YUXXiAwMBCr1WpPKvTt25fly5fbx/Xu3dt+z4VtxowZ9OrViwkTJhR2KCIiUoRk1Eix2Wz06NGDOXPm4OzsfE2zG+fPn8/nn3+Or68v3t7eN82/kSIicnWMjDX+RV1AQIAZGRlZ2GHILax06dLEx8eTkpJCt27daNu2LUeOHKFOnTo89thj9ja527dvZ/HixYwZM4aYmBjKlSvHSy+9RFJSEu+//z4A//zzD66urvj6+rJv3z5cXV1p2LAhn3zyib2jTIZmzZrx2muvkZCQwLp166hRowZJSUl06tSJBg0acPjwYVq0aJGluN3o0aNZu3Yt//zzD2XKlMEwDD777DP27t3Lu+++y0MPPcSoUaNo1KgR8fHxlChRgj///JMOHTqwa9cuPv30U06cOMGYMWNISkqiUaNGLF68mMOHDzNlyhSWL1/OmTNnsNls7N+//5pn3OQmLc0k9tR5TpxLwtPDjarlS+HkZOTrNUREREREJH8YhhFlmmZAYceRXwptaY9IcZPxxArSZ6QMHDiQhg0b5tgmF6BVq1aUK1cOSG9ju3DhQvu5MlorNm/enG+++QYvLy+Sk5OzJVEAGjZsyKZNm0hISKBBgwbUqFGDiRMnUrFiRRo2bJiluF2GpKQkAP7880969OjB33//zcWLF6lWrRqQvmTo2WefpXfv3nTt2pW77747yzXXrFlDTEwMS5YsAdKLt+7fv5/WrVszdOhQ4uLiWLp0Kd26dSuQJMrq3cd4c9VeklLScHNxYnQ7L9p6V1YyRURE8qREvIiI5AclUkTySeYaKRlya5P7yy+/ONSedtCgQUycOJHatWvTv3//HMc0atSIGTNmkJiYyLBhw6hYsSJ79uyxJ1IyF7e73PDhw3n22Wfp2LEj69evt9fWGDVqFO3bt2fVqlU0atSI77//PkuLXdM0mTZtGm3atMl2zr59+zJv3jwWLlyYY92P6xV76rw9iQKQlJLGm6v2UruyB9Urls7364mISPGgRLyIiOQX1UgRKUC5tcm9XKtWrfjwww/t7//55x8A6tWrx5EjR1iwYAG9evXK8dgGDRqwZcsW4uLi8PT0xDAMKlasyIoVK2jUqFGW4naQngTZsWMHkD6T5D//+Q8Ac+bMsZ/z4MGDWCwWXnrpJQIDA+01VTLf18cff0xycjKQ3rL3/PnzAPTr18++RKlOnTqOf7EcdOJckj2JkiEpJY0T55Ly/VoiIlJ85JaIjz11vpAjExGRokaJFJEClFub3MuNGTOGf/75Bx8fH3x9fVm3bp193yOPPEKjRo3sy30uV7ZsWSpWrIi3t7d9W4MGDThx4oS9E0Buxe3GjRtH9+7dqVu3LhUqVLAf//777+Pj44PVasXV1ZUHH3wwyzUHDRpEnTp18Pf3x8fHhyFDhpCSkgJApUqV8PLyynUGzfXy9HDDzSXrty43Fyc8PdxyOUJERESJeBERyT8qNityk+vQoQMjR46kRYsWhR2KQy5cuIDFYmHbtm3ccccd+X5+Tc0WEZFrcSgunpBZEVmSKW4uTswZEKSloSIiBUzFZkXkhsjo8uPr61tkkihhYWEMHDiQkSNHFkgSBcDJyaCtd2VqV/ZQsUAREXFY1fKlGN3OK1sivmr5K9csExERyUwzUkQuo4r+IiIixZP+jRcRKRyakSJSjGnZiIiISPHl5GRQvWJpLeUREZHromKzIpmoor+IiIiIiIjkRYkUkUxU0V9ERERERETyokSKSCZqrSsiIiIiIiJ5USJFJJOMiv4ZyRRV9BcREREREZHMVGxWJBO11hUREREREZG8KJEichlV9BcREREREZHcaGmPiIiIiIiIiIiDlEgREREREREREXGQEikiIiIiIiIiIg5SIkVERERERERExEFKpIiIiIiIiIiIOEiJFBERERERERERBymRIiIiIiIiIiLiICVSREREREREREQcpESKiIiIiIiIiIiDlEgREREREREREXGQEikiIiIiIiIiIg5SIkVERERERERExEFKpIiIiIiIiIiIOEiJFBERERERERERBymRIiIiIiIiIiLiICVSREREREREREQcpESKiIiIiIiIiIiDlEgREREREREREXGQEikiIiIiIiIiIg5SIkVERERERERExEFKpIiIiIiIiIiIOEiJFBERERERERERBymRIiIiIiIiIiLiICVSREREREREREQcpESKiIiIiIiIiIiDlEgREREREREREXGQEikiIiIiIiIiIg5SIkVERERERERExEFKpIiIiIiIiIiIOEiJFBERERERERERBymRIiIiIiIiIiLiICVSREREREREREQcpESKiIiISAFZvnw5hmGwb98++7bY2Fh8fHwAmD17Nk899dR1XWPQoEHs2bPH4fEREREEBwdTo0YN/P39ad++PTt37ryuGBwRGRnJiBEjCvw6IiIiBc2lsAMQERERKa5CQ0Np3LgxoaGhvPbaa/l+/tTUVD777DOHxx8/fpxHHnmEBQsW0LBhQwA2btzIwYMHsVgsWcampKTg4pJ/PyoGBAQQEBCQb+cTEREpLJqRIiIiIlIA4uPj2bhxI59//jkLFy7MddyRI0fsM0QyJ1vmzZtHUFAQNpuNIUOGkJqaCkDp0qV57rnn8PX1ZfPmzQQHBxMZGQnA6tWr8ff3x9fXlxYtWmS71vTp0wkJCbEnUQAaN25M586dAejXrx9PPPEE9erV48UXX2TcuHFMnjzZPtbHx4fY2FhiY2Px8vJi8ODBeHt707p1axISEgAIDg7mpZdeIigoiJo1a7JhwwYA1q9fT4cOHQA4ffo0nTt3xmq1Ur9+fWJiYgAYN24cAwYMIDg4mOrVqzN16tSr/rqLiIgUNCVSRERERArAihUraNu2LTVr1qR8+fJERUXlOC4iIoKlS5cSExPD4sWLiYyMZO/evSxatIiff/6Z6OhonJ2dmT9/PgDnz5+nXr167Nixg8aNG9vPExcXx+DBg1m6dCk7duxg8eLF2a61e/du/P3984z7zz//ZNOmTbz33nt5jtu/fz/Dhg1j9+7dlClThqVLl9r3paSkEBERwfvvv5/jTJz//ve/+Pn5ERMTw8SJE+nbt6993759+/j++++JiIjgtddeIzk5Oc84REREbjQt7REREREpAKGhoTz99NMA9OzZk9DQUOrWrZttXKtWrShfvjwAXbt2ZePGjbi4uBAVFUVgYCAACQkJeHp6AuDs7Ey3bt2ynWfLli00bdqUatWqAVCuXLkrxlivXj3Onj1L69at+eCDDwDo3r07zs7OVzy2WrVq2Gw2AOrWrUtsbKx9X9euXXPcnmHjxo32xEvz5s05deoUZ8+eBaB9+/a4ubnh5uaGp6cnx48f5+67775iPCIiIjeKEikiIiIi+ez06dOsXbuWnTt3YhgGqampGIbBpEmTso01DCPbe9M0CQkJ4c0338w2vkSJEg4lOnLi7e3Ntm3b6NSpEwC//PILS5Ys4ZtvvrGPKVWqlP21i4sLaWlp9veJiYn2125ubvbXzs7O9qU9mfc5OzuTkpJyVTFeft6rPV5urNKlSxMfH59v51u/fj2TJ0/O8pm8WlWrViUyMpIKFSrkW1wiIplpaY+IiIhIPluyZAl9+vThjz/+IDY2liNHjlCtWjV7vZDMfvjhB06fPk1CQgLLly+nUaNGtGjRgiVLlnDixAkgPTHzxx9/5HnN+vXrEx4ezu+//24/5nLDhg1j9uzZbNq0yb7twoULuZ6zatWqbNu2DYBt27bZz329mjRpYl+qtH79eipUqMDtt9+eL+eWoqV06dL216tWraJPnz55fiaXL1+epUvVmDFjCAsLc/h648aN4z//+Q82m43atWvz5JNPZkkW5nZMRq2gfv36sWTJEoevJyLFkxIpIiIiIvksNDSULl26ZNnWrVs3QkNDs40NCgqiW7duWK1WunXrRkBAAHXq1GHChAm0bt0aq9VKq1at+Pvvv/O8ZsWKFfn000/p2rUrvr6+9OjRI9uYypUrs2jRIkaPHs39999Pw4YNWbJkSa4tmLt168bp06fx9vZm+vTp1KxZ8yq+CrkbN24cUVFRWK1WRo0axZw5c/LlvHJzOHjwIG3btqVu3bo0adLE3v47Li6Obt26ERgYSGBgID///LP9mB9//JERI0bw1ltvUbJkSSDnosTLly9n3Lhx9OnTh0aNGnHw4EH8/Pxo3bo13t7eDBo0CNM07eft3LkzdevWxdvbm08//RSAkSNHcuDAAbp27crcuXPx9vbm+PHjN/ArJCJFnZH5G01RFhAQYGZUrBcRERERkYKX09KeFi1aMGPGDGrUqMEvv/zC6NGjWbt2LY8++ihDhw6lcePGHD58mDZt2nDkyBFWrVpFv379WLVqFceOHWPy5Ml06tSJMWPGYBgGjRo1YuDAgTz99NOcOnUK0zRJSkpi69atTJo0iRMnTlC/fn3at29Pv3792LVrF8HBwSxYsAA3NzfKlStHQkICgYGBtGvXDk9PT1544QWWLFnCm2++ibe3NzVq1KBXr14MGzaMuLg4SpYsycyZM6lduzbjxo2jdOnSPP/88/Tr148OHTrw8MMPF9JXXKRoMgwjyjTNgMKOI7+oRoqIiIhIHtLSTGJPnefEuSQ8PdyoWr4UTk7GlQ8UuQXFx8ezadMmunfvbt+WlJQEQFhYWJZlOWfPniUpKYnOnTuzfv16ateuzbFjx4D0gsUfffQRS5cuZdasWRw8eJDExEQefPBBkpOT8fb2xtvbG4A9e/YwZcoU+vfvz9q1a6lVqxaPPvoor7zyCvfeey/Lli0D0luNnz59mvnz52MYBoMGDeLBBx+kXbt2/PDDDzz++ONZEkBDhw5l7dq1N+pLJyJFiBIpIiIiIrlISzNZvfsYb67aS1JKGm4uToxu50Vb78pKpojkIC0tjTJlyhAdHZ3jvi1btlCiRAn7tpIlS9KwYUM+//xze+cogF27drF//34efPBBLl68SJs2bbKcK3NRZIBDhw6xa9cuWrVqxdmzZ5kyZQqlSpXit99+Y/PmzZQsWZLg4GBSUlIYOXIk48aN48SJEzz88MNs2bKFhISEXBNAIiKXU40UERERkVzEnjpvT6IAJKWk8eaqvcSeOl/IkYncnG6//XaqVavG4sWLATBNkx07dgDQunVrpk2bZh8bHR2Nk5MTX331FREREUycONG+r1+/fjz00EM89thj/Pe//yU2NpYKFSrg6uqa7Zp16tTh22+/xdvbmzfffJPU1FTCw8MZM2YMZcuWpWTJkuzbt48tW7ZkOc7V1ZW2bduyZ88eTNO0J4Ay/uzdu7cgvkQiUgwokSIiIiKSixPnkuxJlAxJKWmcOKcn1SKQ3vXp7rvvtv957733mD9/Pp9//jm+vr54e3uzYsUKAKZOnUpkZCRWq5U6deowY8YMIH1Wyrfffsv8+fP53//+h5ubG+fOnWPcuHFs3bqV4cOHExUVxZw5c/Dw8Mg2U6R79+7s27ePqKgoPv74Y+69916Sk5O59957SUlJwcvLi1GjRlG/fv0sx5mmyc8//0zlypW57bbbck0AiYhcTkt7RERERHLh6eGGm4tTlmSKm4sTnh5uhRiVyM0jt9bBq1evzratQoUKLFq0KMu2efPmAVCuXDlWr16NzWbjgQce4PXXX6dt27ZUrFiRfv36ce7cOaxWKz179mTw4MEcPnzY3hnLw8ODsLAwoqOjGTFiBGXKlKFly5Y888wzfPfdd1muN27cOKZMmcL999+Pj48PVquVmTNn4u7uzu+//86TTz7JhAkTSE5OpmfPnvj6+ubHl0lEihl17RERERHJhWqkiNw4AwcOZNeuXXz11VdUqVKlsMMRkXxU3Lr2KJEiIiIikgd17ZFbgT7nIlKQilsiRUt7RERERPLg5GRQvWJpqlcsXdihiBSI/Jh5pUSMiNxKlEgREREREbmF5dadqnZlD4cSiFoCJyK3GnXtERERERG5hV1vdyq1CReRW40SKSIiIiIit7CM7lSZXU13KrUJF5FbjRIpIiIiIiK3sKrlSzG6nZc9mZKxNKdq+VIOHX+9iRgRkaJGNVJERERERG5hTk4Gbb0rU7uyxzUVi81IxFxeI8XRRIyISFGjRIqIiIiIyC3uerpTXW8iRkSkqFEiRURERERErovahIvIrUQ1UkREREREREREHFRoiRTDMLobhrHbMIw0wzACMm2vahhGgmEY0Zf+zCisGEVEREREREREMivMpT27gK7AJznsO2iapu3GhiMiIiIiIiIikrdCS6SYprkXwDBUhEpEREREREREioabtUZKNcMwthuG8ZNhGE0KOxgRERERERERESjgGSmGYYQBlXPY9YppmityOexv4F7TNE8ZhlEXWG4YhrdpmmdzOP/jwOMA9957b36FLSIiIiIiIiKSowJNpJim2fIajkkCki69jjIM4yBQE4jMYeynwKcAAQEB5vVFKyIiIiIiIiKSt5tuaY9hGBUNw3C+9Lo6UAM4VLhRiYiIiIiIiIgUbvvjLoZh/Ak0AL41DOP7S7uaAjGGYUQDS4AnTNM8XUhhioiIiMgt4NixY/Ts2ZP77ruPunXr0q5dO8LDw3n44YcLOzQREbnJFGbXnmXAshy2LwWW3viIRERERORWZJomXbp0ISQkhIULFwKwY8cOzp49y5IlS7KNT0lJwcWl0H6MFhGRQnbTLe0REREREbmR1q1bh6urK0888YR9m6+vL/fccw8+Pj4AzJ49m44dO9K8eXNatGhBfHw8/fv3x2KxYLVaWbo0/TngmjVraNCgAf7+/nTv3p34+PhCuScRESk4SqWLiIiIyC1t165d1K1b94rjtm3bRkxMDOXKleOll17ijjvuYOfOnQD8888/nDx5kgkTJhAWFkapUqV4++23ee+99xg7dmxB34KIiNxASqSIiIiIiDigVatWlCtXDoCwsDD7MiCAsmXL8s0337Bnzx4aNWoEwMWLF2nQoEGhxCoiIgVHiRQRERERuaV5e3vnWAvlcqVKlcpzv2matGrVitDQ0PwKTUREbkKqkSIiIiIit7TmzZuTlJTEp59+at8WExPDkSNHcj2mVatWfPjhh/b3//zzD/Xr1+fnn3/mwIEDAJw/f57ffvut4AIXEZFCoUSKiIiIiNzSDMNg2bJlhIWFcd999+Ht7c3o0aOpXLlyrseMGTOGf/75Bx8fH3x9fVm3bh0VK1Zk9uzZ9OrVC6vVSoMGDdi3b98NvBMREbkRDNM0CzuGfBEQEGBGRkYWdhgiIiIiIiIikolhGFGmaQYUdhz5RTVSRERERKTYSEsziT11nhPnkvD0cKNq+VI4ORmFHZaIiBQjSqSIiIiISLGQlmayevcx3ly1l6SUNNxcnBjdzou23pWVTBERkXyjGikiIiIiUizEnjpvT6IAJKWk8eaqvcSeOl/IkYmISHGiRIqIiIiIFAsnziXZkygZklLSOHEuqZAiEhGR4kiJFBEREREpFjw93HBzyfrjrZuLE54eboUUkYiIFEdKpIiIiIhIsVC1fClGt/OyJ1MyaqRULV+qkCMTEZHiRMVmRURERKRYcHIyaOtdmdqVPdS1R0RECowSKSIiIiJSbDg5GVSvWJrqFUsXdigiIlJMaWmPiIiIiIiIiIiDlEgREREREREREXGQEikiIiIiIiIiIg5SIkVERERERERExEFKpIiIiIiIiIiIOEiJFBERERGRW5BhGDz22GP29ykpKVSsWJEOHTpc1XliY2Px8fEBIDIykhEjRuRrnCIiNxu1PxYRERERuQWVKlWKXbt2kZCQgLu7Oz/88AP/+c9/ruocKSkpWd4HBAQQEBCQn2GKiNx0NCNFREREROQW1a5dO7799lsAQkND6dWrl33f+fPnGTBgAEFBQfj5+bFixQoAZs+eTceOHWnevDktWrTIcr7169fbZ7SMGzeOAQMGEBwcTPXq1Zk6deoNuisRkYKlRIqIiIiIyC2qZ8+eLFy4kMTERGJiYqhXr5593xtvvEHz5s2JiIhg3bp1vPDCC5w/fx6Abdu2sWTJEn766ac8z79v3z6+//57IiIieO2110hOTi7Q+xERuRGUSBERERERuaR06dJZ3s+ePZunnnoq368zduxYwsLCct2/fPly9uzZc1XnjIuLo169evj5+bFhwwb79hUrVtC5c2f7+zfffJP7778fAKvVyo4dO6hfvz7t2rXLcr41a9bw1ltvYbPZCA4OJjExkcOHDwPQqlUrypUrl2X85V87gPbt2+Pm5kaFChXw9PTk+PHjV7yPDRs24O3tjc1mY/Pmzaxatcrhr4GIyI2gRIqIiIiIyA02fvx4WrZsmev+a0mk/Pjjj1gsFrZv306TJk3s2xs2bMiWLVvs7zdv3sztt9+OaZoAVK5cmd9++y3Lsh4A0zRZunQp0dHRREdHc/jwYby8vID0+iqOcHNzs792dna211S5vLZKZvPnz2f06NFER0fz66+/KpEiIjcdJVJERERERBwQFxdHt27dCAwMJDAwkJ9//hnIuxbI66+/Tq1atWjcuDG9evVi8uTJAPTr148lS5YAMGrUKOrUqYPVauX5559n06ZNrFy5khdeeAGbzcbBgwezxBEbG0vz5s2xWq20aNGCw4cPEx0dzYsvvsiKFSuw2WwkJCTYx1esWJHbb7+dAwcOAHD06FG6detGWloaAMnJyQwePBgPDw9GjhxJeHg4LVq0oEGDBkybNo3ff/+d5s2bU6NGDVq0aMGpU6cA+P3332nQoAFt2rThxIkTWWJ8++23+eijj3jvvfcYNWqUffz48eMJCAjggw8+4Mcff8TPzw+LxcKAAQNISkris88+46uvvuLVV1+lV69ejB07lkWLFmGz2Vi0aFG+/V2KiFwPde0REREREbkkISEBm81mf3/69Gk6duwIwNNPP83IkSNp3Lgxhw8fpk2bNuzduxdIrwWybt06zp07R61atXjyySeJjo5m6dKl7Nixg+TkZPz9/albt26W6506dYply5axb98+DMPg33//pUyZMnTs2JEOHTrw8MMPZ4tx+PDhhISEEBISwqxZsxgxYgTLly9n/PjxREZGMn369GzHNGrUiE2bNpGamkqNGjWoX78+qamppKSksG/fPtavX0/37t1p06YNu3btomvXrixbtoy77roLX19fPDw88PPzo2vXrkyfPp2GDRvy9NNP8+STT9K0aVMaNmxov9aJEydYsWIFgwcPpmzZsgwYMMC+7+LFi0RGRpKYmEiNGjX48ccfqVmzJn379uXjjz/mmWeeYePGjfZ7nz17dq73JCJSWJRIERERERG5xN3dnejoaPv7jF/kAcLCwrIstzl79izx8fHA/9cCcXNzs9cC+fnnn+nUqRMlSpSgRIkSPPTQQ9mud8cdd1CiRAkGDhxIhw4d7B1v8rJ582a+/vprAPr06cOLL754xWMaNmxoT6Q0aNCAoKAgGjRowPbt26lduzYlSpSwn9fV1ZXk5GRefPFFTp48ydKlS4mNjc2yfdu2bZQvX56lS5fi6urKvn37uOuuuwgODqZJkybUrl2bwYMHZ4khMDDQvu3XX3+lWrVq1KxZE4CQkBA+/PBDnnnmmSvei4hIYdPSHhERERERB6SlpbFlyxZ7zZCjR4/aC6zmVgvkSlxcXIiIiODhhx/mm2++oW3btgUSe8aMlE2bNtGgQQM8PDxITExk/fr1WWaTXC3DMK5qvKO1VUREbmZKpIiIiIiIOKB169ZMmzbN/j7zzJWcNGrUiP/9738kJiYSHx/PN998k21MfHw8Z86coV27dkyZMoUdO3YA4OHhwblz53I8b8OGDVm4cCGQXpi1SZMmpKWZnDiXyLGziRyKiyctzcxyjJeXF3/99RcbN27Ez88PAJvNxowZM2jUqFGu581re6NGjbJsz9CqVSu++OILLly4AKQvj7pcrVq1iI2Ntddt+fLLL3nggQeyjcvr6yAiUliUSBERERERccDUqVOJjIzEarVSp04dZsyYkef4wMBAOnbsiNVq5cEHH8RisXDHHXdkGXPu3Dk6dOiA1WqlcePGvPfeewD07NmTSZMm4efnl63Y7LRp0/jiiy+wWq18+eWXTJnyPqt3H+Oz8ENs+C2OkFkRrN59LEsyxTAM6tWrR/ny5XF1dQWgQYMGHDp0yD4j5fLzfvDBB3lu/+CDD/jwww+xWCwcPXrUfq22bdvSsWNHAgICsNls9gK7mZUoUYIvvviC7t27Y7FYcHJy4oknnsg2rlmzZuzZs0fFZkXkpmJktD0r6gICAsyM9asiIiIiIjeD+Ph4SpcuzYULF2jatCmffvop/v7++XqNQ3HxhMyKICklzb7NzcWJOQOCqF6xdL5eS0TkWhiGEWWaZkBhx5FfVGxWRERERKSAPP744+zZs4fExERCQkLyPYkCcOJcUpYkCkBSShonziUpkSIiUgCUSBERERGRYictzST21HlOnEvC08ONquVL4eR0dYVR88OCBQsK/BqeHm64uThlm5Hi6eGWx1EiInKtlEgRERERkWIlLc1k9e5jvLlqL0kpabi5ODG6nRdtvSsXSjKloFUtX4rR7byy3W/V8uqQIyJSEJRIEREREZFiJfbUeXtSAdKXuby5ai+1K3sUy6UuTk4Gbb0rU7uyR6HPwBERuRUokSIiIiIixcqtWDPEycmgesXSxfb+RERuJmp/LCIiIiLFSkbNkMxUM0RERPKLEikiIiIiUqxk1AzJSKaoZoiIiOQnLe0RERERkWJFNUNERKQgKZEiIiIiIsWOaoaIiEhB0dIeEREREREREREHKZEiIiIiIiIiIuIgJVJERERERERERBykRIqIiIiIiIiIiIOUSBERERERERERcZASKSIiIiIiIiIiDlIiRURERERERETEQUqkiIiIiIiIiIg4SIkUEREREREREREHKZEiIiIiIiIiIuIgJVJERERERERERBykRIqIiIiIiIiIiIOUSBERERERERERcZASKSIiIiIiIiIiDlIiRURERERERETEQUqkiIiIiIiIiIg4SIkUEREREREREREHKZEiIiIiIiIiIuIgJVJERERERERERBxkmKZZ2DHkC8Mw4oA/gArAyUIOR+Ra6fMrRZk+v1JU6bMrRZk+v1KU6fN766himmbFwg4ivxSbREoGwzAiTdMMKOw4RK6FPr9SlOnzK0WVPrtSlOnzK0WZPr9SVGlpj4iIiIiIiIiIg5RIERERERERERFxUHFMpHxa2AGIXAd9fqUo0+dXiip9dqUo0+dXijJ9fqVIKnY1UkRERERERERECkpxnJEiIiIiIiIiIlIglEgREREREREREXFQsUmkGIbR3TCM3YZhpBmGEZBpe1XDMBIMw4i+9GdGYcYpcrncPruX9o02DOOAYRi/GobRprBiFHGEYRjjDMM4mun7bbvCjknkSgzDaHvpe+wBwzBGFXY8IlfDMIxYwzB2XvqeG1nY8YjkxTCMWYZhnDAMY1embeUMw/jBMIz9l/5btjBjFHFUsUmkALuArkB4DvsOmqZpu/TniRscl8iV5PjZNQyjDtAT8AbaAh8ZhuF848MTuSpTMn2/XVXYwYjk5dL31A+BB4E6QK9L33tFipJml77nBlx5qEihmk36z7SZjQJ+NE2zBvDjpfciN71ik0gxTXOvaZq/FnYcIlcrj89uJ2ChaZpJpmn+DhwAgm5sdCIixVoQcMA0zUOmaV4EFpL+vVdERPKZaZrhwOnLNncC5lx6PQfofCNjErlWxSaRcgXVDMPYbhjGT4ZhNCnsYEQc9B/gSKb3f17aJnIze8owjJhL03c1PVdudvo+K0WdCawxDCPKMIzHCzsYkWtQyTTNvy+9PgZUKsxgRBzlUtgBXA3DMMKAyjnsesU0zRW5HPY3cK9pmqcMw6gLLDcMw9s0zbMFFqjIZa7xsyty08nrswx8DLxO+g/2rwPvAgNuXHQiIrecxqZpHjUMwxP4wTCMfZee+osUOaZpmoZhmIUdh4gjilQixTTNltdwTBKQdOl1lGEYB4GagApyyQ1zLZ9d4ChwT6b3d1/aJlJoHP0sG4YxE/imgMMRuV76PitFmmmaRy/994RhGMtIX66mRIoUJccNw7jTNM2/DcO4EzhR2AGJOKLYL+0xDKNiRoFOwzCqAzWAQ4UblYhDVgI9DcNwMwyjGumf3YhCjkkkV5d+AMrQhfRCyiI3s61ADcMwqhmGcRvpBb5XFnJMIg4xDKOUYRgeGa+B1uj7rhQ9K4GQS69DAM3UliKhSM1IyYthGF2AaUBF4FvDMKJN02wDNAXGG4aRDKQBT5imeXmRI5FCk9tn1zTN3YZhfAXsAVKAYaZpphZmrCJX8I5hGDbSl/bEAkMKNRqRKzBNM8UwjKeA7wFnYJZpmrsLOSwRR1UClhmGAek/0y8wTXN14YYkkjvDMEKBYKCCYRh/Av8F3gK+MgxjIPAH8EjhRSjiOMM0tQxNRERERERERMQRxX5pj4iIiIiIiIhIflEiRURERERERETEQUqkiIiIiIiIiIg4SIkUEREREREREREHKZEiIiIi+c4wjDKGYQwt7DhERERE8psSKSIiIlIQygBKpIiIiEixo0SKiIiIFIS3gPsMw4g2DGOmYRjhl17vMgyjCYBhGPGGYbxhGMYOwzC2GIZR6dL2ioZhLDUMY+ulP41yu4hhGB8YhjH20us2l66jn29ERESkwBimaRZ2DCIiIlLMGIZRFfjGNE0fwzCeA0qYpvmGYRjOQEnTNM8ZhmECHU3T/J9hGO8AZ03TnGAYxgLgI9M0NxqGcS/wvWmaXrlcpySwFXgKmAG0M03z4I24RxEREbk1uRR2ACIiIlLsbQVmGYbhCiw3TTP60vaLwDeXXkcBrS69bgnUMQwj4/jbDcMobZpm/OUnNk3zgmEYg4FwYKSSKCIiIlLQNPVVRERECpRpmuFAU+AoMNswjL6XdiWb/z81NpX/f8DjBNQ3TdN26c9/ckqiZGIBTgF3FUD4IiIiIlkokSIiIiIF4RzgAWAYRhXguGmaM4HPAP8rHLsGGJ7xxjAMW24DL537OcAPeNAwjHrXF7aIiIhI3rS0R0RERPKdaZqnDMP42TCMXUAp4LxhGMlAPNA376MZAXxoGEYM6T+rhANPXD7ISF/78znwvGmafxmGMZD0GS+Bpmkm5uf9iIiIiGRQsVkREREREREREQdpaY+IiIiIiIiIiIO0tEdERERueoZh9Aeevmzzz6ZpDiuMeEREROTWpaU9IiIiIiIiIiIO0tIeEREREREREREHKZEiIiIiIiIiIuIgJVJERERERERERBykRIqIiIiIiIiIiIOUSBERERERERERcZASKSIiIiIiIiIiDvo/tySUAPu4HHEAAAAASUVORK5CYII=\n",
+ "text/plain": [
+ "
"
]
+ },
+ "metadata": {
+ "needs_background": "light"
+ },
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from karateclub.node_embedding.structural import Role2Vec\n",
+ "\n",
+ "\"\"\"\n",
+ "walk_number (int): Number of random walks. Default is 10.\n",
+ "walk_length (int): Length of random walks. Default is 80.\n",
+ "dimensions (int): Dimensionality of embedding. Default is 128.\n",
+ "workers (int): Number of cores. Default is 4.\n",
+ "window_size (int): Matrix power order. Default is 2.\n",
+ "epochs (int): Number of epochs. Default is 1.\n",
+ "learning_rate (float): HogWild! learning rate. Default is 0.05.\n",
+ "down_sampling (float): Down sampling frequency. Default is 0.0001.\n",
+ "min_count (int): Minimal count of feature occurrences. Default is 10.\n",
+ "wl_iterations (int): Number of Weisfeiler-Lehman hashing iterations. Default is 2.\n",
+ "seed (int): Random seed value. Default is 42.\n",
+ "erase_base_features (bool): Removing the base features. Default is False.\n",
+ "\"\"\"\n",
+ "\n",
+ "model = Role2Vec(walk_length=20)\n",
+ "model.fit(G)\n",
+ "embedding = model.get_embedding()\n",
+ "\n",
+ "results = []\n",
+ "for name,embedding in zip(character_mapping['character'].to_list(), embedding):\n",
+ " results.append({'character': name, 'embedding': embedding}) \n",
+ "df = pd.DataFrame.from_dict(results)\n",
+ "tsne(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "H_ij2S-ze_NJ"
+ },
+ "source": [
+ "Calculating node embedding based on node role similarity is an exciting field. Instead of comparing the closeness of nodes in the network, we want to capture the structural role similarity between nodes. Then, we can use the structural role embedding to infer a kNN network and run a community detection algorithm to try and segment the nodes based on their network roles. First, we have to store the Role2vec results back to Neo4j."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "F6C3WsDuokMr",
+ "outputId": "279c4b5f-2bb1-47d0-e019-1c26a925561d"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- },
- "id": "F6C3WsDuokMr",
- "outputId": "279c4b5f-2bb1-47d0-e019-1c26a925561d"
- },
- "source": [
- "df['embedding'] = [el.tolist() for el in df['embedding']]\n",
- "data = list(df[['character','embedding']].T.to_dict().values())\n",
- "\n",
- "read_query(\"\"\"\n",
- "UNWIND $data as row\n",
- "MATCH (c:Character{name:row.character})\n",
- "SET c.role2vec = row.embedding\n",
- "RETURN distinct 'done'\n",
- "\"\"\", {'data':data})"
+ "data": {
+ "text/html": [
+ "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 16
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "yo6ivJkPfB6Q"
- },
- "source": [
- "The kNN algorithm is featured in the GDS library. The K-Nearest Neighbors algorithm computes a distance value for all node pairs in the graph and creates new relationships between each node and its k nearest neighbors. The distance is calculated based on node properties.\n",
- "We will take advantage of the Graph Catalog feature as we will run two graph algorithms in sequence. First, we store a projection of a network as a named graph using the following syntax:"
+ "text/plain": [
+ " 'done'\n",
+ "0 done"
]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df['embedding'] = [el.tolist() for el in df['embedding']]\n",
+ "data = list(df[['character','embedding']].T.to_dict().values())\n",
+ "\n",
+ "read_query(\"\"\"\n",
+ "UNWIND $data as row\n",
+ "MATCH (c:Character{name:row.character})\n",
+ "SET c.role2vec = row.embedding\n",
+ "RETURN distinct 'done'\n",
+ "\"\"\", {'data':data})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "yo6ivJkPfB6Q"
+ },
+ "source": [
+ "The kNN algorithm is featured in the GDS library. The K-Nearest Neighbors algorithm computes a distance value for all node pairs in the graph and creates new relationships between each node and its k nearest neighbors. The distance is calculated based on node properties.\n",
+ "We will take advantage of the Graph Catalog feature as we will run two graph algorithms in sequence. First, we store a projection of a network as a named graph using the following syntax:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 81
},
+ "id": "3wv1OW_yoqRf",
+ "outputId": "9e9297bb-9686-4956-a804-8e206bcad3a9"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 81
- },
- "id": "3wv1OW_yoqRf",
- "outputId": "9e9297bb-9686-4956-a804-8e206bcad3a9"
- },
- "source": [
- "#KNN\n",
- "\n",
- "read_query(\"\"\"\n",
- "CALL gds.graph.project('role2vec', 'Character', 'INTERACTS', {nodeProperties:['role2vec']})\n",
- "\"\"\")"
+ "data": {
+ "text/html": [
+ "
\n",
- " "
- ]
- },
- "metadata": {},
- "execution_count": 17
- }
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {
- "id": "TvOobvm5fDzh"
- },
- "source": [
- "We don’t care about undirected INTERACTS relationships as we will not be using them. The important thing is that we have included the role2vec node embedding in our projection. Now, we can go ahead and mutate the kNN algorithm. Using the mutate method, we store the algorithm results back to the projected named graph instead of the Neo4j stored graph. This way, we can use the results of the kNN algorithm as an input to a community detection algorithm."
+ "text/plain": [
+ " nodeProjection \\\n",
+ "0 {'Character': {'label': 'Character', 'properti... \n",
+ "\n",
+ " relationshipProjection graphName nodeCount \\\n",
+ "0 {'INTERACTS': {'orientation': 'NATURAL', 'inde... role2vec 119 \n",
+ "\n",
+ " relationshipCount projectMillis \n",
+ "0 406 96 "
]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#KNN\n",
+ "\n",
+ "read_query(\"\"\"\n",
+ "CALL gds.graph.project('role2vec', 'Character', 'INTERACTS', {nodeProperties:['role2vec']})\n",
+ "\"\"\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "TvOobvm5fDzh"
+ },
+ "source": [
+ "We don’t care about undirected INTERACTS relationships as we will not be using them. The important thing is that we have included the role2vec node embedding in our projection. Now, we can go ahead and mutate the kNN algorithm. Using the mutate method, we store the algorithm results back to the projected named graph instead of the Neo4j stored graph. This way, we can use the results of the kNN algorithm as an input to a community detection algorithm."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 159
},
+ "id": "H9OH_uTXqevH",
+ "outputId": "a3ab7a29-7d59-441a-b44c-89ade2e53ab0"
+ },
+ "outputs": [
{
- "cell_type": "code",
- "metadata": {
- "colab": {
- "base_uri": "https://localhost:8080/",
- "height": 159
- },
- "id": "H9OH_uTXqevH",
- "outputId": "a3ab7a29-7d59-441a-b44c-89ade2e53ab0"
- },
- "source": [
- "read_query(\"\"\"\n",
- "CALL gds.knn.mutate('role2vec', {topK: 5, nodeProperties:'role2vec', mutateProperty:'weight', mutateRelationshipType:'SIMILAR_ROLE'})\n",
- "\"\"\")"
+ "data": {
+ "text/html": [
+ "