-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnots.tex
71 lines (54 loc) · 2.33 KB
/
nots.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
\newcommand{\notcolor}{blue}
\newcommand{\+}[2]{\newcommand#1{{\color{\notcolor}#2}}}
\newcommand{\1}[2]{\newcommand{#1}[1]{{\color{\notcolor}#2}}}
\newcommand{\2}[2]{\newcommand{#1}[2]{{\color{\notcolor}#2}}}
\newcommand{\mat}{\boldsymbol }
\renewcommand{\exp}[1]{\mathrm{exp}\left({#1}\right)}
\+{\degree}{$^\circ$}
\+{\dd}{\mathrm{d}}
\1{\ddt}{\frac{\dd#1}{\dd t}}
\1{\norm}{|\!|#1|\!|}
\+{\pd}{\partial}
\+{\uuh}{u^h}
\+{\ggh}{g^h}
\+{\vvh}{v^h}
\+{\wwh}{w^h}
\+{\nel}{N}
\+{\young}{E} % young's modulus
\+{\area}{A} % cross-section area
\+{\shape}{\Phi} % elementary shape (basis) function
\+{\stm}{\mat K} % stiffness matrix
\1{\stme}{K_{#1}} % stiffness matrix entry
\+{\estm}{\mat K^e} % element stiffness matrix
\1{\estme}{\mat K^e_{#1}} % element stiffness matrix entry
\+{\vdspl}{\vec d}
\+{\vfrc}{\vec F}
\1{\cO}{\mathcal{O}(#1)}
\+{\bcg}{\mathfrak{g}}
\+{\bch}{\mathfrak{h}}
\+{\press}{P} % pressure
\+{\pressatm}{P_\mathrm{atm}} % atmospheric pressure
\+{\stress}{\sigma} % total stress
\+{\efstress}{\bar\sigma} % effective stress
\+{\strain}{\varepsilon} % strain
\+{\rdense}{\rho_r} % resin density
\+{\dx}{\Delta_x} % space step
\+{\dt}{\Delta_t} % time step
\1{\bigO}{\mathcal{O}(#1)} % big O notation
\2{\disp}{u_{#1}^{#2}} % shorthand for u
\2{\efstr}{\efstress_{#1}^{#2}} % shorthand for u
\1{\ee}{\cdot 10^{#1}} % times 10^x -- engineering notation
\+{\vfrac}{V_f} % fibre volume fraction
\+{\vzero}{V_0} % initial fibre volume fraction
\+{\vmax}{V_a} % maximal fibre volume fraction
\+{\permeab}{K} % permeability
\+{\kozeny}{k} % Kozeny constant
\+{\viscos}{\mu} % viscosity
\+{\cure}{\alpha} % cure
\+{\curegel}{\cure_g} % cure gelation point
\+{\temp}{T} % temperature
\+{\viscosinf}{\mu_\infty} % theoretical viscosity at infinite temperature and no cure
\+{\spring}{A_s} % spring constant
\+{\flow}{v} %flow through the fibre bed
\+{\duration}{d} % duration of the press
\+{\errU}{\epsilon_u} % error in U