This repository has been archived by the owner on May 18, 2023. It is now read-only.
forked from seanpixel/Teenage-AGI
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathagent.py
251 lines (209 loc) · 9.53 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import openai
import os
import pinecone
import yaml
import time
from dotenv import load_dotenv
import nltk
from langchain.text_splitter import NLTKTextSplitter
from typing import Optional
# Download NLTK for Reading
nltk.download('punkt')
import subprocess
import datetime
# Initialize Text Splitter
text_splitter = NLTKTextSplitter(chunk_size=2500)
from gptrim import trim
# Load default environment variables (.env)
load_dotenv()
OPENAI_MODEL = os.getenv("OPENAI_MODEL") or "gpt-3.5-turbo"
OPENAI_TEMPERATURE = float(os.getenv("OPENAI_TEMPERATURE", 0.0))
def openai_call(
prompt: str,
model: str = OPENAI_MODEL,
temperature: float = OPENAI_TEMPERATURE,
max_tokens: int = 2000,
):
while True:
try:
if model.startswith("llama"):
# Spawn a subprocess to run llama.cpp
cmd = ["llama/main", "-p", prompt]
result = subprocess.run(cmd, shell=True, stderr=subprocess.DEVNULL, stdout=subprocess.PIPE, text=True)
return result.stdout.strip()
else:
# Use chat completion API
messages=[
{"role": "system", "content": "You are an intelligent agent with thoughts and memories. You have a memory which stores your past thoughts and actions and also how other users have interacted with you."},
{"role": "system", "content": "Keep your thoughts relatively simple and concise"},
{"role": "user", "content": prompt},
]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
stop=None,
)
return response.choices[0].message.content
except openai.error.RateLimitError:
print(
"The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again."
)
time.sleep(10) # Wait 10 seconds and try again
else:
break
# def generate(prompt):
# completion = openai.ChatCompletion.create(
# model=OPENAI_MODEL,
# messages=[
# {"role": "system", "content": "You are an intelligent agent with thoughts and memories. You have a memory which stores your past thoughts and actions and also how other users have interacted with you."},
# {"role": "system", "content": "Keep your thoughts relatively simple and concise"},
# {"role": "user", "content": prompt},
# ]
# )
#
# return completion.choices[0].message["content"]
PINECONE_API_KEY = os.getenv("PINECONE_API_KEY")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
PINECONE_API_ENV = os.getenv("PINECONE_API_ENV")
#PINECONE_API_ENV = "asia-southeast1-gcp"
# Prompt Initialization
with open('prompts.yaml', 'r') as f:
data = yaml.load(f, Loader=yaml.FullLoader)
# internalThoughtPrompt = data['internal_thought']
# externalThoughtPrompt = data['external_thought']
# internalMemoryPrompt = data['internal_thought_memory']
# externalMemoryPrompt = data['external_thought_memory']
# Thought types, used in Pinecone Namespace
THOUGHTS = "Thoughts"
QUERIES = "Queries"
INFORMATION = "Information"
ACTIONS = "Actions"
# Top matches length
k_n = 3
# initialize pinecone
pinecone.init(api_key=PINECONE_API_KEY, environment=PINECONE_API_ENV)
# initialize openAI
openai.api_key = OPENAI_API_KEY # you can just copy and paste your key here if you want
def get_ada_embedding(text):
text = text.replace("\n", " ")
return openai.Embedding.create(input=[text], model="text-embedding-ada-002")[
"data"
][0]["embedding"]
class Agento():
def __init__(self, table_name=None, user_id: Optional[str] = "123", session_id: Optional[str] = None) -> None:
self.table_name = table_name
self.user_id = user_id
self.session_id = session_id
self.memory = None
self.thought_id_timestamp = datetime.datetime.now().strftime('%Y%m%d%H%M%S%f')[:-3] # Timestamp with millisecond precision
self.last_message = ""
def set_user_session(self, user_id: str, session_id: str) -> None:
self.user_id = user_id
self.session_id = session_id
def createIndex(self, table_name=None):
# Create Pinecone index
if(table_name):
self.table_name = table_name
if(self.table_name == None):
return
dimension = 1536
metric = "euclidean"
pod_type = "p1"
if self.table_name not in pinecone.list_indexes():
pinecone.create_index(
self.table_name, dimension=dimension, metric=metric, pod_type=pod_type
)
# Give memory
#my-agent
# self.memory = pinecone.Index(self.table_name)
self.memory = pinecone.Index(self.table_name)
# Adds new Memory to agent, types are: THOUGHTS, ACTIONS, QUERIES, INFORMATION
def updateMemory(self, new_thought, thought_type):
if thought_type==INFORMATION:
new_thought = "This is information fed to you by the user:\n" + new_thought
elif thought_type==QUERIES:
new_thought = "The user has said to you before:\n" + new_thought
elif thought_type==THOUGHTS:
# Not needed since already in prompts.yaml
# new_thought = "You have previously thought:\n" + new_thought
pass
elif thought_type==ACTIONS:
# Not needed since already in prompts.yaml as external thought memory
pass
vector = get_ada_embedding(new_thought)
upsert_response = self.memory.upsert(
vectors=[
{
'id':f"thought-{self.thought_id_timestamp}",
'values':vector,
'metadata':
{"thought_string": new_thought, "user_id": self.user_id
}
}],
namespace=thought_type,
)
# Agent thinks about given query based on top k related memories. Internal thought is passed to external thought
# def internalThought(self, query) -> str:
# # query_embedding = get_ada_embedding(query)
# # query_results = self.memory.query(query_embedding, top_k=1, include_metadata=True, namespace=QUERIES, filter={'user_id': {'$eq': self.user_id}})
# # thought_results = self.memory.query(query_embedding, top_k=1, include_metadata=True, namespace=THOUGHTS, filter={'user_id': {'$eq': self.user_id}})
# # results = query_results.matches + thought_results.matches
# # sorted_results = sorted(results, key=lambda x: x.score, reverse=True)
# # top_matches = "\n\n".join([(str(item.metadata["thought_string"])) for item in sorted_results])
# # #print(top_matches)
# #
# internalThoughtPrompt = data['internal_thought']
# internalThoughtPrompt = internalThoughtPrompt.replace("{query}", query)
# # .replace("{top_matches}", top_matches).replace("{last_message}", self.last_message)
# print("------------INTERNAL THOUGHT PROMPT------------")
# print(internalThoughtPrompt)
# internalThoughtPrompt = trim(internalThoughtPrompt)
# internal_thought = openai_call(internalThoughtPrompt) # OPENAI CALL: top_matches and query text is used here
#
# # Debugging purposes
# #print(internal_thought)
#
# internalMemoryPrompt = data['internal_thought_memory']
# internalMemoryPrompt = internalMemoryPrompt.replace("{query}", query).replace("{internal_thought}", internal_thought).replace("{last_message}", self.last_message)
# self.updateMemory(internalMemoryPrompt, THOUGHTS)
# return internal_thought, top_matches
def action(self, query) -> str:
# internal_thought, top_matches = self.internalThought(query)
externalThoughtPrompt = data['external_thought']
externalThoughtPrompt = externalThoughtPrompt.replace("{query}", query)
#.replace("{top_matches}", top_matches).replace("{internal_thought}", internal_thought).replace("{last_message}", self.last_message)
print("------------EXTERNAL THOUGHT PROMPT------------")
print(externalThoughtPrompt)
# externalThoughtPrompt = trim(externalThoughtPrompt)
external_thought = openai_call(externalThoughtPrompt) # OPENAI CALL: top_matches and query text is used here
# externalMemoryPrompt = data['external_thought_memory']
# externalMemoryPrompt = externalMemoryPrompt.replace("{query}", query).replace("{external_thought}", external_thought)
# self.updateMemory(externalMemoryPrompt, THOUGHTS)
# request_memory = data["request_memory"]
# self.updateMemory(request_memory.replace("{query}", query), QUERIES)
# self.last_message = query
return external_thought
# Make agent think some information
def think(self, text) -> str:
self.updateMemory(text, THOUGHTS)
# Make agent read some information
def read(self, text) -> str:
texts = text_splitter.split_text(text)
vectors = []
for t in texts:
t = "This is information fed to you by the user:\n" + t
vector = get_ada_embedding(t)
vectors.append({
'id':f"thought-{self.thought_id_timestamp}",
'values':vector,
'metadata':
{"thought_string": t, "user_id": self.user_id
}
})
upsert_response = self.memory.upsert(
vectors,
namespace=INFORMATION,
)