-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathevaluate.py
222 lines (185 loc) · 7.66 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import os
import sys
import torch
import random
import argparse
from torch import nn
import matplotlib.pyplot as plt
import torch.backends.cudnn as cudnn
# Import dataloaders
import Data.cifar10 as cifar10
import Data.cifar100 as cifar100
import Data.tiny_imagenet as tiny_imagenet
# Import network architectures
from Net.resnet_tiny_imagenet import resnet50 as resnet50_ti
from Net.resnet import resnet50, resnet110
from Net.wide_resnet import wide_resnet_cifar
from Net.densenet import densenet121
# Import metrics to compute
from Metrics.metrics import test_classification_net_logits
from Metrics.metrics import ECELoss, AdaptiveECELoss, ClasswiseECELoss
# Import temperature scaling and NLL utilities
from temperature_scaling import ModelWithTemperature
# Dataset params
dataset_num_classes = {
'cifar10': 10,
'cifar100': 100,
'tiny_imagenet': 200
}
dataset_loader = {
'cifar10': cifar10,
'cifar100': cifar100,
'tiny_imagenet': tiny_imagenet
}
# Mapping model name to model function
models = {
'resnet50': resnet50,
'resnet50_ti': resnet50_ti,
'resnet110': resnet110,
'wide_resnet': wide_resnet_cifar,
'densenet121': densenet121
}
def parseArgs():
default_dataset = 'cifar10'
dataset_root = './'
model = 'resnet50'
save_loc = './'
saved_model_name = 'resnet50_cross_entropy_350.model'
num_bins = 15
model_name = None
train_batch_size = 128
test_batch_size = 128
cross_validation_error = 'ece'
parser = argparse.ArgumentParser(
description="Evaluating a single model on calibration metrics.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--dataset", type=str, default=default_dataset,
dest="dataset", help='dataset to test on')
parser.add_argument("--dataset-root", type=str, default=dataset_root,
dest="dataset_root", help='root path of the dataset (for tiny imagenet)')
parser.add_argument("--model-name", type=str, default=model_name,
dest="model_name", help='name of the model')
parser.add_argument("--model", type=str, default=model, dest="model",
help='Model to test')
parser.add_argument("--save-path", type=str, default=save_loc,
dest="save_loc",
help='Path to import the model')
parser.add_argument("--saved_model_name", type=str, default=saved_model_name,
dest="saved_model_name", help="file name of the pre-trained model")
parser.add_argument("--num-bins", type=int, default=num_bins, dest="num_bins",
help='Number of bins')
parser.add_argument("-g", action="store_true", dest="gpu",
help="Use GPU")
parser.set_defaults(gpu=True)
parser.add_argument("-da", action="store_true", dest="data_aug",
help="Using data augmentation")
parser.set_defaults(data_aug=True)
parser.add_argument("-b", type=int, default=train_batch_size,
dest="train_batch_size", help="Batch size")
parser.add_argument("-tb", type=int, default=test_batch_size,
dest="test_batch_size", help="Test Batch size")
parser.add_argument("--cverror", type=str, default=cross_validation_error,
dest="cross_validation_error", help='Error function to do temp scaling')
parser.add_argument("-log", action="store_true", dest="log",
help="whether to print log data")
return parser.parse_args()
def get_logits_labels(data_loader, net):
logits_list = []
labels_list = []
net.eval()
with torch.no_grad():
for data, label in data_loader:
data = data.cuda()
logits = net(data)
logits_list.append(logits)
labels_list.append(label)
logits = torch.cat(logits_list).cuda()
labels = torch.cat(labels_list).cuda()
return logits, labels
if __name__ == "__main__":
# Checking if GPU is available
cuda = False
if (torch.cuda.is_available()):
cuda = True
# Setting additional parameters
torch.manual_seed(1)
device = torch.device("cuda" if cuda else "cpu")
args = parseArgs()
if args.model_name is None:
args.model_name = args.model
dataset = args.dataset
dataset_root = args.dataset_root
model_name = args.model_name
save_loc = args.save_loc
saved_model_name = args.saved_model_name
num_bins = args.num_bins
cross_validation_error = args.cross_validation_error
# Taking input for the dataset
num_classes = dataset_num_classes[dataset]
if (args.dataset == 'tiny_imagenet'):
val_loader = dataset_loader[args.dataset].get_data_loader(
root=args.dataset_root,
split='val',
batch_size=args.test_batch_size,
pin_memory=args.gpu)
test_loader = dataset_loader[args.dataset].get_data_loader(
root=args.dataset_root,
split='val',
batch_size=args.test_batch_size,
pin_memory=args.gpu)
else:
_, val_loader = dataset_loader[args.dataset].get_train_valid_loader(
batch_size=args.train_batch_size,
augment=args.data_aug,
random_seed=1,
pin_memory=args.gpu
)
test_loader = dataset_loader[args.dataset].get_test_loader(
batch_size=args.test_batch_size,
pin_memory=args.gpu
)
model = models[model_name]
net = model(num_classes=num_classes, temp=1.0)
net.cuda()
net = torch.nn.DataParallel(net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
net.load_state_dict(torch.load(args.save_loc + args.saved_model_name))
nll_criterion = nn.CrossEntropyLoss().cuda()
ece_criterion = ECELoss().cuda()
adaece_criterion = AdaptiveECELoss().cuda()
cece_criterion = ClasswiseECELoss().cuda()
logits, labels = get_logits_labels(test_loader, net)
conf_matrix, p_accuracy, _, _, _ = test_classification_net_logits(logits, labels)
p_ece = ece_criterion(logits, labels).item()
p_adaece = adaece_criterion(logits, labels).item()
p_cece = cece_criterion(logits, labels).item()
p_nll = nll_criterion(logits, labels).item()
res_str = '{:s}&{:.4f}&{:.4f}&{:.4f}&{:.4f}&{:.4f}'.format(saved_model_name, 1-p_accuracy, p_nll, p_ece, p_adaece, p_cece)
# Printing the required evaluation metrics
if args.log:
print (conf_matrix)
print ('Test error: ' + str((1 - p_accuracy)))
print ('Test NLL: ' + str(p_nll))
print ('ECE: ' + str(p_ece))
print ('AdaECE: ' + str(p_adaece))
print ('Classwise ECE: ' + str(p_cece))
scaled_model = ModelWithTemperature(net, args.log)
scaled_model.set_temperature(val_loader, cross_validate=cross_validation_error)
T_opt = scaled_model.get_temperature()
logits, labels = get_logits_labels(test_loader, scaled_model)
conf_matrix, accuracy, _, _, _ = test_classification_net_logits(logits, labels)
ece = ece_criterion(logits, labels).item()
adaece = adaece_criterion(logits, labels).item()
cece = cece_criterion(logits, labels).item()
nll = nll_criterion(logits, labels).item()
res_str += '&{:.4f}({:.2f})&{:.4f}&{:.4f}&{:.4f}'.format(nll, T_opt, ece, adaece, cece)
if args.log:
print ('Optimal temperature: ' + str(T_opt))
print (conf_matrix)
print ('Test error: ' + str((1 - accuracy)))
print ('Test NLL: ' + str(nll))
print ('ECE: ' + str(ece))
print ('AdaECE: ' + str(adaece))
print ('Classwise ECE: ' + str(cece))
# Test NLL & ECE & AdaECE & Classwise ECE
print(res_str)