-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtemperature_scaling.py
105 lines (87 loc) · 3.51 KB
/
temperature_scaling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
'''
Code to perform temperature scaling. Adapted from https://github.com/gpleiss/temperature_scaling
'''
import torch
import numpy as np
from torch import nn, optim
from torch.nn import functional as F
from Metrics.metrics import ECELoss
class ModelWithTemperature(nn.Module):
"""
A thin decorator, which wraps a model with temperature scaling
model (nn.Module):
A classification neural network
NB: Output of the neural network should be the classification logits,
NOT the softmax (or log softmax)!
"""
def __init__(self, model, log=True):
super(ModelWithTemperature, self).__init__()
self.model = model
self.temperature = 1.0
self.log = log
def forward(self, input):
logits = self.model(input)
return self.temperature_scale(logits)
def temperature_scale(self, logits):
"""
Perform temperature scaling on logits
"""
# Expand temperature to match the size of logits
return logits / self.temperature
def set_temperature(self,
valid_loader,
cross_validate='ece'):
"""
Tune the tempearature of the model (using the validation set) with cross-validation on ECE or NLL
"""
self.cuda()
self.model.eval()
nll_criterion = nn.CrossEntropyLoss().cuda()
ece_criterion = ECELoss().cuda()
# First: collect all the logits and labels for the validation set
logits_list = []
labels_list = []
with torch.no_grad():
for input, label in valid_loader:
input = input.cuda()
logits = self.model(input)
logits_list.append(logits)
labels_list.append(label)
logits = torch.cat(logits_list).cuda()
labels = torch.cat(labels_list).cuda()
# Calculate NLL and ECE before temperature scaling
before_temperature_nll = nll_criterion(logits, labels).item()
before_temperature_ece = ece_criterion(logits, labels).item()
if self.log:
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))
nll_val = 10 ** 7
ece_val = 10 ** 7
T_opt_nll = 1.0
T_opt_ece = 1.0
T = 0.1
for i in range(100):
self.temperature = T
self.cuda()
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
if nll_val > after_temperature_nll:
T_opt_nll = T
nll_val = after_temperature_nll
if ece_val > after_temperature_ece:
T_opt_ece = T
ece_val = after_temperature_ece
T += 0.1
if cross_validate == 'ece':
self.temperature = T_opt_ece
else:
self.temperature = T_opt_nll
self.cuda()
# Calculate NLL and ECE after temperature scaling
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
if self.log:
print('Optimal temperature: %.3f' % self.temperature)
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))
return self
def get_temperature(self):
return self.temperature