-
Notifications
You must be signed in to change notification settings - Fork 114
/
Copy pathGaussianHMM_test.py
86 lines (75 loc) · 3.78 KB
/
GaussianHMM_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding:utf-8 -*-
# 测试高斯概率的隐马尔科夫链模型
# 引入一个经典的HMM库 hmmlearn,作为参照组
# By tostq <[email protected]>
# 博客: blog.csdn.net/tostq
import unittest
import hmm
import hmmlearn.hmm
import numpy as np
from math import sqrt
class ContrastHMM():
def __init__(self, n_state, n_feature):
self.module = hmmlearn.hmm.GaussianHMM(n_components=n_state,covariance_type="full")
# 初始概率
self.module.startprob_ = np.random.random(n_state)
self.module.startprob_ = self.module.startprob_ / np.sum(self.module.startprob_)
# 转换概率
self.module.transmat_ = np.random.random((n_state,n_state))
self.module.transmat_ = self.module.transmat_ / np.repeat(np.sum(self.module.transmat_, 1),n_state).reshape((n_state,n_state))
# 高斯发射概率
self.module.means_ = np.random.random(size=(n_state,n_feature))*10
self.module.covars_ = .5 * np.tile(np.identity(n_feature), (n_state, 1, 1))
# 计算平方误差
def s_error(A, B):
return sqrt(np.sum((A-B)*(A-B)))/np.sum(B)
class GaussianHMM_Test(unittest.TestCase):
def setUp(self):
# 建立两个HMM,隐藏状态个数为4,X可能分布为10类
n_state =4
n_feature = 2 # 表示观测值的维度
X_length = 1000
n_batch = 200 # 批量数目
self.n_batch = n_batch
self.X_length = X_length
self.test_hmm = hmm.GaussianHMM(n_state, n_feature)
self.comp_hmm = ContrastHMM(n_state, n_feature)
self.X, self.Z = self.comp_hmm.module.sample(self.X_length*10)
self.test_hmm.train(self.X, self.Z)
def test_train_batch(self):
X = []
Z = []
for b in range(self.n_batch):
b_X, b_Z = self.comp_hmm.module.sample(self.X_length)
X.append(b_X)
Z.append(b_Z)
batch_hmm = hmm.GaussianHMM(self.test_hmm.n_state, self.test_hmm.x_size)
batch_hmm.train_batch(X, Z)
# 判断概率参数是否接近
self.assertAlmostEqual(s_error(batch_hmm.start_prob, self.comp_hmm.module.startprob_), 0, 1)
self.assertAlmostEqual(s_error(batch_hmm.transmat_prob, self.comp_hmm.module.transmat_), 0, 1)
self.assertAlmostEqual(s_error(batch_hmm.emit_means, self.comp_hmm.module.means_), 0, 1)
self.assertAlmostEqual(s_error(batch_hmm.emit_covars, self.comp_hmm.module.covars_), 0, 1)
def test_train(self):
# 判断概率参数是否接近
# 单批量的初始概率一定是不准的
# self.assertAlmostEqual(s_error(self.test_hmm.start_prob, self.comp_hmm.module.startprob_), 0, 1)
self.assertAlmostEqual(s_error(self.test_hmm.transmat_prob, self.comp_hmm.module.transmat_), 0, 1)
self.assertAlmostEqual(s_error(self.test_hmm.emit_means, self.comp_hmm.module.means_), 0, 1)
self.assertAlmostEqual(s_error(self.test_hmm.emit_covars, self.comp_hmm.module.covars_), 0, 1)
def test_X_prob(self):
X,_ = self.comp_hmm.module.sample(self.X_length)
prob_test = self.test_hmm.X_prob(X)
prob_comp = self.comp_hmm.module.score(X)
self.assertAlmostEqual(s_error(prob_test, prob_comp), 0, 1)
def test_predict(self):
X, _ = self.comp_hmm.module.sample(self.X_length)
prob_next = self.test_hmm.predict(X,np.random.random(self.test_hmm.x_size))
self.assertEqual(prob_next.shape,(self.test_hmm.n_state,))
def test_decode(self):
X,_ = self.comp_hmm.module.sample(self.X_length)
test_decode = self.test_hmm.decode(X)
_, comp_decode = self.comp_hmm.module.decode(X)
self.assertAlmostEqual(s_error(test_decode, comp_decode), 0, 1)
if __name__ == '__main__':
unittest.main()