From b1431e01fe559813569df924a0186f3d04fbd85c Mon Sep 17 00:00:00 2001
From: Misha Chornyi <99709299+mc-nv@users.noreply.github.com>
Date: Fri, 27 Oct 2023 10:01:43 -0700
Subject: [PATCH] Update `main` post-23.10 release (#780)
* Update README and versions for 23.10 branch (#772)
* Update header
---
Dockerfile | 4 ++--
README.md | 2 +-
docs/bls_quick_start.md | 4 ++--
docs/config.md | 2 +-
docs/ensemble_quick_start.md | 4 ++--
docs/kubernetes_deploy.md | 2 +-
docs/mm_quick_start.md | 4 ++--
docs/quick_start.md | 4 ++--
helm-chart/values.yaml | 2 +-
model_analyzer/config/input/config_defaults.py | 2 +-
10 files changed, 15 insertions(+), 15 deletions(-)
diff --git a/Dockerfile b/Dockerfile
index e7c951492..93fff3753 100644
--- a/Dockerfile
+++ b/Dockerfile
@@ -12,8 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
-ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.09-py3
-ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+ARG BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.10-py3
+ARG TRITONSDK_BASE_IMAGE=nvcr.io/nvidia/tritonserver:23.10-py3-sdk
ARG MODEL_ANALYZER_VERSION=1.34.0dev
ARG MODEL_ANALYZER_CONTAINER_VERSION=23.11dev
diff --git a/README.md b/README.md
index 0ee96e8d8..9fffd5f6e 100644
--- a/README.md
+++ b/README.md
@@ -23,7 +23,7 @@ You are currently on the `main` branch which tracks
under-development progress towards the next release.
The latest
release of the Triton Model Analyzer is 1.32.0 and is available on
branch
-[r23.09](https://github.com/triton-inference-server/model_analyzer/tree/r23.09).
+[r23.10](https://github.com/triton-inference-server/model_analyzer/tree/r23.10).
Triton Model Analyzer is a CLI tool which can help you find a more optimal configuration, on a given piece of hardware, for single, multiple, ensemble, or BLS models running on a [Triton Inference Server](https://github.com/triton-inference-server/server/). Model Analyzer will also generate reports to help you better understand the trade-offs of the different configurations along with their compute and memory requirements.
diff --git a/docs/bls_quick_start.md b/docs/bls_quick_start.md
index d8f99c9a0..7a97f85e0 100644
--- a/docs/bls_quick_start.md
+++ b/docs/bls_quick_start.md
@@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
**2. Run the SDK container**
@@ -59,7 +59,7 @@ docker run -it --gpus 1 \
--shm-size 2G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly
diff --git a/docs/config.md b/docs/config.md
index ca6db1608..7f7647390 100644
--- a/docs/config.md
+++ b/docs/config.md
@@ -153,7 +153,7 @@ cpu_only_composing_models:
[ reload_model_disable: | default: false]
# Triton Docker image tag used when launching using Docker mode
-[ triton_docker_image: | default: nvcr.io/nvidia/tritonserver:23.09-py3 ]
+[ triton_docker_image: | default: nvcr.io/nvidia/tritonserver:23.10-py3 ]
# Triton Server HTTP endpoint url used by Model Analyzer client"
[ triton_http_endpoint: | default: localhost:8000 ]
diff --git a/docs/ensemble_quick_start.md b/docs/ensemble_quick_start.md
index f72813dae..f5d45a708 100644
--- a/docs/ensemble_quick_start.md
+++ b/docs/ensemble_quick_start.md
@@ -55,7 +55,7 @@ mkdir examples/quick/ensemble_add_sub/1
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
**2. Run the SDK container**
@@ -65,7 +65,7 @@ docker run -it --gpus 1 \
--shm-size 1G \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
**Important:** The example above uses a single GPU. If you are running on multiple GPUs, you may need to increase the shared memory size accordingly
diff --git a/docs/kubernetes_deploy.md b/docs/kubernetes_deploy.md
index 0ef7067cd..df642aae9 100644
--- a/docs/kubernetes_deploy.md
+++ b/docs/kubernetes_deploy.md
@@ -79,7 +79,7 @@ images:
triton:
image: nvcr.io/nvidia/tritonserver
- tag: 23.09-py3
+ tag: 23.10-py3
```
The model analyzer executable uses the config file defined in `helm-chart/templates/config-map.yaml`. This config can be modified to supply arguments to model analyzer. Only the content under the `config.yaml` section of the file should be modified.
diff --git a/docs/mm_quick_start.md b/docs/mm_quick_start.md
index 628894014..57df5c108 100644
--- a/docs/mm_quick_start.md
+++ b/docs/mm_quick_start.md
@@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:23.09-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
## `Step 3:` Profile both models concurrently
diff --git a/docs/quick_start.md b/docs/quick_start.md
index a2a54ed8c..97603d7c0 100644
--- a/docs/quick_start.md
+++ b/docs/quick_start.md
@@ -49,7 +49,7 @@ git pull origin main
**1. Pull the SDK container:**
```
-docker pull nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+docker pull nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
**2. Run the SDK container**
@@ -58,7 +58,7 @@ docker pull nvcr.io/nvidia/tritonserver:23.09-py3-sdk
docker run -it --gpus all \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $(pwd)/examples/quick-start:$(pwd)/examples/quick-start \
- --net=host nvcr.io/nvidia/tritonserver:23.09-py3-sdk
+ --net=host nvcr.io/nvidia/tritonserver:23.10-py3-sdk
```
## `Step 3:` Profile the `add_sub` model
diff --git a/helm-chart/values.yaml b/helm-chart/values.yaml
index a95f80ae8..29f2126f0 100644
--- a/helm-chart/values.yaml
+++ b/helm-chart/values.yaml
@@ -41,4 +41,4 @@ images:
triton:
image: nvcr.io/nvidia/tritonserver
- tag: 23.09-py3
+ tag: 23.10-py3
diff --git a/model_analyzer/config/input/config_defaults.py b/model_analyzer/config/input/config_defaults.py
index 67c62dca9..5e697f573 100755
--- a/model_analyzer/config/input/config_defaults.py
+++ b/model_analyzer/config/input/config_defaults.py
@@ -56,7 +56,7 @@
DEFAULT_RUN_CONFIG_PROFILE_MODELS_CONCURRENTLY_ENABLE = False
DEFAULT_REQUEST_RATE_SEARCH_ENABLE = False
DEFAULT_TRITON_LAUNCH_MODE = "local"
-DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:23.09-py3"
+DEFAULT_TRITON_DOCKER_IMAGE = "nvcr.io/nvidia/tritonserver:23.10-py3"
DEFAULT_TRITON_HTTP_ENDPOINT = "localhost:8000"
DEFAULT_TRITON_GRPC_ENDPOINT = "localhost:8001"
DEFAULT_TRITON_METRICS_URL = "http://localhost:8002/metrics"