-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenetic_algorithm.c
118 lines (101 loc) · 3.35 KB
/
genetic_algorithm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
/* ************************************************************************** */
/* */
/* ::: :::::::: */
/* genetic_algorithm.c :+: :+: :+: */
/* +:+ +:+ +:+ */
/* By: tscasso <[email protected]> +#+ +:+ +#+ */
/* +#+#+#+#+#+ +#+ */
/* Created: 2023/08/13 18:49:59 by tscasso #+# #+# */
/* Updated: 2023/08/13 18:50:03 by tscasso ### ########.fr */
/* */
/* ************************************************************************** */
#include "push_swap.h"
/*
Version original
void initialize_population(t_individual *population)
{
int i;
int j;
i = 0;
while (i < POPULATION_SIZE)
{
population[i].num_moves = MAX_NUM_MOVES;
//printf("Initialized individual %d with num_moves = %d\n", i, population[i].num_moves);
population[i].quality = 0;
j = 0;
while (j < MAX_NUM_MOVES)
{
population[i].moves[j] = choose_random_move();
j++;
}
i++;
}
//printf("initialize_population: num_moves = %d\n", population[0].num_moves); // Ajout pour le débogage
}
*/
// version 2 de initialize population
void initialize_population(t_individual *population)
{
int i, j;
i = 0;
while (i < POPULATION_SIZE)
{
population[i].num_moves = rand() % (MAX_NUM_MOVES - 1) + 1; // Nombre aléatoire de mouvements entre 1 et MAX_NUM_MOVES
population[i].quality = 0;
// Limitez population[i].num_moves à un maximum de 10
if (population[i].num_moves > NUM_MOVES) {
population[i].num_moves = NUM_MOVES;
}
j = 0;
while (j < population[i].num_moves)
{
population[i].moves[j] = choose_random_move();
j++;
}
i++;
}
}
void selection(t_individual *population, int population_size)
{
int i;
int j;
i = 0;
while (i < population_size)
{
j = i + rand() % (population_size - i);
ft_swap_individuals(&population[i], &population[j]);
i++;
}
}
void ft_swap_individuals(t_individual *ind1, t_individual *ind2)
{
t_individual temp;
temp = *ind1;
*ind1 = *ind2;
*ind2 = temp;
}
void optimize_with_genetic_algorithm(t_hash_table **hash_table,
t_node ***stackA, t_node ***stackB)
{
t_individual *population = malloc(sizeof(t_individual) * 500000);
t_individual *new_population = malloc(sizeof(t_individual) * 500000);
if (!population || !new_population)
return (write(1, "aaaaaa", 6), exit(1));
// t_individual new_population[POPULATION_SIZE];
t_individual best_individual;
int generation;
generation = 0;
printf("Initializing population...\n");
initialize_population(population);
//initialize_population(new_population);
while (generation < MAX_GENERATIONS)
{
printf("Generation %d\n", generation);
selection(population, POPULATION_SIZE);
printf("Evolving population...\n");
evolve_population(population, *hash_table, *stackA, *stackB);
generation++;
}
best_individual = get_best_individual(new_population);
apply_moves(*stackA, *stackB, best_individual.moves, best_individual.num_moves);
}