forked from HaythamEffarah/compton-fastfit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
getfigures.m
933 lines (760 loc) · 30.7 KB
/
getfigures.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
% generate figures for manuscript
%% USAGE NOTE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Each section in getfigures.m is titled as "Figure #." followed by a brief
% description. Under the title of each section are instructions on which
% parts of the "comptonfastfit.m" script need to be run to produce the
% figure in question. It's admittedly sloppy, but the code blocks in each
% section of this script require the workspace variables that are generated
% in the required sections (SEC.).
%
% For best results, ONLY run the comptonfastfit.m sections that are listed
% in each of the following Figure code blocks. The robustness of the code
% in maintaining the workspace variables when running different
% combinations of sections has not been fully tested.
%
% Code Section Requirement Summary:
% Figure 1. SEC. 1
% Figure 2. SECS. 1-2
% Figure 3. NONE
% Figure 4. SECS. 1-2
% Figure 5. SECS. 1-4
% Figure 6. SECS. 1-4
% Figure 7. SECS. 1-3, 5
% Figure 8. SECS. 1-3, 5
% Figure 9. SECS. 1-3, 6
%
% Have fun!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMKollkNMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMNXWMMMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMMMWXXWMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMWOlcdXMMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMMNkc:xXMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMW0l;;oKMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMNd;,:kWMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMKo;;l0WMMMMMWWWMMWk;,,lXMMMWWMMMMMMXo;,cOWMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMXd;,cOWMMWOolkWMWk;,,lXMWKdokXMMWKl;;l0WMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMMNx;,:kNMWk;,c0MWk;,,lXMNo;,oXMW0c;;oKWMMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMMMNk:,:xNMXl,;dNWk;,,lXWO:,:OWWOc;;dXMMMMMMMMMMMMMMMMMMMMMMM
% MMMMWNXWMMMMMMMMMMN00NMWOc;;dXWO:,:OWk;,,lXXo,;oXNk:,:xNMWXOKWMMMMMMMMMWXXWMMMMM
% MMMW0c:lx0XWMMMMMXo;:o0NW0c;;oKXo,,oXk;,,lKO:,:OXx;,:kNWKxc;c0WMMMMMNKkoc:xNMMMM
% MMMWKxl;,;cdkKWMMW0d:,;o0NKl;;l0O:,:xo;,,cxl,;d0d;,cONKx:;;lONMMWX0xl:,;coONMMMM
% MMMMMMNKko:;,:lx0NWW0o:;;oO0o;,cl:,;;;;;;;;;;;cl;,l0Kx:;;lONWNKkoc;,:lx0XWMMMMMM
% MMMMMMMMMWXOdl;,;cdOKN0o:,;oo:;;::::::::::::::::;;ldc,;lOXX0xl:;;cokKNMMMMMMMMMM
% MMMMMMMMMMMMWN0ko:;;:oxOkl;;;,cxOOOOOOOOOOOOOO0Oo;,,,cxOkoc;,:lxOXWMMMMMMMMMMMMM
% MMMMMMMMMMMNKXNWWXOdc;,;cc;;;,:;;;;;;;;;;;;;;;;;;;;;;:l:,;cokKNWWXKXWMMMMMMMMMMM
% MMMMMMMMMMXo;:lodxO0Okdc;;;;;;:dddddddddddddddddl;;;;;;:okO0Okdolc;c0MMMMMMMMMMM
% MMMMMMMMMMNOdol:;,,;:cl:;;;;,;o0KKKKKKKKKKKKKKKKk:,;;;,:ll:;,,;:codxKMMMMMMMMMMM
% MMMMMMMMMMMMMWNXKOkxdl:;;;;;;;:looood0KKKKkoooooc;;;;;;,;codxO0XNWMMMMMMMMMMMMMM
% kxxxxxxxxxxxxxxxxxxxxdc;;;;;;;;,,,,,cOKKKKd;,;,,;;;;;;;,;oxxxxxxxxxxxxxxxxxxxxx0
% :;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;,cOKKKKd;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;o
% KKKKKKKKKKKKKKKKK00kxdc;;;;;;;;;;;;,cOKKKKd;;;;;;;;;;;;,;lxkO0KKKKKKKKKKKKKKKKKX
% MMMMMMMMMMMNXKOkxdlc:;;;;;;;;;;;;;;,cOKKKKd;;;;;;;;;;;;;,,;:lodxO0KNWMMMMMMMMMMM
% MMMMMMMMMMXd:;;,;:cldxxc;;;;;;;;;;;,cOKKKKd;;;;;;;;;;;,:dxdol:;;,;:l0MMMMMMMMMMM
% MMMMMMMMMMNOodkO0KXKOdl;,,;;;;;;;;;,cOKKKKd;,;;;;;;;;;,;cok0XXKOkxoxXMMMMMMMMMMM
% MMMMMMMMMMMMWMMNKko:;,:lxo;;;;;;;;;,cOKKKKd;,;;;,,;;;cxoc;,:lx0XWMWMMMMMMMMMMMMM
% MMMMMMMMMMMWXOdl:,;cdk00d:;;:;;;;;;,cOKKKKd;,;;;,;::;;oOK0xl:,;cokKNMMMMMMMMMMMM
% MMMMMMMMNKkoc;,:lx0NWKd:,;lkx:,;:;;;:oddddc;;;;;;;oOd:,;oONNKkoc;,:lx0XWMMMMMMMM
% MMMMWXOxl:,;cdkKNMWKd:;;lOXk:,:xkc,;lc;,,:l:,;dkc,;dK0d:,;oONMWXOxl:,;cdkKWMMMMM
% MMMW0c;;:lx0XWMMMXx:;;lONNx:,:kXx;,lKk;,,lKx;,lK0c,;oKWKd:,;oKMMMMNKkoc;,:xNMMMM
% MMMMXkdkKWMMMMMMMNkloONMXd;,cOWKc,;kWk;,,lK0c,;xNKl;;lKWWKdldKMMMMMMMWXOxd0WMMMM
% MMMMMMMMMMMMMMMMMMMWWMMKo;,l0WNd;,lKWk;,,lKWx;,cKMXo;;c0WMWNWMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMMWKl;;lKWM0c,;kWWk;,,lXMKl,;xNMXd;,cOWMMMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMWOc;;oXMMWx;,oXMWk;,,lXMWk;;lKMMNx:,:xNMMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMWk:,;dNMMMWX0OKWMWk;,,lXMMN00XWMMMWk:,;dNMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMNx:,:xNMMMMMMMMMMMWk;,,lXMMMMMMMMMMMWOc;;oXMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMWk:,:kWMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMW0l,;oXMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMWXOx0WMMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMMMXxx0WMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
% MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMWk;,,lXMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
%% Figure 1. Angle-correlated spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SEC. 1 in comptonfastfit.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Illustrate flux density at 60 keV and then create lineouts of four
% different regions (the whole thing, the center, off-center, and a thin
% band
% Create plotting meshgrid
x = linspace(-5,5,101);
y = x;
[X, Y] = meshgrid(x,y);
%create graphics matrix
%In order: flux, a, b, c, d, overlapping
H = gobjects(6,3);
for k = 1:size(H,1)
H(k,1) = figure;
H(k,2) = axes('Parent',H(k,1));
end
%%% H(1,2) 60 keV photon distribution plot
fig1_sub1 = get2Dfrom4D(data{2});
fig1_sub1 = fig1_sub1 / max(fig1_sub1, [], 'all');
% Create ax(1) plot
surf(H(1,2), X, Y, fig1_sub1, 'EdgeColor', 'none');
% Set plot details
view(H(1,2),[0 90]);
colorbar(H(1,2))
h1 = colorbar(H(1,2));
set(get(h1,'label'),'string','Relative flux density');
xlabel(H(1,2), '\theta_x (mrad)')
ylabel(H(1,2), '\theta_y (mrad)')
H(1,2).XTick = -4:2:4;
H(1,2).YTick = -4:2:4;
H(1,2).FontSize = 24;
pbaspect(H(1,2),[1 1 1])
colormap(H(1,2),'jet')
shading(H(1,2), 'interp')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% H(2,2) Lineout of entire integrated spectrum %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fig1_x = squeeze(data{2}(1,1,:,1));
spectrum_a = squeeze(sum(data{2}(:,:,:,2), [1,2]));
spectrum_a_norm = spectrum_a ./ max(spectrum_a);
patch(H(2,2), [fig1_x fliplr(fig1_x)], [spectrum_a_norm ...
fliplr(spectrum_a_norm)], [94 94 94]./256,'FaceAlpha',0.5)
xlabel(H(2,2), 'Energy (keV)')
ylabel(H(2,2), 'Relative flux')
H(2,2).FontSize = 24;
xlim(H(2,2),[45 62]);
ylim(H(2,2), [0 1.1]);
pbaspect(H(2,2),[1 1 1]);
box(H(2,2), 'on');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% H(3,2) Lineout of annulus with 2.0 < r < 2.3 %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create circle mask
[m, n, ~, ~] = size(data{2});
circlePixels= zeros(m,n,51); circleBlocks = zeros(m,n,51);
centerX = ceil(m / 2);
centerY = ceil(m / 2);
for radius = 1:51
[columnsInImage, rowsInImage] = meshgrid(1:m, 1:n);
circlePixels(:,:,radius) = (rowsInImage - centerY).^2 ...
+ (columnsInImage - centerX).^2 <= (radius-1).^2;
end
circleBlock = ~circlePixels;
spectrum_b = squeeze(circlePixels(:,:,25)) .* ...
squeeze(circleBlock(:,:,19)) .* data{2};
spectrum_b = squeeze(sum(spectrum_b(:,:,:,2), [1,2]));
spectrum_b_norm = spectrum_b ./ max(spectrum_a);
patch(H(3,2), [fig1_x fliplr(fig1_x)], [spectrum_b_norm ...
fliplr(spectrum_b_norm)], [4 51 255]./256,'FaceAlpha',0.5)
xlabel(H(3,2), 'Energy (keV)')
ylabel(H(3,2), 'Relative flux')
H(3,2).FontSize = 24;
xlim(H(3,2),[45 62]);
ylim(H(3,2), [0 1.1]);
pbaspect(H(3,2),[1 1 1]);
box(H(3,2), 'on');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% H(4,2) Lineout of circlle with 0 < r < 0.7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
spectrum_c = squeeze(circlePixels(:,:,10)) .* data{2};
spectrum_c = squeeze(sum(spectrum_c(:,:,:,2), [1,2]));
spectrum_c_norm = spectrum_c ./ max(spectrum_a);
patch(H(4,2), [fig1_x fliplr(fig1_x)], [spectrum_c_norm ...
fliplr(spectrum_c_norm)], [0 250 146]./256,'FaceAlpha',0.5)
xlabel(H(4,2), 'Energy (keV)')
ylabel(H(4,2), 'Relative flux')
H(4,2).FontSize = 24;
xlim(H(4,2),[45 62]);
ylim(H(4,2), [0 1.1]);
pbaspect(H(4,2),[1 1 1]);
box(H(4,2), 'on');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% H(5,2) Lineout of offset circle (-3.5,3) with r < 0.7 %%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create off-center circle mask
[m, n, ~, ~] = size(data{2});
offsetCirclePixels= zeros(m,n,51);
centerX = 81;
centerY = 86;
for radius = 1:51
[columnsInImage, rowsInImage] = meshgrid(1:m, 1:n);
offsetCirclePixels(:,:,radius) = (rowsInImage - centerY).^2 ...
+ (columnsInImage - centerX).^2 <= (radius-1).^2;
end
spectrum_d = squeeze(offsetCirclePixels(:,:,10)) .* data{2};
spectrum_d = squeeze(sum(spectrum_d(:,:,:,2), [1,2]));
spectrum_d_norm = spectrum_d ./ max(spectrum_a);
patch(H(5,2), [fig1_x fliplr(fig1_x)], [spectrum_d_norm ...
fliplr(spectrum_d_norm)], [255 38 0]./256,'FaceAlpha',0.5)
xlabel(H(5,2), 'Energy (keV)')
ylabel(H(5,2), 'Relative flux')
H(5,2).FontSize = 24;
xlim(H(5,2),[45 62]);
ylim(H(5,2), [0 1.1]);
pbaspect(H(5,2),[1 1 1]);
box(H(5,2), 'on');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% H(6,2) All lineouts overlapping %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
patch(H(6,2), [fig1_x fliplr(fig1_x)], [spectrum_a ./ max(spectrum_a) fliplr(spectrum_a ./ max(spectrum_a))], ...
[94 94 94]./256,'FaceAlpha',0.5)
hold on
patch(H(6,2), [fig1_x fliplr(fig1_x)], [spectrum_b ./ max(spectrum_a) fliplr(spectrum_b ./ max(spectrum_a))], ...
[4 51 255]./256,'FaceAlpha',0.5)
patch(H(6,2), [fig1_x fliplr(fig1_x)], [spectrum_c ./ max(spectrum_a) fliplr(spectrum_c ./ max(spectrum_a))], ...
[0 250 146]./256,'FaceAlpha',0.5)
patch(H(6,2), [fig1_x fliplr(fig1_x)], [spectrum_d ./ max(spectrum_a) fliplr(spectrum_d ./ max(spectrum_a))], ...
[255 38 0]./256,'FaceAlpha',0.5)
xlabel(H(6,2), 'Energy (keV)')
ylabel(H(6,2), 'Relative flux')
H(6,2).FontSize = 24;
xlim(H(6,2),[45 62]);
pbaspect(H(6,2),[1 1 1]);
box(H(6,2), 'on');
%% Figure 2. Compare local distribution over a range of observation angles
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SECS. 1-2 in comptonfastfit.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%create figure and axes
f3 = figure;
ax3 = axes('Parent',f3);
%Plot energy distribution near center
% plot(ax(1), squeeze(data2(51,51,:,1)), squeeze(data2(51,51,:,2)) );
hold(ax3,'off')
x = squeeze(dataFitted{2}(1,1,:,1));
plot(ax3, x, ...
squeeze(dataFitted{2}(51,58,:,2)) ./ ...
max(squeeze(dataFitted{2}(51,58,:,2))), ...
'LineWidth',2);
hold(ax3,'on')
plot(ax3, x, ...
squeeze(dataFitted{2}(51,63,:,2)) ./ ...
max(squeeze(dataFitted{2}(51,58,:,2))), ...
'LineWidth',2);
plot(ax3, x, ...
squeeze(dataFitted{2}(51,73,:,2)) ./ ...
max(squeeze(dataFitted{2}(51,58,:,2))), ...
'LineWidth',2);
hold(ax3,'on')
xlabel(ax3, 'Energy (keV)')
ylabel(ax3, 'X-ray flux (arb. units)')
title(ax3, 'Local X-ray variation over \theta_x (\theta_y = 0)');
ax3.FontSize = 24;
legend(ax3,'0.7 mrad', '1.2 mrad', '2.2 mrad', ...
'Location','northwest')
ylim(ax3,[0 1.1]);
xlim(ax3,[57 60]);
pbaspect(ax3,[1 1 1]);
% f3.Position = [100 100 700 700];
%% Figure 3. Energy and relative flux density scaling
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% NONE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create array of directly simulated spectra from 20keV - 100keV
if ~exist('spectrumArray', 'var')
fileNames = dir('anchors_100k/*.csv');
num = size(fileNames,1);
files = strings(num, 1);
fileNumbers = zeros(num,1);
for i = 1:num
files(i) = convertCharsToStrings((fileNames(i).name));
fileNumbers(i) = sscanf(files(i),'%i');
end
[~,sorter] = sort(fileNumbers);
files = files(sorter(1:5));
spectrumArray{num} = [];
for i = 1:5
spectrumArray{i} = loadenergies(files(i));
end
end
%Create arrays of normalized flux density images
[m, n, ~, ~] = size(spectrumArray{num});
spectrumImageArray = zeros(m,n,num);
for i = 1:num
spectrumImageArray(:,:,i) = get2Dfrom4D(spectrumArray{i});
end
normImageArray = zeros(size(spectrumImageArray));
for i = 1:num
normImageArray(:,:,i) = spectrumImageArray(:,:,i) / sum(spectrumImageArray(:,:,i), 'all');
end
%Plot relative flux density, y = 0 mrad, x = (-5) -> 0 mrad
% Note that MATLAB indexes are (row, column), so scanning over x would be
% scanning over column while holding row constant
x = sort(fileNumbers);
normImageArrayToPlot = squeeze(normImageArray(50,1:50,:));
figure1 = figure;
axes1 = axes('Parent',figure1);
box(axes1,'on');
hold(axes1,'off');
h = plot(x,normImageArrayToPlot ./ normImageArrayToPlot(50,1),'LineWidth',2,'Parent',axes1);
set(h, {'color'}, num2cell(jet(50),2));
ylabel({'Relative X-ray flux density'});
xlabel({'E_{CE} (keV)'});
set(axes1,'FontSize',24);
pbaspect(axes1,[1 1 1])
figure1.Position = [100 100 500 500];
%Plot relative flux density, x = 0 mrad, y = (-5) -> 0 mrad
% Note that MATLAB indexes are (row, column), so scanning over y would be
% scanning over row while holding column constant
x = sort(fileNumbers);
normImageArrayToPlot = squeeze(normImageArray(1:50,50,:));
%Plot relative flux density
figure1 = figure;
axes1 = axes('Parent',figure1);
box(axes1,'on');
hold(axes1,'off');
h = plot(x,normImageArrayToPlot ./ normImageArrayToPlot(50,1),'LineWidth',2,'Parent',axes1);
colors = num2cell(jet(129),2);
set(h, {'color'}, colors(129-49:end));
ylabel({'Relative X-ray flux density'});
xlabel({'E_{CE} (keV)'});
set(axes1,'FontSize',24);
pbaspect(axes1,[1 1 1])
figure1.Position = [100 100 500 500];
%Create arrays of mean energies
[m, n, ~, ~] = size(spectrumArray{num});
modeEnergyArray = zeros(m,n,num);
meanEnergyArray = zeros(m,n,num);
for i = 1:m
for j = 1:n
for k = 1:num
[~,modeLoc] = max(spectrumArray{k}(i,j,:,2));
modeEnergyArray(i,j,k) = spectrumArray{k}(i,j,modeLoc,1);
meanEnergyArray(i,j,k) = sum(spectrumArray{k}(i,j,:,1) .* spectrumArray{k}(i,j,:,2)) ./ sum(spectrumArray{k}(i,j,:,2));
end
end
end
%Plot mean energies, x = 0 mrad, y = (-5) -> 0 mrad
% Note that MATLAB indexes are (row, column), so scanning over y would be
% scanning over row while holding column constant
x = sort(fileNumbers);
meanEnergyToPlot = squeeze(meanEnergyArray(1:50,50,:));
figure1 = figure;
axes1 = axes('Parent',figure1);
box(axes1,'on');
hold(axes1,'off');
h = plot(x,meanEnergyToPlot,'LineWidth',2,'Parent',axes1);
colors = num2cell(jet(129),2);
set(h, {'color'}, colors(129-49:end));
ylabel({'Local mean energy (keV)'});
xlabel({'E_{CE} (keV)'});
set(axes1,'FontSize',24);
pbaspect(axes1,[1 1 1])
figure1.Position = [100 100 500 500];
%Plot mean energies, y = 0 mrad, x = (-5) -> 0 mrad
% Note that MATLAB indexes are (row, column), so scanning over x would be
% scanning over column while holding row constant
x = sort(fileNumbers);
meanEnergyToPlot = squeeze(meanEnergyArray(50,1:50,:));
figure1 = figure;
axes1 = axes('Parent',figure1);
box(axes1,'on');
hold(axes1,'off');
h = plot(x,meanEnergyToPlot,'LineWidth',2,'Parent',axes1);
set(h, {'color'}, num2cell(jet(50),2));
ylabel({'Local mean energy (keV)'});
xlabel({'E_{CE} (keV)'});
set(axes1,'FontSize',24);
pbaspect(axes1,[1 1 1])
figure1.Position = [100 100 500 500];
%% Figure 4. Image subtraction of anchor distribution (60 keV).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SECS. 1-2 in comptonfastfit.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Create plotting meshgrid
x = linspace(-5,5,101);
y = x;
[X, Y] = meshgrid(x,y);
%create figure and axes
f1 = figure;
f1.Position = [100 100 2000 700];
subplot(1,2,2)
ax = axes('Parent',f1);
for k = 1:2
ax(k) = subplot(1,2,k);
end
% Redundantly re-define data files
data_compare{1} = data{2};
data_compare{2} = dataFitted{2};
% Create normalized 2D data files for plotting
directSimImageSet = cellfun(@get2Dfrom4D,data_compare,'UniformOutput',false);
for i = 1:size(directSimImageSet,2)
dataImageSetRaw{i} = directSimImageSet{i};
directSimImageSet{i} = directSimImageSet{i} / max(directSimImageSet{i}, [], 'all');
numPixels(i) = numel(directSimImageSet{i});
end
%%% AX(1) INTENSITY SUBTRACTION PLOT
fluxDiff = directSimImageSet{1} - directSimImageSet{2};
fluxAPE = (abs(fluxDiff) ./ directSimImageSet{1}) .* 100;
% mean absolute percentage error
fluxMAPE = sum(fluxAPE , 'all') / numPixels(1) ;
% Create ax(1) plot
surf(ax(1), X, Y, fluxAPE, 'EdgeColor', 'none');
% Set plot details
view(ax(1),[0 90]);
title(ax(1), 'Flux');
colorbar(ax(1))
h1 = colorbar(ax(1));
set(get(h1,'label'),'string','APE (%)');
% caxis(ax(1), [0, 1]);
xlabel(ax(1), '\theta_x (mrad)')
ylabel(ax(1), '\theta_y (mrad)')
ax(1).XTick = -4:2:4;
ax(1).YTick = -4:2:4;
ax(1).FontSize = 24;
pbaspect(ax(1),[1 1 1])
%%% AX(2) MEAN ENERGY SUBTRACTION PLOT
%Plot mean energy pixel-by-pixel error 2D map
[m, n, ~, ~] = size(data_compare{1});
meanEnergyArray = zeros(m,n,2);
for i = 1:m
for j = 1:n
for k = 1:2
[~,modeLoc] = max(data_compare{k}(i,j,:,2));
meanEnergyArray(i,j,k) = sum(data_compare{k}(i,j,:,1) .* data_compare{k}(i,j,:,2)) ./ sum(data_compare{k}(i,j,:,2));
end
end
end
energyDiff = abs(squeeze((meanEnergyArray(:,:,1) - meanEnergyArray(:,:,2))));
energyAPE = (abs(energyDiff) ./ squeeze(meanEnergyArray(:,:,1))) .* 100;
% mean absolute percentage error
energyMAPE = sum(energyAPE , 'all') / numPixels(1) ;
surf(ax(2), X, Y, energyAPE, 'EdgeColor', 'none');
view(ax(2),[0 90]);
title(ax(2), 'Mean energy');
colorbar(ax(2))
h2 = colorbar(ax(2));
% caxis(ax(2), [0, 1]);
set(get(h2,'label'),'string','APE (%)');
xlabel(ax(2), '\theta_x (mrad)')
ax(2).XTick = -4:2:4;
ax(2).YTick = -4:2:4;
ax(2).FontSize = 24;
pbaspect(ax(2),[1 1 1])
%Set colormaps
colormap(ax(1),'inferno')
colormap(ax(2),'inferno')
%Shading
shading(ax(1), 'interp')
shading(ax(2), 'interp')
sprintf('Relative Intensity MAPE: %0.5e', fluxMAPE)
sprintf('Mean Energy MAPE: %0.5e', energyMAPE)
%% Figure 5. Image subtraction of interpolation (80 keV)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SECS. 1-4 in comptonfastfit.m
%
% NOTE: To reproduce Fig. 5 exactly, please make sure SEC. 4 is used to
% generate a spectrum at 80 keV, which is written as default
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save time for loading in direct simulation test data
if ~exist('data_tester', 'var')
% data_tester = loadenergies('table1/25keV_6um_xyn.csv');
% data_tester = loadenergies('anchors_100k/80keV_6um_xyn.csv');
data_tester = loadenergies('anchors_100k/20keV_6um_xyn.csv');
end
% Create plotting meshgrid
x = linspace(-5,5,101);
y = x;
[X, Y] = meshgrid(x,y);
%create figure and axes
f1 = figure;
f1.Position = [100 100 2000 700];
% ax = tight_subplot(1,3,[.03],[.1 .01],[.01 .01]);
subplot(1,2,2)
ax = axes('Parent',f1);
for k = 1:2
ax(k) = subplot(1,2,k);
end
%%% AX(1) INTENSITY SUBTRACTION PLOT
data_compare{1} = data_tester;
data_compare{2} = newSpec;
% Create normalized 2D data files for plotting
directSimImageSet = cellfun(@get2Dfrom4D,data_compare,'UniformOutput',false);
for i = 1:size(directSimImageSet,2)
dataImageSetRaw{i} = directSimImageSet{i};
directSimImageSet{i} = directSimImageSet{i} / max(directSimImageSet{i}, [], 'all');
numPixels(i) = numel(directSimImageSet{i});
end
fluxDiff = directSimImageSet{1} - directSimImageSet{2};
fluxAPE = (abs(fluxDiff) ./ directSimImageSet{1}) .* 100;
% mean absolute percentage error
fluxMAPE = sum(fluxAPE , 'all') / numPixels(1) ;
% Create ax(1) plot
surf(ax(1), X, Y, fluxAPE, 'EdgeColor', 'none');
% Set plot details
view(ax(1),[0 90]);
title(ax(1), 'Flux');
colorbar(ax(1))
h1 = colorbar(ax(1));
set(get(h1,'label'),'string','APE (%)');
xlabel(ax(1), '\theta_x (mrad)')
ylabel(ax(1), '\theta_y (mrad)')
ax(1).XTick = -4:2:4;
ax(1).YTick = -4:2:4;
ax(1).FontSize = 24;
pbaspect(ax(1),[1 1 1])
%%% AX(2) MEAN ENERGY SUBTRACTION PLOT
[m, n, ~, ~] = size(data_compare{1});
meanEnergyArray = zeros(m,n,2);
for i = 1:m
for j = 1:n
for k = 1:2
[~,modeLoc] = max(data_compare{k}(i,j,:,2));
meanEnergyArray(i,j,k) = sum(data_compare{k}(i,j,:,1) .* data_compare{k}(i,j,:,2)) ./ sum(data_compare{k}(i,j,:,2));
end
end
end
energyDiff = abs(squeeze((meanEnergyArray(:,:,1) - meanEnergyArray(:,:,2))));
energyAPE = (abs(energyDiff) ./ squeeze(meanEnergyArray(:,:,1))) .* 100;
% mean absolute percentage error
energyMAPE = sum(energyAPE , 'all') / numPixels(1) ;
surf(ax(2), X, Y, energyAPE, 'EdgeColor', 'none');
view(ax(2),[0 90]);
title(ax(2), 'Mean energy');
colorbar(ax(2))
h2 = colorbar(ax(2));
set(get(h2,'label'),'string','APE (%)');
xlabel(ax(2), '\theta_x (mrad)')
ax(2).XTick = -4:2:4;
ax(2).YTick = -4:2:4;
ax(2).FontSize = 24;
pbaspect(ax(2),[1 1 1])
%Set colormaps
colormap(ax(1),'inferno')
colormap(ax(2),'inferno')
%Shading
shading(ax(1), 'interp')
shading(ax(2), 'interp')
sprintf('Relative Intensity MAPE: %0.5e', fluxMAPE)
sprintf('Mean Energy MAPE: %0.5e', energyMAPE)
%% Table 1. MAPE analysis over several energies
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SECS. 1-3, 4A in comptonfastfit.m
%
% NOTE: Things might get funky if you run SEC. 4 and SEC. 4A so beware
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save time for loading in direct simulation test data
% Create array of directly simulated spectra from 20keV - 100keV
if ~exist('directSimArray', 'var')
fileNames = dir('table1/*.csv');
num = size(fileNames,1);
files = strings(num, 1);
fileNumbers = zeros(num,1);
for i = 1:num
files(i) = convertCharsToStrings((fileNames(i).name));
fileNumbers(i) = sscanf(files(i),'%i');
end
[~,sorter] = sort(fileNumbers);
files = files(sorter(1:6));
directSimArray{num} = [];
for i = 1:num
directSimArray{i} = loadenergies(files(i));
end
end
MAPEtable = zeros(6,2);
% Create 2D images that only consider total X-ray photons per pixel
directSimImageSet = cellfun(@get2Dfrom4D,directSimArray,'UniformOutput',false);
fastfitImageSet = cellfun(@get2Dfrom4D,fastfitArray,'UniformOutput',false);
% Calculate flux MAPE for each pair of spectra
for i = 1:6
directSimImageSet{i} = directSimImageSet{i} / max(directSimImageSet{i}, [], 'all');
fastfitImageSet{i} = fastfitImageSet{i} / max(fastfitImageSet{i}, [], 'all');
numPixels(i) = numel(directSimImageSet{i});
fluxDiff = directSimImageSet{i} - fastfitImageSet{i};
fluxAPE = (abs(fluxDiff) ./ directSimImageSet{i}) .* 100;
fluxMAPE = sum(fluxAPE , 'all') / numPixels(i);
MAPEtable(i,1) = fluxMAPE;
end
% Do the same as above but with mean energies
[m, n, ~, ~] = size(directSimArray{1});
fastfitMeanEnergyArray = zeros(m,n,6);
directSimMeanEnergyArray = zeros(m,n,6);
for i = 1:m
for j = 1:n
for k = 1:6
fastfitMeanEnergyArray(i,j,k) = ...
sum(fastfitArray{k}(i,j,:,1) .* ...
fastfitArray{k}(i,j,:,2)) ./ sum(fastfitArray{k}(i,j,:,2));
directSimMeanEnergyArray(i,j,k) = ...
sum(directSimArray{k}(i,j,:,1) .* ...
directSimArray{k}(i,j,:,2)) ./ sum(directSimArray{k}(i,j,:,2));
energyDiff = abs(squeeze((directSimMeanEnergyArray(:,:,k) - fastfitMeanEnergyArray(:,:,k))));
energyAPE = (abs(energyDiff) ./ squeeze(directSimMeanEnergyArray(:,:,k))) .* 100;
energyMAPE = sum(energyAPE , 'all') / numPixels(1);
MAPEtable(k,2) = energyMAPE;
end
end
end
disp(MAPEtable)
%% Figure 6. Zoom in lineout plots for interpolation at 80 keV
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SEC. 1-4 in comptonfastfit.m
%
% NOTE: To reproduce Fig. 6 exactly, please make sure SEC. 4 is used to
% generate a spectrum at 80 keV, which is the default
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save time for loading in 80keV data
if ~exist('data_tester', 'var')
data_tester = loadenergies('anchors_100k/80keV_6um_xyn.csv');
end
%create figure and axes
f3 = figure;
ax3 = axes('Parent',f3);
%Plot energy distribution near center
% plot(ax(1), squeeze(data2(51,51,:,1)), squeeze(data2(51,51,:,2)) );
hold(ax3,'off')
plot(ax3, squeeze(data_tester(51,53,:,1)), squeeze(data_tester(51,53,:,2))...
/ trapz(squeeze(data_tester(51,53,:,1)), squeeze(data_tester(51,53,:,2))),...
'LineStyle','None','Marker','*','MarkerEdgeColor','red');
hold(ax3,'on')
plot(ax3, squeeze(newSpec(51,53,:,1)), squeeze(newSpec(51,53,:,2))...
/ trapz(squeeze(newSpec(51,53,:,1)), squeeze(newSpec(51,53,:,2))),...
'LineWidth',1.5,'Color','red');
plot(ax3, squeeze(data_tester(51,62,:,1)), squeeze(data_tester(51,62,:,2))...
/ trapz(squeeze(data_tester(51,62,:,1)), squeeze(data_tester(51,62,:,2))),...
'LineStyle','None','Marker','*', 'MarkerEdgeColor','blue');
plot(ax3, squeeze(newSpec(51,62,:,1)), squeeze(newSpec(51,62,:,2))...
/ trapz(squeeze(newSpec(51,62,:,1)), squeeze(newSpec(51,62,:,2))),...
'LineWidth',1.5,'Color','blue');
xlabel(ax3, 'Energy (keV)')
ylabel(ax3, 'X-ray flux (arb. units)')
title(ax3, 'Local energy spectra for E_{CE} = 80 keV');
ax3.FontSize = 16;
legend(ax3,'LCS Code','FastFit',...
'LCS Code','FastFit','Location','northwest')
xlim(ax3,[78 80]);
pbaspect(ax3,[1 1 1]);
%% Figure 7. Plot E_good - E_bad vs. aperture vs. E_gamma as a surface plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SECS. 1-3 and SEC. 5 in comptonfastfit.m
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
f = figure;
ax = axes('Parent',f);
x = .1:.1:5;
y = eSTART:deltaE:eEND-deltaE;
[X, Y] = meshgrid(x,y);
sc = surfc(ax, X, Y, ((E_good - E_bad) ./ (E_good + E_bad)), 'EdgeColor', 'none');
ax.ZLim(2) = 15;
sc(2).ZLocation = 'zmax';
sc(2).LineColor = 'black';
sc(2).ShowText = 'on';
clabel([],sc(2),'FontSize',13, 'FontWeight', 'bold', 'Color', 'black')
sc(2).LineWidth = 2;
sc(2).LevelList = [0.8,0.8];
xl = xline(ax, 2.8,'--','2.8 mrad', 'LineWidth', 2.5, 'Color', 'white');
xl.FontSize = 16;
% xlim = 0.1:5;
pbaspect(ax,[1 1 1])
shading interp
colormap jet
view(ax,[0 90]);
title(ax, '');
colorbar(ax)
h1 = colorbar(ax);
set(get(h1,'label'),'string','( N_{good} - N_{bad} ) / N_{total}');
xlabel(ax, 'aperture radius (mrad)')
ylabel(ax, 'E_{CE} (keV)')
ax.FontSize = 20;
%% Figure 8. CIRCULAR aperture, compare Direct Simulation to FastFit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SECS. 1-3 and SEC. 5 in comptonfastfit.m
%
% NOTE: Running SEC. 6 will overwrite some variables defined in SEC. 5 and
% vice versa.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ~exist('filesCircular', 'var')
filesCircular = dir('circular_aperture_check/*.csv');
circularData{length(filesCircular)} = [];
for i=1:length(filesCircular)
circularData{i} = loadenergies(append('circular_aperture_check/',filesCircular(i).name));
end
end
dataAperture{length(filesCircular)} = [];
goodIndices = dataAperture;
dataIntegrated = dataAperture;
dataGood = dataAperture;
E_good_DATA = zeros(length(filesCircular),1);
E_bad_DATA = E_good_DATA;
for i = 1:length(filesCircular)
dataAperture{i} = squeeze(circlePixels(:,:,28)) .* circularData{i};
dataAperture{i}(:,:,:,1) = circularData{i}(:,:,:,1);
goodIndices{i} = (squeeze(circularData{i}(1,1,:,1)) < E_max) & (squeeze(circularData{i}(1,1,:,1)) > E_min);
dataIntegrated{i} = squeeze(sum(dataAperture{i}(:,:,:,2), [1,2]));
dataGood{i} = zeros(size(circularData{i}(1,1,:,1),3),1);
dataGood{i}(goodIndices{i}) = squeeze(sum(dataAperture{i}(:,:,goodIndices{i},2), [1,2]));
E_good_DATA(i) = trapz(squeeze(circularData{i}(1,1,:,1)), dataGood{i});
E_bad_DATA(i) = trapz(squeeze(circularData{i}(1,1,:,1)), dataIntegrated{i} - dataGood{i});
end
metric = (E_good - E_bad) ./ (E_good + E_bad);
metricDATA = (E_good_DATA - E_bad_DATA) ./ (E_good_DATA + E_bad_DATA);
% Minimum found at metric(19,28) which corresponds to 73.6 keV and 2.8 mrad
% aperture.
f5 = figure;
ax = axes('Parent',f5);
% We want to plot 73.0 keV to 74.2 keV
ySTART = 72.8;
yEND = 74.4;
range = int32(((ySTART - eSTART) / deltaE ) + 1 : ...
((yEND - eSTART) / deltaE ) + 1);
ySTART_DATA = 73.0;
yEND_DATA = 74.2;
plot(ax, ySTART:deltaE:yEND, metric(range,28), ...
'LineWidth',1.5,'Color','red')
hold on
plot(ax, ySTART_DATA:deltaE*2:yEND_DATA, metricDATA, ...
'LineStyle','None','Marker','*', 'MarkerEdgeColor','blue',...
'MarkerSize', 12, 'LineWidth', 1.5)
xlabel(ax, 'E_{CE} (keV)')
ylabel(ax, '( N_{good} - N_{bad} ) / N_{total}')
legend(ax,'FastFit','LCS Code','Location','northwest')
ax.FontSize = 16;
xlim(ax,[ySTART yEND]);
ylim(ax,[0.4, 1.0]);
pbaspect(ax,[1 1 1]);
%% Figure 9. ANNULUS: Find viable aperture radii and associated flux
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Requires:
% SECS. 1-3 and SEC. 6 in comptonfastfit.m
%
% NOTE: Running SEC. 6 will overwrite some variables defined in SEC. 5 and
% vice versa.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
maxAperture = zeros(pp,2);
% Identify apertures that contain metric value over 0.8
metric = (E_good - E_bad) ./ (E_good + E_bad);
flux = (E_good + E_bad);
viable = find(metric > 0.8);
[a, b, c] = ind2sub(size(metric),viable);
viableIndices = zeros(length(viable),3);
for i = 1:size(viable)
viableIndices(i,:) = [a(i),b(i),c(i)];
end
viableArray = metric > 0.8;
fluxCut = flux .* viableArray;
maxFlux = zeros(size(steps));
maxIndexLinear = zeros(size(steps));
apertures = zeros(size(steps,1),2);
for test = steps(1):steps(end)
[maxFlux(test),maxIndexLinear(test)] = max(fluxCut(test,:,:),[],'all','linear');
[~,t2,t3] = ind2sub(size(flux(1,:,:)),maxIndexLinear(test));
apertures(test,:) = [t2-1,t3-1];
end
f = figure;
ax = axes('Parent',f);
x = eSTART:deltaE:eEND-deltaE;
ax.FontSize = 20;
yyaxis(ax,'right');
xlabel(ax, 'E_{CE}')
plot(ax, x(3:17), apertures(3:17,1).'./10, 'LineWidth',2);
hold on;
plot(ax, x(3:17), apertures(3:17,2).'./10, 'LineWidth',2);
patch([x(3:17) fliplr(x(3:17))], [apertures(3:17,1).'./10 fliplr(apertures(3:17,2).'./10)],[0.9290 0.6940 0.1250],'FaceAlpha',0.5)
ylabel(ax, 'aperture (mrad)')
yyaxis(ax,'left');
plot(ax, x(3:17), maxFlux(3:17), 'LineWidth',2);
ylabel(ax, 'Total X-ray flux (arb. units)')
hold off
pbaspect(ax,[1 1 1])
xlim(ax,[70 80]);
xl1 = xline(ax, 78,'-','no valid apertures', 'LineWidth', 2.5, 'Color', 'black', 'FontSize', 14);
xl2 = xline(ax, 71,'-','no valid apertures', 'LineWidth', 2.5, 'Color', 'black', 'FontSize', 14, 'LabelHorizontalAlignment', 'left');