-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpdf_MF_unscented_transform.m
71 lines (64 loc) · 2.29 KB
/
pdf_MF_unscented_transform.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
function [R W0 W theta sigma_min sigma]=pdf_MF_unscented_transform(F,sigma)
%pdf_MF_unscented_transform: unscented transform for the matrix Fisher
%distribution on SO(3)
% [R W0 W theta sigma_min sigma]=pdf_MF_unscented_transform(F,sigma) performs the
% unscented transform for the matrix Fisher distribution on SO(3) with
% the 3x3 matrix parameter F with a scalar sigma satisfying the
% following inequality,
%
% sigma_min < sigma < 1,
%
% where sigma_min = =max([(2*s(1)+s(2)-s(3)-1)/(2*s(1)+s(2)-s(3)+1),...
% (s(1)-s(3))/(s(1)+s(2))]), and s is the proper sinagular value of F.
%
% [R W0 W]=pdf_MF_unscented_transform(F) is equal to
% [R W0 W]=pdf_MF_unscented_transform(F,(1+sigma_min)/2), which satisfies
% the above inqualiy for sigma by definition.
%
% The function returns
%
% R (3x3x7) - sigma points ordered as R0, R1+, R1-, R2+, R2-, R3+, R3-
% W0 (1x1) - weighting for R0
% W (3x1) - weighting for R1+-, R2+-, R3+-
% theta (3x1) - (optional) rotation angles for R1+-, R2+-, R3+-
% sigma_min (1x1) - (optional) lower bound of sigma
% sigma (1x1) - (optional) sigma
%
% so that the weighted sum of the sigma points is equal to the first
% moment of the matrix Fisher distribution.
%
% See also PDF_MF_INV_UNSCENTED_TRANSFORM.
%
% See T. Lee, "Bayesian Attitude Estimation with the Matrix Fisher
% Distribution on SO(3)", 2017, http://arxiv.org/abs/1710.03746
[U S V]=psvd(F);
M=U*V';
s=diag(S);;
[M1 c_bar]=pdf_MF_moment(s);
sigma_min=max([(2*s(1)+s(2)-s(3)-1)/(2*s(1)+s(2)-s(3)+1),...
(s(1)-s(3))/(s(1)+s(2))]);
if nargin < 2
sigma=(sigma_min+1)/2;
else
assert(and(sigma<1,sigma_min<sigma),...
['ERROR:the inequality for sigma is not satisfied. ' num2str(sigma_min,4) '<sigma<1, but sigma=' num2str(sigma,4)]);
end
E=eye(3);
R=zeros(3,3,7);
W=zeros(3,1);
R(:,:,1)=M;
for i=1:3
index=circshift([1 2 3],[0 4-i]);
j=index(2);
k=index(3);
if s(j)+s(k) >= 1
theta(i)=acos(sigma+(1-sigma)*(log(c_bar)+sum(s)-s(i))/(s(j)+s(k)));
else
theta(i)=acos((sigma+(1-sigma)*(log(c_bar)+sum(s)-s(i))+1/2)*(s(j)+s(k))-1/2);
end
W(i)=1/4/(1-cos(theta(i)))*(M1(i)-M1(j)-M1(k)+1);
R(:,:,2*i)=U*expm(theta(i)*hat(E(:,i)))*V';
R(:,:,2*i+1)=U*expm(-theta(i)*hat(E(:,i)))*V';
end
W0=1-2*sum(W);
end