-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompact.go
249 lines (191 loc) · 4.77 KB
/
compact.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
package comver
import (
"slices"
)
// Compact returns a new [Constrainter] that is logically equivalent to the input [Or].
// The returned [Constrainter] may or may be not be an [Or] instance.
// When it is, Compact tries to return the shortest [Or] possible.
func Compact(o Or) Constrainter { //nolint:cyclop,ireturn
if len(o) == 0 {
return Or{}
}
if len(o) == 1 {
return o[0]
}
if slices.ContainsFunc(o, matchAll) {
return NewMatchAll()
}
o = slices.Clone(o)
ceiling, ceilingOk := maxFloorlessCeiling(o...)
floor, floorOk := minCeilinglessFloor(o...)
// short circuit if we have a match all
if ceilingOk && floorOk && disjunctivelyCombineToMatchAll(ceiling, floor) {
return NewMatchAll()
}
o = slices.DeleteFunc(o, func(c CeilingFloorConstrainter) bool {
return c.ceiling().matchAll() || c.floor().matchAll() ||
(ceilingOk && ceiling.compare(c.ceiling()) >= 0) ||
(floorOk && floor.compare(c.floor()) <= 0)
})
// important to sort before compacting
slices.SortFunc(o, compare)
o = slices.CompactFunc(o, func(a, b CeilingFloorConstrainter) bool {
return compare(a, b) == 0
})
r := compactMultiple(o)
if floorOk {
r = append(r, floor)
}
if ceilingOk {
r = append(r, ceiling)
}
if len(r) == 1 {
return r[0]
}
slices.SortFunc(r, compare)
return slices.Clip(r)
}
func matchAll(c CeilingFloorConstrainter) bool {
return c.floor().matchAll() && c.ceiling().matchAll()
}
func minCeilinglessFloor(cs ...CeilingFloorConstrainter) (Endless, bool) {
cs = slices.Clone(cs)
o := slices.Clone(cs)
cs = slices.DeleteFunc(cs, func(c CeilingFloorConstrainter) bool {
return !c.ceiling().matchAll()
})
if len(cs) == 0 {
var nilE Endless
return nilE, false
}
m := slices.MinFunc(cs, func(a, b CeilingFloorConstrainter) int {
return a.floor().compare(b.floor())
}).floor()
o = slices.DeleteFunc(o, func(c CeilingFloorConstrainter) bool {
return c.ceiling().matchAll() ||
c.floor().matchAll()
})
for i := range o {
if o[i].floor().compare(m) < 0 {
if o[i].Check(*m.version) || disjunctivelyCombineToMatchAll(o[i].ceiling(), m) {
m = o[i].floor()
}
continue
}
if m.versionCompare(o[i].floor().version) == 0 {
if o[i].floor().inclusive() {
m = o[i].floor()
}
continue
}
}
return m.floor(), true
}
func maxFloorlessCeiling(cs ...CeilingFloorConstrainter) (Endless, bool) {
cs = slices.Clone(cs)
o := slices.Clone(cs)
cs = slices.DeleteFunc(cs, func(c CeilingFloorConstrainter) bool {
return !c.floor().matchAll()
})
if len(cs) == 0 {
var nilE Endless
return nilE, false
}
m := slices.MaxFunc(cs, func(a, b CeilingFloorConstrainter) int {
return a.ceiling().compare(b.ceiling())
}).ceiling()
o = slices.DeleteFunc(o, func(c CeilingFloorConstrainter) bool {
return c.ceiling().matchAll() || c.floor().matchAll()
})
for i := range o {
if o[i].ceiling().compare(m) > 0 {
if o[i].Check(*m.version) || disjunctivelyCombineToMatchAll(o[i].floor(), m) {
m = o[i].ceiling()
}
continue
}
if m.versionCompare(o[i].ceiling().version) == 0 {
if o[i].ceiling().inclusive() {
m = o[i].ceiling()
}
continue
}
}
return m, true
}
func disjunctivelyCombineToMatchAll(e, f Endless) bool {
if e.ceilingBounded() && f.ceilingBounded() {
return false
}
if e.floorBounded() && f.floorBounded() {
return false
}
cmp := e.compare(f)
if cmp == 0 {
return false
}
if cmp > 0 {
e, f = f, e
}
if e.versionCompare(f.version) == 0 {
return e.inclusive() || f.inclusive()
}
return !e.ceilingBounded() && !f.floorBounded()
}
func compare(a, b CeilingFloorConstrainter) int {
cmp := a.floor().compare(b.floor())
if cmp != 0 {
return cmp
}
return a.ceiling().compare(b.ceiling())
}
func compactTwo(a, b CeilingFloorConstrainter) (CeilingFloorConstrainter, bool) { //nolint:ireturn
cmp := compare(a, b)
if cmp == 0 {
return a, true
}
if cmp > 0 {
a, b = b, a
}
if !overlap(a, b) && !continuous(a, b) {
return a, false
}
if a.ceiling().compare(b.ceiling()) > 0 {
return a, true
}
return interval{
upper: b.ceiling(),
lower: a.floor(),
}, true
}
func compactMultiple(o []CeilingFloorConstrainter) Or {
r := make(Or, 0, len(o)+2) //nolint:mnd
if len(o) != 0 {
p := o[0]
for i := range o {
q, ok := compactTwo(p, o[i])
if ok {
p = q
} else {
r = append(r, p)
p = o[i]
}
// always append the last r
if i == len(o)-1 {
r = append(r, p)
}
}
}
return r
}
func overlap(a, b CeilingFloorConstrainter) bool {
return a.Check(*b.floor().version) ||
b.Check(*a.floor().version)
}
func continuous(a, b CeilingFloorConstrainter) bool {
f := func(a, b CeilingFloorConstrainter) bool {
return (a.ceiling().inclusive() || b.floor().inclusive()) &&
a.ceiling().version.Compare(*b.floor().version) == 0
}
return f(a, b) || f(b, a)
}