-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathPSOL_inference.py
220 lines (192 loc) · 7.24 KB
/
PSOL_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import sys
import json
import numpy as np
import torch
import torchvision.transforms as transforms
from torch.backends import cudnn
import torch.nn as nn
import torchvision
from PIL import Image
from utils.func import *
from utils.vis import *
from utils.IoU import *
from models.models import choose_locmodel,choose_clsmodel
from utils.augment import *
import argparse
parser = argparse.ArgumentParser(description='Parameters for PSOL evaluation')
parser.add_argument('--loc-model', metavar='locarg', type=str, default='vgg16',dest='locmodel')
parser.add_argument('--cls-model', metavar='clsarg', type=str, default='vgg16',dest='clsmodel')
parser.add_argument('--input_size',default=256,dest='input_size')
parser.add_argument('--crop_size',default=224,dest='crop_size')
parser.add_argument('--ten-crop', help='tencrop', action='store_true',dest='tencrop')
parser.add_argument('--gpu',help='which gpu to use',default='4',dest='gpu')
parser.add_argument('data',metavar='DIR',help='path to imagenet dataset')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
os.environ['OMP_NUM_THREADS'] = "4"
os.environ['MKL_NUM_THREADS'] = "4"
cudnn.benchmark = True
TEN_CROP = args.tencrop
normalize = transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))
transform = transforms.Compose([
transforms.Resize((args.input_size,args.input_size)),
transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
normalize
])
cls_transform = transforms.Compose([
transforms.Resize((args.input_size,args.input_size)),
transforms.CenterCrop(args.crop_size),
transforms.ToTensor(),
normalize
])
ten_crop_aug = transforms.Compose([
transforms.Resize((args.input_size,args.input_size)),
transforms.TenCrop(args.crop_size),
transforms.Lambda(lambda crops: torch.stack([transforms.ToTensor()(crop) for crop in crops])),
transforms.Lambda(lambda crops: torch.stack([normalize(crop) for crop in crops])),
])
locname = args.locmodel
model = choose_locmodel(locname, True)
print(model)
model = model.to(0)
model.eval()
clsname = args.clsmodel
cls_model = choose_clsmodel(clsname)
cls_model = cls_model.to(0)
cls_model.eval()
root = args.data
val_imagedir = os.path.join(root, 'val')
anno_root = os.path.join(root,'bbox')
val_annodir = os.path.join(anno_root, 'myval')
classes = os.listdir(val_imagedir)
classes.sort()
temp_softmax = nn.Softmax()
#print(classes[0])
class_to_idx = {classes[i]:i for i in range(len(classes))}
result = {}
accs = []
accs_top5 = []
loc_accs = []
cls_accs = []
final_cls = []
final_loc = []
final_clsloc = []
final_clsloctop5 = []
final_ind = []
for k in range(1000):
cls = classes[k]
total = 0
IoUSet = []
IoUSetTop5 = []
LocSet = []
ClsSet = []
files = os.listdir(os.path.join(val_imagedir, cls))
files.sort()
for (i, name) in enumerate(files):
# raw_img = cv2.imread(os.path.join(imagedir, cls, name))
now_index = int(name.split('_')[-1].split('.')[0])
final_ind.append(now_index-1)
xmlfile = os.path.join(val_annodir, cls, name.split('.')[0] + '.xml')
gt_boxes = get_cls_gt_boxes(xmlfile, cls)
if len(gt_boxes)==0:
continue
raw_img = Image.open(os.path.join(val_imagedir, cls, name)).convert('RGB')
w, h = raw_img.size
with torch.no_grad():
img = transform(raw_img)
img = torch.unsqueeze(img, 0)
img = img.to(0)
reg_outputs = model(img)
bbox = to_data(reg_outputs)
bbox = torch.squeeze(bbox)
bbox = bbox.numpy()
if TEN_CROP:
img = ten_crop_aug(raw_img)
img = img.to(0)
vgg16_out = cls_model(img)
vgg16_out = temp_softmax(vgg16_out)
vgg16_out = torch.mean(vgg16_out,dim=0,keepdim=True)
vgg16_out = torch.topk(vgg16_out, 5, 1)[1]
else:
img = cls_transform(raw_img)
img = torch.unsqueeze(img, 0)
img = img.to(0)
vgg16_out = cls_model(img)
vgg16_out = torch.topk(vgg16_out, 5, 1)[1]
vgg16_out = to_data(vgg16_out)
vgg16_out = torch.squeeze(vgg16_out)
vgg16_out = vgg16_out.numpy()
out = vgg16_out
ClsSet.append(out[0]==class_to_idx[cls])
#handle resize and centercrop for gt_boxes
for j in range(len(gt_boxes)):
temp_list = list(gt_boxes[j])
raw_img_i, gt_bbox_i = ResizedBBoxCrop((256,256))(raw_img, temp_list)
raw_img_i, gt_bbox_i = CenterBBoxCrop((224))(raw_img_i, gt_bbox_i)
w, h = raw_img_i.size
gt_bbox_i[0] = gt_bbox_i[0] * w
gt_bbox_i[2] = gt_bbox_i[2] * w
gt_bbox_i[1] = gt_bbox_i[1] * h
gt_bbox_i[3] = gt_bbox_i[3] * h
gt_boxes[j] = gt_bbox_i
w, h = raw_img_i.size
bbox[0] = bbox[0] * w
bbox[2] = bbox[2] * w + bbox[0]
bbox[1] = bbox[1] * h
bbox[3] = bbox[3] * h + bbox[1]
max_iou = -1
for gt_bbox in gt_boxes:
iou = IoU(bbox, gt_bbox)
if iou > max_iou:
max_iou = iou
LocSet.append(max_iou)
temp_loc_iou = max_iou
if out[0] != class_to_idx[cls]:
max_iou = 0
# print(max_iou)
result[os.path.join(cls, name)] = max_iou
IoUSet.append(max_iou)
#cal top5 IoU
max_iou = 0
for i in range(5):
if out[i] == class_to_idx[cls]:
max_iou = temp_loc_iou
IoUSetTop5.append(max_iou)
#visualization code
'''
opencv_image = deepcopy(np.array(raw_img_i))
opencv_image = opencv_image[:, :, ::-1].copy()
for gt_bbox in gt_boxes:
cv2.rectangle(opencv_image, (int(gt_bbox[0]), int(gt_bbox[1])),
(int(gt_bbox[2]), int(gt_bbox[3])), (0, 255, 0), 4)
cv2.rectangle(opencv_image, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
(0, 255, 255), 4)
cv2.imwrite(os.path.join(savepath, str(name) + '.jpg'), np.asarray(opencv_image))
'''
cls_loc_acc = np.sum(np.array(IoUSet) > 0.5) / len(IoUSet)
final_clsloc.extend(IoUSet)
cls_loc_acc_top5 = np.sum(np.array(IoUSetTop5) > 0.5) / len(IoUSetTop5)
final_clsloctop5.extend(IoUSetTop5)
loc_acc = np.sum(np.array(LocSet) > 0.5) / len(LocSet)
final_loc.extend(LocSet)
cls_acc = np.sum(np.array(ClsSet))/len(ClsSet)
final_cls.extend(ClsSet)
print('{} cls-loc acc is {}, loc acc is {}, vgg16 cls acc is {}'.format(cls, cls_loc_acc, loc_acc, cls_acc))
with open('inference_CorLoc.txt', 'a+') as corloc_f:
corloc_f.write('{} {}\n'.format(cls, loc_acc))
accs.append(cls_loc_acc)
accs_top5.append(cls_loc_acc_top5)
loc_accs.append(loc_acc)
cls_accs.append(cls_acc)
if (k+1) %100==0:
print(k)
print(accs)
print('Cls-Loc acc {}'.format(np.mean(accs)))
print('Cls-Loc acc Top 5 {}'.format(np.mean(accs_top5)))
print('GT Loc acc {}'.format(np.mean(loc_accs)))
print('{} cls acc {}'.format(clsname, np.mean(cls_accs)))
with open('Corloc_result.txt', 'w') as f:
for k in sorted(result.keys()):
f.write('{} {}\n'.format(k, str(result[k])))