forked from zepen/predict_Lottery_ticket
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_train_model.py
217 lines (198 loc) · 9.1 KB
/
run_train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# -*- coding:utf-8 -*-
"""
Author: BigCat
"""
import time
import json
import argparse
import numpy as np
import pandas as pd
from config import *
from modeling import LstmWithCRFModel, SignalLstmModel, tf
from loguru import logger
parser = argparse.ArgumentParser()
parser.add_argument('--name', default="ssq", type=str, help="选择训练数据: 双色球/大乐透")
args = parser.parse_args()
pred_key = {}
def create_train_data(name, windows):
""" 创建训练数据
:param name: 玩法,双色球/大乐透
:param windows: 训练窗口
:return:
"""
data = pd.read_csv("{}{}".format(name_path[name]["path"], data_file_name))
if not len(data):
raise logger.error(" 请执行 get_data.py 进行数据下载!")
else:
# 创建模型文件夹
if not os.path.exists(model_path):
os.mkdir(model_path)
logger.info("训练数据已加载! ")
data = data.iloc[:, 2:].values
logger.info("训练集数据维度: {}".format(data.shape))
x_data, y_data = [], []
for i in range(len(data) - windows - 1):
sub_data = data[i:(i+windows+1), :]
x_data.append(sub_data[1:])
y_data.append(sub_data[0])
cut_num = 6 if name == "ssq" else 5
return {
"red": {
"x_data": np.array(x_data)[:, :, :cut_num], "y_data": np.array(y_data)[:, :cut_num]
},
"blue": {
"x_data": np.array(x_data)[:, :, cut_num:], "y_data": np.array(y_data)[:, cut_num:]
}
}
def train_red_ball_model(name, x_data, y_data):
""" 红球模型训练
:param name: 玩法
:param x_data: 训练样本
:param y_data: 训练标签
:return:
"""
m_args = model_args[name]
x_data = x_data - 1
y_data = y_data - 1
data_len = x_data.shape[0]
logger.info("特征数据维度: {}".format(x_data.shape))
logger.info("标签数据维度: {}".format(y_data.shape))
with tf.compat.v1.Session() as sess:
red_ball_model = LstmWithCRFModel(
batch_size=m_args["model_args"]["batch_size"],
n_class=m_args["model_args"]["red_n_class"],
ball_num=m_args["model_args"]["sequence_len"] if name == "ssq" else m_args["model_args"]["red_sequence_len"],
w_size=m_args["model_args"]["windows_size"],
embedding_size=m_args["model_args"]["red_embedding_size"],
words_size=m_args["model_args"]["red_n_class"],
hidden_size=m_args["model_args"]["red_hidden_size"],
layer_size=m_args["model_args"]["red_layer_size"]
)
train_step = tf.compat.v1.train.AdamOptimizer(
learning_rate=m_args["train_args"]["red_learning_rate"],
beta1=m_args["train_args"]["red_beta1"],
beta2=m_args["train_args"]["red_beta2"],
epsilon=m_args["train_args"]["red_epsilon"],
use_locking=False,
name='Adam'
).minimize(red_ball_model.loss)
sess.run(tf.compat.v1.global_variables_initializer())
for epoch in range(m_args["model_args"]["red_epochs"]):
for i in range(data_len):
_, loss_, pred = sess.run([
train_step, red_ball_model.loss, red_ball_model.pred_sequence
], feed_dict={
"inputs:0": x_data[i:(i+1), :, :],
"tag_indices:0": y_data[i:(i+1), :],
"sequence_length:0": np.array([m_args["model_args"]["sequence_len"]]*1) \
if name == "ssq" else np.array([m_args["model_args"]["red_sequence_len"]]*1)
})
if i % 100 == 0:
logger.info("epoch: {}, loss: {}, tag: {}, pred: {}".format(
epoch, loss_, y_data[i:(i+1), :][0] + 1, pred[0] + 1)
)
pred_key[ball_name[0][0]] = red_ball_model.pred_sequence.name
if not os.path.exists(m_args["path"]["red"]):
os.makedirs(m_args["path"]["red"])
saver = tf.compat.v1.train.Saver()
saver.save(sess, "{}{}.{}".format(m_args["path"]["red"], red_ball_model_name, extension))
def train_blue_ball_model(name, x_data, y_data):
""" 蓝球模型训练
:param name: 玩法
:param x_data: 训练样本
:param y_data: 训练标签
:return:
"""
m_args = model_args[name]
x_data = x_data - 1
data_len = x_data.shape[0]
if name == "ssq":
x_data = x_data.reshape(len(x_data), m_args["model_args"]["windows_size"])
y_data = tf.keras.utils.to_categorical(y_data - 1, num_classes=m_args["model_args"]["blue_n_class"])
logger.info("特征数据维度: {}".format(x_data.shape))
logger.info("标签数据维度: {}".format(y_data.shape))
with tf.compat.v1.Session() as sess:
if name == "ssq":
blue_ball_model = SignalLstmModel(
batch_size=m_args["model_args"]["batch_size"],
n_class=m_args["model_args"]["blue_n_class"],
w_size=m_args["model_args"]["windows_size"],
embedding_size=m_args["model_args"]["blue_embedding_size"],
hidden_size=m_args["model_args"]["blue_hidden_size"],
outputs_size=m_args["model_args"]["blue_n_class"],
layer_size=m_args["model_args"]["blue_layer_size"]
)
else:
blue_ball_model = LstmWithCRFModel(
batch_size=m_args["model_args"]["batch_size"],
n_class=m_args["model_args"]["blue_n_class"],
ball_num=m_args["model_args"]["blue_sequence_len"],
w_size=m_args["model_args"]["windows_size"],
embedding_size=m_args["model_args"]["blue_embedding_size"],
words_size=m_args["model_args"]["blue_n_class"],
hidden_size=m_args["model_args"]["blue_hidden_size"],
layer_size=m_args["model_args"]["blue_layer_size"]
)
train_step = tf.compat.v1.train.AdamOptimizer(
learning_rate=m_args["train_args"]["blue_learning_rate"],
beta1=m_args["train_args"]["blue_beta1"],
beta2=m_args["train_args"]["blue_beta2"],
epsilon=m_args["train_args"]["blue_epsilon"],
use_locking=False,
name='Adam'
).minimize(blue_ball_model.loss)
sess.run(tf.compat.v1.global_variables_initializer())
for epoch in range(m_args["model_args"]["blue_epochs"]):
for i in range(data_len):
if name == "ssq":
_, loss_, pred = sess.run([
train_step, blue_ball_model.loss, blue_ball_model.pred_label
], feed_dict={
"inputs:0": x_data[i:(i+1), :],
"tag_indices:0": y_data[i:(i+1), :],
})
if i % 100 == 0:
logger.info("epoch: {}, loss: {}, tag: {}, pred: {}".format(
epoch, loss_, np.argmax(y_data[i:(i+1), :][0]) + 1, pred[0] + 1)
)
else:
_, loss_, pred = sess.run([
train_step, blue_ball_model.loss, blue_ball_model.pred_sequence
], feed_dict={
"inputs:0": x_data[i:(i + 1), :, :],
"tag_indices:0": y_data[i:(i + 1), :],
"sequence_length:0": np.array([m_args["model_args"]["blue_sequence_len"]] * 1)
})
if i % 100 == 0:
logger.info("epoch: {}, loss: {}, tag: {}, pred: {}".format(
epoch, loss_, y_data[i:(i + 1), :][0] + 1, pred[0] + 1)
)
pred_key[ball_name[1][0]] = blue_ball_model.pred_label.name if name == "ssq" else blue_ball_model.pred_sequence.name
if not os.path.exists(m_args["path"]["blue"]):
os.mkdir(m_args["path"]["blue"])
saver = tf.compat.v1.train.Saver()
saver.save(sess, "{}{}.{}".format(m_args["path"]["blue"], blue_ball_model_name, extension))
def run(name):
""" 执行训练
:param name: 玩法
:return:
"""
logger.info("正在创建【{}】数据集...".format(name_path[name]["name"]))
train_data = create_train_data(args.name, model_args[name]["model_args"]["windows_size"])
logger.info("开始训练【{}】红球模型...".format(name_path[name]["name"]))
start_time = time.time()
train_red_ball_model(name, x_data=train_data["red"]["x_data"], y_data=train_data["red"]["y_data"])
logger.info("训练耗时: {}".format(time.time() - start_time))
tf.compat.v1.reset_default_graph() # 重置网络图
logger.info("开始训练【{}】蓝球模型...".format(name_path[name]["name"]))
start_time = time.time()
train_blue_ball_model(name, x_data=train_data["blue"]["x_data"], y_data=train_data["blue"]["y_data"])
logger.info("训练耗时: {}".format(time.time() - start_time))
# 保存预测关键结点名
with open("{}/{}/{}".format(model_path, name, pred_key_name), "w") as f:
json.dump(pred_key, f)
if __name__ == '__main__':
if not args.name:
raise Exception("玩法名称不能为空!")
else:
run(args.name)