forked from pytorch/serve
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
346 lines (299 loc) · 12.5 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import logging
import os
import sys
from typing import List, Literal, Optional, Tuple, TypedDict
import torch
current_working_directory = os.getcwd()
sys.path.insert(0, current_working_directory)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
Role = Literal["system", "user", "assistant"]
class Message(TypedDict):
role: Role
content: str
class CompletionPrediction(TypedDict, total=False):
generation: str
tokens: List[str] # not required
logprobs: List[float] # not required
class ChatPrediction(TypedDict, total=False):
generation: Message
tokens: List[str] # not required
logprobs: List[float] # not required
Dialog = List[Message]
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
SPECIAL_TAGS = [B_INST, E_INST, "<<SYS>>", "<</SYS>>"]
UNSAFE_ERROR = "Error: special tags are not allowed as part of the prompt."
def sample_top_p(probs, p):
"""
Perform top-p (nucleus) sampling on a probability distribution.
Args:
probs (torch.Tensor): Probability distribution tensor.
p (float): Probability threshold for top-p sampling.
Returns:
torch.Tensor: Sampled token indices.
Note:
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
"""
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_token = torch.multinomial(probs_sort, num_samples=1)
next_token = torch.gather(probs_idx, -1, next_token)
return next_token
# @torch.inference_mode()
@torch.no_grad()
def generate(
model,
tokenizer,
prompt_tokens: List[List[int]],
max_gen_len: int,
temperature: float = 0.6,
top_p: float = 0.9,
logprobs: bool = False,
echo: bool = False,
) -> Tuple[List[List[int]], Optional[List[List[float]]]]:
"""
Generate text sequences based on provided prompts using the language generation model.
Args:
prompt_tokens (List[List[int]]): List of tokenized prompts, where each prompt is represented as a list of integers.
max_gen_len (int): Maximum length of the generated text sequence.
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
Returns:
Tuple[List[List[int]], Optional[List[List[float]]]]: A tuple containing generated token sequences and, if logprobs is True, corresponding token log probabilities.
Note:
This method uses the provided prompts as a basis for generating text. It employs nucleus sampling to produce text with controlled randomness.
If logprobs is True, token log probabilities are computed for each generated token.
"""
bsz = len(prompt_tokens)
assert bsz <= model.max_batch_size, (bsz, model.max_batch_size)
min_prompt_len = min(len(t) for t in prompt_tokens)
max_prompt_len = max(len(t) for t in prompt_tokens)
assert max_prompt_len <= model.max_seq_len
total_len = min(model.max_seq_len, max_gen_len + max_prompt_len)
pad_id = tokenizer.eos_id
tokens = torch.full((bsz, total_len), pad_id, dtype=torch.long, device="cuda")
for k, t in enumerate(prompt_tokens):
tokens[k, max_prompt_len - len(t) : max_prompt_len] = torch.tensor(
t, dtype=torch.long, device="cuda"
)
if logprobs:
token_logprobs = torch.zeros_like(tokens, dtype=torch.float)
padding = torch.tensor(
[max_prompt_len - len(t) for t in prompt_tokens],
dtype=torch.int64,
device="cuda",
)
prev_pos = 0
eos_reached = torch.tensor([False] * bsz, device="cuda")
input_text_mask = tokens != pad_id
if min_prompt_len == total_len:
logits = model.forward(tokens, prev_pos, padding=padding)
token_logprobs = -F.cross_entropy(
input=logits.transpose(1, 2),
target=tokens,
reduction="none",
ignore_index=pad_id,
)
for cur_pos in range(max_prompt_len, total_len):
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos, padding=padding)
if temperature > 0:
probs = torch.softmax(logits[:, -1] / temperature, dim=-1)
next_token = sample_top_p(probs, top_p)
else:
next_token = torch.argmax(logits[:, -1], dim=-1)
next_token = next_token.reshape(-1)
tokens[:, cur_pos] = next_token
if logprobs:
token_logprobs[:, prev_pos + 1 : cur_pos + 1] = -F.cross_entropy(
input=logits.transpose(1, 2),
target=tokens[:, prev_pos + 1 : cur_pos + 1],
reduction="none",
ignore_index=pad_id,
)
eos_reached |= (~input_text_mask[:, cur_pos]) & (next_token == tokenizer.eos_id)
prev_pos = cur_pos
if all(eos_reached):
break
if logprobs:
token_logprobs = token_logprobs.tolist()
out_tokens, out_logprobs = [], []
for i, toks in enumerate(tokens.tolist()):
# cut to max gen len
start = 0 if echo else padding[i] + len(prompt_tokens[i])
toks = toks[start : padding[i] + len(prompt_tokens[i]) + max_gen_len]
probs = None
if logprobs:
probs = token_logprobs[i][
start : padding[i] + len(prompt_tokens[i]) + max_gen_len
]
# cut to eos tok if any
if tokenizer.eos_id in toks:
eos_idx = toks.index(tokenizer.eos_id)
toks = toks[:eos_idx]
probs = probs[:eos_idx] if logprobs else None
out_tokens.append(toks)
out_logprobs.append(probs)
return (out_tokens, out_logprobs if logprobs else None)
def text_completion(
model,
tokenizer,
prompts: List[str],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
logprobs: bool = False,
echo: bool = False,
) -> List[CompletionPrediction]:
"""
Perform text completion for a list of prompts using the language generation model.
Args:
prompts (List[str]): List of text prompts for completion.
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
max_gen_len (Optional[int], optional): Maximum length of the generated completion sequence.
If not provided, it's set to the model's maximum sequence length minus 1.
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
Returns:
List[CompletionPrediction]: List of completion predictions, each containing the generated text completion.
Note:
This method generates text completions for the provided prompts, employing nucleus sampling to introduce controlled randomness.
If logprobs is True, token log probabilities are computed for each generated token.
"""
if max_gen_len is None:
max_gen_len = model.max_seq_len - 1
prompt_tokens = [tokenizer.encode(x, bos=True, eos=False) for x in prompts]
generation_tokens, generation_logprobs = generate(
model,
tokenizer,
prompt_tokens=prompt_tokens,
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
echo=echo,
)
if logprobs:
return [
{
"generation": tokenizer.decode(t),
"tokens": [tokenizer.decode(x) for x in t],
"logprobs": logprobs_i,
}
for t, logprobs_i in zip(generation_tokens, generation_logprobs)
]
return [{"generation": tokenizer.decode(t)} for t in generation_tokens]
def chat_completion(
model,
tokenizer,
dialogs: List[Dialog],
temperature: float = 0.6,
top_p: float = 0.9,
max_gen_len: Optional[int] = None,
logprobs: bool = False,
) -> List[ChatPrediction]:
"""
Generate assistant responses for a list of conversational dialogs using the language generation model.
Args:
dialogs (List[Dialog]): List of conversational dialogs, where each dialog is a list of messages.
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
max_gen_len (Optional[int], optional): Maximum length of the generated response sequence.
If not provided, it's set to the model's maximum sequence length minus 1.
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False.
Returns:
List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response.
Raises:
AssertionError: If the last message in a dialog is not from the user.
AssertionError: If the dialog roles are not in the required 'user', 'assistant', and optional 'system' order.
Note:
This method generates assistant responses for the provided conversational dialogs.
It employs nucleus sampling to introduce controlled randomness in text generation.
If logprobs is True, token log probabilities are computed for each generated token.
"""
if max_gen_len is None:
max_gen_len = model.max_seq_len - 1
prompt_tokens = []
unsafe_requests = []
for dialog in dialogs:
unsafe_requests.append(
any([tag in msg["content"] for tag in SPECIAL_TAGS for msg in dialog])
)
if dialog[0]["role"] == "system":
dialog = [
{
"role": dialog[1]["role"],
"content": B_SYS
+ dialog[0]["content"]
+ E_SYS
+ dialog[1]["content"],
}
] + dialog[2:]
assert all([msg["role"] == "user" for msg in dialog[::2]]) and all(
[msg["role"] == "assistant" for msg in dialog[1::2]]
), (
"model only supports 'system', 'user' and 'assistant' roles, "
"starting with 'system', then 'user' and alternating (u/a/u/a/u...)"
)
dialog_tokens: List[int] = sum(
[
tokenizer.encode(
f"{B_INST} {(prompt['content']).strip()} {E_INST} {(answer['content']).strip()} ",
bos=True,
eos=True,
)
for prompt, answer in zip(
dialog[::2],
dialog[1::2],
)
],
[],
)
assert (
dialog[-1]["role"] == "user"
), f"Last message must be from user, got {dialog[-1]['role']}"
dialog_tokens += tokenizer.encode(
f"{B_INST} {(dialog[-1]['content']).strip()} {E_INST}",
bos=True,
eos=False,
)
prompt_tokens.append(dialog_tokens)
generation_tokens, generation_logprobs = generate(
model,
tokenizer,
prompt_tokens=prompt_tokens,
max_gen_len=max_gen_len,
temperature=temperature,
top_p=top_p,
logprobs=logprobs,
)
if logprobs:
return [
{
"generation": {
"role": "assistant",
"content": tokenizer.decode(t) if not unsafe else UNSAFE_ERROR,
},
"tokens": [tokenizer.decode(x) for x in t],
"logprobs": logprobs_i,
}
for t, logprobs_i, unsafe in zip(
generation_tokens, generation_logprobs, unsafe_requests
)
]
return [
{
"generation": {
"role": "assistant",
"content": tokenizer.decode(t) if not unsafe else UNSAFE_ERROR,
}
}
for t, unsafe in zip(generation_tokens, unsafe_requests)
]