-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfracture.py
162 lines (119 loc) · 5.72 KB
/
fracture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python3
from nutils import cli, types, mesh, function, solver, export, transform, topology
import numpy, numpy.random, typing, treelog, matplotlib.collections
import precice
from mpi4py import MPI
unit = types.unit(m=1, s=1, g=1e-3, N='kg*m/s2', Pa='N/m2')
def main(X:unit['m'], Y:unit['m'], l0:unit['m'], degree:int, du:unit['m']):
'''
Mechanical test case
.. arguments::
X [0.5mm]
Domain size in x direction.
Y [0.04mm]
Domain size in y direction.
l0 [0.015mm]
Charateristic length scale.
degree [1]
Polynomial degree of the approximation.
du [0.01mm]
Applied displacement.
'''
assert degree > 0
# create the mesh
topo, geom = mesh.rectilinear([numpy.linspace(0.001,0.001+X,31), numpy.linspace(0.001,0.001+Y,11)])
# prepare the integration and post processing samples
ipoints = topo.sample('gauss', 2*degree)
bezier = topo.sample('bezier', 2*degree)
# initialize the namespace
ns = function.Namespace()
ns.x = geom
ns.ubasis = topo.basis('th-spline', degree=degree).vector(topo.ndims)
ns.dbasis = topo.basis('th-spline', degree=degree)
ns.Hbasis = ipoints.basis()
ns.u_i = 'ubasis_ni ?solu_n'
ns.d = 'dbasis_n ?sold_n'
ns.H0 = 'Hbasis_n ?solH0_n'
ns.l0 = l0
ns.du = du
# volume coupling fields
ns.Gc = 'dbasis_n ?gcdofs_n'
ns.lmbda = 'dbasis_n ?lmbdadofs_n'
ns.mu = 'dbasis_n ?mudofs_n'
# formulation
ns.strain_ij = '( u_i,j + u_j,i ) / 2'
ns.stress_ij = 'lmbda strain_kk δ_ij + 2 mu strain_ij'
ns.psi = 'stress_ij strain_ij / 2'
ns.H = function.max(ns.psi, ns.H0)
ns.gamma = '( d^2 + l0^2 d_,i d_,i ) / (2 l0)'
# boundary condition for displacement field
sqru = topo.boundary['top'].integral('( u_i n_i - du )^2 d:x' @ ns, degree=degree*2)
sqru += topo.boundary['bottom'].integral('( u_i n_i )^2 d:x' @ ns, degree=degree*2)
sqru += topo.boundary['bottom'].boundary['left'].integral('u_i u_i d:x' @ ns, degree=degree*2)
consu = solver.optimize('solu', sqru, droptol=1e-12)
# initialize the solution vectors
solu = numpy.zeros(ns.ubasis.shape[0])
sold = numpy.zeros(ns.dbasis.shape[0])
solH0 = ipoints.eval(0.)
# preCICE setup
configFileName = "precice-config.xml"
participantName = "BrittleFracture"
solverProcessIndex = 0
solverProcessSize = 1
interface = precice.Interface(participantName, configFileName, solverProcessIndex, solverProcessSize)
# define coupling mesh
meshName = "BrittleFracture-Mesh"
meshID = interface.get_mesh_id(meshName)
couplingsample = topo.sample('gauss', degree=degree*2)
vertices = couplingsample.eval(ns.x)
dataIndices = interface.set_mesh_vertices(meshID, vertices)
lmbda = 121153.8e6 # First Lamé parameter in Pa
mu = 80769.2e6 # Second Lamé parameter in Pa
sqrl = couplingsample.integral((ns.lmbda - lmbda)**2)
lmbdadofs = solver.optimize('lmbdadofs', sqrl, droptol=1e-12)
sqrm = couplingsample.integral((ns.mu - mu)**2)
mudofs = solver.optimize('mudofs', sqrm, droptol=1e-12)
# coupling data
gcID = interface.get_data_id("Gc", meshID)
precice_dt = interface.initialize() # pseudo timestep size handled by preCICE
nstep = 10000 # very high number of steps, end of simulation is steered by preCICE instead
# time loop
with treelog.iter.fraction('step', range(nstep)) as counter:
for istep in counter:
if not interface.is_coupling_ongoing():
break
if interface.is_read_data_available():
gc = interface.read_block_scalar_data(gcID, dataIndices)
gc_function = couplingsample.asfunction(gc)
sqrg = couplingsample.integral((ns.Gc - gc_function)**2)
gcdofs = solver.optimize('gcdofs', sqrg, droptol=1e-12)
############################
# Phase field problem #
############################
resd = ipoints.integral('( Gc / l0 ) ( d dbasis_n + l0^2 d_,i dbasis_n,i ) d:x' @ ns)
resd += ipoints.integral('2 H ( d - 1 ) dbasis_n d:x' @ ns)
sold = solver.solve_linear('sold', resd, arguments={'solu':solu, 'solH0':solH0, 'lmbdadofs':lmbdadofs, 'mudofs':mudofs, 'gcdofs':gcdofs})
############################
# Elasticity problem #
############################
resu = topo.integral('( 1 - d )^2 ubasis_ni,j stress_ij d:x' @ ns, degree=2*degree)
solu = solver.solve_linear('solu', resu, arguments={'sold':sold, 'lmbdadofs':lmbdadofs, 'mudofs':mudofs}, constrain=consu)
# Update zero state and history field
solH0 = ipoints.eval(ns.H, arguments={'solu':solu, 'solH0':solH0, 'lmbdadofs':lmbdadofs, 'mudofs':mudofs})
# do the coupling
precice_dt = interface.advance(precice_dt)
############################
# Output #
############################
# element-averaged history field
transforms = ipoints.transforms[0]
indicator = function.kronecker(1., axis=0, length=len(transforms), pos=function.TransformsIndexWithTail(transforms, function.TRANS).index)
areas, integrals = ipoints.integrate([indicator, indicator * ns.H], arguments={'solu':solu, 'solH0':solH0, 'lmbdadofs':lmbdadofs, 'mudofs':mudofs, 'gcdofs':gcdofs})
H = indicator.dot(integrals/areas)
# evaluate fields
points, dvals, uvals, lvals, mvals, gcvals = bezier.eval(['x_i', 'd', 'u_i', 'lmbda', 'mu', 'Gc'] @ ns, arguments={'solu':solu, 'sold':sold, 'solH0':solH0, 'lmbdadofs':lmbdadofs, 'mudofs':mudofs, 'gcdofs':gcdofs})
Hvals = bezier.eval(H, arguments={'solu':solu, 'solH0':solH0})
with treelog.add(treelog.DataLog()):
export.vtk('Solid_' + str(istep), bezier.tri, points, Gc=gcvals, D=dvals, U=uvals, H=Hvals)
interface.finalize()
cli.run(main)