-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTwitter.py
210 lines (183 loc) · 7.45 KB
/
Twitter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import json
from tweepy.streaming import StreamListener
import tweepy
from tweepy import OAuthHandler
from tweepy import Stream
# predict the sentiment of Tweet, see 'https://textblob.readthedocs.io/en/dev/'
from textblob import TextBlob
from elasticsearch import Elasticsearch, helpers
import datetime
from datetime import datetime
import calendar
import numpy as np
from json import loads, dumps
import csv
import geocoder
import yfinance as yf
from http.client import IncompleteRead
import tweepy as tw
import tkinter as tk
from dotenv import load_dotenv
load_dotenv()
consumer_key = os.environ.get("consumer_key")
consumer_secret = os.environ.get("consumer_secret")
access_token = os.environ.get("access_token")
access_token_secret = os.environ.get("access_token_secret")
# create instance of elasticsearch
es = Elasticsearch()
auth = tweepy.OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
api = tweepy.API(auth)
score = {
"negative": 1,
"neutral": 6,
"positive": 9,
}
# twitter responses
class TweetStreamListener(StreamListener):
def on_data(self, data):
dict_data = json.loads(data)
tweet = TextBlob(dict_data["text"]
) if "text" in dict_data.keys() else None
if tweet:
if tweet.sentiment.polarity < 0:
sentiment = "negative"
elif tweet.sentiment.polarity == 0:
sentiment = "neutral"
else:
sentiment = "positive"
src = geocoder.osm(dict_data["user"]["location"]).latlng
if src == None:
src = [0, 0]
if len(dict_data["entities"]["hashtags"]) > 0:
hashtags = dict_data["entities"]["hashtags"][0]["text"].title()
else:
hashtags = "None"
mapping = {
"mappings": {
"properties": {
"author": {
"type": "keyword"
},
"followers": {
"type": "keyword"
},
"date": {
"type": "date"
},
"message": {
"type": "keyword"
},
"hashtags": {
"type": "keyword"
},
"polarity": {
"type": "keyword"
},
"subjectivity": {
"type": "keyword"
},
"sentiment": {
"type": "keyword"
},
"place": {
"type": "keyword"
},
"location": {
"type": "geo_point"
},
"rating": {
"type": "number"
},
}
}
}
es.indices.create(index='logstash-movie', body=mapping, ignore=400)
print(sentiment, dict_data["text"], dict_data["user"]["location"])
# prev = es.search(index='logstash-movie', size=1, sort='date:desc')
# prev_rating = prev["hits"]["hits"][0]["_source"]["rating"]
# update_rating = (prev_rating + score[sentiment])/2
# print(prev_rating, score[sentiment], update_rating)
es.index(index="logstash-movie",
# doc_type="test-type",
body={"author": dict_data["user"]["screen_name"],
"followers": dict_data["user"]["followers_count"],
# parse the milliscond since epoch to elasticsearch and reformat into datatime stamp in Kibana later
"date": datetime.strptime(dict_data["created_at"], '%a %b %d %H:%M:%S %z %Y'),
"message": dict_data["text"] if "text" in dict_data.keys() else " ",
"hashtags": hashtags,
"polarity": tweet.sentiment.polarity,
"subjectivity": tweet.sentiment.subjectivity,
"sentiment": sentiment,
"place": dict_data["user"]["location"],
"location": {'lat': src[0], 'lon': src[1]},
"rating": score[sentiment]})
def singleAnalyzeTwitter(data):
dict_data = data
print(dict_data)
tweet = TextBlob(dict_data["text"]) if "text" in dict_data.keys() else None
if tweet:
if tweet.sentiment.polarity < 0:
sentiment = "negative"
elif tweet.sentiment.polarity == 0:
sentiment = "neutral"
else:
sentiment = "positive"
print(sentiment, tweet.sentiment.polarity, dict_data["text"])
if len(dict_data["entities"]["hashtags"]) > 0:
hashtags = dict_data["entities"]["hashtags"][0]["text"].title()
else:
hashtags = "None"
es.index(index="logstash-a",
doc_type="test-type",
body={"author": dict_data["user"]["screen_name"],
"followers":dict_data["user"]["followers_count"],
"date": datetime.strptime(dict_data["created_at"], '%a %b %d %H:%M:%S %z %Y'),
"message": dict_data["text"] if "text" in dict_data.keys() else " ",
"hashtags":hashtags,
"polarity": tweet.sentiment.polarity,
"subjectivity": tweet.sentiment.subjectivity,
"sentiment": sentiment})
def getMovieName():
movie = entry1.get();
label1 = tk.Label(root, text="Check Kibana For Visualization")
canvas1.create_window(200, 230, window=label1)
root.destroy()
while True:
try:
stream = Stream(auth, listener)
stream.filter(track=[movie])
# tweets = tw.Cursor(api.search,
# q="mortal kombat",
# lang="en",
# since=datetime.datetime.today()).items(15)
except IncompleteRead:
continue
except KeyboardInterrupt:
stream.disconnect()
break
except:
continue
if __name__ == '__main__':
listener = TweetStreamListener()
auth = OAuthHandler(consumer_key, consumer_secret)
auth.set_access_token(access_token, access_token_secret)
# tweets = tweepy.Cursor(api.search, q ="@Mortal -brown -tantum").items(10000)
# for tweet in tweets:
# print(tweet.user.location)
# singleAnalyzeTwitter(tweet._json)
root = tk.Tk()
canvas1 = tk.Canvas(root, width=400, height=300)
canvas1.pack()
label1 = tk.Label(root, text='Search data for the movie')
label1.config(font=('helvetica', 14))
canvas1.create_window(200, 25, window=label1)
label2 = tk.Label(root, text='Enter movie name:')
label2.config(font=('helvetica', 10))
canvas1.create_window(200, 100, window=label2)
entry1 = tk.Entry(root)
canvas1.create_window(200, 140, window=entry1)
button1 = tk.Button(text='Add', command=getMovieName,
bg='brown', fg='white', font=('helvetica', 9, 'bold'))
canvas1.create_window(200, 180, window=button1)
root.mainloop()