diff --git a/formalization.pdf b/formalization.pdf index 823e5ae..038119c 100644 Binary files a/formalization.pdf and b/formalization.pdf differ diff --git a/formalization.tex b/formalization.tex index c43510d..41e78f9 100644 --- a/formalization.tex +++ b/formalization.tex @@ -512,6 +512,54 @@ \subsection{Partial Taxonomy of UFO: \me{Endurant Type} by Modal Properties of T +% 06_instantiation.p +\subsection{On the Definitions of \me{Type}, \me{Individual}, Instantiation, and Specialization} + +This subsection introduces the UFO's definitions of \me{Type} and \me{Individual} as well as the definitions for the relations of \me{instance of}, \me{specializes}, and \me{proper specializes}. + +\begin{figure}[ht] + \centering + \includegraphics[width=0.6\textwidth]{diagrams/Instantiation_Diagram.png} + \caption{Types, individuals, instantiation, and specialization.} + \label{fig:06_instantiation} +\end{figure} + +\begin{itemize} + \item[\myax{ax_dIof}] The \me{instance of} relation can only hold between $x$, $y$, and $w$, where $x$ is an instance of a type $y$ in $w$, and $w$ is the world where this relation holds. + + $\forall x,y,w(\textsf{iof}(x,y,w)\rightarrow \textsf{type\_}(y)\wedge \textsf{world}(w))$ + + \lstinputlisting[firstline=1, lastline=6, firstnumber=1]{src/axioms-clif/06_instantiation.p.clif} + + % TODO: review the adopted explanation style; it may be interesting to adopt a more explanatory style for the definitions in natural language rather than a simple verbalization of an axiom; e.g., "Instance of relations can only hold between instances and types in some given world." + \item[\myax{ax_dType}] For every $x$, $x$ is a type ifif there exists some $y$ and $w$ such that $y$ is instance of $x$ in the world $w$. + + $\forall x(\textsf{type\_}(x)\leftrightarrow \exists y,w(\textsf{iof}(y,x,w)))$ + + \lstinputlisting[firstline=7, lastline=14, firstnumber=7]{src/axioms-clif/06_instantiation.p.clif} + + % TODO: review the adopted explanation style; e.g., "A type is a predicative entity that collects the characteristics manifested by its instances, such that $x$ is a type ifif there exists some world $w$ where it has some instance $y$."; notice that we may risk deviating from what the axiom says. + \item[\myax{ax_dIndividual}] For every $x$, $x$ is an individual ifif there is no pair $y$ and $w$ such that $y$ is instance of $x$ in $w$. + + $\forall x(\textsf{individual}(x)\leftrightarrow \neg \exists y,w(\textsf{iof}(y,x,w)))$ + + \lstinputlisting[firstline=15, lastline=22, firstnumber=15]{src/axioms-clif/06_instantiation.p.clif} + + \item[\myax{ax_multiLevel}] The instance $x$ in an instance of relation must be either a type or an individual. + + $\forall x,y,w(\textsf{iof}(x,y,w)\rightarrow \textsf{type\_}(x)\vee \textsf{individual}(x))$ + + \lstinputlisting[firstline=23, lastline=28, firstnumber=23]{src/axioms-clif/06_instantiation.p.clif} + + \item[\myax{ax_twoLevelConstrained}] Chains of instance of relations are limited to a depth of two. + % TODO: we must verify whether the formalization is enforcing a strict stratification of ordered types, otherwise we cannot state the following; + % In other words, this formalization only accounts for types whose instances are individuals (i.e., first-order types), and types whose instances include first-order types (i.e., second-order types). + + $\neg \exists x,y,z,w(\textsf{type\_}(x)\wedge \textsf{iof}(x,y,w)\wedge \textsf{iof}(y,z,w))$ + + \lstinputlisting[firstline=29, lastline=33, firstnumber=29]{src/axioms-clif/06_instantiation.p.clif} +\end{itemize} + % ------------------------------ BEGIN DEPRECATED ------------------------------ diff --git a/src/axioms-clif/06_instantiation.p.clif b/src/axioms-clif/06_instantiation.p.clif index 09d975b..78f30e1 100644 --- a/src/axioms-clif/06_instantiation.p.clif +++ b/src/axioms-clif/06_instantiation.p.clif @@ -4,7 +4,7 @@ (and (type_ y) (world w))) ) ) -(cl-text ax_dType_a1 +(cl-text ax_dType (forall (x) (iff (type_ x) (exists (y w) @@ -12,7 +12,7 @@ ) ) ) -(cl-text ax_dIndividual_a2 +(cl-text ax_dIndividual (forall (x) (iff (individual x) (not (exists (y w) @@ -20,13 +20,13 @@ )) ) ) -(cl-text ax_multiLevel_a3 +(cl-text ax_multiLevel (forall (x y w) (if (iof x y w) (or (type_ x) (individual x))) ) ) -(cl-text ax_twoLevelConstrained_a4 +(cl-text ax_twoLevelConstrained (not (exists (x y z w) (and (type_ x) (iof x y w) (iof y z w))) ) diff --git a/src/axioms/06_instantiation.p b/src/axioms/06_instantiation.p index 6047dc3..e338d81 100644 --- a/src/axioms/06_instantiation.p +++ b/src/axioms/06_instantiation.p @@ -2,18 +2,18 @@ fof(ax_dIof, axiom, ( ![X,Y,W]: (iof(X,Y,W) => (type_(Y) & world(W))) )). -fof(ax_dType_a1, axiom, ( +fof(ax_dType, axiom, ( ![X]: (type_(X) <=> (?[Y,W]: iof(Y,X,W))) )). -fof(ax_dIndividual_a2, axiom, ( +fof(ax_dIndividual, axiom, ( ![X]: (individual(X) <=> (~?[Y,W]: iof(Y,X,W))) )). -fof(ax_multiLevel_a3, axiom, ( +fof(ax_multiLevel, axiom, ( ![X,Y,W]: (iof(X,Y,W) => (type_(X) | individual(X))) )). -fof(ax_twoLevelConstrained_a4, axiom, ( +fof(ax_twoLevelConstrained, axiom, ( ~?[X,Y,Z,W]: (type_(X) & iof(X,Y,W) & iof(Y,Z,W)) )). \ No newline at end of file