The HRNet, SalsaNext and KPConv can use environment file requirement.txt
. GSCNN need use file gscnn_requirement.txt
.
Note: New script for evaluate the results is available for point cloud and image
The HRNext+OCR is a fork from https://github.com/HRNet/HRNet-Semantic-Segmentation/tree/HRNet-OCR
To evaluate the dataset:
cd /path/to/code/benchmarks/HRNet-Semantic-Segmentation-HRNet-OCR
export PYTHONPATH=/path/to/code/benchmarks/HRNet-Semantic-Segmentation-HRNet-OCR/:$PYTHONPATH
python tools/test.py --cfg experiments/rellis/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-3_wd5e-4_bs_12_epoch484.yaml \
DATASET.TEST_SET val.lst \
OUTPUT_DIR /path/for/save/prediction \
TEST.MODEL_FILE /path/to/code/benchmarks/HRNet-Semantic-Segmentation-HRNet-OCR/output/rellis/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-3_wd5e-4_bs_12_epoch484/best.pth
Add dataset path to ROOT
in experiments/rellis/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-3_wd5e-4_bs_12_epoch484.yaml
The models are initialized by the weights pretrained on the ImageNet. You can download the pretrained models from onedrive or https://github.com/HRNet/HRNet-Image-Classification.
Note: the pre-trained model was updated on June 8th 2021
Dowload pre-trained model (Download 751MB)
To retrain the HRNet on RELLIS-3D:
export PYTHONPATH=/path/to/code/benchmarks/HRNet-Semantic-Segmentation-HRNet-OCR/:$PYTHONPATH
echo $PYTHONPATH
PY_CMD="python -m torch.distributed.launch --nproc_per_node=2"
$PY_CMD tools/train.py --cfg experiments/rellis/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-3_wd5e-4_bs_12_epoch484.yaml
Add dataset path to ROOT
in experiments/rellis/seg_hrnet_ocr_w48_train_512x1024_sgd_lr1e-3_wd5e-4_bs_12_epoch484.yaml
The GSCNN is a fork from https://github.com/nv-tlabs/GSCNN
To evaluate the dataset:
cd /path/to/code/benchmarks/GSCNN-master
export PYTHONPATH=/path/to/code/benchmarks/GSCNN-master/:$PYTHONPATH
python train.py --dataset rellis --bs_mult 3 --lr 0.001 --exp final \
--checkpoint_path /path/to/pre-trained/chk_file \
--mode test \
--test_sv_path /path/for/save/prediction
Add dataset path to __C.DATASET.RELLIS_DIR
in benchmarks/GSCNN-master/config.py
Dowload pre-trained model (Download 1GB)
To retrain the GSCNN on RELLIS-3D:
export PYTHONPATH=/path/to/code/benchmarks/GSCNN-master/:$PYTHONPATH
python train.py --dataset rellis --bs_mult 3 --lr 0.001 --exp final
Add dataset path to __C.DATASET.RELLIS_DIR
in benchmarks/GSCNN-master/config.py
The models are initialized by the weights pretrained on the ImageNet. You can download the pretrained models from here.
The SalsaNext is a fork from https://github.com/Halmstad-University/SalsaNext
To evaluate the dataset:
#!/bin/sh
export CUDA_VISIBLE_DEVICES="1"
cd /path/to/code/benchmarks/SalsaNext/train/tasks/semantic
python infer2.py -d /path/to/RELLIS-3D -l /path/for/save/prediction -s test -m /path/to/pre-trained/model/folder
Dowload pre-trained model (Download 157MB)
To retrain the SalsaNext on RELLIS-3D:
export CUDA_VISIBLE_DEVICES="0,1"
cd /path/to/code/benchmarks/SalsaNext/train/tasks/semantic
./train.py -d /path/to/RELLIS-3D -ac ./config/arch/salsanext_ouster.yml -dc ./config/labels/rellis.yaml -n rellis -l ./logs -p ""
The KPConv is a fork from https://github.com/HuguesTHOMAS/KPConv-PyTorch
To evaluate the dataset:
cd /path/to/code/benchmarks/KPConv-PyTorch-master
export PYTHONPATH=/path/to/code/benchmarks/KPConv-PyTorch-master/:$PYTHONPATH
python test_models.py
Configure benchmarks/KPConv-PyTorch-master/test_models.py
before evaluation.
chosen_log = '/path/to/pretrained/model/folder'
config.sv_path = "/path/to/save/prediction"
config.data_path = "/path/to/RELLIS-3D"
Dowload pre-trained model (Download 1GB)
To retrain the KPConv on RELLIS-3D: To evaluate the dataset:
cd /path/to/code/benchmarks/KPConv-PyTorch-master
export PYTHONPATH=/path/to/code/benchmarks/KPConv-PyTorch-master/:$PYTHONPATH
python train_Rellis.py
Configure benchmarks/KPConv-PyTorch-master/train_Rellis.py
before training.
data_path = "/path/to/RELLIS-3D"