-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·168 lines (139 loc) · 7.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import os
import pandas as pd
from dataset import load_dataset
from models.unet import unet
from models.unetpp import unetpp
import tensorflow as tf
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.utils import plot_model
from tensorflow.keras.layers import Average, Conv3D
from tensorflow.keras.models import Model
from config import vol_x, vol_y, vol_z, n_channels, train_samples_total, train_samples, learning_rate, beta_1, beta_2, \
epsilon, decay, validation_samples, n_filters, dataset_output_path
from metrics import dice_coe, dice_loss
from helpers import print_section, calculated_steps_per_epoch, generate_checkpoint_path, save_test_images, \
generate_model_image_path, create_results_csv, generate_path_prefix
from callbacks import get_callbacks, TimeHistory
from postprocess import compare_segmentations
from datetime import datetime
from models.helpers import handle_input_fusion
def get_model(model_type, multi_modal, perform_early_fusion, pe_block, inputA, inputB, cascade=False):
if model_type == "unet":
return unet(multi_modal, perform_early_fusion, pe_block, inputA, inputB, cascade)
elif model_type == "unet++":
return unetpp(multi_modal, perform_early_fusion, pe_block, inputA, inputB, cascade)
def create_model(model_type, dataset, validation_dataset, test_dataset, callbacks, batch_size, num_epochs, multi_modal,
augmented, perform_test_only, perform_early_fusion, perform_late_fusion, pe_block, path_prefix):
time_callback = TimeHistory()
input_shape = (vol_x, vol_y, vol_z, n_channels)
mirrored_strategy = tf.distribute.MirroredStrategy()
with mirrored_strategy.scope():
print_section("Creating and compiling " + model_type + " model")
inputs_bmode, inputs_pd = handle_input_fusion(multi_modal, input_shape, batch_size)
if multi_modal and perform_late_fusion:
# Treat as separate single modal models
model_bmode = get_model(model_type, False, False, pe_block, inputs_bmode, None, True)
model_pd = get_model(model_type, False, False, pe_block, inputs_pd, None, True)
output_conv = Average()([model_bmode, model_pd])
output = Conv3D(1, 1, activation='sigmoid', padding='same')(output_conv)
model = Model(inputs=[inputs_bmode, inputs_pd], outputs=[output])
else:
model = get_model(model_type, multi_modal, perform_early_fusion, pe_block, inputs_bmode, inputs_pd)
model.compile(
optimizer=Adam(lr=learning_rate,
beta_1=beta_1,
beta_2=beta_2,
epsilon=epsilon,
decay=decay),
loss=dice_loss,
metrics=["binary_crossentropy", dice_coe])
print_section("Generating model summary")
model.summary()
if not perform_test_only:
print_section("Generate model graph image")
plot_model(
model,
to_file=generate_model_image_path(path_prefix),
show_shapes=True, show_layer_names=True,
rankdir='LR', expand_nested=False, dpi=96
)
print_section("Training model")
num_train_samples = train_samples_total if augmented else train_samples
model.fit(dataset,
epochs=num_epochs,
verbose=1,
shuffle=True,
steps_per_epoch=calculated_steps_per_epoch(num_train_samples, batch_size),
validation_data=validation_dataset,
validation_steps=calculated_steps_per_epoch(validation_samples, batch_size),
validation_freq=1,
callbacks=[time_callback] + callbacks)
print_section("Loading model weights")
model.load_weights(
generate_checkpoint_path(path_prefix))
print_section('Testing model')
imgs_mask_test = model.predict(test_dataset, batch_size=batch_size, verbose=1)
print_section('Saving predictions')
pred_label_list = save_test_images(imgs_mask_test, path_prefix)
print_section('Evaluating against ground truth')
test_df = pd.read_csv(os.path.join(dataset_output_path, 'test.csv'))
ground_truth_label_list = test_df['label'].values.tolist()
perf_metrics = compare_segmentations(pred_label_list, ground_truth_label_list)
print_section('Saving results')
create_results_csv(path_prefix, perf_metrics, list(zip(pred_label_list, ground_truth_label_list)),
sum(time_callback.times))
if not perform_test_only:
print_section("Printing stats")
print("Each epoch time", time_callback.times)
print("Total Time Taken (s)", sum(time_callback.times))
if __name__ == "__main__":
print_section("Setting configuration options")
parser = argparse.ArgumentParser(description="Process configuration")
parser.add_argument("--model", required=True, type=str, action="store")
parser.add_argument("--batch_size", required=True, type=int, action="store")
parser.add_argument("--num_epochs", required=True, type=int, action="store")
parser.add_argument("--multi_modal", required=False, type=bool, action="store")
parser.add_argument("--augment", required=False, type=bool, action="store")
parser.add_argument("--test_only", required=False, type=bool, action="store")
parser.add_argument("--early_fusion", required=False, type=bool, action="store")
parser.add_argument("--late_fusion", required=False, type=bool, action="store")
parser.add_argument("--pe_block", required=False, type=bool, action="store")
args = parser.parse_args()
augment = False
multi_modal = False
test_only = False
early_fusion = False
late_fusion = False
pe_block = False
if args.multi_modal:
multi_modal = True
if args.augment:
augment = True
if args.test_only:
test_only = True
if args.early_fusion:
early_fusion = True
if args.late_fusion:
late_fusion = True
if args.pe_block:
pe_block = True
print_section("Setting GPU Settings")
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
session = tf.compat.v1.InteractiveSession(config=config)
print_section("Loading training, validation and test datasets")
modal_type = "multi_modal" if multi_modal else "bmode"
train_dataset = load_dataset("train", args.batch_size, args.num_epochs, modal_type, augment)
validation_dataset = load_dataset("validation", args.batch_size, args.num_epochs, modal_type, augment)
test_dataset = load_dataset("test", args.batch_size, args.num_epochs, modal_type, augment)
dt = str(datetime.today().strftime('%Y-%m-%d'))
path_prefix = generate_path_prefix(args.model, args.batch_size, args.num_epochs, n_filters, multi_modal, augment,
early_fusion, late_fusion, pe_block, dt)
print_section("Creating model callbacks")
callbacks = get_callbacks(path_prefix)
print_section("Creating model on multiple GPUs")
create_model(args.model, train_dataset, validation_dataset, test_dataset,
callbacks, args.batch_size, args.num_epochs, multi_modal, augment, test_only, early_fusion,
late_fusion,
pe_block, path_prefix)