-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy path4_EOGPhotoCaptureBLE.ino
164 lines (144 loc) · 5.05 KB
/
4_EOGPhotoCaptureBLE.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Eye Blink (EOG) Photo capture using ESP32 - BioAmp EXG Pill
// https://github.com/upsidedownlabs/BioAmp-EXG-Pill
// Upside Down Labs invests time and resources providing this open source code,
// please support Upside Down Labs and open-source hardware by purchasing
// products from Upside Down Labs!
// Copyright (c) 2021 Upside Down Labs - [email protected]
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include <math.h>
#include <BleKeyboard.h>
#define SAMPLE_RATE 75
#define BAUD_RATE 115200
#define INPUT_PIN 25
#define OUTPUT_PIN 27
#define DATA_LENGTH 20
BleKeyboard bleKeyboard;
int data_index = 0;
bool peak = false;
void setup() {
// Serial connection begin
Serial.begin(BAUD_RATE);
// Ble keyboard begin
bleKeyboard.begin();
// Setup Input & Output pin
pinMode(OUTPUT_PIN, OUTPUT);
pinMode(INPUT_PIN, INPUT);
}
void loop() {
// Calculate elapsed time
static unsigned long past = 0;
unsigned long present = micros();
unsigned long interval = present - past;
past = present;
// Run timer
static long timer = 0;
timer -= interval;
// Sample
if(timer < 0){
timer += 1000000 / SAMPLE_RATE;
// Sample and Nomalize input data (-1 to 1)
float sensor_value = analogRead(INPUT_PIN);
float signal = EOGFilter(sensor_value)/512;
// Get peak
peak = Getpeak(signal);
// Print sensor_value and peak
Serial.print(signal);
Serial.print(",");
Serial.println(peak);
Serial.print("Sensor value: ");
Serial.print(sensor_value);
Serial.println("");
// Blink LED on peak
digitalWrite(OUTPUT_PIN, peak);
//To click photo
if(peak){
bleKeyboard.press(KEY_MEDIA_VOLUME_UP);
bleKeyboard.release(KEY_MEDIA_VOLUME_UP);
}
}
}
bool Getpeak(float new_sample) {
// Buffers for data, mean, and standard deviation
static float data_buffer[DATA_LENGTH];
static float mean_buffer[DATA_LENGTH];
static float standard_deviation_buffer[DATA_LENGTH];
// Check for peak
if (new_sample - mean_buffer[data_index] > (DATA_LENGTH*1.2) * standard_deviation_buffer[data_index]) {
data_buffer[data_index] = new_sample + data_buffer[data_index];
peak = true;
} else {
data_buffer[data_index] = new_sample;
peak = false;
}
// Calculate mean
float sum = 0.0, mean, standard_deviation = 0.0;
for (int i = 0; i < DATA_LENGTH; ++i){
sum += data_buffer[(data_index + i) % DATA_LENGTH];
}
mean = sum/DATA_LENGTH;
// Calculate standard deviation
for (int i = 0; i < DATA_LENGTH; ++i){
standard_deviation += pow(data_buffer[(i) % DATA_LENGTH] - mean, 2);
}
// Update mean buffer
mean_buffer[data_index] = mean;
// Update standard deviation buffer
standard_deviation_buffer[data_index] = sqrt(standard_deviation/DATA_LENGTH);
// Update data_index
data_index = (data_index+1)%DATA_LENGTH;
// Return peak
return peak;
}
// Band-Pass Butterworth IIR digital filter, generated using filter_gen.py.
// Sampling rate: 75.0 Hz, frequency: [0.5, 19.5] Hz.
// Filter is order 4, implemented as second-order sections (biquads).
// Reference:
// https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.butter.html
// https://courses.ideate.cmu.edu/16-223/f2020/Arduino/FilterDemos/filter_gen.py
float EOGFilter(float input)
{
float output = input;
{
static float z1, z2; // filter section state
float x = output - 0.02977423*z1 - 0.04296318*z2;
output = 0.09797471*x + 0.19594942*z1 + 0.09797471*z2;
z2 = z1;
z1 = x;
}
{
static float z1, z2; // filter section state
float x = output - 0.08383952*z1 - 0.46067709*z2;
output = 1.00000000*x + 2.00000000*z1 + 1.00000000*z2;
z2 = z1;
z1 = x;
}
{
static float z1, z2; // filter section state
float x = output - -1.92167271*z1 - 0.92347975*z2;
output = 1.00000000*x + -2.00000000*z1 + 1.00000000*z2;
z2 = z1;
z1 = x;
}
{
static float z1, z2; // filter section state
float x = output - -1.96758891*z1 - 0.96933514*z2;
output = 1.00000000*x + -2.00000000*z1 + 1.00000000*z2;
z2 = z1;
z1 = x;
}
return output;
}