-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathmodels.py
90 lines (71 loc) · 2.99 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from keras.layers import *
from keras.models import Sequential, Model
from keras.optimizers import RMSprop
from keras.regularizers import l2
from objectives import cca_loss
from objectives_mcca import mcca_loss
def create_model(layer_sizes_list, input_size_list, act_='linear',
learning_rate=1e-3, n_modalities=3, gamma=0.2, reg_par=1e-5):
"""
Input:
..
Output:
..
builds the whole model form a list of list of layer sizes!
!!## note this is not the Sequential style model!
"""
input_layers = [Input((size_i, )) for size_i in input_size_list]
fc_output_layer_list = []
for l_i, layer_sizes_ in enumerate(layer_sizes_list):
# pre-create the dense(fc) layers you need
## USING ONLY LINEAR ACTIVATIONS FOR NOW!!
fc_layers_ = [Dense(i,activation=act_, kernel_regularizer=l2(reg_par)) for i in layer_sizes_[:-1]]
# no matter the layer activation, the last layer needs a sigmoid activation!
fc_layers_.append(Dense(layer_sizes_[-1], activation=act_, kernel_regularizer=l2(reg_par)))
D = fc_layers_[0](input_layers[l_i])
# do this in a non-sequential style Keras model
for d_i, d in enumerate(fc_layers_[1:]): D = d(D)
fc_output_layer_list.append(D)
output = concatenate(fc_output_layer_list)
model = Model(input_layers, [output])
model_optimizer = RMSprop(lr=learning_rate)
model.compile(loss=mcca_loss(n_modalities, 0.2), optimizer=model_optimizer)
return model
##### older code - ignore
def build_mlp_net(layer_sizes, input_size, reg_par):
model = Sequential()
for l_id, ls in enumerate(layer_sizes):
if l_id == 0:
input_dim = input_size
else:
input_dim = []
if l_id == len(layer_sizes)-1:
activation = 'linear'
else:
activation = 'sigmoid'
model.add(Dense(ls, input_dim=input_dim,
activation=activation,
kernel_regularizer=l2(reg_par)))
return model
def _create_model(layer_sizes1, layer_sizes2, input_size1, input_size2,
learning_rate, reg_par, outdim_size, use_all_singular_values):
"""
builds the whole model
the structure of each sub-network is defined in build_mlp_net,
and it can easily get substituted with a more efficient and powerful network like CNN
"""
inp_1 = Input((input_size1,))
inp_2 = Input((input_size2,))
dense_layers1 = [Dense(i) for i in layer_sizes1]
D1 = dense_layers1[0](inp_1)
for d_i,d in enumerate(dense_layers1[1:]):
D1 = d(D1)
dense_layers2 = [Dense(i) for i in layer_sizes2]
D2 = dense_layers2[0](inp_2)
for d_i,d in enumerate(dense_layers2[1:]):
D2 = d(D2)
output = concatenate([D1, D2])
model = Model([inp_1, inp_2], [output])
model_optimizer = RMSprop(lr=learning_rate)
model.compile(loss=cca_loss(outdim_size, use_all_singular_values), optimizer=model_optimizer)
return model