-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmycode.py
129 lines (100 loc) · 4.84 KB
/
mycode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import pyrealsense2 as rs
import numpy as np
import cv2
import serial
arduinoData = serial.Serial('com6', 9600)
# Configure depth and color streams
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, 30)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, 30)
# Start streaming
pipeline.start(config)
try:
while True:
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame or not color_frame:
continue
# Convert images to numpy arrays
depth_image = np.asanyarray(depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
# Apply threshold to get a binary image
ret, binary_image = cv2.threshold(cv2.cvtColor(color_image, cv2.COLOR_BGR2GRAY), 210, 255, cv2.THRESH_BINARY)
left_lines = []
right_lines = []
# Detect lines using HoughLinesP
lines = cv2.HoughLinesP(binary_image, 1, np.pi/180, 50, maxLineGap=50)
if lines is not None:
for line in lines:
x1, y1, x2, y2 = line[0]
slope = (y2 - y1) / (x2 - x1)
if slope == 0 or np.isnan(slope) or np.isinf(slope):
continue
if slope < 0:
left_lines.append(line)
else:
right_lines.append(line)
if right_lines and left_lines:
line = left_lines.pop(0)
slope_left = (y2 - y1) / (x2 - x1)
if slope_left == 0 or np.isnan(slope_left):
continue
intercept_left= y1-slope_left*x1
# Get the y-coordinate of the bottom of the image
bottom_y = color_image.shape[0] - 1
# Calculate the x-coordinate of the bottom left point of the line
if slope_left == 0 or np.isnan(slope_left) or np.isinf(intercept_left) or np.isinf(slope_left):
continue
else:
bottom_x_left = int((bottom_y - intercept_left) / slope_left)
line = right_lines.pop(0)
slope_right = (y2 - y1) / (x2 - x1)
if slope_right == 0 or np.isnan(slope_right):
continue
intercept_right = y1-slope_right*x1
# Calculate the x-coordinate of the bottom right point of the line
if slope_right == 0 or np.isnan(slope_right) or np.isnan(intercept_right) or np.isinf(intercept_right) or np.isinf(slope_right):
continue
else:
bottom_x_right = int((bottom_y - intercept_right) / slope_right)
if bottom_x_left is not None and bottom_x_right is not None:
true_middle = (bottom_x_left + bottom_x_right)/2
vehicle_offset = color_image.shape[1]/2 - true_middle
if vehicle_offset < 0:
print("Turn right")
cmd="Turn right"+'\r'
if vehicle_offset > 0:
print("Turn left")
cmd="Turn left"+'\r'
arduinoData.write(cmd.encode())
cv2.line(color_image, (x1, y1), (x2, y2), (0, 255, 0), 5)
# Get point cloud data along the line
depth_intrin = depth_frame.profile.as_video_stream_profile().intrinsics
line_point_cloud = []
for x, y in zip(range(x1, x2), range(y1, y2)):
point = rs.rs2_deproject_pixel_to_point(depth_intrin, [x, y], depth_frame.get_distance(x, y))
line_point_cloud.append(point)
# Print and store the point cloud data
# print("Point cloud data along the line:", line_point_cloud)
# Find the closest point along the detected line
# min_distance = float('inf')
# closest_point = None
# for x, y in zip(range(x1, x2), range(y1, y2)):
# distance = depth_frame.get_distance(x, y)
# if distance < min_distance:
# min_distance = distance
# closest_point = rs.rs2_deproject_pixel_to_point(depth_intrin, [x, y], distance)
# # Print the depth value of the closest point
# print("Depth of closest point:", min_distance)
# Show images
cv2.imshow("Binary Image", binary_image)
cv2.imshow("Line Detection", color_image)
key = cv2.waitKey(1)
if key & 0xFF == ord('q') or key == 27:
break
finally:
pipeline.stop()
cv2.destroyAllWindows()