-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
110 lines (81 loc) · 3.8 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import sys
import time
import cv2
import numpy as np
from tqdm import tqdm
from lib.utils_favor.log_utils import print_info, print_success
from lib.utils_favor.transform_utils import CV2O3D
from lib.utils_favor.visualizer_utils import visualize_camera_poses_and_points
from lib.utils_favor.misc_utils import seed_env, init_device, parse_args, create_dataloader, create_tracker, \
redirect2log
if __name__ == '__main__':
# to ensure reproducibility
seed_env()
# to ensure that the device is set correctly
device = init_device()
# load args
cfg = parse_args()
# ------------------- Define the Dataloader and Tracker -------------------
dataloader = create_dataloader(dataset_type=cfg.data.dataset_type, data_path=cfg.data.datadir, scene=cfg.data.scene)
tracker = create_tracker(net_model=cfg.net_model, K=dataloader.camera.K, patch_size_half=cfg.data.patch_size_half,
path=cfg.root_dir, distortion=dataloader.camera.distortion, log=False)
if tracker.empty():
# start timing
start_time = int(time.time())
# create a log file and redirect stdout there
f, original_stdout = redirect2log(cfg.root_dir, "track")
print_info(f"Tracking {cfg.data.scene} scene")
# run the tracker on the dataset
counter = 0
for img, cam_pose in dataloader.get_train():
tracker.run_once(img, cam_pose)
counter += 1
# triangulate tracked points
tracker.triangulate(dataloader.camera.K, dataloader.camera.height, dataloader.camera.width,
cfg.data.min_track_length)
# if the features are large, save restore them from disk and associate with the points
if len(tracker.tracks[0].features) == 0:
tracker.tracks = sorted(tracker.tracks, key=lambda x: len(x), reverse=True)[:3000]
tracker.couple_features(dataloader.camera.height, dataloader.camera.width, counter)
# log time
print_info(f"Tracking took {(time.time() - start_time)} seconds")
# store the tracks
tracker.store_tracks()
# close the log file and reset stdout
f.close()
sys.stdout = original_stdout
# visualize the tracks if flag visualise is set
camera_poses_list = []
if cfg.visualize:
# load all the landmarks tracked
landmarks = []
for track in tracker.tracks:
h_coords = np.concatenate((track.get_w_point(), [1.0]))
landmarks.append(h_coords)
landmarks = np.array(landmarks)
print_info(f"Visualizing tracked points on {cfg.data.scene} scene test images")
for img, cam_pose, _ in dataloader.get_test():
camera_poses_list.append(CV2O3D(cam_pose))
cam_pose = np.linalg.inv(cam_pose)
# project the landmarks to the image
mask = np.ones(len(landmarks), dtype=bool)
bearing_vecs = np.dot(cam_pose[:3], landmarks.T)
mask &= bearing_vecs[2] > 0
pts = np.dot(dataloader.camera.K, bearing_vecs).T
pts /= pts[:, 2].reshape(-1, 1)
pts = pts[:, :2]
mask &= (pts[:, 0] > 5) & (pts[:, 1] > 5) & (pts[:, 0] < dataloader.camera.width - 5) & (
pts[:, 1] < dataloader.camera.height - 5)
pts = pts[mask]
for pt in pts:
cv2.circle(img, tuple(pt.astype(int)), 3, (0, 0, 255), -1)
cv2.imshow("img", img)
cv2.waitKey(1)
cv2.destroyAllWindows()
# visualize poses and landmarks
landmarks = []
for track in tqdm(tracker.tracks):
if len(track) > 10:
landmarks.append(track.get_w_point())
visualize_camera_poses_and_points(camera_poses_list, landmarks)
print_success("Tracking completed successfully")