-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_eval_data.py
98 lines (80 loc) · 3.31 KB
/
get_eval_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import argparse
import os
import glob
import ast
import pickle
import numpy as np
import tensorflow as tf
from tensorflow.python.summary.summary_iterator import summary_iterator
# View and convert data from tf file saved by rce by default to train.pkl files that lfgp uses
# optionally do for all seeds of a run
parser = argparse.ArgumentParser()
parser.add_argument('--experiment_dir', type=str)
parser.add_argument('--env', type=str)
parser.add_argument('--exp_name', type=str)
parser.add_argument('--main_exp_dir', type=str, default=os.path.join(os.environ['VPACE_TOP_DIR'], 'results'))
parser.add_argument('--alg_name', type=str, default='rce_theirs')
parser.add_argument('--seeds', type=str, default='[1,2,3,4,5]')
args = parser.parse_args()
# find summary file
if args.experiment_dir:
eval_dir = os.path.join(args.experiment_dir, 'eval', 'events*')
files = glob.glob(eval_dir)
assert len(files) == 1
eval_tf_sum_files = [files[0]]
seeds = None
all_exp_dirs = [args.experiment_dir]
else:
seeds = ast.literal_eval(args.seeds)
eval_tf_sum_files = []
all_exp_dirs = []
for seed in seeds:
exp_dir_no_date = os.path.join(args.main_exp_dir, args.env, str(seed), args.alg_name, args.exp_name, '*')
exp_dirs = sorted(glob.glob(exp_dir_no_date))
if len(exp_dirs) > 1:
print(f"WARNING: multiple folders found at {exp_dir_no_date}, taking {exp_dirs[-1]}")
exp_dir = exp_dirs[-1]
all_exp_dirs.append(exp_dir)
eval_dir = os.path.join(exp_dir, 'eval', 'events*')
files = glob.glob(eval_dir)
if len(files) > 1:
print(f"WARNING: Multiple tf events files at {eval_dir}, taking the largest.")
sizes = []
for f in files:
sizes.append(os.stat(f).st_size)
file = files[np.argmax(sizes)]
else:
file = files[0]
eval_tf_sum_files.append(files[0])
# get num eval trials from gin file
gin_file = os.path.join(all_exp_dirs[0], 'operative.gin')
with open(gin_file) as f:
for line in f:
if line.startswith('train_eval.num_eval_episodes'):
num_eval_episodes = int(line.split(' = ')[-1].split('\n')[0])
for file_i, file in enumerate(eval_tf_sum_files):
if seeds is not None:
seeds = ast.literal_eval(args.seeds)
print(f"Reading eval for seed {seeds[file_i]}")
# loop through summary file
steps = []
avg_returns = []
for entry in summary_iterator(file):
step = entry.step
for v in entry.summary.value:
if v.tag == "Metrics/AverageReturn" and step > 0:
steps.append(step)
value = tf.make_ndarray(v.tensor)
avg_returns.append(value.item())
steps = np.array(steps)
avg_returns = np.array(avg_returns)
print(f"Results for ")
print(f"Steps: {steps}")
print(f"Avg returns: {avg_returns}")
# save the file as lfgp format..we'll simulate having raw data by repeating the average for the number of eval steps
all_returns = np.tile(avg_returns, (num_eval_episodes, 1)).T[:, None, :] # extra dimension for num tasks
data_dict = {
'evaluation_returns': all_returns,
'evaluation_successes_all_tasks': np.zeros_like(all_returns)
}
pickle.dump(data_dict, open(os.path.join(all_exp_dirs[file_i], 'train.pkl'), 'wb'))