-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_eval.py
407 lines (351 loc) · 14.2 KB
/
train_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""Script for training the RCE agent.
Example usage:
python train_eval.py --root_dir=~/c_learning/sawyer_drawer_open \
--gin_bindings='train_eval.env_name="sawyer_drawer_open"'
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import time
from absl import app
from absl import flags
from absl import logging
import gin
import numpy as np
import rce_agent
import rce_envs
from six.moves import range
import tensorflow as tf
from tf_agents.agents.ddpg import critic_network
from tf_agents.agents.sac import tanh_normal_projection_network
from tf_agents.drivers import dynamic_step_driver
from tf_agents.eval import metric_utils
from tf_agents.metrics import tf_metrics
from tf_agents.networks import actor_distribution_network
from tf_agents.policies import greedy_policy
from tf_agents.policies import random_tf_policy
from tf_agents.replay_buffers import tf_uniform_replay_buffer
from tf_agents.utils import common
flags.DEFINE_string('root_dir', os.getenv('TEST_UNDECLARED_OUTPUTS_DIR'),
'Root directory for writing logs/summaries/checkpoints.')
flags.DEFINE_multi_string('gin_file', None, 'Path to the trainer config files.')
flags.DEFINE_multi_string('gin_bindings', None, 'Gin binding to pass through.')
FLAGS = flags.FLAGS
@gin.configurable
def bce_loss(y_true, y_pred, label_smoothing=0):
loss_fn = tf.keras.losses.BinaryCrossentropy(
label_smoothing=label_smoothing, reduction=tf.keras.losses.Reduction.NONE)
return loss_fn(y_true[:, None], y_pred[:, None])
@gin.configurable
class ClassifierCriticNetwork(critic_network.CriticNetwork):
"""Creates a critic network."""
def __init__(self,
input_tensor_spec,
observation_fc_layer_params=None,
action_fc_layer_params=None,
joint_fc_layer_params=None,
kernel_initializer=None,
last_kernel_initializer=None,
name='ClassifierCriticNetwork'):
super(ClassifierCriticNetwork, self).__init__(
input_tensor_spec,
observation_fc_layer_params=observation_fc_layer_params,
action_fc_layer_params=action_fc_layer_params,
joint_fc_layer_params=joint_fc_layer_params,
kernel_initializer=kernel_initializer,
last_kernel_initializer=last_kernel_initializer,
name=name,
)
last_layers = [
tf.keras.layers.Dense(
1,
activation=tf.math.sigmoid,
kernel_initializer=last_kernel_initializer,
name='value')
]
self._joint_layers = self._joint_layers[:-1] + last_layers
@gin.configurable
def train_eval(
root_dir,
env_name='HalfCheetah-v2',
# The SAC paper reported:
# Hopper and Cartpole results up to 1000000 iters,
# Humanoid results up to 10000000 iters,
# Other mujoco tasks up to 3000000 iters.
num_iterations=3000000,
actor_fc_layers=(256, 256),
critic_obs_fc_layers=None,
critic_action_fc_layers=None,
critic_joint_fc_layers=(256, 256),
# Params for collect
# Follow https://github.com/haarnoja/sac/blob/master/examples/variants.py
# HalfCheetah and Ant take 10000 initial collection steps.
# Other mujoco tasks take 1000.
# Different choices roughly keep the initial episodes about the same.
initial_collect_steps=10000,
collect_steps_per_iteration=1,
replay_buffer_capacity=1000000,
# Params for target update
target_update_tau=0.005,
target_update_period=1,
# Params for train
train_steps_per_iteration=1,
batch_size=256,
actor_learning_rate=3e-4,
critic_learning_rate=3e-4,
gamma=0.99,
gradient_clipping=None,
use_tf_functions=True,
# Params for eval
num_eval_episodes=30,
eval_interval=10000,
# Params for summaries and logging
train_checkpoint_interval=200000,
# policy_checkpoint_interval=50000,
rb_checkpoint_interval=50000,
log_interval=1000,
summary_interval=1000,
summaries_flush_secs=10,
debug_summaries=False,
summarize_grads_and_vars=False,
random_seed=0,
actor_min_std=1e-3, # Added for numerical stability.
n_step=10,
gpu_i=0):
"""A simple train and eval for SAC."""
# set specific gpu
gpus = tf.config.list_physical_devices('GPU')
if gpus:
try:
tf.config.set_visible_devices(gpus[gpu_i], 'GPU')
tf.config.experimental.set_memory_growth(gpus[gpu_i], True)
logical_gpus = tf.config.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPU")
except RuntimeError as e:
# Visible devices must be set before GPUs have been initialized
print(e)
np.random.seed(random_seed)
root_dir = os.path.expanduser(root_dir)
train_dir = os.path.join(root_dir, 'train')
eval_dir = os.path.join(root_dir, 'eval')
train_summary_writer = tf.compat.v2.summary.create_file_writer(
train_dir, flush_millis=summaries_flush_secs * 1000)
train_summary_writer.set_as_default()
global_step = tf.compat.v1.train.get_or_create_global_step()
with tf.compat.v2.summary.record_if(
lambda: tf.math.equal(global_step % summary_interval, 0)):
tf_env = rce_envs.load_env(env_name)
eval_tf_env = rce_envs.load_env(env_name)
if env_name == 'sawyer_lift':
eval_tf_env.MODE = 'eval'
expert_obs = rce_envs.get_data(tf_env.envs[0], env_name=env_name)
time_step_spec = tf_env.time_step_spec()
observation_spec = time_step_spec.observation
action_spec = tf_env.action_spec()
proj_net = functools.partial(
tanh_normal_projection_network.TanhNormalProjectionNetwork,
std_transform=lambda t: actor_min_std + tf.nn.softplus(t))
actor_net = actor_distribution_network.ActorDistributionNetwork(
observation_spec,
action_spec,
fc_layer_params=actor_fc_layers,
continuous_projection_net=proj_net)
critic_net = ClassifierCriticNetwork(
(observation_spec, action_spec),
observation_fc_layer_params=critic_obs_fc_layers,
action_fc_layer_params=critic_action_fc_layers,
joint_fc_layer_params=critic_joint_fc_layers,
kernel_initializer='glorot_uniform',
last_kernel_initializer='glorot_uniform')
tf_agent = rce_agent.RceAgent(
time_step_spec,
action_spec,
actor_network=actor_net,
critic_network=critic_net,
actor_optimizer=tf.compat.v1.train.AdamOptimizer(
learning_rate=actor_learning_rate),
critic_optimizer=tf.compat.v1.train.AdamOptimizer(
learning_rate=critic_learning_rate),
target_update_tau=target_update_tau,
target_update_period=target_update_period,
td_errors_loss_fn=bce_loss,
gamma=gamma,
gradient_clipping=gradient_clipping,
debug_summaries=debug_summaries,
summarize_grads_and_vars=summarize_grads_and_vars,
train_step_counter=global_step,
n_step=n_step)
tf_agent.initialize()
eval_summary_writer = tf.compat.v2.summary.create_file_writer(
eval_dir, flush_millis=summaries_flush_secs * 1000)
eval_metrics = [
tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size),
tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes,
batch_size=tf_env.batch_size)
]
train_metrics = [
tf_metrics.NumberOfEpisodes(),
tf_metrics.EnvironmentSteps(),
tf_metrics.AverageReturnMetric(
buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
tf_metrics.AverageEpisodeLengthMetric(
buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
]
eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
initial_collect_policy = random_tf_policy.RandomTFPolicy(
tf_env.time_step_spec(), tf_env.action_spec())
collect_policy = tf_agent.collect_policy
replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
data_spec=tf_agent.collect_data_spec,
batch_size=tf_env.batch_size,
max_length=replay_buffer_capacity)
train_checkpointer = common.Checkpointer(
ckpt_dir=train_dir,
agent=tf_agent,
global_step=global_step,
metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'),
max_to_keep=None)
rb_checkpointer = common.Checkpointer(
ckpt_dir=os.path.join(train_dir, 'replay_buffer'),
max_to_keep=1,
replay_buffer=replay_buffer)
train_checkpointer.initialize_or_restore()
rb_checkpointer.initialize_or_restore()
replay_observer = [replay_buffer.add_batch]
initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
tf_env,
initial_collect_policy,
observers=replay_observer + train_metrics,
num_steps=initial_collect_steps)
collect_driver = dynamic_step_driver.DynamicStepDriver(
tf_env,
collect_policy,
observers=replay_observer + train_metrics,
num_steps=collect_steps_per_iteration)
if use_tf_functions:
initial_collect_driver.run = common.function(initial_collect_driver.run)
collect_driver.run = common.function(collect_driver.run)
tf_agent.train = common.function(tf_agent.train)
# Save the hyperparameters
operative_filename = os.path.join(root_dir, 'operative.gin')
with tf.compat.v1.gfile.Open(operative_filename, 'w') as f:
f.write(gin.operative_config_str())
print(gin.operative_config_str())
if replay_buffer.num_frames() == 0:
# Collect initial replay data.
logging.info(
'Initializing replay buffer by collecting experience for %d steps '
'with a random policy.', initial_collect_steps)
initial_collect_driver.run()
results = metric_utils.eager_compute(
eval_metrics,
eval_tf_env,
eval_policy,
num_episodes=num_eval_episodes,
train_step=global_step,
summary_writer=eval_summary_writer,
summary_prefix='Metrics',
)
del results
metric_utils.log_metrics(eval_metrics)
time_step = None
policy_state = collect_policy.get_initial_state(tf_env.batch_size)
timed_at_step = global_step.numpy()
time_acc = 0
env_time_acc = 0
def _filter_invalid_transition(trajectories, unused_arg1):
return ~trajectories.is_boundary()[0]
dataset = replay_buffer.as_dataset(
sample_batch_size=batch_size,
num_steps=2 if n_step is None else n_step)
dataset = dataset.unbatch()
dataset = dataset.filter(_filter_invalid_transition)
dataset = dataset.batch(batch_size, drop_remainder=True)
dataset = dataset.prefetch(5)
iterator = iter(dataset)
### Expert dataset
expert_dataset = tf.data.Dataset.from_tensors(expert_obs)
expert_dataset = expert_dataset.unbatch()
expert_dataset = expert_dataset.repeat().shuffle(int(1e6))
expert_dataset = expert_dataset.batch(batch_size, drop_remainder=True)
expert_iterator = iter(expert_dataset)
def train_step():
experience, _ = next(iterator)
expert_experience = next(expert_iterator)
return tf_agent.train(experience=(experience, expert_experience))
if use_tf_functions:
train_step = common.function(train_step)
global_step_val = global_step.numpy()
while global_step_val < num_iterations:
start_time = time.time()
time_step, policy_state = collect_driver.run(
time_step=time_step,
policy_state=policy_state,
)
env_time_acc += time.time() - start_time
for _ in range(train_steps_per_iteration):
train_loss = train_step()
time_acc += time.time() - start_time
global_step_val = global_step.numpy()
if global_step_val % log_interval == 0:
logging.info('step = %d, loss = %f', global_step_val,
train_loss.loss)
steps_per_sec = (global_step_val - timed_at_step) / time_acc
logging.info('%.3f steps/sec', steps_per_sec)
tf.compat.v2.summary.scalar(
name='global_steps_per_sec', data=steps_per_sec, step=global_step)
env_steps_per_sec = (global_step_val - timed_at_step) / env_time_acc
logging.info('Env: %.3f steps/sec', env_steps_per_sec)
tf.compat.v2.summary.scalar(
name='env_steps_per_sec', data=env_steps_per_sec, step=global_step)
timed_at_step = global_step_val
time_acc = 0
env_time_acc = 0
for train_metric in train_metrics:
train_metric.tf_summaries(
train_step=global_step, step_metrics=train_metrics[:2])
if global_step_val % eval_interval == 0:
results = metric_utils.eager_compute(
eval_metrics,
eval_tf_env,
eval_policy,
num_episodes=num_eval_episodes,
train_step=global_step,
summary_writer=eval_summary_writer,
summary_prefix='Metrics',
)
metric_utils.log_metrics(eval_metrics)
if global_step_val % train_checkpoint_interval == 0:
train_checkpointer.save(global_step=global_step_val)
# if global_step_val % policy_checkpoint_interval == 0:
# policy_checkpointer.save(global_step=global_step_val)
#
if global_step_val % rb_checkpoint_interval == 0:
rb_checkpointer.save(global_step=global_step_val)
return train_loss
def main(_):
tf.compat.v1.enable_v2_behavior()
logging.set_verbosity(logging.INFO)
gin.parse_config_files_and_bindings(FLAGS.gin_file, FLAGS.gin_bindings)
root_dir = FLAGS.root_dir
train_eval(root_dir)
if __name__ == '__main__':
flags.mark_flag_as_required('root_dir')
app.run(main)