-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model.py
305 lines (255 loc) · 10.8 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import argparse
import glob
import itertools
import os
import re
import sys
from os.path import join
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
from scipy import stats
from scipy.stats import pearsonr, spearmanr
from sklearn.ensemble import RandomForestRegressor
# from joblib import Parallel, delayed
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.neural_network import MLPRegressor
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.svm import SVR
from training import *
def remove_extensions(file_name):
if file_name.endswith('.yuv'):
return file_name[:-4]
elif file_name.endswith('.mp4'):
return file_name[:-4]
else:
return file_name
def process_string(s):
s = s.replace('[', '')
s = s.replace(']', '')
s = s.replace(' ', ' ')
s = s.replace(' ', ' ')
s = s.replace('\n', '')
sp = re.split(' |,', s)
sp = [value for value in sp if value != '']
l = [eval(i) for i in sp]
return l
def conbine_features(config, nonlinear):
s, c, n, p = config
if not nonlinear:
dlm_nononlinear_feats_pth = join(
feats_pth, f'hdrdlmnew/dlm_none_2.0/{s}_0')
dlm_feats_non = read_features(dlm_nononlinear_feats_pth)
vif_nononlinear_feats_pth = join(
feats_pth, f'hdrvifnew/vif_none_2.0/{s}_0')
vif_feats_non = read_features(vif_nononlinear_feats_pth)
non_feats = vif_feats_non.merge(dlm_feats_non, on='video')
if c:
dlm_nononlinear_feats_pth = join(
feats_pth, f'hdrdlmnew/dlm_none_2.0/{s}_1')
dlm_feats_non = read_features(dlm_nononlinear_feats_pth)
vif_nononlinear_feats_pth = join(
feats_pth, f'hdrvifnew/vif_none_2.0/{s}_1')
vif_feats_non = read_features(vif_nononlinear_feats_pth)
non_feats1 = vif_feats_non.merge(dlm_feats_non, on='video')
non_feats = non_feats.merge(non_feats1, on='video')
dlm_nononlinear_feats_pth = join(
feats_pth, f'hdrdlmnew/dlm_none_2.0/{s}_2')
dlm_feats_non = read_features(dlm_nononlinear_feats_pth)
vif_nononlinear_feats_pth = join(
feats_pth, f'hdrvifnew/vif_none_2.0/{s}_2')
vif_feats_non = read_features(vif_nononlinear_feats_pth)
non_feats1 = vif_feats_non.merge(dlm_feats_non, on='video')
non_feats = non_feats.merge(non_feats1, on='video')
else:
dlm_nononlinear_feats_pth = join(
feats_pth, f'hdrdlmnew/dlm_{n}_{p}/{s}_0')
dlm_feats_non = read_features(dlm_nononlinear_feats_pth)
vif_nononlinear_feats_pth = join(
feats_pth, f'hdrvifnew/vif_{n}_{p}/{s}_0')
vif_feats_non = read_features(vif_nononlinear_feats_pth)
non_feats = vif_feats_non.merge(dlm_feats_non, on='video')
if c:
dlm_nononlinear_feats_pth = join(
feats_pth, f'hdrdlmnew/dlm_{n}_{p}/{s}_1')
dlm_feats_non = read_features(dlm_nononlinear_feats_pth)
vif_nononlinear_feats_pth = join(
feats_pth, f'hdrvifnew/vif_{n}_{p}/{s}_1')
vif_feats_non = read_features(vif_nononlinear_feats_pth)
non_feats1 = vif_feats_non.merge(dlm_feats_non, on='video')
non_feats = non_feats.merge(non_feats1, on='video')
dlm_nononlinear_feats_pth = join(
feats_pth, f'hdrdlmnew/dlm_{n}_{p}/{s}_2')
dlm_feats_non = read_features(dlm_nononlinear_feats_pth)
vif_nononlinear_feats_pth = join(
feats_pth, f'hdrvifnew/vif_{n}_{p}/{s}_2')
vif_feats_non = read_features(vif_nononlinear_feats_pth)
non_feats1 = vif_feats_non.merge(dlm_feats_non, on='video')
non_feats = non_feats.merge(non_feats1, on='video')
return non_feats
def process_dlm(df, method='by_level'):
# if the method is by band, then returns only four levels, otherwise returns the entire bands
if method == 'by_level':
nums2 = df.iloc[:, 1]
nums2 = [process_string(i) for i in nums2]
nums2 = np.array(nums2)
nums2 = nums2.mean(axis=0)
return nums2
else:
nums3 = df.iloc[:, 2]
nums3 = [process_string(i) for i in nums3]
nums3 = np.array(nums3)
nums3 = nums3.mean(axis=0)
return nums3
def process_vif(df, method='by_level'):
# if the method is by band, then returns only four levels, otherwise returns the entire bands
nums2 = df.iloc[:, 1]
nums2 = [process_string(i) for i in nums2]
nums2 = np.array(nums2)
nums2 = nums2
nums3 = df.iloc[:, 2]
nums3 = [process_string(i) for i in nums3]
nums3 = np.array(nums3)
res = nums2.reshape(-1, 4, 2).sum(axis=2) / \
(nums3.reshape(-1, 4, 2).sum(axis=2)+0.0001)
res = res.mean(axis=0)
return res
def read_features(file_path):
files = glob.glob(join(file_path, '*.csv'))
vnames = []
feats = []
if files == []:
print('em')
if file_path.find('dlm') >= 0:
for f in files:
df = pd.read_csv(f, index_col=0)
feats_1vid = process_dlm(df)
vname = os.path.basename(f)[:-4]
vnames.append(vname)
feats.append(feats_1vid)
else:
for f in files:
df = pd.read_csv(f, index_col=0)
feats_1vid = process_vif(df)
vname = os.path.basename(f)[:-4]
vnames.append(vname)
feats.append(feats_1vid)
features = pd.DataFrame(np.array(feats))
features['video'] = vnames
return features
def conbine_texp_features(config):
s, c, n, p1, p2 = config
bright_pth = join(feats_pth, f'hdrdlmnew/dlm_{n}_{p1}/{s}_0')
dark_pth = join(feats_pth, f'hdrdlmnew/dlm_{n}_{p2}/{s}_0')
dlm_feats_non = read_two_exp_features(bright_pth, dark_pth)
bright_pth = join(feats_pth, f'hdrvifnew/vif_{n}_{p1}/{s}_0')
dark_pth = join(feats_pth, f'hdrvifnew/vif_{n}_{p2}/{s}_0')
vif_feats_non = read_two_exp_features(bright_pth, bright_pth)
non_feats = vif_feats_non.merge(dlm_feats_non, on='video')
if c:
bright_pth = join(feats_pth, f'hdrdlmnew/dlm_{n}_{p1}/{s}_1')
dark_pth = join(feats_pth, f'hdrdlmnew/dlm_{n}_{p2}/{s}_1')
dlm_feats_non = read_two_exp_features(bright_pth, dark_pth)
bright_pth = join(feats_pth, f'hdrvifnew/vif_{n}_{p1}/{s}_1')
dark_pth = join(feats_pth, f'hdrvifnew/vif_{n}_{p2}/{s}_1')
vif_feats_non = read_two_exp_features(bright_pth, bright_pth)
non_feats1 = vif_feats_non.merge(dlm_feats_non, on='video')
non_feats = non_feats.merge(non_feats1, on='video')
bright_pth = join(feats_pth, f'hdrdlmnew/dlm_{n}_{p1}/{s}_2')
dark_pth = join(feats_pth, f'hdrdlmnew/dlm_{n}_{p2}/{s}_2')
dlm_feats_non = read_two_exp_features(bright_pth, dark_pth)
bright_pth = join(feats_pth, f'hdrvifnew/vif_{n}_{p1}/{s}_2')
dark_pth = join(feats_pth, f'hdrvifnew/vif_{n}_{p2}/{s}_2')
vif_feats_non = read_two_exp_features(bright_pth, bright_pth)
non_feats2 = vif_feats_non.merge(dlm_feats_non, on='video')
non_feats = non_feats.merge(non_feats2, on='video')
return non_feats
def read_two_exp_features(pth1, pth2):
files = glob.glob(join(pth1, '*.csv'))
vnames = []
feats = []
if files == []:
print('em')
if pth1.find('dlm') >= 0:
for f in files:
df = pd.read_csv(f, skiprows=1, header=None, index_col=0)
feats_1vid = process_dlm(df.iloc[:, [0, 1, 2]])
vname = os.path.basename(f)[:-4]
vnames.append(vname)
feats.append(feats_1vid)
else:
for f in files:
df = pd.read_csv(f, skiprows=1, header=None, index_col=0)
feats_1vid = process_vif(df.iloc[:, [0, 1, 2]])
vname = os.path.basename(f)[:-4]
vnames.append(vname)
feats.append(feats_1vid)
features1 = pd.DataFrame(np.array(feats))
features1['video'] = vnames
files = glob.glob(join(pth2, '*.csv'))
vnames = []
feats = []
if files == []:
print('em')
if pth1.find('dlm') >= 0:
for f in files:
df = pd.read_csv(f, skiprows=1, header=None, index_col=0)
feats_1vid = process_dlm(df.iloc[:, [3, 4, 5]])
vname = os.path.basename(f)[:-4]
vnames.append(vname)
feats.append(feats_1vid)
else:
for f in files:
df = pd.read_csv(f, skiprows=1, header=None, index_col=0)
feats_1vid = process_vif(df.iloc[:, [3, 4, 5]])
vname = os.path.basename(f)[:-4]
vnames.append(vname)
feats.append(feats_1vid)
features2 = pd.DataFrame(np.array(feats))
features2['video'] = vnames
features = features1.merge(features2, on='video')
return features
argparser = argparse.ArgumentParser(
description='Train a model on a custom dataset')
argparser.add_argument('feature_path', type=str,
help='Path to the folder containing the features')
argparser.add_argument('score_csv', type=str,
help='Path to the score file. This should be a csv file with the following columns: video, score, content. It is critical that the video column is the same as the video name in the feature folder.')
argparser.add_argument('--scaler_name', type=str,
help='The name of the Scaler', default='model_scaler.pkl')
argparser.add_argument('--svr_name', type=str,
help='The name of the SVR', default='model_svr.pkl')
args = argparser.parse_args()
feats_pth = args.feature_path
score_csv = args.score_csv
scaler_name = os.path.abspath(args.scaler_name)
svr_name = os.path.abspath(args.svr_name)
# create the folder to save the scaler if it does not exist.
if not os.path.exists(os.path.dirname(scaler_name)):
os.makedirs(os.path.dirname(scaler_name))
# create the folder to save the svr if it does not exist.
if not os.path.exists(os.path.dirname(svr_name)):
os.makedirs(os.path.dirname(svr_name))
# read the score file
scores = pd.read_csv(score_csv)
scores['video'] = scores['video'].apply(remove_extensions)
spaces = ['ycbcr']
nonlinear = ['local_exp']
counter = 0
configs = []
for s in spaces:
for n in nonlinear:
for p1 in [0.5]:
for p2 in [5.0]:
for c in [False]:
configs.append([s, c, n, p1, p2])
for cfig_index in range(0, len(configs)):
print(configs[cfig_index])
s, c, n, p1, p2 = configs[cfig_index]
feature = conbine_features(configs[cfig_index][:-1], False)
nonlinear_features = conbine_texp_features(configs[cfig_index])
feature = feature.merge(nonlinear_features, on='video')
feature = feature.merge(scores[['video', 'score', 'content']], on='video')
train_for_srocc_svr(feature, scaler_name, svr_name)
print('Training finished. ')