-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathengine.py
197 lines (149 loc) · 6.58 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import math
import cv2
import sys
import time
import torch
import torchvision.models.detection.mask_rcnn
# from coco_utils import get_coco_api_from_dataset
# from coco_eval import CocoEvaluator
import utils
def criterion(inputs, target):
losses = {}
for name, x in inputs.items():
# print('HERE', torch.nn.functional.binary_cross_entropy(torch.sigmoid(x), target))
# print('UNIQUE', torch.unique(x), torch.unique(target))
# print('target', target)
# print(x.shape, target.shape)
# losses[name] = torch.nn.functional.cross_entropy(x, target.long(), ignore_index=255)
losses[name] = torch.nn.functional.binary_cross_entropy(torch.sigmoid(x), target)
if len(losses) == 1:
return losses['out']
return losses['out'] + 0.5 * losses['aux']
def train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
lr_scheduler = None
if epoch == 0:
warmup_factor = 1. / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = utils.warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor)
for batch_i, (images, targets) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# images = list(image.to(device) for image in images)
# targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# images = torch.tensor([i for i in images]).to(device)
# targets = torch.tensor([i for i in targets]).to(device)
images = images.to(device)
targets = targets.to(device)
preds = model(images)
out = preds['out']
# out_aux = preds['aux']
# print(torch.unique(out))
# print(torch.unique(out_aux))
# print(torch.unique(targets))
loss = criterion(preds, targets)
# print(images.shape, targets.shape)
# print(out.shape, out_aux.shape)
# losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
# loss_dict_reduced = utils.reduce_dict(loss_dict)
# losses_reduced = sum(loss for loss in loss_dict_reduced.values())
# loss_value = losses_reduced.item()
loss_value = loss.item()
# print(f"Batch {batch_i} Loss is {loss_value} ")
if not math.isfinite(loss_value):
print(f"Loss is {loss_value}, stopping training")
# print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
torch.cuda.empty_cache()
# metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
# metric_logger.update(lr=optimizer.param_groups[0]["lr"])
save_sample(epoch, preds, images, targets)
@torch.no_grad()
def evaluate(model, data_loader, device, epoch, print_freq):
# n_threads = torch.get_num_threads()
# torch.set_num_threads(1)
model.eval()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test:'
for batch_i, (images, targets) in enumerate(metric_logger.log_every(data_loader, print_freq)):
images = images.to(device)
targets = targets.to(device)
preds = model(images)
out = preds['out']
# out_aux = preds['aux']
loss = criterion(preds, targets)
loss_value = loss.item()
print(f"Epoch {epoch} Val.Loss is {loss_value} Batch {batch_i} ")
torch.cuda.empty_cache()
# if (epoch + 1) % 5 == 0:
# save_sample(epoch, preds, images, targets)
def save_sample(epoch, preds_dict, images, targets):
for k, pred in preds_dict.items():
print(torch.unique(pred))
pred = torch.sigmoid(pred)
print(torch.unique(pred))
preds = pred.cpu().detach().numpy()
for _, i in enumerate(preds):
img = i.squeeze()
cv2.imwrite(f'sample_pr_{k}_e{epoch}_p{_}.png', img * 255)
targets = targets.cpu().detach().numpy()
for _, i in enumerate(targets):
img = i.squeeze()
print(img.shape)
cv2.imwrite(f'sample_gt_e{epoch}_t{_}.png', img * 255)
# images = images.cpu().detach().numpy()
# for _, i in enumerate(images):
# img = i.transpose((1,2,0))[:,:,::-1]
# print(img.shape)
# cv2.imwrite(f'sample_gt_e{epoch}_i{_}.png', img * 255)
# def _get_iou_types(model):
# model_without_ddp = model
# if isinstance(model, torch.nn.parallel.DistributedDataParallel):
# model_without_ddp = model.module
# iou_types = ["bbox"]
# if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
# iou_types.append("segm")
# if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
# iou_types.append("keypoints")
# return iou_types
# @torch.no_grad()
# def evaluate(model, data_loader, device):
# n_threads = torch.get_num_threads()
# # FIXME remove this and make paste_masks_in_image run on the GPU
# torch.set_num_threads(1)
# cpu_device = torch.device("cpu")
# model.eval()
# metric_logger = utils.MetricLogger(delimiter=" ")
# header = 'Test:'
# coco = get_coco_api_from_dataset(data_loader.dataset)
# iou_types = _get_iou_types(model)
# coco_evaluator = CocoEvaluator(coco, iou_types)
# for image, targets in metric_logger.log_every(data_loader, 100, header):
# image = list(img.to(device) for img in image)
# targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
# torch.cuda.synchronize()
# model_time = time.time()
# outputs = model(image)
# outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
# model_time = time.time() - model_time
# res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
# evaluator_time = time.time()
# coco_evaluator.update(res)
# evaluator_time = time.time() - evaluator_time
# metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
# # gather the stats from all processes
# metric_logger.synchronize_between_processes()
# print("Averaged stats:", metric_logger)
# coco_evaluator.synchronize_between_processes()
# # accumulate predictions from all images
# coco_evaluator.accumulate()
# coco_evaluator.summarize()
# torch.set_num_threads(n_threads)
# return coco_evaluator