-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain2.py
93 lines (81 loc) · 3.03 KB
/
main2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# face recognition part II
#IMPORT
import cv2 as cv
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
from sklearn.preprocessing import LabelEncoder
import pickle
from keras_facenet import FaceNet
from datetime import datetime, time
from Excel_Data import workbook
import openpyxl
today_date = datetime.now().strftime("%d-%m-%Y")
file_name = f"{today_date}.xlsx"
workbook = openpyxl.load_workbook(file_name)
sheet = workbook.active
#INITIALIZE
facenet = FaceNet()
faces_embeddings = np.load("faces_embeddings_done_14classes.npz")
Y = faces_embeddings['arr_1']
encoder = LabelEncoder()
encoder.fit(Y)
haarcascade = cv.CascadeClassifier("haarcascade_frontalface_default.xml")
model = pickle.load(open("logistic_regression_160x160.pkl", 'rb'))
cap = cv.VideoCapture(0)
# WHILE LOOP
while cap.isOpened():
_, frame = cap.read()
rgb_img = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
gray_img = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
faces = haarcascade.detectMultiScale(gray_img, 1.3, 5)
for x,y,w,h in faces:
img = rgb_img[y:y+h, x:x+w]
img = cv.resize(img, (160,160)) # 1x160x160x3
img = np.expand_dims(img,axis=0)
ypred = facenet.embeddings(img)
face_name = model.predict(ypred)
final_name = encoder.inverse_transform(face_name)[0]
final_name_list = final_name.tolist()
cv.rectangle(frame, (x,y), (x+w,y+h), (255,0,255), 10)
cv.putText(frame, str(final_name), (x,y-10), cv.FONT_HERSHEY_SIMPLEX,
1, (0,0,255), 3, cv.LINE_AA)
now = datetime.now().time()
face_locations, face_names = ypred, final_name
for face_loc, name in zip(face_locations, face_names):
if name not in detected_faces:
detected_faces[name] = False
if not detected_faces[name]:
detected_faces[name] = True
now = datetime.now().time()
if time(8, 45, 0) <= now <= time(9, 45, 0):
if final_name == "vaibhav":
sheet["D54"] = "P"
if final_name == "Dev":
sheet["D19"] = "P"
if final_name == "Shourya":
sheet["D49"] = "P"
if final_name == "Manan":
sheet["D39"] = "P"
if time(14, 45, 0) <= now <= time(15, 55, 0):
if final_name == "vaibhav":
sheet["E54"] = "P"
if final_name == "Dev":
sheet["E19"] = "P"
if final_name == "Shourya":
sheet["E49"] = "P"
if final_name == "Manan":
sheet["E39"] = "P"
print(final_name)
print(type(final_name))
print(final_name_list)
print(type(final_name_list))
cv.imshow("Face Recognition:", frame)
key = cv.waitKey(1)
if key == 27:
break
file_name = f"{today_date}.xlsx"
workbook.save(file_name)
cap.release()
cv.destroyAllWindows