-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
528 lines (490 loc) · 26.9 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
<html lang="en-GB">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections</title>
<meta name="description" content="We've presented SynMirror, a dataset and MirrorFusion, a method, to tackle the challenging task of generating plausible mirror reflections using diffusion models.">
<meta name="referrer" content="no-referrer-when-downgrade">
<meta name="robots" content="all">
<meta content="en_EN" property="og:locale">
<meta content="website" property="og:type">
<meta content="https://reflecting-reality.github.io/" property="og:url">
<meta content="Reflecting Reality" property="og:title">
<meta content="Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections" property="og:description">
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:site" content="@your_twitter_id">
<meta name="twitter:description" content="Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections">
<meta name="twitter:image:src" content="assets/figures/ours-sofa-web-teaser.jpg">
<link rel="stylesheet" type="text/css" media="all" href="assets/stylesheets/main_free.css" />
<link rel="stylesheet" type="text/css" media="all" href="clarity/clarity.css" />
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.18.1/styles/foundation.min.css">
<link href="assets/fontawesome-free-6.6.0-web/css/all.min.css" rel="stylesheet">
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
"HTML-CSS": {
scale: 95,
fonts: ["Gyre-Pagella"],
imageFont: null,
undefinedFamily: "'Arial Unicode MS', cmbright"
},
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
processEscapes: true
}
});
</script>
<script type="text/javascript"
src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
<script defer src="https://cdn.jsdelivr.net/npm/img-comparison-slider@8/dist/index.js"></script>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/img-comparison-slider@8/dist/styles.css" />
<style>
.highlight-row {
background-color: #f9f9f9; /* Light gray background */
border: 2px solid #d78f8f; /* Light border around the row */
}
</style>
</head>
<body>
<!-- Title Page -->
<!-- Dark Theme Example -->
<!-- <div class="container blog" id="first-content" style="background-color: #304463;">
<div class="blog-title white"> -->
<!-- White Theme Example -->
<div class="container blog" id="first-content" style="background-color: #DDCECD;">
<div class="blog-title">
<div class="blog-intro">
<div>
<h1 class="title">Reflecting Reality: Enabling Diffusion Models to Produce Faithful Mirror Reflections</h1>
<h1>3DV 2025</h1>
<p class="author">
<a href="https://www.linkedin.com/in/ankit-dhiman-46109a174/" target="_blank">Ankit Dhiman</a> <sup>1,2<b>*</b></sup>,
<a href="https://cs-mshah.github.io/" target="_blank">Manan Shah</a> <sup>1<b>*</b></sup>,
<a href="https://rishubhpar.github.io/" target="_blank">Rishubh Parihar</a> <sup>1</sup>,
<a href="https://yashbhalgat.github.io/" target="_blank">Yash Bhalgat</a> <sup>3</sup>,
Lokesh R Boregowda and
<a href="https://cds.iisc.ac.in/faculty/venky/" target="_blank">R Venkatesh Babu</a> <sup>1</sup>
<br>
</p>
<p class="author" style="padding-top: 0px;">
<sup><b>*</b></sup> Equal Contribution
<br>
<sup>1</sup> Vision and AI Lab, IISc Bangalore
<br>
<sup>2</sup> Samsung R & D Institute India - Bangalore
<br>
<sup>3</sup> Visual Geometry Group, University of Oxford
<br>
</p>
<p class="abstract">
<p class="abstract">
<p> We tackle the challenge of generating realistic mirror reflections using diffusion-based generative models,
formulated as an image inpainting task to enable user control over mirror placement. To support this, we introduce
<b>SynMirror</b>, a dataset with $198K$ samples rendered from $66K$ 3D objects, including depth maps, normal maps, and
segmentation masks to capture scene geometry. </p>
<p> We propose <b>MirrorFusion</b>, a novel depth-conditioned inpainting method that produces high-quality, photo-realistic
reflections, given an input image and mirror mask. <b>MirrorFusion</b> outperforms state-of-the-art methods on <b>SynMirror</b>, offering new
possibilities for image editing and augmented reality. </p>
</p>
</p>
</div>
<div class="info">
<a href="https://arxiv.org/abs/2409.14677" class="button icon" style="background-color: rgba(255, 255, 255, 0.25)">Paper<i
class="fa-solid fa-book-open"></i></a>
<a href="https://github.com/val-iisc/Reflecting-Reality" class="button icon" style="background-color: rgba(255, 255, 255, 0.25)">Source Code<i class="fa-solid fa-code"></i></a>
<a href="https://huggingface.co/datasets/cs-mshah/SynMirror" class="button icon" style="background-color: rgba(255, 255, 255, 0.25)">Dataset<i
class="fa-solid fa-database"></i></a>
</div>
</div>
<div class="blog-cover">
<img class="foreground" src="assets/figures/ours-sofa-web-teaser.jpg">
<img class="background" src="assets/figures/ours-sofa-web-teaser.jpg">
</div>
</div>
</div>
<div class="container blog main gray">
<p>
<b>Cool Podcast <i class="fa-solid fa-podcast"></i> Generated by <a href="https://notebooklm.google.com/">NotebookLM!</a></b>
</p>
<!-- Add .wav file input -->
<audio controls>
<source src="assets/audio/notebookLM.wav" type="audio/wav">
Your browser does not support the audio element.
</audio>
</div>
<div class="container blog main">
<h1>
Introduction
</h1>
<p class='text'>
The task of generating realistic and controllable
mirror reflections remains a challenging one for various recent state-of-the-art
diffusion based generative models. To illustrate this limitation, we prompt Stable Diffusion-2.1
with the instruction to generate a scene with a mirror reflection.
</p>
<!-- <img src="assets/figures/sd-generations.png"> -->
<div class="columns-3">
<div>
<img src="assets/figures/sd-swivel-chair.jpg">
<p class="caption">
<b>Prompt:</b> A perfect plane mirror reflection of swivel chair with curved backrest in front of the mirror
</p>
</div>
<div>
<img src="assets/figures/sd-lipstick.jpg">
<p class="caption">
<b>Prompt:</b> A perfect plane mirror reflection of a gold lipstick container in front of the mirror on a table
</p>
</div>
<div>
<img src="assets/figures/sd-black-stone.jpg">
<p class="caption">
<b>Prompt:</b> A perfect plane mirror reflection of a black stone with swivels in front of the mirror on a table
</p>
</div>
</div>
<p class='text'>
From the above figure, it is clear that T2I methods fail to generate realistic and plausible mirror reflections.
It can be seen that there is a lack of control over the placement of mirrors and what objects it reflects. Moreover,
inpainting methods also fail to take the scene context into account while generating a plausible reflection when provided
with an additional mask depicting the mirror region as input.
</p>
</div>
<div class="container blog main gray">
<img src="assets/figures/teaser.png">
<p class="caption">
<b>Prompt:</b> All the images were generated by prefixing the mirror text prompt: <b><i style="color:#15761f;">"A perfect plain mirror reflection
of "</i></b> to the input object description.
</p>
</div>
<div class="container blog main">
<p class='text'>
Our model <b>MirrorFusion</b>, a diffusion-based inpainting model, is able to generate high-quality, geometrically
consistent and
photo-realistic mirror reflections given an input image and a mask depicting the mirror region. Our method shows
superior quality generations as compared to previous state-of-the-art diffusion-based inpainting
methods.
</p>
</div>
<div class="container blog main">
<h1 >
Dataset
</h1>
<p class="text">
We find that previous mirror datasets are inadequate for training generative models as they are primarily
designed for reflective mirror detection and lack object diversity, which is required to incorporate the priors of mirror reflections in diffusion models.
</p>
<p class="text">
To address this, we propose <b>SynMirror</b>, a first-of-its-kind large-scale synthetic dataset on mirror reflections,
with diverse mirror types, objects, camera poses, HDRI backgrounds and floor textures.
</p>
</div>
<div class="container blog main gray large">
<p class="caption selection">
Select Samples from <b>SynMirror:</b>
<Select id="image-selector-dataset">
<option value="chair" selected>chair</option>
<option value="sofa">sofa</option>
<option value="glass-cup">glass-cup</option>
<option value="lamp">lamp</option>
<option value="pouffe">pouffe</option>
<option value="trophy">trophy</option>
<option value="tire">tire</option>
<option value="person">person</option>
<option value="statue">statue</option>
<option value="gun">gun</option>
<option value="firehydrant">firehydrant</option>
<option value="toy-bunny">toy-bunny</option>
<option value="coke">coke</option>
<option value="box">box</option>
<option value="lantern">lantern</option>
<option value="shell">shell</option>
<option value="cactus">cactus</option>
<option value="teddy">teddy</option>
<option value="barrel">barrel</option>
<option value="rooster">rooster</option>
<option value="vase">vase</option>
</Select>
<select id="image-selector-dataset-temp" style="display: none;">
<option id="image-selector-dataset-temp-option"></option>
</select>.
Use the slider to view RGB, Depth, Normal maps and Segmentation masks of the selected object.
</p>
<div class="columns-3">
<div>
<img-comparison-slider id="dataset-seg" class="slider-container white">
<figure slot="first" class="before">
<img src="assets/figures/chair_img.png" />
<figcaption>RGB</figcaption>
</figure>
<figure slot="second" class="after">
<img src="assets/figures/chair_seg.png" />
<figcaption>Seg</figcaption>
</figure>
</img-comparison-slider>
</div>
<div>
<img-comparison-slider id="dataset-depth" class="slider-container white">
<figure slot="first" class="before">
<img src="assets/figures/chair_img.png" />
<figcaption>RGB</figcaption>
</figure>
<figure slot="second" class="after">
<img src="assets/figures/chair_depth.png" />
<figcaption>Depth</figcaption>
</figure>
</img-comparison-slider>
</div>
<div>
<img-comparison-slider id="dataset-normal" class="slider-container white">
<figure slot="first" class="before">
<img src="assets/figures/chair_img.png" />
<figcaption>RGB</figcaption>
</figure>
<figure slot="second" class="after">
<img src="assets/figures/chair_normal.png" />
<figcaption>Normal</figcaption>
</figure>
</img-comparison-slider>
</div>
</div>
</div>
<div class="container blog main">
<p class="text">
<b>SynMirror</b> consists of samples rendered from 3D assets of two widely used 3D object datasets - <a href="https://objaverse.allenai.org/objaverse-1.0/">Objaverse</a>
and <a href="https://amazon-berkeley-objects.s3.amazonaws.com/index.html">Amazon
Berkeley Objects (ABO)</a>.
</p>
<p class="text">
We create a virtual environment in Blender by placing a selected 3D object in front of a mirror.
We then leverage <a href="https://github.com/DLR-RM/BlenderProc">BlenderProc</a> to render the 3D object along with its depth map, normal map, and segmentation mask.
We render 3 random views per object, sampled along a trajectory around the object.
</p>
</div>
<div class="container blog main gray large">
<img src="assets/figures/fig_data_generation.png">
<p class="caption">
<b>SynMirror</b> dataset generation pipeline. We render $58,115$ objects sampled from <a href="https://objaverse.allenai.org/objaverse-1.0/">Objaverse</a>
and all $7,953$ objects sampled from <a href="https://amazon-berkeley-objects.s3.amazonaws.com/index.html">ABO</a>.
</p>
</div>
<div class="container blog main">
<p class="text">
<div class="table-wrapper">
<table>
<thead class="center">
<tr>
<th>Dataset</th>
<th>Type</th>
<th>Size</th>
<th>Attributes</th>
</tr>
</thead>
<tbody class="center">
<tr>
<td><a href="https://arxiv.org/abs/1908.09101">MSD</a></td>
<td>Real</td>
<td>4018</td>
<td>RGB, Masks</td>
</tr>
<tr>
<td><a href="https://arxiv.org/abs/2308.03280">Mirror-NeRF</a></td>
<td>Real & Synthetic</td>
<td>9 scenes</td>
<td>RGB, Masks, Multi-View</td>
</tr>
<tr>
<td><a href="https://www.researchgate.net/publication/372496048_Designing_a_Lightweight_Edge-Guided_Convolutional_Neural_Network_for_Segmenting_Mirrors_and_Reflective_Surfaces">DLSU-OMRS</a></td>
<td>Real</td>
<td>454</td>
<td>RGB, Mask</td>
</tr>
<tr>
<td><a href="https://ieeexplore.ieee.org/document/10064348">TROSD</a></td>
<td>Real</td>
<td>11060</td>
<td>RGB, Mask</td>
</tr>
<tr>
<td><a href="https://openaccess.thecvf.com/content_CVPR_2020/papers/Lin_Progressive_Mirror_Detection_CVPR_2020_paper.pdf">PMD</a></td>
<td>Real</td>
<td>6461</td>
<td>RGB, Masks</td>
</tr>
<tr>
<td><a href="https://openaccess.thecvf.com/content/CVPR2021/html/Mei_Depth-Aware_Mirror_Segmentation_CVPR_2021_paper.html">RGBD-Mirror</a></td>
<td>Real</td>
<td>3049</td>
<td>RGB, Depth</td>
</tr>
<tr>
<td><a href="https://arxiv.org/abs/2106.06629">Mirror3D</a></td>
<td>Real</td>
<td>7011</td>
<td>RGB, Masks, Depth</td>
</tr>
<tr class="highlight-row">
<td><b>SynMirror (Ours)</b></td>
<td><b>Synthetic</b></td>
<td><b>198204</b></td>
<td><b>RGB, Depth, Masks, Normals, Multi-View</b></td>
</tr>
</tbody>
</table>
</div>
<p class="caption">
A comparison between <b>SynMirror</b> and other mirror datasets. <b>SynMirror</b> has more attributes and is more than six
times larger in size than all other existing datasets combined.
</p>
</p>
</div>
<div class="container blog main">
<h1>
Method
</h1>
<p class="text">
We propose <b>MirrorFusion</b>, a novel depth-conditioned inpainting method that generates high-quality mirror reflections
given an input image and a mask depicting the mirror region. The architecture of <b>MirrorFusion</b> is built upon <a href="https://arxiv.org/abs/2403.06976">BrushNet</a>
by incorporating a channel for depth, which is necessary for incorporating the geometric information of the object and
its placement in the scene along with the mirror. <b>MirrorFusion</b> is fine-tuned on <b>SynMirror</b> from the Stable-Diffusion-v1.5 checkpoint.
During inference, we provide the masked input image and a binary mask depicting the mirror region.
The depth map can be estimated from the input image using any monocular depth estimation methods such as <a href="https://arxiv.org/abs/2312.02145">Marigold</a> or <a href="https://arxiv.org/abs/2406.09414">Depth-Anything-V2</a>.
</p>
</div>
<div class="container blog main gray large">
<img src="assets/figures/architecture.png">
<p class="caption">
<b>Overview of the architecture.</b> We encode the input image <b>$X$</b> using a pre-trained image encoder from Stable
Diffusion to get <b>$Z_m$</b>. Subsequently, we resize the mirror mask <b>$m$</b> and depth map <b>$d$</b> to obtain
resized mask <b>$X_m$</b> and depth <b>$X_d$</b>. Then, we concatenate noisy latents <b>$Z_t$</b>, <b>$Z_m$</b>,
<b>$X_m$</b>, and <b>$X_d$</b> which are fed into the Conditioning U-Net <b>$\epsilon^{'}_{\theta}$</b>. Each layer of
the Generation U-Net <b>$\epsilon_{\theta}$</b> is conditioned via zero convolutions with corresponding layers of
<b>$\epsilon^{'}_{\theta}$</b>. Additionally, <b>$\epsilon_{\theta}$</b> is conditioned by text embeddings. The
pre-trained decoder then decodes the denoised latent to produce an image with mirror reflections.
</p>
</div>
<div class="container blog main">
<h1>
Qualitative Results
</h1>
<p class="text">
We compare <b>MirrorFusion</b> with different state-of-the-art inpainting methods on <b>MirrorBench</b>, a held-out subset of <b>SynMirror</b>
containing seen and unseen object categories.
</p>
<img src="assets/figures/fig_cmp_qual.png">
<p class="caption">
<b>Comparison with different inpainting methods.</b> <br>
We compare our results with zero-shot
baselines (denoted by <code>-ZS</code>): <code><a href="https://huggingface.co/stabilityai/stable-diffusion-2-inpainting">SD-Inpainting-ZS</a></code>,
<code><a href="https://arxiv.org/abs/2312.03594">PowerPaint-ZS</a></code>, and <code><a href="https://arxiv.org/abs/2403.06976">BrushNet-ZS</a></code>. Additionally, we fine-tune <code>BrushNet</code> on
<b>SynMirror</b> and refer to it as <code>BrushNet-FT</code>. The top four rows show results on the "unknown" category,
while the bottom two rows display results on "known" categories from <b>MirrorBench</b>. Zero-shot methods often
fail to generate reflections on the mirror or place them incorrectly. In contrast, <code>BrushNet-FT</code>, trained on <b>SynMirror</b>, produces plausible reflections but lacks geometric accuracy. However, <b>MirrorFusion</b> has improved accuracy
in preserving object shapes, floor textures, and correctly placing the reflections.
</p>
</div>
<div class="container blog main">
<h1>
Quantitative Results
</h1>
<p class="text">
We quantitatively compare <b>MirrorFusion</b> with <code>BrushNet-FT</code> on <b>MirrorBench</b>, which consists of
$1497$ samples from known categories and $1494$ samples from unseen categores during training.
We benchmark based on four aspects: masked region preservation, reflection generation quality, reflection geometry and
text alignment. We generate 4 outputs using random seeds for each sample and report the average scores across <b>MirrorBench</b> by selecting
the image with the best SSIM score over the unmasked region as the representative image.
</p>
<p class="text">
Masked Image Preservation metrics are computed over the unmasked mirror region.
<div class="table-wrapper">
<table>
<thead class="center">
<tr>
<th></th>
<th colspan="3">Masked Image Preservation</th>
<th>Text Alignment</th>
</tr>
<tr>
<th>Models</th>
<th><b>PSNR</b> ↑</th>
<th><b>SSIM</b> ↑</th>
<th><b>LPIPS</b> ↓</th>
<th><b>CLIP Sim</b> ↑</th>
</tr>
</thead>
<tbody class="center">
<tr>
<td>Brushnet-FT</td>
<td>23.06</td>
<td><b>0.84</b></td>
<td>0.058</td>
<td>24.90</td>
</tr>
<tr>
<td><b>MirrorFusion (Ours)</b></td>
<td><b>24.22</b></td>
<td><b>0.84</b></td>
<td><b>0.051</b></td>
<td><b>25.23</b></td>
</tr>
</tbody>
</table>
</div>
</p>
<p class="text">
Reflection Generation Quality metrics are computed over the segmentation mask containing the mirror reflection of the object and floor in the ground truth
input image. To measure the reflection geometry, we compute the Intersection over Union (IoU)
between the segmentation regions of ground truth object reflection and generated object reflection.
We utilise <a href="https://github.com/facebookresearch/segment-anything">SAM</a> for segmenting the reflection of the object in the mirror.
<div class="table-wrapper">
<table>
<thead class="center">
<tr>
<th></th>
<th colspan="3">Reflection Generation Quality</th>
<th>Reflection Geometry</th>
</tr>
<tr>
<th>Models</th>
<th><b>PSNR</b> ↑</th>
<th><b>SSIM</b> ↑</th>
<th><b>LPIPS</b> ↓</th>
<th><b>IoU</b> ↑</th>
</tr>
</thead>
<tbody class="center">
<tr>
<td>Brushnet-FT</td>
<td>19.15</td>
<td><b>0.84</b></td>
<td>0.082</td>
<td>0.566</td>
</tr>
<tr>
<td><b>MirrorFusion (Ours)</b></td>
<td><b>20.35</b></td>
<td><b>0.84</b></td>
<td><b>0.075</b></td>
<td><b>0.567</b></td>
</tr>
</tbody>
</table>
</div>
</p>
</div>
<!-- Footer Page -->
<footer>
<div class="container">
<p>
This website is built using the <a href="https://shikun.io/projects/clarity">Clarity Template</a>, designed by <a href="https://shikun.io/">Shikun Liu</a>.
</p>
</div>
</footer>
<script src="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.18.1/highlight.min.js"></script>
<script>hljs.initHighlightingOnLoad();</script>
<script src="clarity/clarity.js"></script>
<script src="assets/scripts/main.js"></script>
</body>
</html>