-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathScriptAlleleNetwork.r
178 lines (133 loc) · 5.68 KB
/
ScriptAlleleNetwork.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
library("tidyverse")
library("MCL")
library("igraph")
##### AlleleNetwork Alternative ###############################################
Net.abr = read_delim("Net.abr.net", col_names = FALSE, delim = "\t")
Net.bac = read_delim("Net.bac.net", col_names = FALSE, delim = "\t")
Net.rel = read_delim("Net.rel.net", col_names = FALSE, delim = "\t")
colnames(Net.abr) = c("Source", "Target", "value")
colnames(Net.bac) = c("Source", "Target", "value")
colnames(Net.rel) = c("Source", "Target", "value")
Net.abr.matrix = Net.abr %>% filter(!is.na(Target), !is.na(Source)) %>% spread(Source, value, fill = 0)
Net.bac.matrix = Net.bac %>% filter(!is.na(Target), !is.na(Source)) %>% spread(Source, value, fill = 0)
Net.rel.matrix = Net.rel %>% filter(!is.na(Target), !is.na(Source)) %>% spread(Source, value, fill = 0)
tmp = Net.abr.matrix$Target
Net.abr.matrix = Net.abr.matrix[, -1]
rownames(Net.abr.matrix) = tmp
tmp = Net.bac.matrix$Target
Net.bac.matrix = Net.bac.matrix[, -1]
rownames(Net.bac.matrix) = tmp
tmp = Net.rel.matrix$Target
Net.rel.matrix = Net.rel.matrix[, -1]
rownames(Net.rel.matrix) = tmp
Net.abr.graph = graph_from_adjacency_matrix(
as.matrix(Net.abr.matrix),
mode = "upper",
weighted = TRUE,
diag = FALSE
)
Net.bac.graph = graph_from_adjacency_matrix(
as.matrix(Net.abr.matrix),
mode = "upper",
weighted = TRUE,
diag = FALSE
)
Net.rel.graph = graph_from_adjacency_matrix(
as.matrix(Net.abr.matrix),
mode = "upper",
weighted = TRUE,
diag = FALSE
)
################ Using MCL algorithm for clustering classification #########################
Net.abr.mcl = mcl(as_adjacency_matrix(Net.abr.graph),
addLoops = TRUE,
allow1 = TRUE)
Net.bac.mcl = mcl(as_adjacency_matrix(Net.bac.graph),
addLoops = TRUE,
allow1 = TRUE)
Net.rel.mcl = mcl(as_adjacency_matrix(Net.rel.graph),
addLoops = TRUE,
allow1 = TRUE)
Net.abr.cl = data_frame(
Gene = rownames(Net.abr.matrix),
Cluster = Net.abr.mcl$Cluster,
DataSet = "abr"
)
Net.bac.cl = data_frame(
Gene = rownames(Net.bac.matrix),
Cluster = Net.bac.mcl$Cluster,
DataSet = "bac"
)
Net.rel.cl = data_frame(
Gene = rownames(Net.rel.matrix),
Cluster = Net.rel.mcl$Cluster,
DataSet = "rel"
)
Net.all.cl = bind_rows(Net.abr.cl,
Net.bac.cl,
Net.rel.cl)
############ END MCL algorithm for clustering classification ################################
############ Clustering by Components (Calculate the maximal (weakly or strongly) connected components of a graph) #############
############ This is an alternative if MCL fails because the size of the AlleleNetwork ####################
Net.abr.comp = components(Net.abr.graph)
Net.bac.comp = components(Net.bac.graph)
Net.rel.comp = components(Net.rel.graph)
Net.abr.cl = data_frame(
Gene = rownames(as.data.frame(Net.abr.comp$membership)),
Cluster = Net.abr.comp$membership,
DataSet = "abr"
)
Net.bac.cl = data_frame(
Gene = rownames(as.data.frame(Net.bac.comp$membership)),
Cluster = Net.bac.comp$membership,
DataSet = "bac"
)
Net.rel.cl = data_frame(
Gene = rownames(as.data.frame(Net.rel.comp$membership)),
Cluster = Net.rel.comp$membership,
DataSet = "rel"
)
Net.all.cl = bind_rows(Net.abr.cl,
Net.bac.cl,
Net.rel.cl)
########### END of Clustering by components ################################################
Connections.abr = bind_rows(Net.abr %>% select(X = Target, value),
Net.abr %>% select(X = Source, value)) %>% group_by(X) %>% summarise(N = sum(value))
Connections.bac = bind_rows(Net.bac %>% select(X = Target, value),
Net.bac %>% select(X = Source, value)) %>% group_by(X) %>% summarise(N = sum(value))
Connections.rel = bind_rows(Net.rel %>% select(X = Target, value),
Net.rel %>% select(X = Source, value)) %>% group_by(X) %>% summarise(N = sum(value))
Connections.all = bind_rows(Connections.abr, Connections.bac, Connections.rel)
colnames(Connections.all) = c("Gene", "Connections")
##### END AlleleNetwork ######
#### Load data #######################
lista = dir()[grep("csv", dir())]
j = 0
for (i in lista)
{
tabla = read_delim(i, delim = "\t", col_names = FALSE)
colnames(tabla) = c("Gene", "Reads", "RPK", "Uniq", "Coverage")
tabla$Sample = i
if (j > 0)
{
Full.table = bind_rows(Full.table, tabla)
} else{
Full.table = tabla
}
j = j + 1
}
#### END load data ######################
##### Join AlleleNetwork and Data abundance ############
Full.table = Full.table %>% separate(Sample, c("Sample", "DataSet", "kk"), sep =
"\\.") %>% select(-kk) %>% full_join(., Net.all.cl)
Full.table = Full.table %>% left_join(., Connections.all)
Full.table$Connections[is.na(Full.table$Connections)] = 0
reads = read_delim("../Nreads.txt", col_names = TRUE, delim = ",") #### File with the reads count per Sample
Full.table = left_join(Full.table, reads)
Full.table = Full.table %>% mutate(FinalClust = ifelse(is.na(Cluster), Gene, paste(DataSet, Cluster, sep =
"")))
RepresentativesOfCluster = Full.table %>% group_by(FinalClust, Gene) %>% summarise(conn = max(Connections)) %>% group_by(FinalClust) %>% mutate(top = max(conn)) %>% filter(conn == top) %>% group_by(FinalClust) %>% summarise(Representative = first(Gene))
Full.table = full_join(Full.table, RepresentativesOfCluster)
##### END Join AlleleNetwork and Data abundance ############
Full.table = Full.table %>% mutate(RPKM = RPK * 1e6 / TotalReads,
UpM = Uniq * 1e6 / TotalReads)