forked from lgcrego/Dynemol
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDOS_m.f
281 lines (206 loc) · 7.91 KB
/
DOS_m.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
module DOS_m
use type_m
use omp_lib
use constants_m
use parameters_m , only : sigma , DOS_range , verbose
use Semi_Empirical_Parms , only : the_chemical_atom => atom
public :: Total_DOS , Partial_DOS
private
! modulo variables ...
real*8 :: gauss_norm , two_sigma2 , step
integer , allocatable :: list_of_DOS_states(:)
integer , allocatable :: atom(:)
integer :: n_of_DOS_states
contains
!
!
!
!===================================================
subroutine Total_DOS( erg , TDOS , internal_sigma )
!===================================================
implicit none
real*8 , ALLOCATABLE , intent(in) :: erg(:)
type(f_grid) , intent(inout) :: TDOS
real*8 , OPTIONAL , intent(in) :: internal_sigma
! local variables ...
real*8 , allocatable :: erg_MO(:) , peaks(:) , DOS_partial(:)
real*8 :: sgm , sub_occupation
integer :: i1 , i2 , npoints, k ,j
if( present(internal_sigma) ) then
sgm = internal_sigma
else
sgm = sigma
end if
npoints = size(TDOS%grid)
gauss_norm = 1.d0 ! 1.d0 / (sgm*sqrt2PI) <== for gauss_norm = 1 the gaussians are not normalized ...
two_sigma2 = 2.d0 * sgm*sgm
step = (DOS_range%fim-DOS_range%inicio) / float(npoints-1)
! states in the range [DOS_range%inicio,DOS_range%fim]
i1 = maxloc(erg , 1 , erg < DOS_range%inicio) + 1
i2 = maxloc(erg , 1 , erg <= DOS_range%fim )
n_of_DOS_states = i2 - i1 + 1
allocate( erg_MO(n_of_DOS_states) )
! find the energies in the range [DOS_range%inicio,DOS_range%fim]
erg_MO = erg( i1 : i2 )
allocate( peaks (npoints) )
allocate( DOS_partial(npoints) )
forall(k=1:npoints) TDOS%grid(k) = (k-1)*step + DOS_range%inicio
! the total density of states
TDOS%peaks(:) = 0.d0
TDOS%func (:) = 0.d0
do j = 1 , n_of_DOS_states
peaks = 0.d0
where( dabs(TDOS%grid-erg_MO(j)) < (step/two) ) peaks = D_one
TDOS%peaks = TDOS%peaks + peaks
DOS_partial = 0.d0
where( ((TDOS%grid-erg_MO(j))**2/two_sigma2) < 25.d0 ) DOS_partial = gauss_norm*exp( -(TDOS%grid-erg_MO(j))**2 / two_sigma2 )
TDOS%func(:) = TDOS%func(:) + DOS_partial(:)
end do
TDOS%average = TDOS%average + TDOS%func
! occupation of TDOS(nr) ...
TDOS%occupation(1) = two * TDOS%peaks(1)
do k = 2 , npoints
TDOS%occupation(k) = TDOS%occupation(k-1) + two*TDOS%peaks(k)
end do
sub_occupation = two * (i1 - 1)
TDOS%occupation = sub_occupation + TDOS%occupation
DEALLOCATE( peaks , DOS_partial )
If( verbose ) print*, '>> TDOS done <<'
end subroutine Total_DOS
!
!
!
!=================================================================
subroutine Partial_DOS( system, QM , PDOS , nr , internal_sigma )
!=================================================================
implicit none
type(structure) , intent(in) :: system
type(R_eigen) , intent(in) :: QM
type(f_grid) , allocatable , intent(inout) :: PDOS(:)
integer , OPTIONAL , intent(in) :: nr
real*8 , OPTIONAL , intent(in) :: internal_sigma
! local variables ...
real*8 , allocatable :: tmp_PDOS_peaks(:) , tmp_PDOS_func(:)
real*8 :: sgm , sub_occupation
integer :: i , i1 , i2 , j , n_of_atoms , npoints , k , l
if( present(internal_sigma) ) then
sgm = internal_sigma
else
sgm = sigma
end if
npoints = size( PDOS(nr)%grid )
gauss_norm = 1.d0 ! / (sgm*sqrt2PI) <== for gauss_norm = 1 the gaussians are not normalized ...
two_sigma2 = 2.d0 * sgm*sgm
step = (DOS_range%fim-DOS_range%inicio) / float(npoints-1)
! number of states in the range [DOS_range%inicio,DOS_range%fim] ...
i1 = maxloc(QM%erg , 1 , QM%erg < DOS_range%inicio) + 1
i2 = maxloc(QM%erg , 1 , QM%erg <= DOS_range%fim )
n_of_DOS_states = i2 - i1 + 1
allocate( list_of_DOS_states(n_of_DOS_states) )
! states in the range [DOS_range%inicio,DOS_range%fim] ...
forall( i=1:n_of_DOS_states ) list_of_DOS_states(i) = i1 + (i-1)
! reads the list of atoms ...
allocate( atom(system%atoms) , source=I_zero )
j=1
do i = 1 , system%atoms
! only quantum species contribute to PDOS ...
if( (system%residue(i) == PDOS(nr)%residue) .AND. (system%QMMM(i) == "QM") ) then
atom(j) = i
j = j + 1
end if
end do
! number of atoms of species residue ...
n_of_atoms = j-1
forall(k=1:npoints) PDOS(nr)%grid(k) = (k-1)*step + DOS_range%inicio
allocate( tmp_PDOS_peaks (npoints) , source = D_zero )
allocate( tmp_PDOS_func (npoints) , source = D_zero )
!$OMP parallel
!$OMP DO reduction(+ : tmp_PDOS_peaks , tmp_PDOS_func )
do l = 1 , n_of_atoms
CALL tmp_PDOS( system , QM , l , PDOS(nr)%grid , tmp_PDOS_peaks , tmp_PDOS_func )
end do
!$OMP END DO
!$OMP end parallel
PDOS(nr)%peaks = tmp_PDOS_peaks
PDOS(nr)%func = tmp_PDOS_func
deallocate( tmp_PDOS_peaks , tmp_PDOS_func )
PDOS(nr)%average = PDOS(nr)%average + PDOS(nr)%func
! occupation of PDOS(nr) ...
PDOS(nr)%occupation(1) = two * PDOS(nr)%peaks(1)
do k = 2 , npoints
PDOS(nr)%occupation(k) = PDOS(nr)%occupation(k-1) + two*PDOS(nr)%peaks(k)
end do
sub_occupation = underneath_occupation( system , QM , atom , list_of_DOS_states(1) )
PDOS(nr)%occupation = sub_occupation + PDOS(nr)%occupation
DEALLOCATE( atom , list_of_DOS_states )
If( verbose ) print*, '>> ',PDOS(nr)%residue,' PDOS done <<'
end subroutine Partial_DOS
!
!
!
!=====================================================================================
subroutine tmp_PDOS( system , QM , l , tmp_PDOS_grid , tmp_PDOS_peaks, tmp_PDOS_func )
!=====================================================================================
implicit none
type(structure) , intent(in) :: system
type(R_eigen) , intent(in) :: QM
integer , intent(in) :: l
real*8 , intent(in) :: tmp_PDOS_grid (:)
real*8 , intent(out) :: tmp_PDOS_peaks (:)
real*8 , intent(out) :: tmp_PDOS_func (:)
! local variables ...
real*8 :: projection , erg_MO
integer :: i , j , n , i1 , i2 , grid_size
grid_size = size( tmp_PDOS_grid )
i1 = system%BasisPointer(atom(l)) + 1
i2 = system%BasisPointer(atom(l)) + the_chemical_atom(system%AtNo(atom(l)))%DOS
do n = 1 , n_of_DOS_states
j = list_of_DOS_states(n)
projection = 0.d0
do i = i1 , i2
projection = projection + QM%L(j,i)*QM%R(i,j)
end do
erg_MO = QM%erg(j)
do i = 1 , grid_size
if(dabs(tmp_PDOS_grid(i)-erg_MO) < (step/two) ) tmp_PDOS_peaks(i) = tmp_PDOS_peaks(i) + projection
if( ((tmp_PDOS_grid(i)-erg_MO)**2/two_sigma2) < 25.d0 ) &
tmp_PDOS_func(i) = tmp_PDOS_func(i) + projection*gauss_norm*exp( -(tmp_PDOS_grid(i)-erg_MO)**2 / two_sigma2 )
end do
end do
end subroutine tmp_PDOS
!
!
!
!==========================================================
function underneath_occupation( system, QM , atom , top )
!==========================================================
implicit none
type(structure) , intent(in) :: system
type(R_eigen) , intent(in) :: QM
integer , OPTIONAL , intent(in) :: atom(:)
integer , intent(in) :: top
! local variables ...
real*8 :: underneath_occupation
real*8 , allocatable :: state_projection(:)
integer :: j , l , i1 , i2 , n_of_atoms
! state projection up to highest underneath state ...
allocate( state_projection(top-1) , source = 0.d0 )
! number of atoms of species = residue ...
n_of_atoms = size(atom)
do j = 1 , top-1
do l = 1 , n_of_atoms
if( atom(l) /= 0 ) then
i1 = system%BasisPointer(atom(l)) + 1
i2 = system%BasisPointer(atom(l)) + the_chemical_atom(system%AtNo(atom(l)))%DOS
state_projection(j) = state_projection(j) + sum( QM%L(j,i1:i2)*QM%R(i1:i2,j) )
end if
end do
end do
! occupation of states up to state (top-1) ...
underneath_occupation = two * sum(state_projection)
deallocate( state_projection )
end function underneath_occupation
!
!
!
end module DOS_m