-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathmain.py
99 lines (72 loc) · 2.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
'''
2019 NeurIPS Submission
Title: Differentially Private Bagging: Improved utility and cheaper privacy than subsample-and-aggregate
Authors: James Jordon, Jinsung Yoon, Mihaela van der Schaar
Last Updated Date: May 28th 2019
Code Author: Jinsung Yoon ([email protected])
-----------------------------
Main Function
- Load dataset
- Run DPBag (Our algorithm)
- Measure the performances
Inputs
- Raw data
- Parameters (epsilon, delta, teacher_no, part number)
Outputs
- AUROC
- AUPRC
- Accuracy
- Budget
'''
#%% Necessary Packages
import numpy as np
from tqdm import tqdm
import pandas as pd
#%% Functions
from DPBag_Final import DPBag
# 1. Models
from data_loading import Data_Loading_MAGGIC, Data_Loading_Adult
#%% Parameters
# Select dataset
data_sets = ['maggic','adult']
data_name = data_sets[1]
# Number of iterations
Iterations = 10
# Algorithm parameters
parameters = dict()
parameters['epsilon'] = 5
parameters['delta'] = 1e-3
parameters['teacher_no'] = 250
parameters['lamda'] = float(2)/parameters['teacher_no']
parameters['part_no'] = 100
#%% DPBag
# Output initialization
Output_AUC = list()
Output_APR = list()
Output_ACC = list()
Output_Budget = list()
# Iterate DPBag experiments
for itr in tqdm(range(Iterations)):
# Load Data
if data_name == 'maggic':
x_train, y_train, x_valid, y_valid, x_test, y_test = Data_Loading_MAGGIC()
elif data_name == 'adult':
x_train, y_train, x_valid, y_valid, x_test, y_test = Data_Loading_Adult()
print(data_name + ' Data Loaded')
# DPBag Algorithm
Temp_ACC, Temp_AUC, Temp_APR, Temp_Budget, _ = DPBag(x_train, y_train, x_valid, x_test, y_test, parameters)
print('Finish DPBag Algorithm')
# Gather performance metrics
Output_ACC.append(Temp_ACC)
Output_AUC.append(Temp_AUC)
Output_APR.append(Temp_APR)
Output_Budget.append(Temp_Budget)
#%% Performance Table
dict_metrics = {'Epsilon':[i+1 for i in range(len(Output_ACC[0]))],
'Accuracy': np.mean(Output_ACC,0),
'AUROC': np.mean(Output_AUC,0),
'AUPRC': np.mean(Output_APR,0),
'Budget': np.mean(Output_Budget,0)}
Output_Metric = pd.DataFrame(dict_metrics)
# Print Final Metric
print(Output_Metric)