-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathtest_gain.py
184 lines (151 loc) · 5.09 KB
/
test_gain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
'''
Example/Test script for gain. Executes gain for two datasets: Spam, Letter
'''
import os
import argparse
import json
import sys
import initpath_alg
from pathlib import Path
initpath_alg.init_sys_path()
import utilmlab
import data_loader_mlab
def set_filenames(odir):
utilmlab.ensure_dir(odir)
fn_csv = '{}/x.csv'.format(odir)
fn_missing_csv = '{}/x_missing.csv'.format(odir)
fn_imputed_csv = '{}/x_imputed.csv'.format(odir)
return fn_csv, fn_missing_csv, fn_imputed_csv
def init_arg():
parser = argparse.ArgumentParser()
parser.add_argument('--exe', help='python interpreter to use')
parser.add_argument('--it', default=5000, type=int)
parser.add_argument('--verify', default=1, type=int)
parser.add_argument('--projdir')
return parser.parse_args()
if __name__ == '__main__':
args = init_arg()
if args.exe is not None:
python_exe = args.exe
else:
python_exe = 'python' if sys.version_info[0] < 3 else 'python3'
niter = args.it
version = 5
is_verify = args.verify
proj_dir = utilmlab.get_proj_dir() \
if args.projdir is None else args.projdir
resdir = '{}/result/gain/v_{}/h_{}'.format(
proj_dir,
version,
os.environ['HOSTNAME'] if 'HOSTNAME' in os.environ else 'unknown')
utilmlab.ensure_dir(resdir)
logger = utilmlab.init_logger(resdir, 'log_test_gain.txt')
dataset = 'bc'
odir = '{}/misc/dataset_{}'.format(resdir, dataset)
fn_csv, fn_missing_csv, fn_imputed_csv = set_filenames(odir)
script_create_missing = Path('{}/alg/gain/create_missing.py'.format(
proj_dir))
script = Path('{}/alg/gain/gain.py'.format(proj_dir))
script_ana = Path('{}/alg/gain/gain_ana.py'.format(proj_dir))
for islabel in [0, 1]:
for autocat in [0, 1, 2]:
utilmlab.exe_cmd(
logger,
'{} {} --dataset {} -o {} '
'--oref {} --istarget {}'.format(
python_exe,
script_create_missing,
dataset,
fn_missing_csv,
fn_csv,
islabel))
utilmlab.exe_cmd(
logger,
'{} {} -i {} {} '
'-o {} --it {} --testall 1 --autocategorical {}'.format(
python_exe,
script,
fn_missing_csv,
'--target target' if islabel else '',
fn_imputed_csv,
niter,
autocat))
result_lst = []
dataset_prop = [
('spambase', None),
('spambase', 'label'),
('bc', None),
('spam', None),
('letter-recognition', None),
('letter-recognition', 'lettr'),
('letter', None)
]
for dataset, label in dataset_prop:
if not data_loader_mlab.is_available(dataset):
logger.info('skipping dataset {}'.format(dataset))
continue
odir = '{}/canned_0/dataset_{}'.format(resdir, dataset)
fn_csv, fn_missing_csv, fn_imputed_csv = set_filenames(odir)
label_arg = '--target {}'.format(label) if label is not None else ''
utilmlab.exe_cmd(
logger,
'{} {} --dataset {} -o {} --oref {} --istarget {} '
'--normalize01 0'.format(
python_exe,
script_create_missing,
dataset,
fn_missing_csv,
fn_csv,
1 if label is not None else 0
))
utilmlab.exe_cmd(
logger,
'{} {} -i {} --ref {} -o {} '
'--it {} --testall 1 {}'.format(
python_exe,
script,
fn_missing_csv,
fn_csv,
fn_imputed_csv,
niter,
label_arg
))
fn_result = '{}/result_ana.json'.format(odir)
utilmlab.exe_cmd(
logger,
'{} {} -i {} --ref {} --imputed {} -o {} {}'.format(
python_exe,
script_ana,
fn_missing_csv,
fn_csv,
fn_imputed_csv,
fn_result,
label_arg))
with open(fn_result) as f:
result_d = json.load(f)
result_lst.append((dataset, result_d['rmse']))
logger.info('{}'.format(result_lst[-1]))
logger.info('\n\nOverview result gain:\n')
result_ref = {
'spambase': 0.055,
'spam': 0.055,
'letter': 0.125,
'letter-recognition': 0.125,
}
is_ok = True
is_ok_th = 0.01
for el in result_lst:
ds = el[0]
diff_desc = ''
if ds in result_ref.keys():
diff_result = abs(el[1]-result_ref[ds])
if diff_result > is_ok_th:
is_ok = False
diff_desc = '{} {}'.format(
diff_result, '(out of spec)' if diff_result > is_ok_th else '')
logger.info('{:20s} {} {}'.format(
el[0],
'rmse {:0.3f}'.format(el[1]),
diff_desc))
if is_verify:
assert is_ok