-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathdata_load.py
41 lines (22 loc) · 1.07 KB
/
data_load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import pickle
import numpy as np
from sklearn.model_selection import KFold
def load_():
Dataset = pickle.load(open('data/household_power.pickle', 'rb'))
Dataset = (Dataset - np.mean(Dataset, axis=0)) / (np.std(Dataset, axis=0))
Dataset = Dataset[:7200, :]
Dataset = np.reshape(Dataset, [-1, 24, 8])
Dataset = Dataset[:100,:,:]
skf = KFold(n_splits=2, random_state=1234)
train_index, test_index = [[train_index, test_index] for train_index, test_index in skf.split(Dataset)][0]
train = Dataset[train_index, :]
test = Dataset[test_index, :]
trainX, train_y = train[:, :, :-1], train[:, :, -1]
valid_X, valid_y = test[:, :, :-1], test[:, :, -1]
return trainX, valid_X, train_y, valid_y
def load_house():
trainX, testX, label_train, label_test = load_()
dataX = np.concatenate([trainX, testX], axis=0)
data_label = np.concatenate([label_train, label_test], axis=0)
Dataset = np.concatenate([dataX, np.expand_dims(data_label, axis=2)], axis=2)
return Dataset, dataX, data_label, trainX, testX, label_train, label_test