-
Notifications
You must be signed in to change notification settings - Fork 174
/
Copy pathmain.py
376 lines (325 loc) · 14.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
"""
Script for competitors to locally test their solutions.
The script follows the logic of the competition's scoring process. The hider from `hider.py` and the seeker from
`seeker.py` will be imported and played against each other. Should be executed from containing directory.
See the command help:
```sh
$ python main.py --help
```
See also docstring of `main()` for more details.
Note:
The script requires the dependencies listed in `requirements.txt`. It can also be ran without tensorflow==1.15.2
or keras==2.3.1, but in that case, some parts of the script will be skipped.
Last updated Date: Oct 17th 2020
Code author: Evgeny Saveliev
Contact: [email protected]
"""
import os
import argparse
import shutil
import numpy as np
from utils.misc import (
tf115_found,
tfdeterminism_found,
fix_all_random_seeds,
temp_seed_numpy,
in_progress,
tf_fixed_seed_seesion,
)
if tf115_found:
from utils.misc import tf_set_log_level
import logging
tf_set_log_level(logging.FATAL)
# # May be useful for determinism:
# import tensorflow as tf
# from keras import backend as K
# session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
# sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
# K.set_session(sess)
if tfdeterminism_found:
from tfdeterminism import patch
patch()
else:
print("Warning: TensorFlow 1.15 was not found so the parts of the script that rely on it will be skipped.")
import utils.data_preprocess as prp
from utils.solutions import (
load_data,
load_generated_data,
parse_hider_output,
validate_hider_output,
validate_seeker_output,
benchmark_hider,
)
from utils.metric_utils import reidentify_score, feature_prediction, one_step_ahead_prediction
import hider as hider_module
import seeker as seeker_module
def main(args):
"""The main script - hider from `hider.py` and the seeker from `seeker.py` will be imported and played against
each other.
Stages of the script:
* Load data.
* Run the hider.
* Evaluate hider via feature prediction and one-step-ahead prediction.
* Run the seeker (on the hider's generated data).
Args:
args (argparse.Namespace): parsed arguments from the command line.
Raises:
ValueError: in case there are issues with required files or directories.
"""
# ================================================= System setup. ==================================================
# If no TensorFlow 1.15 found on the system, skip parts of the script.
if not tf115_found:
args.skip_fp = True
args.skip_osa = True
# Fix random seeds.
fix_all_random_seeds(args.seed)
# NOTE:
# The fix_all_random_seeds() call may not be sufficient to make tensorflow fully deterministic.
# See, for example: https://github.com/NVIDIA/framework-determinism
# ============================================== Prepare directories. ==============================================
# Code directory.
code_dir = os.path.abspath(".")
if not os.path.exists(code_dir):
raise ValueError(f"Code directory not found at {code_dir}.")
print(f"\nCode directory:\t\t{code_dir}")
# Data path.
data_path = os.path.abspath(args.data_path)
if not os.path.exists(data_path):
raise ValueError(f"Data file not found at {data_path}.")
print(f"Data file:\t\t{data_path}")
data_dir = os.path.dirname(data_path)
data_file_name = os.path.basename(data_path)
# Output directories.
out_dir = os.path.abspath(args.output_dir)
if not os.path.exists(out_dir):
os.makedirs(out_dir, exist_ok=True)
print(f"Output directory:\t{out_dir}")
hider_dir = os.path.join(out_dir, "hider")
if os.path.exists(hider_dir):
shutil.rmtree(hider_dir)
os.makedirs(hider_dir, exist_ok=True)
seeker_dir = os.path.join(out_dir, "seeker")
if os.path.exists(seeker_dir):
shutil.rmtree(seeker_dir)
os.makedirs(seeker_dir, exist_ok=True)
print(f" ├ Hider output:\t{hider_dir}")
print(f" └ Seeker output:\t{seeker_dir}\n")
# =================================================== Load data. ===================================================
if args.debug_data <= 0:
args.debug_data = False
with in_progress("Preprocessing and loading data"):
original_data, original_padding_mask, train_idx, test_idx = load_data(
data_dir=data_dir,
data_file_name=data_file_name,
max_seq_len=args.max_seq_len,
seed=args.seed,
train_rate=args.train_frac,
force_reprocess=True, # If True, re-preprocess data every time (rather than reusing).
debug_data=args.debug_data,
)
print(f"\nOriginal data preview (original_data[:2, -10:, :2]):\n{original_data[:2, -10:, :2]}\n")
# ================================================= Part I: Hider. =================================================
# Set up hider input.
original_data_train = original_data[train_idx]
original_padding_mask_train = original_padding_mask[train_idx]
hider_input = {"data": original_data_train, "seed": args.seed, "padding_mask": original_padding_mask_train}
# Run hider.
with in_progress("Running Hider"):
hider_output = hider_module.hider(hider_input)
generated_data, generated_data_padding_mask, _ = parse_hider_output(hider_output)
print(f"\nGenerated data preview (generated_data[:2, -10:, :2]):\n{generated_data[:2, -10:, :2]}\n")
# Save hider output.
hider_output_file = os.path.join(hider_dir, "data.npz")
np.savez(
hider_output_file,
generated_data=generated_data,
padding_mask=generated_data_padding_mask if generated_data_padding_mask is not None else [],
)
# Evaluate hider.
# - Prepare data
if not (args.skip_fp and args.skip_osa):
with in_progress("Preparing data for hider evaluation"):
generated_data, generated_data_padding_mask = load_generated_data(hider_output_file)
_, original_data_train_imputed = prp.preprocess_data(original_data_train, original_padding_mask_train)
_, generated_data_imputed = prp.preprocess_data(generated_data, generated_data_padding_mask)
_, original_data_test_imputed = prp.preprocess_data(
original_data[test_idx], original_padding_mask[test_idx]
)
# - Feature prediction step.
if not args.skip_fp:
num_features = original_data_train.shape[2]
with temp_seed_numpy(args.seed):
feature_idx = np.random.permutation(num_features)[: args.feature_prediction_no]
print(f"\nFeature prediction evaluation on IDs: {feature_idx}\n")
with in_progress("Running feature prediction"):
with in_progress("Running on [original data]"):
with tf_fixed_seed_seesion(args.seed):
original_feature_prediction_accuracy, ori_task_types = feature_prediction(
train_data=original_data_train_imputed,
test_data=original_data_test_imputed,
index=feature_idx,
verbose=args.eval_verbose,
)
with in_progress("Running on [generated data]"):
with tf_fixed_seed_seesion(args.seed):
new_feature_prediction_accuracy, new_task_types = feature_prediction(
train_data=generated_data_imputed,
test_data=original_data_test_imputed,
index=feature_idx,
verbose=args.eval_verbose,
)
print("\nFeature prediction errors (per feature):")
print(f"Original data:\t\t{original_feature_prediction_accuracy}")
print(f"New (hider-generated):\t{new_feature_prediction_accuracy}\n")
# - Save results.
with open(os.path.join(hider_dir, "feature_prediction_scores.txt"), "w") as f:
for score in new_feature_prediction_accuracy:
print(score.astype(str), file=f)
else:
print(f"Feature prediction step skipped!{ '' if tf115_found else ' (TensorFlow 1.15 not found)' }\n")
# - One-step-ahead prediction step.
if not args.skip_osa:
with in_progress("Running one-step-ahead prediction"):
with in_progress("Running on [original data]"):
with tf_fixed_seed_seesion(args.seed):
original_osa_perf = one_step_ahead_prediction(
train_data=original_data_train_imputed,
test_data=original_data_test_imputed,
verbose=args.eval_verbose,
)
with in_progress("Running on [generated data]"):
with tf_fixed_seed_seesion(args.seed):
new_osa_perf = one_step_ahead_prediction(
train_data=generated_data_imputed,
test_data=original_data_test_imputed,
verbose=args.eval_verbose,
)
print("\nOne-step-ahead prediction errors (per feature):")
print(f"Original data:\t\t{original_osa_perf}")
print(f"New (hider-generated):\t{new_osa_perf}\n")
# - Save results.
with open(os.path.join(hider_dir, "osa_score.txt"), "w") as f:
print(new_osa_perf.astype(str), file=f)
else:
print(f"One-step-ahead prediction step skipped!{ '' if tf115_found else ' (TensorFlow 1.15 not found)' }\n")
if not args.skip_fp and not args.skip_osa:
passed = benchmark_hider(
feat_scores=new_feature_prediction_accuracy,
task_types=new_task_types,
osa_score=new_osa_perf,
eval_feat_scores=original_feature_prediction_accuracy,
eval_task_types=ori_task_types,
eval_osa_score=original_osa_perf,
threshold_auroc=0.85,
threshold_rmse=5.00,
)
print(f'>>> Hider evaluation: {"passed" if passed else "failed"}')
# Validation of hider results:
validate_hider_output(
hider="hider from hider.py",
hider_dir=hider_dir,
features=feature_idx if not args.skip_fp else None,
data_shape=original_data_train.shape,
raise_exception=True,
skip_fp=args.skip_fp,
skip_osa=args.skip_osa,
)
# ======================================= Part II: Seeker (vs Part I Hider). =======================================
# Set up seeker input.
seeker_input = {
"generated_data": generated_data,
"enlarged_data": original_data,
"seed": args.seed,
"generated_data_padding_mask": generated_data_padding_mask,
"enlarged_data_padding_mask": original_padding_mask,
}
# Run seeker.
with in_progress("Running Seeker"):
reidentified_labels = seeker_module.seeker(seeker_input)
# Save seeker output.
seeker_output_file = os.path.join(seeker_dir, "data.npz")
np.savez(seeker_output_file, reidentified_data=reidentified_labels)
# Evaluate seeker (vs hider).
true_labels = np.isin(np.arange(original_data.shape[0]), train_idx)
reidentified_labels = validate_seeker_output(
seeker="seeker from seeker.py", seeker_output_path=seeker_output_file, labels=true_labels, raise_exception=True
)
reidentification_score = reidentify_score(true_labels, reidentified_labels)
print(f"\nTrue labels:\t\t\t\t{true_labels.astype(int)}")
print(f"Reidentified (by seeker) labels:\t{reidentified_labels}")
print(f"Reidentification score:\t\t\t{reidentification_score:.4f}\n")
if __name__ == "__main__":
# Inputs for the main function
parser = argparse.ArgumentParser(
description="A script that emulates the competition's scoring process, "
"the hider (from hider.py) is run against the seeker (from seeker.py)."
)
parser.add_argument(
"-d",
"--data_path",
metavar="PATH",
default="./data/train_longitudinal_data.csv",
type=str,
help="Data file path (Amsterdam dataset). Defaults to './data/train_longitudinal_data.csv'.",
)
parser.add_argument(
"-o",
"--output_dir",
metavar="PATH",
default="./output",
type=str,
help="Output directory. Defaults to './output'.",
)
parser.add_argument(
"-m", "--max_seq_len", metavar="INT", default=100, type=int, help="Max sequence length limit. Defaults to 100."
)
parser.add_argument(
"-t", "--train_frac", default=0.5, metavar="FLOAT", type=float, help="Training set fraction. Defaults to 0.5."
)
parser.add_argument(
"-e",
"--hider_eval_threshold",
default=0.85,
metavar="FLOAT",
type=float,
help="Hider evaluation threshold. Defaults to 0.85.",
)
parser.add_argument(
"-f",
"--feature_prediction_no",
metavar="INT",
default=5,
type=int,
help="Number of features in the subset of features used to run feature prediction "
"(part of hider evaluation). Defaults to 5.",
)
parser.add_argument("-s", "--seed", metavar="INT", default=0, type=int, help="Random seed. Defaults to 0.")
parser.add_argument(
"-g",
"--debug_data",
metavar="INT",
default=0,
type=int,
help="Set this to a non-0 value to use a 'debug' subset of the dataset instead of the whole dataset "
"(useful for speedy debugging), only the first --debug_data many rows of the data file will be loaded. "
"Defaults to 0.",
)
parser.add_argument(
"--skip_fp", action="store_true", default=False, help="Skip feature prediction step of hider evaluation if set."
)
parser.add_argument(
"--skip_osa",
action="store_true",
default=False,
help="Skip one-step-ahead prediction step of hider evaluation if set.",
)
parser.add_argument(
"--eval_verbose",
action="store_true",
default=False,
help="If set, the underlying training in hider evaluation stages will be shown verbosely "
"(training epoch etc.).",
)
parsed_args = parser.parse_args()
# Call main function
main(parsed_args)