-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfirst.py
296 lines (269 loc) · 13.3 KB
/
first.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
import csv
import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_selection import SelectPercentile,f_classif
from modAL import uncertainty
import math
from sklearn.metrics import accuracy_score
from sklearn import tree,svm
from sklearn.ensemble import RandomForestClassifier
import copy
from modAL.models import Committee,ActiveLearner
from modAL.disagreement import vote_entropy_sampling
from math import log
from sklearn.cluster import KMeans
def extract_from_mail(filename):
finalList=[]
fields=[]
with open(filename,'r',encoding='utf-8') as csvfile:
csvreader = csv.reader(csvfile)
fields = next(csvreader)
for row in csvreader:
finalList.append(row)
emails=[]
labels=[]
for row in finalList:
emails.append(row[0])
labels.append(row[1])
return emails,labels
def init():
#POPULATING EMAILS AND CORRESPONDING LABELS
filename="2017B5A70828P.csv"
emails,labels=extract_from_mail(filename)
dict={}
dict['placements']=0
dict['social']=1
dict['promotions']=2
dict['news']=3
dict['acads']=4
dict['misc']=5
new_labels=[]
for x in labels:
new_labels.append(dict[x])
#splitting the data set into training and test data
emails_train,emails_test,labels_train,labels_test = train_test_split(emails,new_labels,test_size=0.3,random_state=42)
#transforming emails into word count
vectorizer=TfidfVectorizer(stop_words='english')
emails_train_transformed=vectorizer.fit_transform(emails_train)
emails_test_transformed=vectorizer.transform(emails_test)
#selecting top 20% features to reduce dimension
selector = SelectPercentile(f_classif, percentile=20)
selector.fit(emails_train_transformed,labels_train)
emails_train_transformed=selector.transform(emails_train_transformed).toarray()
emails_test_transformed=selector.transform(emails_test_transformed).toarray()
return emails_train_transformed,labels_train,emails_test_transformed,labels_test
def activeLearnerUncertainty(percentInFraction,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active):
n=math.ceil((len(labels_train_0)+len(labels_train_active))*percentInFraction)
#creating the initial classifier
#emails_train_0,emails_train_active,labels_train_0,labels_train_active=train_test_split(emails_train,labels_train,train_size=0.1,random_state=42)
ret=[]
# print(len(emails_train_0))
# print(len(labels_train_0))
# print()
# classifier.fit(emails_train_0,labels_train_0)
# pred=classifier.predict(emails_test)
#ret.append(accuracy_score(pred,labels_test))
emails_train_1=emails_train_0
labels_train_1=copy.deepcopy(labels_train_0)
arr=uncertainty.uncertainty_sampling(classifier=classifier,X=emails_train_active,n_instances=n)
for x in arr:
emails_train_1=np.insert(emails_train_1,len(emails_train_1),emails_train_active[x],axis=0)
labels_train_1.append(labels_train_active[x])
classifier.fit(emails_train_1,labels_train_1)
pred=classifier.predict(emails_test)
ret.append(accuracy_score(pred,labels_test))
# emails_train_2=emails_train_0
# labels_train_2=copy.deepcopy(labels_train_0)
# arr=uncertainty.margin_sampling(classifier=classifier,X=emails_train_active,n_instances=n)
# for x in arr:
# emails_train_2=np.insert(emails_train_2,len(emails_train_2),emails_train_active[x],axis=0)
# labels_train_2.append(labels_train_active[x])
# classifier.fit(emails_train_2,labels_train_2)
# pred=classifier.predict(emails_test)
# ret.append(accuracy_score(pred,labels_test))
emails_train_2=emails_train_0
labels_train_2=copy.deepcopy(labels_train_0)
arr=uncertainty.margin_sampling(classifier=classifier,X=emails_train_active,n_instances=len(emails_train_active))
#smallest margin sampling
for i in range(n):
emails_train_2=np.insert(emails_train_2,len(emails_train_2),emails_train_active[arr[i]],axis=0)
labels_train_2.append(labels_train_active[arr[i]])
classifier.fit(emails_train_2,labels_train_2)
pred=classifier.predict(emails_test)
ret.append(accuracy_score(pred,labels_test))
#largest margin sampling
emails_train_4=emails_train_0
labels_train_4=copy.deepcopy(labels_train_0)
arr=uncertainty.margin_sampling(classifier=classifier,X=emails_train_active,n_instances=len(emails_train_active))
for i in range(len(labels_train_active)-n,len(labels_train_active)):
emails_train_4=np.insert(emails_train_4,len(emails_train_4),emails_train_active[arr[i]],axis=0)
labels_train_4.append(labels_train_active[arr[i]])
classifier.fit(emails_train_4,labels_train_4)
pred=classifier.predict(emails_test)
ret.append(accuracy_score(pred,labels_test))
emails_train_3=emails_train_0
labels_train_3=copy.deepcopy(labels_train_0)
arr=uncertainty.entropy_sampling(classifier=classifier,X=emails_train_active,n_instances=n)
for x in arr:
emails_train_3=np.insert(emails_train_3,len(emails_train_3),emails_train_active[x],axis=0)
labels_train_3.append(labels_train_active[x])
classifier.fit(emails_train_3,labels_train_3)
pred=classifier.predict(emails_test)
ret.append(accuracy_score(pred,labels_test))
return ret
def CommitteeKLasc(learners,n_instances,X_active,Y_active,probs):
labels=[]
for learner in learners:
labels.append(learner.predict(X_active))
prob=[]
for i in range(len(X_active)):
temp=[0,0,0,0,0,0]
for j in range(5):
temp[labels[j][i]]+=1
for j in range(5):
temp[j]/=5
prob.append(temp)
ret=[]
for i in prob:
temp=0
for j in range(len(i)):
if i[j]!=0:
temp+=i[j]*log(probs[j]*i[j])
ret.append(temp)
sorted_X=X_active[np.array(ret).argsort()]
sorted_Y=[x for _, x in sorted(zip(ret,Y_active))]
# sorted_X=np.flipud(sorted_X)
# sorted_Y.reverse()
return sorted_X[:n_instances-1],sorted_Y[:n_instances-1]
def activeLearnerQBC(percentInFraction,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active):
n=math.ceil((len(labels_train_0)+len(labels_train_active))*percentInFraction)
#creating the initial classifier
ret=[]
# classifier.fit(emails_train_0,labels_train_0)
# pred=classifier.predict(emails_test)
# ret.append(accuracy_score(pred,labels_test))
#vote entropy sampling
c1=tree.DecisionTreeClassifier().fit(emails_train_0,labels_train_0)
learner1=ActiveLearner(estimator=c1,query_strategy=uncertainty.uncertainty_sampling)
c2=RandomForestClassifier(n_estimators=10,max_depth=1000).fit(emails_train_0,labels_train_0)
learner2=ActiveLearner(estimator=c2,query_strategy=uncertainty.uncertainty_sampling)
c3=svm.SVC(kernel='linear', C=1,decision_function_shape='ovo').fit(emails_train_0,labels_train_0)
learner3=ActiveLearner(estimator=c3,query_strategy=uncertainty.uncertainty_sampling)
c4=svm.SVC(kernel='rbf', gamma=1, C=1,decision_function_shape='ovo').fit(emails_train_0,labels_train_0)
learner4=ActiveLearner(estimator=c4,query_strategy=uncertainty.uncertainty_sampling)
c5=svm.SVC(kernel='sigmoid', C=1,decision_function_shape='ovo').fit(emails_train_0,labels_train_0)
learner5=ActiveLearner(estimator=c5,query_strategy=uncertainty.uncertainty_sampling)
learners=[learner1,learner2,learner3,learner4,learner5]
committee=Committee(learner_list=learners,query_strategy=vote_entropy_sampling)
committee.teach(emails_train_0,labels_train_0)
indices,queries=committee.query(X_pool=emails_train_active,n_instances=n)
emails_train_1=np.append(emails_train_0,queries,axis=0)
labels_train_1=copy.deepcopy(labels_train_0)
for x in indices:
labels_train_1.append(labels_train_active[x])
classifier.fit(emails_train_1,labels_train_1)
pred=classifier.predict(emails_test)
ret.append(accuracy_score(pred,labels_test))
#KL-Divergence algorithm
probs=[6]*6
emails,labels=CommitteeKLasc([c1,c2,c3,c4,c5],5,emails_train_active,labels_train_active,probs)
emails_train_1=np.append(emails_train_0,emails,axis=0)
labels_train_1=copy.deepcopy(labels_train_0)
labels_train_1.extend(labels)
classifier.fit(emails_train_1,labels_train_1)
pred=classifier.predict(emails_test)
ret.append(accuracy_score(pred,labels_test))
return ret
def passiveLearner(percentInFraction,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active):
emails_train_passive=emails_train_0
labels_train_passive=copy.deepcopy(labels_train_0)
if(percentInFraction>0):
emails_train,t1,labels_train,t2=train_test_split(emails_train_active,labels_train_active,train_size=percentInFraction)
for x in range(len(emails_train)):
emails_train_passive=np.insert(emails_train_passive,len(emails_train_passive),emails_train[x],axis=0)
labels_train_passive.append(labels_train[x])
classifier.fit(emails_train_passive,labels_train_passive)
pred=classifier.predict(emails_test)
return accuracy_score(pred,labels_test)
def K_MeanClusteredLearning(emails_train_active,labels_train_active):
emails_Tocluster,t1,labels_Tocluster,t2=train_test_split(emails_train_active,labels_train_active,train_size=0.4)
clusterAlgo=KMeans(n_clusters=6)
clusters=clusterAlgo.fit_predict(emails_Tocluster)
clusterLabels=[[]*6]*6
for i in range(len(clusters)):
clusterLabels[clusters[i]].append(labels_Tocluster[i])
#select 20% from each cluster and label:
labelsForEachCluster=[]
for arr in clusterLabels:
selected,t1=train_test_split(arr,train_size=0.2)
temp=[0]*6
count=0
label=-1
for i in selected:
temp[i]+=1
if(temp[i]>count):
count=temp[i]
label=i
labelsForEachCluster.append(label)
pred=[]
for obj in clusters:
pred.append(labelsForEachCluster[obj])
return accuracy_score(pred,labels_Tocluster)
def mainUS():
emails_train,labels_train,emails_test,labels_test=init()
emails_train_0,emails_train_active,labels_train_0,labels_train_active=train_test_split(emails_train,labels_train,train_size=0.1)
classifier=tree.DecisionTreeClassifier()
x=[0.1,0.2,0.3,0.4,0.5]
pts=[]
for i in range(5):
pts.append([])
val=passiveLearner(0,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active)
for i in range(5):
pts[i].append(val)
for precentInFraction in x:
arr=activeLearnerUncertainty(precentInFraction,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active)
for i in range(4):
pts[i].append(arr[i])
pts[4].append(passiveLearner(precentInFraction,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active))
xLabel=[0.0]
xLabel.extend(x)
fig,ax=plt.subplots()
for y in pts:
ax.plot(xLabel,y,marker='o')
ax.set_xlabel("Percentage of Data Taken for Active Learning")
ax.set_ylabel("Accuracy")
ax.legend(['Least Confidence','Smallest Margin Sampling','Largest Margin Sampling','Entropy Sampling','Passive Learning'])
plt.title("Percentage of Data Taken for Active Learning v/s Accuracy for Decision Tree Classifier")
plt.show()
def mainQBC():
emails_train,labels_train,emails_test,labels_test=init()
emails_train_0,emails_train_active,labels_train_0,labels_train_active=train_test_split(emails_train,labels_train,train_size=0.1)
classifier=tree.DecisionTreeClassifier()
x=[0.1,0.2,0.3,0.4,0.5]
pts=[]
for i in range(3):
pts.append([])
val=passiveLearner(0,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active)
for i in range(3):
pts[i].append(val)
# arr=activeLearnerQBC(0.5,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active)
# print(arr)
for precentInFraction in x:
arr=activeLearnerQBC(precentInFraction,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active)
for i in range(2):
pts[i].append(arr[i])
pts[2].append(passiveLearner(precentInFraction,classifier,emails_train_0,labels_train_0,emails_test,labels_test,emails_train_active,labels_train_active))
print(pts)
xLabel=[0.0]
xLabel.extend(x)
fig,ax=plt.subplots()
for y in pts:
ax.plot(xLabel,y,marker='o')
ax.set_xlabel("Percentage of Data Taken for Active Learning")
ax.set_ylabel("Accuracy")
ax.legend(['Vote Entropy','KL Divergence','Passive Learning'])
plt.title("Percentage of Data Taken for Active Learning v/s Accuracy for Decision Tree Classifier")
plt.show()
mainQBC()