-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchronic_kidney.py
159 lines (69 loc) · 1.91 KB
/
chronic_kidney.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
import os
df=pd.read_csv("C:\\Users\\User\\Downloads\\kidney_disease.csv")
df.head()
#a = np.array(df)
#y = a[0:25]
#print(y)
# In[2]:
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import svm
# In[3]:
df.keys()
# In[4]:
df=df.replace(' ',np.nan)
df=df.replace('\t?',np.nan)
df.head()
# In[5]:
df = df.dropna(axis=0, how="any")
# In[6]:
df.info()
# In[7]:
df[['pcv','wc','rc']] = df[['pcv','wc','rc']].apply(pd.to_numeric)
df.info()
# In[8]:
df = pd.get_dummies(df)
df.info()
# In[43]:
from sklearn.model_selection import train_test_split
"""X_train = df.drop("classification", axis=1)
Y_train = df["classification"]
X_test = df.drop("age", axis=1).copy()"""
X_train, X_test, y_train, y_test = train_test_split(df, df['classification'], test_size=0.30, random_state=101)
# In[42]:
from sklearn.svm import SVC
model = SVC()
model.fit(X_train,y_train)
"""Y_pred = model.predict(X_test)
acc_svc = round(model.score(X_train, Y_train) * 100, 2)
acc_svc
Y_pred = model.predict(X_test)\nacc_svc = round(model.score(X_train, Y_train) * 100, 2)\nacc_svc"""
# In[25]:
predictions = model.predict(X_test)
# In[26]:
from sklearn.metrics import classification_report,confusion_matrix
# In[27]:
print(confusion_matrix(y_test,predictions))
# In[28]:
print(classification_report(y_test,predictions))
# In[29]:
from sklearn.model_selection import GridSearchCV
# In[30]:
param_grid = {'C': [0.1,1, 10, 100, 1000], 'gamma': [1,0.1,0.01,0.001,0.0001], 'kernel': ['rbf']}
# In[31]:
grid = GridSearchCV(SVC(),param_grid,refit=True,verbose=2)
grid.fit(X_train,y_train)
# In[32]:
grid.best_params_
# In[33]:
grid.best_estimator_
# In[34]:
grid_predictions = grid.predict(X_test)
# In[35]:
print(confusion_matrix(y_test,grid_predictions))
# In[36]:
print(classification_report(y_test,grid_predictions))