-
-
Notifications
You must be signed in to change notification settings - Fork 40
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
I Have No Idea What I Am Doing to Cause This: #75
Comments
Uuuuuuuuuhhhhhhh, pardon me? You lost me. |
python3 train.py -opt train_sr.yml export CUDA_VISIBLE_DEVICES=0 23-02-03 00:44:55.135 - INFO: name: 001_sr_template use_tb_logger: True model: sr scale: 4 gpu_ids: [0] use_amp: True use_swa: False use_cem: False use_atg: False datasets:[ train:[ name: DIV2K mode: aligned dataroot_HR: ['../datasets/train/hr1', '../datasets/train/hr2', '../datasets/train/hr3'] dataroot_LR: ['../datasets/train/lr1', '../datasets/train/lr2'] subset_file: None use_shuffle: True znorm: False n_workers: 4 batch_size: 8 virtual_batch_size: 8 preprocess: crop crop_size: 128 image_channels: 3 use_flip: True use_rot: True use_hrrot: False phase: train scale: 4 data_type: img aug_configs:[ lr_downscale_types:[ resize:[ resize_prob:[ down: 1.0 ] resize_range_up: [1, 1.5] resize_range_down: [0.15, 1] down_up_min: 0.5 ] ] ] shuffle_degradations: False lr_downscale: True lr_downscale_types: [773, 777] resize_strat: pre ] val:[ name: val_set14_part mode: aligned dataroot_B: ../datasets/val/hr dataroot_A: ../datasets/val/lr znorm: False lr_downscale: False lr_downscale_types: [773, 777] phase: val scale: 4 data_type: img resize_strat: pre ] ] path:[ root: .. pretrain_model_G: ../experiments/pretrained_models/RRDB_PSNR_x4.pth experiments_root: ../experiments/001_sr_template models: ../experiments/001_sr_template/models training_state: ../experiments/001_sr_template/training_state log: ../experiments/001_sr_template val_images: ../experiments/001_sr_template/val_images ] train:[ optim_G: adam optim_D: adam lr_scheme: MultiStepLR lr_gamma: 0.5 swa_lr: 0.0001 swa_anneal_epochs: 10 swa_anneal_strategy: cos pixel_criterion: l1 pixel_weight: 0.01 feature_criterion: l1 feature_weight: 1 gan_type: vanilla gan_weight: 0.005 manual_seed: 0 niter: 500000.0 val_freq: 5000.0 metrics: psnr,ssim,lpips grad_clip: norm grad_clip_value: 0.1 overwrite_val_imgs: None val_comparison: None lr_steps: [50000, 100000, 200000, 300000] swa_start_iter: 375000 atg_start_iter: 415000 ] logger:[ print_freq: 200 save_checkpoint_freq: 5000.0 overwrite_chkp: False ] is_train: True network_G:[ strict: False type: rrdb_net norm_type: None mode: CNA nf: 64 nb: 23 nr: 3 in_nc: 3 out_nc: 3 gc: 32 convtype: Conv2D act_type: leakyrelu gaussian_noise: True plus: False finalact: None upscale: 4 upsample_mode: upconv ] network_D:[ strict: True type: discriminator_vgg in_nc: 3 base_nf: 64 norm_type: batch mode: CNA act_type: leakyrelu convtype: Conv2D arch: ESRGAN size: 128 ] 23-02-03 00:44:55.421 - INFO: Random seed: 0 Traceback (most recent call last): File "/home/nickdbts2022/Desktop/traiNNer/codes/train.py", line 500, in <module> main() File "/home/nickdbts2022/Desktop/traiNNer/codes/train.py", line 487, in main dataloaders, data_params = get_dataloaders(opt) File "/home/nickdbts2022/Desktop/traiNNer/codes/train.py", line 134, in get_dataloaders dataset = create_dataset(dataset_opt) File "/home/nickdbts2022/Desktop/traiNNer/codes/data/__init__.py", line 79, in create_dataset dataset = D(dataset_opt) File "/home/nickdbts2022/Desktop/traiNNer/codes/data/aligned_dataset.py", line 41, in __init__ self.A_paths, self.B_paths = get_dataroots_paths(self.opt, strict=False, keys_ds=self.keys_ds) File "/home/nickdbts2022/Desktop/traiNNer/codes/data/base_dataset.py", line 235, in get_dataroots_paths paths_A, paths_B = read_dataroots(opt, keys_ds=keys_ds) File "/home/nickdbts2022/Desktop/traiNNer/codes/data/base_dataset.py", line 171, in read_dataroots paths_A = process_img_paths(A_images_paths, opt['data_type']) File "/home/nickdbts2022/Desktop/traiNNer/codes/data/base_dataset.py", line 61, in process_img_paths paths = get_image_paths(data_type, path, max_dataset_size) File "/home/nickdbts2022/Desktop/traiNNer/codes/dataops/common.py", line 82, in get_image_paths paths = sorted(_get_paths_from_images(dataroot, max_dataset_size=max_dataset_size)) File "/home/nickdbts2022/Desktop/traiNNer/codes/dataops/common.py", line 36, in _get_paths_from_images assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) AssertionError: ../datasets/train/lr1 is not a valid directory |
I am lost, would someone help please? This is put politely as its the first time I am working with modelling code. |
Hello! These lines: dataroot_HR: ['../datasets/train/hr1', '../datasets/train/hr2', '../datasets/train/hr3']
dataroot_LR: ['../datasets/train/lr1', '../datasets/train/lr2'] Are only an example, you should put here the paths to your image datasets for training (https://github.com/victorca25/traiNNer#training, https://github.com/victorca25/traiNNer/blob/master/docs/howtotrain.md#normal-single-image-super-resolution-esrgan-srgan-pan-etc-models). Something similar will happen with: dataroot_B: ../datasets/val/hr
dataroot_A: ../datasets/val/lr and:
The required files will have to exist in the path for them to be loaded correctly. |
Oh, well, ok then, I'll try this with my own version of the code. Thank you. |
The text was updated successfully, but these errors were encountered: