-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkaggle_submission_checker.py
98 lines (85 loc) · 4.09 KB
/
kaggle_submission_checker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
from torch.utils.data import Dataset
import torch
import pandas as pd
import os
import pickle
from torchvision.transforms import Compose
import torch.utils.data as data
from timeit import default_timer as timer
from tqdm import tqdm
from utils.eval import lwlrap_accumulator
from transforms import *
from dataset.freesound_X import Freesound_labelled
def create_model(ema=False):
model = WideResNet(num_classes=80)
if ema:
for param in model.parameters():
param.detach_()
return model
def load_state_dict(model, state_dict):
new_state_dict = model.state_dict()
for key in state_dict.keys():
new_state_dict[key.replace('module.', '')] = state_dict[key]
return new_state_dict
# Kaggle
# test_path = os.path.abspath('../input/freesound-audio-tagging-2019/test')
# model_path = os.path.abspath('../input/freesound2/weights.pk')
# sample_submission_file = 'submission.csv'
# lb_path = os.path.abspath('../input/freesound2/lb.pk')
# My PC
# test_path = os.path.abspath('/Users/vigi99/kaggle/freesound/data/test')
# model_path = os.path.abspath('result/weights.pk')
# sample_submission_file = 'submission.csv'
# lb_path = os.path.abspath('submission/lb.pk')
'''
import torch
import pickle
model_vals = torch.load('result_checkpoints/model_best.pth.tar', map_location='cpu')['ema_state_dict']
pickle.dump(model_vals, open('result/weights_noisy_mixmatch.pk', 'wb'))
'''
# GPU Server
if __name__ == "__main__":
test_path = os.path.abspath('/tts_data/kaggle/freesound/data/train_curated')
model_path = os.path.abspath('result/weights_noisy_mixmatch.pk')
sample_submission_file = 'submission/submission_split_train_dev.csv'
lb_path = os.path.abspath('submission/lb.pk')
correct_answers_1 = os.path.abspath('/tts_data/kaggle/freesound/data/train_curated.csv_dev')
correct_answers_2 = os.path.abspath('/tts_data/kaggle/freesound/data/train_curated.csv_test')
df = pd.concat([pd.read_csv(correct_answers_1), pd.read_csv(correct_answers_2)])
batch_size = 8
lb = pickle.load(open(lb_path, 'rb'))
correct_labels = [labels.split(',') for labels in df['labels'].values]
file_paths = [os.path.join(test_path, file) for file in df['fname'].values]
valid_feature_transform = Compose([ToSTFT(), ToPCEN(), ToMelSpectrogramFromSTFT(n_mels=80), DeleteSTFT(), ToTensor(['mel_spectrogram', 'pcen'])])
valid_transforms = Compose([LoadAudio(), FixAudioLength(30), valid_feature_transform])
val_dataset = Freesound_labelled(file_paths, correct_labels, lb, transform=valid_transforms)
val_loader = data.DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=max(1, os.cpu_count() - 2), collate_fn=collate_fn)
print('Loaded dataset')
model = create_model(ema=True)
best_model_state_dict = pickle.load(open(model_path, 'rb'))
model.load_state_dict(load_state_dict(model, best_model_state_dict))
print('Loaded Model')
model.eval()
if torch.cuda.is_available():
model = model.cuda()
result = []
result_header = ['fname', *lb.classes_]
lwlrap_acc = lwlrap_accumulator()
with torch.no_grad():
start_time = timer()
for batch_idx, (inputs, targets) in enumerate(tqdm(val_loader)):
if torch.cuda.is_available():
inputs = inputs.cuda()
outputs = model(inputs)
lwlrap_acc.accumulate_samples(targets, outputs)
filenames = [os.path.basename(file) for file in np.array(val_dataset.files)[batch_size * batch_idx:batch_size * (batch_idx+1)].tolist()]
for fname, prob in zip(filenames, probs):
result.append([fname, *prob])
print('Num of examples done {:d}'.format(batch_idx * batch_size))
time_taken = timer() - start_time
print('Total time taken was {:.4f} seconds'.format(time_taken))
print("Time taken per example on cpu was {:.4f} seconds".format(time_taken / len(file_paths)))
print("LRAP for test set was {:.4f}".format(lwlrap_acc.overall_lwlrap()))
df = pd.DataFrame(result, columns=result_header)
df.to_csv(sample_submission_file, index=False)