-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdataset.py
83 lines (73 loc) · 2.49 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from torchvision.datasets import CIFAR100
import torch
from torch.utils.data import Dataset
from torchvision import transforms
transform_train = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
class CustomCIFAR100(CIFAR100):
def __init__(self, root, train, download, transform):
super().__init__(root = root, train = train, download = download, transform = transform)
self.coarse_map = {
0:[4, 30, 55, 72, 95],
1:[1, 32, 67, 73, 91],
2:[54, 62, 70, 82, 92],
3:[9, 10, 16, 28, 61],
4:[0, 51, 53, 57, 83],
5:[22, 39, 40, 86, 87],
6:[5, 20, 25, 84, 94],
7:[6, 7, 14, 18, 24],
8:[3, 42, 43, 88, 97],
9:[12, 17, 37, 68, 76],
10:[23, 33, 49, 60, 71],
11:[15, 19, 21, 31, 38],
12:[34, 63, 64, 66, 75],
13:[26, 45, 77, 79, 99],
14:[2, 11, 35, 46, 98],
15:[27, 29, 44, 78, 93],
16:[36, 50, 65, 74, 80],
17:[47, 52, 56, 59, 96],
18:[8, 13, 48, 58, 90],
19:[41, 69, 81, 85, 89]
}
#def __len__(self):
# len(self.main_dataset)
def __getitem__(self, index):
x, y = super().__getitem__(index)
coarse_y = None
for i in range(20):
for j in self.coarse_map[i]:
if y == j:
coarse_y = i
break
if coarse_y != None:
break
if coarse_y == None:
print(y)
assert coarse_y != None
return x, y, coarse_y
class UnLearningData(Dataset):
def __init__(self, forget_data, retain_data):
super().__init__()
self.forget_data = forget_data
self.retain_data = retain_data
self.forget_len = len(forget_data)
self.retain_len = len(retain_data)
def __len__(self):
return self.retain_len + self.forget_len
def __getitem__(self, index):
if(index < self.forget_len):
x = self.forget_data[index][0]
y = 1
return x,y
else:
x = self.retain_data[index - self.forget_len][0]
y = 0
return x,y