-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathiterative_PCRNet.py
429 lines (354 loc) · 19.5 KB
/
iterative_PCRNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import argparse
import math
import h5py
import numpy as np
from numpy import matlib as npm
import tensorflow as tf
import socket
import importlib
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import tf_util
import helper
import transforms3d.euler as t3d
from helper import print_
parser = argparse.ArgumentParser()
parser.add_argument('-mode','--mode', required=True, type=str, default='no_mode', help='mode: train or test')
parser.add_argument('-log','--log_dir', required=True, default='log_itrPCRNet', help='Log dir [default: log]')
parser.add_argument('-results','--results', required=True, type=str, default='best_model', help='Store the best model')
parser.add_argument('-noise','--Noise', type=str, required=True, default=False, help='Use of Noise in source data in training')
parser.add_argument('--add_noise', type=bool, default=False, help='Use of Noise in source data in training')
parser.add_argument('--iterations', type=int, default=8, help='No of Iterations for pose estimation')
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='ipcr_model', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--max_epoch', type=int, default=301, help='Epoch to run [default: 250]')
parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='Initial learning rate [default: 0.001]')
parser.add_argument('--momentum', type=float, default=0.9, help='Initial learning rate [default: 0.9]')
parser.add_argument('--optimizer', default='adam', help='adam or momentum [default: adam]')
parser.add_argument('--decay_step', type=int, default=3000000, help='Decay step for lr decay [default: 200000]')
parser.add_argument('--decay_rate', type=float, default=0.7, help='Decay rate for lr decay [default: 0.8]')
parser.add_argument('--model_path', type=str, default='log_multi_catg_noise/model300.ckpt', help='Path of the weights (.ckpt file) to be used for test')
parser.add_argument('--centroid_sub', type=bool, default=True, help='Centroid Subtraction from Source and Template before Pose Prediction.')
parser.add_argument('--use_partial_data', type=bool, default=False, help='Use of Partial Data for Registration')
parser.add_argument('--use_pretrained_model', type=bool, default=False, help='Use a pretrained model of airplane to initialize the training.')
parser.add_argument('--use_random_poses', type=bool, default=False, help='Use of random poses to train the model in each batch')
parser.add_argument('--data_dict', type=str, default='train_data',help='Templates data used for training network')
parser.add_argument('--train_poses', type=str, default='itr_net_train_data45.csv', help='Poses for training')
parser.add_argument('--eval_poses', type=str, default='itr_net_eval_data45.csv', help='Poses for evaluation')
FLAGS = parser.parse_args()
TRAIN_POSES = FLAGS.train_poses
EVAL_POSES = FLAGS.eval_poses
# Change batch size during test mode.
if FLAGS.mode == 'test':
BATCH_SIZE = 1
else:
BATCH_SIZE = FLAGS.batch_size
# Change Noise Condition.
if FLAGS.Noise == 'True':
FLAGS.add_noise = True
elif FLAGS.Noise == 'False':
FLAGS.add_noise = False
# Do/Don't Use Noise
if FLAGS.add_noise: ADD_NOISE = 1.0
else: ADD_NOISE = 0.0
# Parameters for data
NUM_POINT = FLAGS.num_point
MAX_NUM_POINT = 2048
NUM_CLASSES = 40
centroid_subtraction_switch = FLAGS.centroid_sub
# Network hyperparameters
MAX_EPOCH = FLAGS.max_epoch
MAX_LOOPS = FLAGS.iterations
BASE_LEARNING_RATE = FLAGS.learning_rate
GPU_INDEX = FLAGS.gpu
MOMENTUM = FLAGS.momentum
OPTIMIZER = FLAGS.optimizer
DECAY_STEP = FLAGS.decay_step
DECAY_RATE = FLAGS.decay_rate
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
# Model Import
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py')
LOG_DIR = FLAGS.log_dir
# Take backup of all files used to train the network with all the parameters.
if FLAGS.mode == 'train':
print_('################### Creating Log Dir ###################', color='r', style='bold')
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR) # Create Log_dir to store the log.
os.system('cp %s %s' % (MODEL_FILE, LOG_DIR)) # bkp of model def
os.system('cp iterative_PCRNet.py %s' % (LOG_DIR)) # bkp of train procedure
os.system('cp -a utils/ %s/'%(LOG_DIR)) # Store the utils code.
os.system('cp helper.py %s'%(LOG_DIR))
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'w')# Create a text file to store the loss function data.
LOG_FOUT.write(str(FLAGS)+'\n')
# Write all the data of loss function during training.
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
# Calculate Learning Rate during training.
def get_learning_rate(batch):
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
DECAY_STEP, # Decay step.
DECAY_RATE, # Decay rate.
staircase=True)
learning_rate = tf.maximum(learning_rate, 0.00001) # CLIP THE LEARNING RATE!
return learning_rate
def train():
with tf.Graph().as_default():
with tf.device('/cpu:0'):
batch = tf.Variable(0) # That tells the optimizer to helpfully increment the 'batch' parameter for you every time it trains.
with tf.device('/gpu:'+str(GPU_INDEX)):
is_training_pl = tf.placeholder(tf.bool, shape=()) # Flag for dropouts.
learning_rate = get_learning_rate(batch) # Calculate Learning Rate at each step.
# Define a network to backpropagate the using final pose prediction.
with tf.variable_scope('Network') as _:
# Get the placeholders.
source_pointclouds_pl, template_pointclouds_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
# Extract Features.
source_global_feature, template_global_feature = MODEL.get_model(source_pointclouds_pl, template_pointclouds_pl, is_training_pl, bn_decay=None)
# Find the predicted transformation.
predicted_transformation = MODEL.get_pose(source_global_feature,template_global_feature,is_training_pl, bn_decay=None)
# Find the loss using source and transformed template point cloud.
loss = MODEL.get_loss(predicted_transformation, BATCH_SIZE, template_pointclouds_pl, source_pointclouds_pl)
# Add the loss in tensorboard.
# Get training optimization algorithm.
if OPTIMIZER == 'momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=MOMENTUM)
elif OPTIMIZER == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate)
train_op = optimizer.minimize(loss, global_step=batch)
with tf.device('/cpu:0'):
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
tf.summary.scalar('loss', loss)
tf.summary.scalar('learning_rate', learning_rate)
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = False
sess = tf.Session(config=config)
# Add summary writers
merged = tf.summary.merge_all()
if FLAGS.mode == 'train': # Create summary writers only for train mode.
train_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'train'),
sess.graph)
eval_writer = tf.summary.FileWriter(os.path.join(LOG_DIR, 'eval'))
# Init variables
init = tf.global_variables_initializer()
sess.run(init, {is_training_pl: True})
# Just to initialize weights with pretrained model.
if FLAGS.use_pretrained_model:
saver.restore(sess,os.path.join('log_512pts_1024feat_6itr_180deg_random_poses','model250.ckpt'))
# Create a dictionary to pass the tensors and placeholders in train and eval function for Network.
ops = {'source_pointclouds_pl': source_pointclouds_pl,
'template_pointclouds_pl': template_pointclouds_pl,
'is_training_pl': is_training_pl,
'predicted_transformation': predicted_transformation,
'loss': loss,
'train_op': train_op,
'merged': merged,
'step': batch}
templates = helper.loadData(FLAGS.data_dict)
poses = helper.read_poses(FLAGS.data_dict, TRAIN_POSES) # Read all the poses data for training.
eval_poses = helper.read_poses(FLAGS.data_dict, EVAL_POSES) # Read all the poses data for evaluation.
if FLAGS.mode == 'train':
print_('Training Started!', color='r', style='bold')
# For actual training.
for epoch in range(MAX_EPOCH):
log_string('**** EPOCH %03d ****' % (epoch))
sys.stdout.flush()
# Train for all triaining poses.
train_one_epoch(sess, ops, train_writer, templates, poses)
save_path = saver.save(sess, os.path.join(LOG_DIR, FLAGS.results+".ckpt"))
if epoch % 10 == 0:
# Evaluate the trained network after 50 epochs.
eval_one_epoch(sess, ops, eval_writer, templates, eval_poses)
# Save the variables to disk.
if epoch % 50 == 0:
# Store the Trained weights in log directory.
save_path = saver.save(sess, os.path.join(LOG_DIR, "models", "model"+str(epoch)+".ckpt"))
log_string("Model saved in file: %s" % save_path)
print_('Training Successful!!', color='r', style='bold')
# Train the Network and copy weights from Network to Network19 to find the poses between source and template.
def train_one_epoch(sess, ops, train_writer, templates, poses):
# Arguments:
# sess: Tensorflow session to handle tensors.
# ops: Dictionary for tensors of Network
# templates: Training Point Cloud data.
# poses: Training pose data.
is_training = True
display_ptClouds = False
display_poses = False
display_poses_in_itr = False
display_ptClouds_in_itr = False
poses = poses[0:5070, :]
poses = helper.shuffle_poses(poses) # Shuffle Poses.
loss_sum = 0 # Total Loss in each batch.
num_batches = int(templates.shape[0]/BATCH_SIZE) # Number of batches in an epoch.
# Training for each batch.
for fn in range(num_batches):
start_idx = fn*BATCH_SIZE # Start index of poses.
end_idx = (fn+1)*BATCH_SIZE # End index of poses.
template_data = np.copy(templates[start_idx:end_idx])
batch_euler_poses = poses[start_idx:end_idx] # Extract poses for batch training.
source_data = helper.apply_transformation(template_data, batch_euler_poses) # Apply the poses on the templates to get source data.
if centroid_subtraction_switch:
source_data = source_data - np.mean(source_data, axis=1, keepdims=True)
template_data = template_data - np.mean(template_data, axis=1, keepdims=True)
# Chose Random Points from point clouds for training.
if np.random.random_sample()<0.0:
source_data = helper.select_random_points(source_data, NUM_POINT) # 50% probability that source data has different points than template
else:
source_data = source_data[:,0:NUM_POINT,:]
if np.random.random_sample()<ADD_NOISE:
source_data = helper.add_noise(source_data)
# Only chose limited number of points from the source and template data.
source_data = source_data[:,0:NUM_POINT,:]
template_data = template_data[:,0:NUM_POINT,:]
# To visualize the source and point clouds:
if display_ptClouds:
helper.display_clouds_data(source_data[0])
helper.display_clouds_data(template_data[0])
TRANSFORMATIONS = np.identity(4) # Initialize identity transformation matrix.
TRANSFORMATIONS = npm.repmat(TRANSFORMATIONS,BATCH_SIZE,1).reshape(BATCH_SIZE,4,4) # Intialize identity matrices of size equal to batch_size
# Iterations for pose refinement.
for loop_idx in range(MAX_LOOPS-1):
# 4a
# Feed the placeholders of Network with template data and source data.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
predicted_transformation = sess.run([ops['predicted_transformation']], feed_dict=feed_dict) # Ask the network to predict the pose.
# 4b,4c
# Apply the transformation on the template data and multiply it to transformation matrix obtained in previous iteration.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
# Display Results after each iteration.
if display_poses_in_itr:
print(predicted_transformation[0,0:3])
print(predicted_transformation[0,3:7]*(180/np.pi))
if display_ptClouds_in_itr:
helper.display_clouds_data(source_data[0])
# Feed the placeholders of Network with source data and template data obtained from N-Iterations.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
# Ask the network to predict transformation, calculate loss using distance between actual points, calculate & apply gradients for Network and copy the weights to Network19.
summary, step, _, loss_val, predicted_transformation = sess.run([ops['merged'], ops['step'], ops['train_op'], ops['loss'], ops['predicted_transformation']], feed_dict=feed_dict)
train_writer.add_summary(summary, step) # Add all the summary to the tensorboard.
# Apply the final transformation on the template data and multiply it with the transformation matrix obtained from N-Iterations.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
# final_pose = helper.find_final_pose_inv(TRANSFORMATIONS) # Find the final pose (translation, orientation (euler angles in degrees)) from transformation matrix.
# Display the ground truth pose and predicted pose for first Point Cloud in batch
if display_poses:
print('Ground Truth Position: {}'.format(batch_euler_poses[0,0:3].tolist()))
print('Predicted Position: {}'.format(final_pose[0,0:3].tolist()))
print('Ground Truth Orientation: {}'.format((batch_euler_poses[0,3:6]*(180/np.pi)).tolist()))
print('Predicted Orientation: {}'.format((final_pose[0,3:6]*(180/np.pi)).tolist()))
# print(batch_euler_poses[0,0:3],batch_euler_poses[0,3:6]*(180/np.pi))
# print(final_pose[0,0:3],final_pose[0,3:6]*(180/np.pi))
# Display Loss Value.
print("Batch: {} & Loss: {}\r".format(fn,loss_val),end='')
# Add loss for each batch.
loss_sum += loss_val
print('\n')
log_string('Train Mean loss: %f\n' % (loss_sum/num_batches)) # Store and display mean loss of epoch.
def eval_one_epoch(sess, ops, eval_writer, templates, poses):
# Arguments:
# sess: Tensorflow session to handle tensors.
# ops: Dictionary for tensors of Network
# templates: Training Point Cloud data.
# poses: Training pose data.
is_training = False
display_ptClouds = False
display_poses = False
display_poses_in_itr = False
display_ptClouds_in_itr = False
#templates = helper.shuffle_templates(templates)
#poses = helper.shuffle_poses(poses)
loss_sum = 0 # Total Loss in each batch.
num_batches = int(templates.shape[0]/BATCH_SIZE) # Number of batches in an epoch.
num_batches=2
for fn in range(num_batches):
#shuffled_poses = helper.shuffle_poses(poses)
start_idx = fn*BATCH_SIZE # Start index of poses.
end_idx = (fn+1)*BATCH_SIZE # End index of poses.
template_data = np.copy(templates[start_idx:end_idx])
batch_euler_poses = poses[0:BATCH_SIZE,:] # Extract poses for batch training.
source_data = helper.apply_transformation(template_data, batch_euler_poses) # Apply the poses on the templates to get source data.
if centroid_subtraction_switch:
source_data = source_data - np.mean(source_data, axis=1, keepdims=True)
template_data = template_data - np.mean(template_data, axis=1, keepdims=True)
# Chose Random Points from point clouds for training.
if np.random.random_sample()<0.0:
source_data = helper.select_random_points(source_data, NUM_POINT) # 30% probability that source data has different points than template
else:
source_data = source_data[:,0:NUM_POINT,:]
if np.random.random_sample()<ADD_NOISE:
source_data = helper.add_noise(source_data)
# Only chose limited number of points from the source and template data.
source_data = source_data[:,0:NUM_POINT,:]
template_data = template_data[:,0:NUM_POINT,:]
# To visualize the source and point clouds:
if display_ptClouds:
helper.display_clouds_data(source_data[0])
helper.display_clouds_data(template_data[0])
TRANSFORMATIONS = np.identity(4) # Initialize identity transformation matrix.
TRANSFORMATIONS = npm.repmat(TRANSFORMATIONS,BATCH_SIZE,1).reshape(BATCH_SIZE,4,4) # Intialize identity matrices of size equal to batch_size
# Iterations for pose refinement.
for loop_idx in range(MAX_LOOPS-1):
# 4a
# Feed the placeholders of Network with template data and source data.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
predicted_transformation = sess.run([ops['predicted_transformation']], feed_dict=feed_dict) # Ask the network to predict the pose.
# 4b,4c
# Apply the transformation on the template data and multiply it to transformation matrix obtained in previous iteration.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
# Display Results after each iteration.
if display_poses_in_itr:
print(predicted_transformation[0,0:3])
print(predicted_transformation[0,3:7]*(180/np.pi))
if display_ptClouds_in_itr:
helper.display_clouds_data(source_data[0])
# Feed the placeholders of Network with source data and template data obtained from N-Iterations.
feed_dict = {ops['source_pointclouds_pl']: source_data,
ops['template_pointclouds_pl']: template_data,
ops['is_training_pl']: is_training}
# Ask the network to predict transformation, calculate loss using distance between actual points.
summary, step, loss_val, predicted_transformation = sess.run([ops['merged'], ops['step'], ops['loss'], ops['predicted_transformation']], feed_dict=feed_dict)
eval_writer.add_summary(summary, step) # Add all the summary to the tensorboard.
# Apply the final transformation on the template data and multiply it with the transformation matrix obtained from N-Iterations.
TRANSFORMATIONS, source_data = helper.transformation_quat2mat(predicted_transformation, TRANSFORMATIONS, source_data)
final_pose = helper.find_final_pose_inv(TRANSFORMATIONS) # Find the final pose (translation, orientation (euler angles in degrees)) from transformation matrix.
# Display the ground truth pose and predicted pose for first Point Cloud in batch
if display_poses:
print('Ground Truth Position: {}'.format(batch_euler_poses[0,0:3].tolist()))
print('Predicted Position: {}'.format(final_pose[0,0:3].tolist()))
print('Ground Truth Orientation: {}'.format((batch_euler_poses[0,3:6]*(180/np.pi)).tolist()))
print('Predicted Orientation: {}'.format((final_pose[0,3:6]*(180/np.pi)).tolist()))
# Display Loss Value.
print("Batch: {}, Loss: {}\r".format(fn, loss_val),end='')
# Add loss for each batch.
loss_sum += loss_val
print('\n')
log_string('Eval Mean loss: %f' % (loss_sum/num_batches)) # Store and display mean loss of epoch.
if __name__ == "__main__":
if FLAGS.mode == 'no_mode':
print('Specity a mode argument: train')
elif FLAGS.mode == 'train':
if helper.download_data(FLAGS.data_dict): print_('################### Data Downloading Finished ###################', color='g', style='bold')
train()
LOG_FOUT.close()