-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfsl_model.py
160 lines (149 loc) · 4.88 KB
/
fsl_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
fsl_model.py
overarching model class that can take in any neural network object;
"""
import sys
from collections import defaultdict
import torch
import numpy as np
from tqdm import tqdm
from audio_dataset import collate_fn
from net_ve import VoiceEncoder
class Model:
"""
overarching model class;
"""
def __init__(self, n_concat, nn=None, device='cpu'):
"""
init;
"""
self.n_concat = n_concat
self.nn = nn if nn is not None else VoiceEncoder()
self.set_nn_device(device)
self.device = device
def set_nn_device(self, device):
"""
call model.to() and set device;
check range of gpu devices (currently have 4 gpus);
"""
assert device in ['cpu', 0, 1, 2, 3], 'Invalid device.'
self.nn.to(device)
self.nn.device = device
def fit(self, dset_trn, dset_vld, dir_rsl, **kwargs):
"""
fit method
"""
n_epoch = kwargs.get('n_epoch', 32)
b_size = kwargs.get('b_size', 2)
learning_rate = kwargs.get('learning_rate', 0.001)
weights = kwargs.get('weights', [])
debug_stop = kwargs.get('debug_stop', False)
loss_fn = kwargs.get('loss_fn')
dataloader_kw = {'batch_size': b_size, 'shuffle': False, 'num_workers': 1,
'collate_fn': collate_fn, 'sampler': None}
dldr_trn = torch.utils.data.DataLoader(dset_trn, **dataloader_kw)
weights = torch.FloatTensor(weights).cuda(self.device)
if loss_fn == torch.nn.CosineEmbeddingLoss:
target = torch.tensor(np.ones(b_size), device=self.device)
else:
target = None
loss_fn = loss_fn()
opt = torch.optim.Adam(self.nn.parameters(), lr=learning_rate)
train_epochs_kw = {'debug_stop': debug_stop, 'n_epoch': n_epoch, 'opt': opt,
'loss_fn': loss_fn, 'dir_rsl': dir_rsl, 'b_size': b_size, 'target': target}
self.train_epochs(dset_trn, dset_vld, dldr_trn, **train_epochs_kw)
def train_epochs(self, dset_trn, dset_vld, dldr_trn, **kwargs):
"""
go thru epochs and train;
"""
debug_stop = kwargs.get('debug_stop')
n_epoch = kwargs.get('n_epoch')
opt = kwargs.get('opt')
loss_fn = kwargs.get('loss_fn')
b_size = kwargs.get('b_size')
target = kwargs.get('target')
# dir_rsl = kwargs.get('dir_rsl')
if not debug_stop:
for epoch in range(n_epoch):
## set model to training mode
self.nn.train()
cum_loss, count = 0, 0
## training loop
with tqdm(total=len(dset_trn), desc=f'Epoch {epoch} (TRN)',
ascii=True, bar_format='{l_bar}{r_bar}', file=sys.stdout) as pbar:
for Xs, ys, *_ in dldr_trn:
self.nn.reformat(Xs, self.n_concat)
ys = torch.tensor(ys, dtype=torch.float32, device=self.nn.device)
self.nn.zero_grad()
_, loss = self.nn.get_scores_loss(Xs, ys, loss_fn, target=target)
loss.backward()
opt.step()
# pred = torch.argmax(scores, 1)
## accumulated loss
cum_loss += loss.data.cpu().numpy() * len(ys)
## accumulated no. of correct predictions
# cum_corr += (pred == ys).sum().data.cpu().numpy()
## accumulated no. of processed samples
count += len(ys)
## update statistics and progress bar
pbar.set_postfix({
'loss': f'{(cum_loss / count):.6f}',
#'acc' : f'{(cum_corr / count):.6f}',
})
pbar.update(len(ys))
## forward validation dataset
self.eval(dset_vld)
## save model
# self.save_model(f'{dir_rsl}/tmp.pt')
# # load best model
# self.load_model(f'{dir_rsl}/tmp.pt')
def prob(self, dset, b_size=16, eval_collate_fn=collate_fn):
"""
calc model output
"""
rsl = self.eval(dset, b_size=b_size, eval_collate_fn=eval_collate_fn)
return np.exp(rsl)[:,1] / np.sum(np.exp(rsl), axis=1)
def eval(self, dset, **kwargs):
"""
evaluate model;
"""
b_size = kwargs.get('b_size', 16)
debug_stop = kwargs.get('debug_stop', False)
eval_collate_fn = kwargs.get('eval_collate_fn', collate_fn)
if debug_stop:
return []
self.nn.eval()
dl_dr_kwargs = {'batch_size': b_size,
'shuffle': False,
'num_workers': 1,
'collate_fn': eval_collate_fn}
dldr = torch.utils.data.DataLoader(dset, **dl_dr_kwargs)
# list to store result (i.e. all outputs)
x_fp_to_rsl = defaultdict(dict)
# evaluation loop
with torch.set_grad_enabled(False):
with tqdm(total=len(dset), desc='Epoch ___ (EVL)', ascii=True,
bar_format='{l_bar}{r_bar}', file=sys.stdout) as pbar:
for Xs, _, x_filepaths, start_end_list in dldr:
self.nn.reformat(Xs, self.n_concat)
out = self.nn.get_scores(Xs)
# append batch outputs to result
results = out.data.cpu().numpy()
for idx, x_fp in enumerate(x_filepaths):
start_end = start_end_list[idx]
assert start_end not in x_fp_to_rsl[x_fp], f'{x_fp}, {start_end}'
x_fp_to_rsl[x_fp][start_end] = results[idx]
# progress bar
pbar.update(len(Xs))
# concatenate all batch outputs
return x_fp_to_rsl
def save_model(self, filepath):
"""
save model as a file;
"""
torch.save(self.nn, filepath)
def load_model(self, filepath):
"""
load a model file;
"""
self.nn = torch.load(filepath)