-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkmeans.py
52 lines (34 loc) · 1.27 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import argparse
import pickle
import numpy as np
from sklearn.cluster import KMeans
from mnist import load_mnist
def generate_kmeans(x, k, verbose=False):
kmeans = KMeans(n_clusters=k, verbose=int(verbose)).fit(x).cluster_centers_
return kmeans
def save_kmeans(kmeans, path):
with open(path, 'wb') as file:
pickle.dump(kmeans, file)
def load_kmeans(path):
with open(path, 'rb') as file:
kmeans = pickle.load(file)
return kmeans
def main():
parser = argparse.ArgumentParser(
prog='kmeans',
description='find kmeans in data'
)
parser.add_argument('--path', default='../MNIST',
help='path to the mnist data')
parser.add_argument('--k', default=10, type=int,
help='number of components')
parser.add_argument('--verbose', action='store_true', default=False)
parser.add_argument('--output', '-o', default='kmeans.dat')
args = parser.parse_args()
data = load_mnist(dataset='training', path=args.path, return_labels=False)
data = np.reshape(data, (60000, 784))
kmeans = generate_kmeans(data, int(args.k), args.verbose)
save_kmeans(kmeans, args.output)
print('saved kmeans in {}'.format(args.output))
if __name__ == '__main__':
main()