-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·463 lines (320 loc) · 17.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
'''
################################
# Cluster-based MTMC tracking #
################################
'''
# Python modules
import os
import time
import numpy as np
from PIL import Image
import torch
from sklearn.metrics import pairwise_distances
# Own modules
from preprocessing_data import preprocess_data
from libs import camera, colors, display, dataset, features, sct, tracking, clustering
from network import resnet_elg
from network import net_id_classifier
import torchvision.transforms as transforms
import argparse
import yaml
from misc import nms
parser = argparse.ArgumentParser(description='Training classifier pair of cars')
parser.add_argument('--ConfigPath', metavar='DIR', help='Configuration file path')
global CONFIG
# from torch.utils.serialization import load_lua
class mtmc():
def __init__(self, dataset_dir, detector):
self.dataset_root_dir = dataset_dir
self.detector = detector
self.max_frame = {'S01': 2132,
'S02': 2110,
'S03': 2422,
'S04': 710,
'S05': 4299,
}
self.offset = {'S01': {'c001': 0,
'c002': 1.640,
'c003': 2.049,
'c004': 2.177,
'c005': 2.235},
'S02': {'c006': 0,
'c007': 0.061,
'c008': 0.421,
'c009': 0.660},
'S03': {'c010': 8.715,
'c011': 8.457,
'c012': 5.879,
'c013': 0,
'c014': 5.042,
'c015': 8.492},
'S04': {'c016': 0,
'c017': 14.318,
'c018': 29.955,
'c019': 26.979,
'c020': 25.905,
'c021': 39.973,
'c022': 49.422,
'c023': 45.716,
'c024': 50.853,
'c025': 50.263,
'c026': 70.450,
'c027': 85.097,
'c028': 100.110,
'c029': 125.788,
'c030': 124.319,
'c031': 125.033,
'c032': 125.199,
'c033': 150.893,
'c034': 140.218,
'c035': 165.568,
'c036': 170.797,
'c037': 170.567,
'c038': 175.426,
'c039': 175.644,
'c040': 175.838},
'S05': {'c010': 0,
'c016': 0,
'c017': 0,
'c018': 0,
'c019': 0,
'c020': 0,
'c021': 0,
'c022': 0,
'c023': 0,
'c024': 0,
'c025': 0,
'c026': 0,
'c027': 0,
'c028': 0,
'c029': 0,
'c033': 0,
'c034': 0,
'c035': 0,
'c036': 0}}
self.colors = colors.distinguishable_colors()
self.preprocess_flag = False
self.display = False
self.dist_th = CONFIG['DIST_TH']
self.global_tracks = list(list())
self.global_tracks.append(list())
# frame ,time, cam_id ,SCT_id ,latitude ,longitude, start_x, start_y ,
# end_x, end_y, start_time, end_time, left, top, width, heigth
# def __init__(self, scene):
if __name__ == '__main__':
# Decode CONFIG file information
tic1 = time.time()
args = parser.parse_args()
CONFIG = yaml.safe_load(open(args.ConfigPath, 'r'))
'''
Train set: S01, S03, S04
Test set: S02, S05
'''
dataset_dir = CONFIG['DATASET_PATH']
results_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'results')
detector = CONFIG['DETECTOR']
set = 'test' # 'test' 'train'
# Initialize global mtmc class
mtmc = mtmc(dataset_dir, detector)
# Inicialize cam class
cam = camera.camera(os.path.join(mtmc.dataset_root_dir, set))
# Dataset class
aicc = dataset.dataset()
# Display class
display = display.display(mtmc.display)
### LOAD NET
if CONFIG['MODEL'] == "Imagenet":
# Features model pretrined
net = resnet_elg.resnet50(pretrained=True)
else:
model = CONFIG['MODEL']
model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models/' + model)
net = net_id_classifier.net_id_classifier('ResNet50', CONFIG['NUM_IDS'], CONFIG['SIZE_FC'])
weights = torch.load(model_path)['state_dict']
net.load_state_dict(weights, strict=True)
net.cuda()
net.eval()
feat = features.features(aicc, net, CONFIG['MODE'])
# # Tracking class
track = tracking.tracking(mtmc, CONFIG)
# Pre-processing needs to be executed only once after downloading the AICC19 dataset
if mtmc.preprocess_flag:
print('Preprocessing data from ' + set + 'set' + '\n')
preprocess_data.process(set, mtmc.offset)
# Load Single Camera Tracking data
# Initialize sct strucure
sct = sct.sct(mtmc)
toc2 = time.time()
print(toc2 - tic1, ' latency sec Elapsed')
print('Loading SCT and homographies...')
# For each scenario in the set
for s in ['S02']: #change if proceed
# Create new data dictionary in sct class
sct.new(s)
# Fill it with sct data: e.g. sct.data[scene][camera] -> [ndarray]
sct.load(set, s, mtmc.offset, flag_filter_size=CONFIG['FLAG_FILTER_SIZE'], score_th=CONFIG['SCORE_TH'])
# Load homography matrices
cameras = os.listdir(os.path.join(mtmc.dataset_root_dir, set, s))
for c in cameras:
cam.load_homography_matrix(s,c)
print('Done.')
# MTMC - Main Loop
# Results file
file_results = os.path.join(results_dir, s, CONFIG['ID'] + '.txt')
f_id = open(file_results, 'w+')
# Scenarios
for s in ['S02']:
cameras = os.listdir(os.path.join(mtmc.dataset_root_dir, set, s))
cameras.sort()
tic = time.time()
# Frames
for f in range(1,mtmc.max_frame[s] + 1): #mtmc.max_frame[s] + 1
# print(['Frame ' + str(f)])
mtmc.global_tracks.append(list())
# Create empty dictionary for this frame sct
sct_f = sct.new_frame_data()
# Cameras
for c in cameras:
print('Processing ' + str(s) + ' frame ' + str(f) + ' camera ' + str(c))
frame_img = Image.open(os.path.join(mtmc.dataset_root_dir, set, s, c, 'img', '%06d.jpg' % f))
# display.show_frame(frame_img,c)
sct_array = np.array(sct.data[s][c])
sct_f_data = sct_array[sct_array[:, 0] == f, :]
#NMS
if CONFIG['NMS'] == True:
if sct_f_data.shape[0] != 0:
sct_f_data = nms.non_max_suppression(sct_f_data, sct_f_data[:, 6])
# Fill sct_f dictionary with current frame information
for i in range(sct_f_data.shape[0]):
sct_f['id_cam'].append(int(c[-3:]))
sct_f['id'].append(int(sct_f_data[i][1]))
x = int(round(sct_f_data[i][2]))
y = int(round(sct_f_data[i][3]))
w = int(round(sct_f_data[i][4]))
h = int(round(sct_f_data[i][5]))
sct_f['x'].append(x)
sct_f['y'].append(y)
sct_f['w'].append(w)
sct_f['h'].append(h)
# draw bbox
#display.draw_bbox(x, y, w, h)
# Crop bbox
bbox_img = transforms.functional.crop(frame_img, y, x, h, w)
# Get a square bbox to not to change the aspect ratio
# square_bbox = aicc.square(bbox_img,frame_img, x, y)
# bbox_padded = aicc.pad(bbox_img, (0, 0, 0))
bbox_img_norm = aicc.data_transform((bbox_img))
sct_f['bbox'].append(bbox_img_norm)
# Base of the bounding box to projection
bx = round(x + round(w / 2))
by = round(y + h)
xw, yw = cam.apply_homography_image_to_world(bx, by, cam.homography_matrix[c])
sct_f['xw'].append(xw)
sct_f['yw'].append(-yw) # IMPORTANT: changed sign to positive coordinate
# Feature extraction
# plt.figure()
# plt.imshow(bbox_padded)
features_np = feat.extract(bbox_img_norm)
sct_f['features'].append(features_np)
num_det_f = sct_f['id_cam'].__len__()
if num_det_f != 0:
# Clustering mode
# Spatial distance
xy = np.transpose(np.stack((np.array(sct_f['xw']), np.array(sct_f['yw'])), axis=0))
dist_spatial = pairwise_distances(xy, xy, metric='euclidean') # dist2 = pdist(xy,metric= metric) #euclidean cosine cityblock
# Set diagonal to 1 to avoid zeros
dist_spatial = dist_spatial + (np.eye(dist_spatial.shape[0]))
# Flag matrix with 1 when sct detections are closer than threshold
dist_flag = (dist_spatial < mtmc.dist_th) * 1
# norm = normalize(dist, norm='l2', axis = 0, copy = True, return_norm = False)
# Initialize clustering class. New clusters structure each frame
clust = clustering.clustering(mtmc)
# If there are some close detections and more than 1 camera
if (sum(sum(dist_flag)) != 0) and ((np.unique(sct_f['id_cam'])).size > 1):
# Perform clustering using features
features_all = np.array(sct_f['features'])
dist_features = pairwise_distances(features_all, features_all, metric='euclidean')
#
if feat.characteristic == 'distance':
restricted_dist_features, association_matrix = feat.apply_restrictions(dist_spatial,
dist_spatial,
sct_f,
mtmc.dist_th,
feat.characteristic)
idx, optimal_clusters = clust.compute_clusters(restricted_dist_features, association_matrix)
elif feat.characteristic == 'appearance':
restricted_dist_features, association_matrix = feat.apply_restrictions(
dist_features, dist_spatial, sct_f, mtmc.dist_th, feat.characteristic)
idx, optimal_clusters = clust.compute_clusters(restricted_dist_features, association_matrix)
else:
# Clustering
restricted_dist_features, association_matrix = feat.apply_restrictions(
dist_features, dist_spatial, sct_f, mtmc.dist_th, feat.characteristic)
idx, optimal_clusters = clust.compute_clusters(restricted_dist_features, association_matrix)
else: # All detections are alone, no need to cluster
optimal_clusters = num_det_f
idx = np.array(range(0, optimal_clusters))
association_matrix = np.array([])
dist_features = []
for cl in range(optimal_clusters):
# Initialize empty structure of the cluster
clust.clusters_frame.append(clust.new_cluster())
# Extract detection in each cluster
det_in_cluster = np.where(idx == cl)[0]
# Plot detections in cluster
# clust.display_detections_cluster(sct_f,det_in_cluster,cl)
# Get centroid of the cluster, mean position of every detectionin the cluster
mean_xw = np.mean((np.array(sct_f['xw']))[det_in_cluster])
mean_yw = np.mean((np.array(sct_f['yw']))[det_in_cluster])
clust.clusters_frame[-1]['xw'] = mean_xw
clust.clusters_frame[-1]['yw'] = mean_yw
# Plot centroid
# clust.display_centroid_cluster(mean_xw, mean_yw, cl)
for d in range(det_in_cluster.__len__()):
idx_det = det_in_cluster[d]
clust.clusters_frame[-1]['det'].append(clust.new_detection())
new_w = round(sct_f['w'][idx_det] + sct_f['w'][idx_det] * 0)
new_h = round(sct_f['h'][idx_det] + sct_f['h'][idx_det] * 0)
# c_x = sct_f['x'][idx_det] + round(sct_f['w'][idx_det] / 2
# c_y = sct_f['y'][idx_det] + round(sct_f['h'][idx_det] / 2 )
clust.clusters_frame[-1]['det'][-1]['x'] = sct_f['x'][idx_det] + round(sct_f['w'][idx_det] / 2 ) - round(new_w / 2)
clust.clusters_frame[-1]['det'][-1]['y'] = sct_f['y'][idx_det] + round(sct_f['h'][idx_det] / 2 ) - round(new_h / 2)
clust.clusters_frame[-1]['det'][-1]['w'] = new_w
clust.clusters_frame[-1]['det'][-1]['h'] = new_h
clust.clusters_frame[-1]['det'][-1]['id_cam'] = sct_f['id_cam'][idx_det]
clust.clusters_frame[-1]['det'][-1]['id_global'] = int(idx_det)
# clust.clusters_frame[-1]['det'][-1]['features'] = sct_f['features'][idx_det]
# CLUSTERS - TRACKS ASSOCIATION
track.predict_new_locations()
track.cluster_track_assignment(clust.clusters_frame, 1)
# Update each assigned track with the corresponding detection.It calls the correct method of vision.KalmanFilter to correct the location estimate.
# Next, it stores the new bounding box, and increases the age of the track and the total visible count by 1.
# Finally, the function sets the invisible count to 0.
track.update_assigned_tracks(clust.clusters_frame)
#Mark each unassigned track as invisible and increase its age by 1
track.update_unassigned_tracks()
# Delete tracks that have been invisible for too many frames
track.delete_lost_tracks()
track.check_unassigned_clusters(clust.clusters_frame, association_matrix, dist_features, dist_spatial)
# Create new tracks from unassigned detections. Assume that any unassigned detection is a start of a new track.
# In practice you can use other cues to eliminate nnoisy detections such as size, location, or appearance
track.create_new_tracks_KF(clust.clusters_frame)
track.save_global_tracking_data(clust.clusters_frame,f,mtmc.global_tracks,cam)
# WRITTING RESULTS
if track.updated_flag:
num_tracks_f = mtmc.global_tracks[f].__len__()
for i in range(num_tracks_f):
for det in range(mtmc.global_tracks[f][i]['det'].__len__()):
new_w = round(mtmc.global_tracks[f][i]['det'][det]['w'] + mtmc.global_tracks[f][i]['det'][det]['w']* CONFIG['AUG_SIZE'])
new_h = round(mtmc.global_tracks[f][i]['det'][det]['h'] + mtmc.global_tracks[f][i]['det'][det]['h']* CONFIG['AUG_SIZE'])
arg1 = mtmc.global_tracks[f][i]['det'][det]['id_cam']
arg2 = mtmc.global_tracks[f][i]['id']
arg3 = f
arg4 = mtmc.global_tracks[f][i]['det'][det]['x'] + round(mtmc.global_tracks[f][i]['det'][det]['w'] / 2) - round(new_w / 2)
arg5 = mtmc.global_tracks[f][i]['det'][det]['y'] + round(mtmc.global_tracks[f][i]['det'][det]['h'] / 2) - round(new_h / 2)
arg6 = new_w
arg7 = new_h
f_id.write("%d %d %d %d %d %d %d -1 -1\n" % (arg1, arg2, arg3, arg4, arg5, arg6, arg7))
f_id.close()
toc = time.time()
print(toc - tic, 'sec Elapsed total time' )