-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimple_nn_runner_multilabel.py
461 lines (378 loc) · 13.7 KB
/
simple_nn_runner_multilabel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import os
import sys
import string
import random
import time
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
import optuna
import matplotlib.pyplot as plt
import csv
import ast
import pickle as pkl
import logging
import numpy as np
import pandas as pd
import sklearn
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
import torch
from torch.utils.data import TensorDataset
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torch.optim.lr_scheduler import *
import wandb
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
from pytorch_lightning.loggers import WandbLogger
from utils.simple_nn_utils import *
from utils.model_utils import *
from models.simple_nn import *
################
### Settings ###
################
# data_fp = f"/gpfs/milgram/project/rtaylor/shared/ABDPain_EarlyDiags/unq_pt_enc_clean_multilabel_nomis_dvemb.pkl"
data_fp = f"/gpfs/milgram/project/rtaylor/shared/ABDPain_EarlyDiags/unq_pt_enc_clean_multilabel_nomismatches.pkl"
logger_fp = f"/gpfs/milgram/project/rtaylor/shared/ABDPain_EarlyDiags/model_outputs/simple_nn_logging.txt"
labels_fp = f"/home/vs428/Documents/deep-ed-diags/label_list.txt"
config = {
###### DATA CONFIG
"basic_col_subset": False,
# drop columns that don't have at least this many non-NA values
"drop_sparse_cols": 5000,
# downsample majority class
"downsample": False,
###### CLASS WEIGHT CONFIG
# can be "inverse", None, "effective_sample", or "balanced", "constant", "bce_weights"
"class_weight_type": "constant",
# The amount to normalize by in "inverse" class weighting
# "class_weight_inv_lambda":10.0,
# only used if class_weight_type is "effective sample"
# "weight_beta" : 0.999,
# only used if class_weight_type is "constant"
"constant_weight": 1000,
###### PROGRAM CONFIG
# how often do we want to do evaluation
"eval_freq": 2,
###### MODEL CONFIG
# two options, "focal" or "bce"
"loss_fn": "bce",
"learning_rate": 0.0001,
"lr_weight_decay": 0.0,
"lr_scheduler": False,
"focal_loss_gamma": 10.0,
"layer_size": 128,
"epochs": 50,
"batch_size": 128,
"dropout": 0.0,
}
# just fix this issue of conditional params
if config["loss_fn"] == "focal":
config["class_weight_type"] = None
wandb.init(project="test-project", entity="decile", config=config, save_code=True)
WANDB_RUN_NAME = wandb.run.name
logging.basicConfig(
filename=logger_fp,
level=logging.INFO,
format=f"{WANDB_RUN_NAME} | %(asctime)s | %(levelname)s | %(message)s",
)
logging.info(f"Data File loc: {data_fp}")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(wandb.config)
torch.set_printoptions(profile="default", sci_mode=False, precision=3, linewidth=75)
#################
### Data Load ###
#################
std_scaler = StandardScaler()
minmax_scaler = MinMaxScaler()
data = pd.read_pickle(data_fp)
# data = data.sample(50000)
if wandb.config["basic_col_subset"]:
with open("./basic_col_subset.txt") as f:
cols = f.read().splitlines()
# switch out label for multilabel
cols = cols[:-1]
cols.append("multilabel")
data = data[cols]
with open(labels_fp, "r+") as f:
label_list = f.read().splitlines()
# data = data[test_cols]
print(f"dataset size: {data.shape}")
logging.info(f"Data loaded successfully!")
# This step is already done in the dataset so we skip it
# single_support_classes = set(data['label'].value_counts()[data['label'].value_counts() == 1].index)
# droppable_rows = data['label'].isin(single_support_classes).sum()
# data = data[~data['label'].isin(single_support_classes)]
# TODO: downsample doesn't work for multilabel yet
if wandb.config["downsample"]:
# we use the avg of the freq of the next 5 classes to downsample abdominal pain
downsample_rate = int(data["label"].value_counts()[1:5].mean())
def downsample_grp(grp):
if grp.name == "Abdominal Pain, general":
return grp.sample(downsample_rate)
else:
return grp
downsampled = data.groupby("label").apply(downsample_grp)
data = downsampled.drop("label", axis=1).reset_index().set_index("level_1")
data.index.name = None
# TODO: we don't do stratification on multilabel, is that okay?
# train_test_stratify = data['label']
else:
pass
# train_test_stratify = data['label']
# drop all columns that don't have any positive actual values/only have all NaNs
data = data.drop(
data.columns[((data.shape[0] - data.isnull().sum()) == 0)], axis=1, errors="ignore"
)
# remove columns that don't have at least N (hyperparam) number of non-NaN values
data = data[
data.columns.intersection(
data.columns[
(((data.shape[0] - data.isnull().sum())) > wandb.config["drop_sparse_cols"])
]
)
]
print(f"After dropping sparse columns: {data.shape}")
data.columns = data.columns.str.replace("[|]|<", "leq_")
# logging.info(f"Dropped {droppable_rows} rows for stratified K-fold with {single_support_classes} classes")
# drop EDDisposition, ID, and label columns
non_train_col_mask = (
data.columns[data.columns.str.contains("EdDisposition_")]
.union(data.columns[:3], sort=False)
.union(pd.Index(["multilabel"]), sort=False)
)
train_col_mask = data.columns.difference(non_train_col_mask, sort=False)
#######
# Scale variables either MinMax/Standard depending on if they are Normal-ish or not
# Note: We do the fitting after train_test_split since we only fit on training data
#######
# first separate out the corresponding cols
# all those that take avgs probably are normal
avg_cols = data.columns[data.columns.str.contains("_avg")].union(pd.Index(["age"]))
# same with vitals
vital_cols = pd.Index(
[
"last_SpO2",
"last_Temp",
"last_Patient Acuity",
"last_Pulse",
"last_Pain Score",
"last_Resp",
"last_BP_Systolic",
"last_BP_Diastolic",
"ed_SpO2",
"ed_Temp",
"ed_Patient Acuity",
"ed_Pulse",
"ed_Pain Score",
"ed_Resp",
"ed_BP_Systolic",
"ed_BP_Diastolic",
]
)
normal_cols = avg_cols.union(vital_cols).union(
data.columns[data.columns.str.contains("doc2vec_")]
)
# pull in the doc2vec embeddings as well
# all the other columns are not normal, since they are all counts, which have a long tail (likely Poisson)
# except for the purely categorical ones
cat_col_headers = [
"EdDisposition_",
"DepartmentName_",
"Sex_",
"GenderIdentity_",
"FirstRace_",
"Ethnicity_",
"PreferredLanguage_",
"SmokingStatus_",
"AcuityLevel_",
"FinancialClass_",
"CC_",
]
cat_cols = pd.Index(
flatten(
[
data.columns[data.columns.str.contains(col)].tolist()
for col in cat_col_headers
]
)
)
all_other_cols = data.columns.difference(cat_cols, sort=False)
all_other_cols = all_other_cols.difference(normal_cols, sort=False)
# remove label as well, since we don't scale it
all_other_cols = all_other_cols.difference(pd.Index(["multilabel"]), sort=False)
# Create a dummy index variable to get the indices
indices = range(data.shape[0])
X_train, X_test, y_train, y_test, idxs_train, idxs_test = train_test_split(
data[train_col_mask],
data["multilabel"],
indices,
# stratify=train_test_stratify, # don't know how this works with multilabel
test_size=0.2,
random_state=314,
)
logging.info(f"Created training/test sets")
# the classes can only be of the trained dataset
UNQ_LABEL_LIST = set(flatten(y_train.tolist()))
# get the subset of labels that are in the training class set
label_list = [x for x in label_list if x in UNQ_LABEL_LIST]
N_CLASSES = len(label_list)
# get class weights using only training data
if wandb.config["class_weight_type"]:
class_weights = get_class_weights(y_train.tolist(), wandb, data.shape[0])
class_weights = torch.tensor(class_weights).float().to(device)
else:
class_weights = None
print(class_weights)
print(data[train_col_mask].shape)
print(X_train.shape)
# get the indices for the pandas column names
cat_col_idxs = column_index(data[train_col_mask], train_col_mask.intersection(cat_cols))
normal_col_idxs = column_index(
data[train_col_mask], train_col_mask.intersection(normal_cols)
)
all_other_cols_idxs = column_index(
data[train_col_mask], train_col_mask.intersection(all_other_cols)
)
with open(
f"/gpfs/milgram/project/rtaylor/shared/ABDPain_EarlyDiags/model_metadata/{WANDB_RUN_NAME}_metadata.txt",
"a+",
) as f:
f.write(
f"Categorical columns with no Scaling:\n{train_col_mask.intersection(cat_cols).tolist()}\n"
)
time.sleep(2)
f.write(
f"Normal columns with Standard Scaling:\n{train_col_mask.intersection(normal_cols).tolist()}\n"
)
time.sleep(2)
f.write(
f"Non Normal columns with MinMax Scaling:\n{train_col_mask.intersection(all_other_cols).tolist()}\n"
)
time.sleep(2)
f.write(f"labels:\n{label_list}\n")
time.sleep(2)
# fit the indices by data type
# we check if there are any such columns
# if not, this fails silently by indexing with empty arrays
if len(normal_col_idxs) > 0:
std_scaler.fit(X_train.iloc[:, normal_col_idxs])
X_train_std_scaled = std_scaler.transform(X_train.iloc[:, normal_col_idxs])
X_test_std_scaled = std_scaler.transform(X_test.iloc[:, normal_col_idxs])
else:
X_train_std_scaled = np.array([])
X_test_std_scaled = np.array([])
if len(all_other_cols_idxs) > 0:
minmax_scaler.fit(X_train.iloc[:, all_other_cols_idxs])
X_train_minmax_scaled = minmax_scaler.transform(
X_train.iloc[:, all_other_cols_idxs]
)
X_test_minmax_scaled = minmax_scaler.transform(X_test.iloc[:, all_other_cols_idxs])
else:
X_train_minmax_scaled = np.array([])
X_test_minmax_scaled = np.array([])
# scale/normalize based on the column idxs above
X_train_input = torch.zeros(X_train.values.shape)
X_test_input = torch.zeros(X_test.values.shape)
### TODO: The error is in this line where the transform function expects what we trained on, which we aren't using here. terrible.
X_train_input[:, cat_col_idxs] = torch.tensor(
np.nan_to_num(X_train.iloc[:, cat_col_idxs]), dtype=torch.float
)
X_train_input[:, normal_col_idxs] = torch.tensor(
np.nan_to_num(X_train_std_scaled), dtype=torch.float
)
X_train_input[:, all_other_cols_idxs] = torch.tensor(
np.nan_to_num(X_train_minmax_scaled), dtype=torch.float
)
X_test_input[:, cat_col_idxs] = torch.tensor(
np.nan_to_num(X_test.iloc[:, cat_col_idxs]), dtype=torch.float
)
X_test_input[:, normal_col_idxs] = torch.tensor(
np.nan_to_num(X_test_std_scaled), dtype=torch.float
)
X_test_input[:, all_other_cols_idxs] = torch.tensor(
np.nan_to_num(X_test_minmax_scaled), dtype=torch.float
)
# we need to store this value for the NN model definition
INPUT_DIM = X_train.shape[1]
# For the multilabel case, we have to transform the y_train and y_test datasets ourselves
y_train_input = torch.zeros(X_train_input.shape[0], N_CLASSES, dtype=torch.float)
y_test_input = torch.zeros(X_test_input.shape[0], N_CLASSES, dtype=torch.float)
print("y_train_input", y_train_input.shape)
for row_idx, (_, labels) in enumerate(y_train.items()):
y_train_input[row_idx, :] = torch.tensor(
np.isin(label_list, labels, assume_unique=True).astype(float)
)
for row_idx, (_, labels) in enumerate(y_test.items()):
y_test_input[row_idx, :] = torch.tensor(
np.isin(label_list, labels, assume_unique=True).astype(float)
)
assert (torch.sum(y_train_input, 1) >= 1).all()
# assert((torch.sum(y_test_input, 1) >= 1).all())
train_dataset = TensorDataset(X_train_input, y_train_input)
test_dataset = TensorDataset(X_test_input, y_test_input)
train_loader = DataLoader(
train_dataset,
batch_size=wandb.config["batch_size"],
# collate_fn=collate_wrapper,
pin_memory=True,
)
test_loader = DataLoader(
test_dataset,
batch_size=wandb.config["batch_size"],
# collate_fn=collate_wrapper,
pin_memory=True,
)
logging.info(f"Created train/test loaders")
##########################
### Model Train Funcs. ###
##########################
# label_freqs = data['label'].value_counts()
try:
model = AbdPainPredictionMLP(
INPUT_DIM,
N_CLASSES,
layer_size=wandb.config["layer_size"],
dropout=wandb.config["dropout"],
).to(device)
print(model, flush=True)
wandb.watch(model)
opt = torch.optim.Adam(
model.parameters(),
lr=wandb.config["learning_rate"],
weight_decay=wandb.config["lr_weight_decay"],
) # lr=1e-5)
if wandb.config["lr_scheduler"]:
scheduler = MultiStepLR(
opt, milestones=list(range(0, wandb.config["epochs"], 100))[1:], gamma=0.5
)
else:
scheduler = None
if wandb.config["loss_fn"] == "focal":
loss = MultilabelFocalLoss(N_CLASSES, gamma=wandb.config["focal_loss_gamma"])
elif wandb.config["loss_fn"] == "bce":
loss = torch.nn.BCEWithLogitsLoss(pos_weight=class_weights)
else:
loss = torch.nn.BCEWithLogitsLoss(pos_weight=class_weights)
multilabel_train(
model,
loss,
opt,
train_loader,
test_loader,
device,
wandb,
n_epochs=wandb.config["epochs"],
scheduler=scheduler,
)
torch.save(
model,
f"/gpfs/milgram/project/rtaylor/shared/ABDPain_EarlyDiags/models/{WANDB_RUN_NAME}.model",
)
# y_pred = model(test_features)
# top_k_accuracy_score(y_test, y_pred, labels=le.classes_, k=10)
except Exception as e:
import traceback
traceback.print_exc()
finally:
wandb.finish()