forked from UoB-HPC/BabelStream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHIPStream.cpp
271 lines (227 loc) · 6.26 KB
/
HIPStream.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include "HIPStream.h"
#include "hip/hip_runtime.h"
#define TBSIZE 1024
#define DOT_NUM_BLOCKS 256
void check_error(void)
{
hipError_t err = hipGetLastError();
if (err != hipSuccess)
{
std::cerr << "Error: " << hipGetErrorString(err) << std::endl;
exit(err);
}
}
template <class T>
HIPStream<T>::HIPStream(const unsigned int ARRAY_SIZE, const int device_index)
{
// The array size must be divisible by TBSIZE for kernel launches
if (ARRAY_SIZE % TBSIZE != 0)
{
std::stringstream ss;
ss << "Array size must be a multiple of " << TBSIZE;
throw std::runtime_error(ss.str());
}
// Set device
int count;
hipGetDeviceCount(&count);
check_error();
if (device_index >= count)
throw std::runtime_error("Invalid device index");
hipSetDevice(device_index);
check_error();
// Print out device information
std::cout << "Using HIP device " << getDeviceName(device_index) << std::endl;
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
array_size = ARRAY_SIZE;
// Allocate the host array for partial sums for dot kernels
sums = (T*)malloc(sizeof(T) * DOT_NUM_BLOCKS);
// Check buffers fit on the device
hipDeviceProp_t props;
hipGetDeviceProperties(&props, 0);
if (props.totalGlobalMem < 3*ARRAY_SIZE*sizeof(T))
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
// Create device buffers
hipMalloc(&d_a, ARRAY_SIZE*sizeof(T));
check_error();
hipMalloc(&d_b, ARRAY_SIZE*sizeof(T));
check_error();
hipMalloc(&d_c, ARRAY_SIZE*sizeof(T));
check_error();
hipMalloc(&d_sum, DOT_NUM_BLOCKS*sizeof(T));
check_error();
}
template <class T>
HIPStream<T>::~HIPStream()
{
free(sums);
hipFree(d_a);
check_error();
hipFree(d_b);
check_error();
hipFree(d_c);
check_error();
hipFree(d_sum);
check_error();
}
template <typename T>
__global__ void init_kernel(T * a, T * b, T * c, T initA, T initB, T initC)
{
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
a[i] = initA;
b[i] = initB;
c[i] = initC;
}
template <class T>
void HIPStream<T>::init_arrays(T initA, T initB, T initC)
{
hipLaunchKernelGGL(HIP_KERNEL_NAME(init_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c, initA, initB, initC);
check_error();
hipDeviceSynchronize();
check_error();
}
template <class T>
void HIPStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
// Copy device memory to host
hipMemcpy(a.data(), d_a, a.size()*sizeof(T), hipMemcpyDeviceToHost);
check_error();
hipMemcpy(b.data(), d_b, b.size()*sizeof(T), hipMemcpyDeviceToHost);
check_error();
hipMemcpy(c.data(), d_c, c.size()*sizeof(T), hipMemcpyDeviceToHost);
check_error();
}
template <typename T>
__global__ void copy_kernel(const T * a, T * c)
{
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
c[i] = a[i];
}
template <class T>
void HIPStream<T>::copy()
{
hipLaunchKernelGGL(HIP_KERNEL_NAME(copy_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void mul_kernel(T * b, const T * c)
{
const T scalar = startScalar;
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
b[i] = scalar * c[i];
}
template <class T>
void HIPStream<T>::mul()
{
hipLaunchKernelGGL(HIP_KERNEL_NAME(mul_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void add_kernel(const T * a, const T * b, T * c)
{
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
c[i] = a[i] + b[i];
}
template <class T>
void HIPStream<T>::add()
{
hipLaunchKernelGGL(HIP_KERNEL_NAME(add_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <typename T>
__global__ void triad_kernel(T * a, const T * b, const T * c)
{
const T scalar = startScalar;
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
a[i] = b[i] + scalar * c[i];
}
template <class T>
void HIPStream<T>::triad()
{
hipLaunchKernelGGL(HIP_KERNEL_NAME(triad_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c);
check_error();
hipDeviceSynchronize();
check_error();
}
template <class T>
__global__ void dot_kernel(const T * a, const T * b, T * sum, unsigned int array_size)
{
__shared__ T tb_sum[TBSIZE];
int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
const size_t local_i = hipThreadIdx_x;
tb_sum[local_i] = 0.0;
for (; i < array_size; i += hipBlockDim_x*hipGridDim_x)
tb_sum[local_i] += a[i] * b[i];
for (int offset = hipBlockDim_x / 2; offset > 0; offset /= 2)
{
__syncthreads();
if (local_i < offset)
{
tb_sum[local_i] += tb_sum[local_i+offset];
}
}
if (local_i == 0)
sum[hipBlockIdx_x] = tb_sum[local_i];
}
template <class T>
T HIPStream<T>::dot()
{
hipLaunchKernelGGL(HIP_KERNEL_NAME(dot_kernel<T>), dim3(DOT_NUM_BLOCKS), dim3(TBSIZE), 0, 0, d_a, d_b, d_sum, array_size);
check_error();
hipMemcpy(sums, d_sum, DOT_NUM_BLOCKS*sizeof(T), hipMemcpyDeviceToHost);
check_error();
T sum = 0.0;
for (int i = 0; i < DOT_NUM_BLOCKS; i++)
sum += sums[i];
return sum;
}
void listDevices(void)
{
// Get number of devices
int count;
hipGetDeviceCount(&count);
check_error();
// Print device names
if (count == 0)
{
std::cerr << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (int i = 0; i < count; i++)
{
std::cout << i << ": " << getDeviceName(i) << std::endl;
}
std::cout << std::endl;
}
}
std::string getDeviceName(const int device)
{
hipDeviceProp_t props;
hipGetDeviceProperties(&props, device);
check_error();
return std::string(props.name);
}
std::string getDeviceDriver(const int device)
{
hipSetDevice(device);
check_error();
int driver;
hipDriverGetVersion(&driver);
check_error();
return std::to_string(driver);
}
template class HIPStream<float>;
template class HIPStream<double>;