-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
339 lines (281 loc) · 12.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# import torch
# import torch.nn.functional as F
# from torchvision import transforms
from PIL import Image
import numpy as np
from numpy import dot
from numpy.linalg import norm
import onnx, os, time, onnxruntime
import pandas as pd
import threading
# import queue
import cv2
import av
import streamlit as st
from streamlit_webrtc import (
ClientSettings,
VideoProcessorBase,
WebRtcMode,
webrtc_streamer,
)
import args
# def to_numpy(tensor):
# return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def get_image(x):
return x.split(', ')[0]
# Transform image to ToTensor
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def transform_image(image, IMG=True):
# transform = transforms.Compose([
# transforms.Resize((224, 224)),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.4065), (0.229, 0.224, 0.225)),
# ])
if IMG:
image = np.asarray(Image.open(image))
# -------------- RESIZE USING CV2 ---------------------
image = cv2.resize(image, dsize=(224, 224))
image = np.transpose(image, (2, 0, 1))
# image = (image/255-np.expand_dims(np.array([0.485, 0.456, 0.4065]),axis = (1,2)))/np.expand_dims(np.array([0.229, 0.224, 0.225]),axis = (1,2))
image = (image / 255 - np.array(args.MEAN)) / np.array(args.STD)
img_transformed = np.expand_dims(image.astype(np.float32), axis=0)
# x = torch.from_numpy(image.astype(np.float32))
# x = torch.transpose(x, 2, 0) # shape [3, 224, 224]
# -------------- RESIZE USING CV2 ---------------------
# img_transformed = []
# for _ in range(1):
# img_transformed.append(x)
# img_transformed = torch.stack(img_transformed) # shape [1, 3, 224, 224]
else:
# -------------- RESIZE USING CV2 ---------------------
image = cv2.resize(image, dsize=(224, 224))
image = np.transpose(image, (2, 0, 1))
# image = (image/255-np.expand_dims(np.array([0.485, 0.456, 0.4065]),axis = (1,2)))/np.expand_dims(np.array([0.229, 0.224, 0.225]),axis = (1,2))
image = (image / 255 - np.array(args.MEAN)) / np.array(args.STD)
img_transformed = np.expand_dims(image.astype(np.float32), axis=0)
# x = torch.from_numpy(image.astype(np.float32))
# x = torch.transpose(x, 2, 0)
# -------------- RESIZE USING CV2 ---------------------
# img_transformed = []
# img_transformed.append(x)
# img_transformed = torch.stack(img_transformed)
return img_transformed
# predict multi-level classification
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_classification(image_tensor, df_train, sub_test_list, embeddings,
ort_session, input_name, confidence
):
# Prediction time
start = time.time()
# ort_inputs = {input_name: to_numpy(image_tensor)}
ort_inputs = {input_name: image_tensor}
pred, em = ort_session.run(None, ort_inputs)
if pred.max(axis=1) > confidence: # threshold to select of item is car part or not, Yes if > 0.5
# Compute kNN (using Cosine)
# knn = torch.nn.CosineSimilarity(dim = 1)(torch.tensor(em), embeddings).topk(1, largest=True)
knn = np.array(
[dot((em), embeddings[i]) / (norm(em) * norm(embeddings[i])) for i in range(embeddings.shape[0])]).flatten()
knn = np.argsort(knn)[-1]
# maker = 'Maker: '+str(df_train.iloc[knn.indices.item(), 0])
# model = str(df_train.iloc[knn.indices.item(), 1])
# vehicle = str(df_train.iloc[knn.indices.item(), 2])
# year = str(df_train.iloc[knn.indices.item(), 3])
# part = 'Part: '+str(df_train.iloc[knn.indices.item(), 4])
maker = 'Maker: ' + str(df_train.iloc[knn, 0])
model = str(df_train.iloc[knn, 1])
if model == 'nan':
model = 'Model: No information'
else:
model = 'Model: ' + model
vehicle = str(df_train.iloc[knn, 2])
if vehicle == 'nan':
vehicle = 'Vehicle: No information'
else:
vehicle = 'Vehicle: ' + vehicle
year = str(df_train.iloc[knn, 3])
if year == 'nan':
year = 'Year: No information'
else:
year = 'Year: ' + year
part = 'Part: ' + str(df_train.iloc[knn, 4])
predict_time = 'Predict time: ' + str(round(time.time() - start, 4)) + ' seconds'
# Similarity score
sim_score = 'Confidence: ' + str(round(pred.max(axis=1).item() * 100, 2)) + '%'
else:
maker = 'This is not car part !'
model = vehicle = year = part = predict_time = sim_score = None
return {'maker': maker, 'model': model, 'vehicle': vehicle, 'year': year, 'part': part,
'predict_time': predict_time, 'sim_score': sim_score}
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_classification_frame(image_tensor, df_train, sub_test_list, embeddings,
ort_session, input_name
):
# ort_inputs = {input_name: to_numpy(image_tensor)}
ort_inputs = {input_name: image_tensor}
pred, em = ort_session.run(None, ort_inputs)
if pred.max(axis=1) > args.VIDEO_CONFIDENCE:
# knn = torch.nn.CosineSimilarity(dim = 1)(torch.tensor(em), embeddings).topk(1, largest=True)
# part = str(df_train.iloc[knn.indices.item(), 4])
knn = np.array(
[dot((em), embeddings[i]) / (norm(em) * norm(embeddings[i])) for i in range(embeddings.shape[0])]).flatten()
knn = np.argsort(knn)[-1]
part = str(df_train.iloc[knn, 4])
# Similarity score
sim_score = str(round(pred.max(axis=1).item() * 100, 2)) + '%'
else:
part = 'No part detected'
sim_score = ''
return {'part_name': part, 'sim_score': sim_score}
# predict similarity
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_similarity(image_tensor, df_train, sub_test_list, embeddings,
ort_session, input_name
):
start = time.time()
# ort_inputs = {input_name: to_numpy(image_tensor)}
ort_inputs = {input_name: image_tensor}
pred, em = ort_session.run(None, ort_inputs)
# Compute kNN (using Cosine)
# knn = torch.nn.CosineSimilarity(dim = 1)(torch.tensor(em), embeddings).topk(6, largest=True)
# idx = knn.indices.numpy()
knn = np.array(
[dot((em), embeddings[i]) / (norm(em) * norm(embeddings[i])) for i in range(embeddings.shape[0])]).flatten()
idx = np.argsort(knn)[-6:]
predict_time = 'Predict time: ' + str(round(time.time() - start, 4)) + ' seconds'
images_path = 'raw_images'
images = [os.path.join(images_path, sub_test_list[i]) for i in idx]
# sub_test_list
return {'images': images, 'predict_time': predict_time}
# --------------------------------------------------------------------------------------------
# IMAGE INPUT
# --------------------------------------------------------------------------------------------
content_images_dict = {
name: os.path.join(args.IMAGES_PATH, filee) for name, filee in
zip(args.CONTENT_IMAGES_NAME, args.CONTENT_IMAGES_FILE)
}
def show_original():
""" Show Uploaded or Example image before prediction
Returns:
-------
content_file: str
path to image
"""
if st.sidebar.checkbox('Upload', value=True, help='Select Upload to browse image from local machine'):
content_file = st.sidebar.file_uploader("", type=["png", "jpg", "jpeg"])
else:
content_name = st.sidebar.selectbox("or Choose an example Image below", args.CONTENT_IMAGES_NAME)
content_file = content_images_dict[content_name]
col1, col2 = st.columns(2)
with col1:
# col1.markdown('## Target image')
if content_file:
col1.write('')
col1.image(content_file, channels='BGR', width=300, clamp=True, caption='Input image')
return content_file, col2
def image_input(content_file, df_train, sub_test_list, embeddings, ort_session, input_name, col2):
# Set confidence level
confidence_threshold = st.slider(
"Confidence threshold", 0.0, 1.0, args.DEFAULT_CONFIDENCE_THRESHOLD, 0.05,
help='Choose minimum confidence level. If prediction result below this threshold, no information is shown.'
)
if content_file is not None:
content = transform_image(content_file)
pred_info = get_classification(
content, df_train, sub_test_list,
embeddings, ort_session, input_name, confidence_threshold
)
pred_images = get_similarity(
content, df_train, sub_test_list,
embeddings, ort_session, input_name
)
container = st.container()
col6, col7 = container.columns([.5, 4])
with col6:
if col6.button("PREDICT"):
print_classification(col2, content_file, pred_info)
if col7.button("SEARCH SIMILAR"):
print_classification(col2, content_file, pred_info)
if pred_info['maker'] != 'This is not car part !':
# container = st.container()
print_similar_img(pred_images) # , container)
else:
st.warning("No similar car part image ! Reduce confidence threshold OR Choose another image.")
else:
st.success("Upload an Image OR Untick the Upload Button from Options on the sidebar")
st.info("Navigate input source from Navigation on the sidebar")
st.stop()
WEBRTC_CLIENT_SETTINGS = ClientSettings(
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
media_stream_constraints={
"video": True,
"audio": False,
},
)
def webcam_input(df_train, sub_test_list, embeddings, ort_session, input_name):
st.header("Webcam Live Feed")
class NeuralStyleTransferTransformer(VideoProcessorBase):
def __init__(self) -> None:
self._model_lock = threading.Lock()
def _annotate_image(self, image, pred_info):
# display the prediction
part_name = pred_info['part_name']
confidence = pred_info['sim_score']
label = f"{part_name} {confidence}"
cv2.putText(
image,
label,
(2, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 223),
2,
)
return image
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
content = transform_image(image, IMG=False)
pred_info = get_classification_frame(
content, df_train, sub_test_list,
embeddings, ort_session, input_name
)
annotated_image = self._annotate_image(image, pred_info)
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
webrtc_ctx = webrtc_streamer(
key="live-cassification",
mode=WebRtcMode.SENDRECV,
client_settings=WEBRTC_CLIENT_SETTINGS,
video_processor_factory=NeuralStyleTransferTransformer,
async_processing=True,
)
def print_classification(col2, content_file, pred_info):
""" Print classification prediction
"""
with col2:
col2.markdown('### Predicted information')
col2.markdown('')
if pred_info['maker'] != 'This is not car part !':
col2.markdown('#### - {}'.format(pred_info['maker']))
col2.markdown('#### - {}'.format(pred_info['model']))
col2.markdown('#### - {}'.format(pred_info['vehicle']))
col2.markdown('#### - {}'.format(pred_info['year']))
col2.markdown('#### - {}'.format(pred_info['part']))
col2.markdown('#### - {}'.format(pred_info['predict_time']))
col2.markdown('#### - {}'.format(pred_info['sim_score']))
else:
col2.markdown('### {}'.format(pred_info['maker']))
def print_similar_img(pred_images):
""" Print similarity images prediction
"""
st.markdown('### Most similar images')
st.markdown('#### {}'.format(pred_images['predict_time']))
col3, col4, col5 = st.columns(3)
with col3:
col3.image(pred_images['images'][0], channels='BGR', clamp=True, width=300)
col3.image(pred_images['images'][1], channels='BGR', clamp=True, width=300)
with col4:
# col4.markdown('# ')
col4.image(pred_images['images'][3], channels='BGR', clamp=True, width=300)
col4.image(pred_images['images'][4], channels='BGR', clamp=True, width=300)
with col5:
col5.image(pred_images['images'][5], channels='BGR', clamp=True, width=300)
col5.image(pred_images['images'][2], channels='BGR', clamp=True, width=300)